Outlines of Quantum Physics

Size: px
Start display at page:

Download "Outlines of Quantum Physics"

Transcription

1 Duality Outlines of 1 Wave-Particle Duality Bohr s Theory Wave-Particle Duality Probability interpretation of the Wave Function

2 Spectrum of Atomic Hydrogen Q: How do we know the energy levels of the hydrogen atom? Spectrum Fingerprints of atoms & molecules... Atomic Hydrogen J. Balmer, = R( 1 1 ), λ 2 2 n 2 n =3,4,5,6 J. Rydberg, = R( 1 1 ) λ n 2 n 2 ν = 1 (in λ cm 1 )

3 Bohr s Theory Electron in an Atom >fe: Faraday, Millikan, Ò4 : J J Thomson, (.Planetary model, E Rutherford, 1911 f1ì Balmerúª, J Balmer, 1885 fþfzu?quantization energy to H atom, Niels Bohr, 1913 Bohr s Assumption There are certain allowed orbits for which the electron has a fixed energy. The electron loses energy only when it jumps between the allowed orbits and the atoms emits this energy as light of a given wavelength.

4 Bohr s Theory m ev 2 r = e2 4πɛ 0r 2 E = e2 /4πɛ 0 2r r = a 0 n 2, E = e2 /4πɛ 0 1 2a 0 n, 2 ν = R( 1 n 1 2 n ), 2 a 0 = 2 (e 2 /4πɛ 0)m e, hcr = (e2 /4πɛ 0) 2 m e 2 2 M R M = R m R e+m (1 me M ) Bohr s success f1ì k X a 1Ì He + Pickering X Ÿþ1: Ù y fsþf3 µfrank-hertz 1914 fx Ì balance between centripetal acceleration and Column attraction E = 1 2 m ev 2 e2 /4πɛ 0 r Assumption: m e vr = n m = mem m e+m

5 Moseley and the Atomic Number Henry G.J. Moseley, Phil. Mag., 27,703(1914) X-ray of elements: f Z

6 Moseley and the Atomic Number X-ray, K- to L-shell transitions, 1 λ = R { (Z σ K ) 2 1 (Z σ L) } 2 1 (@Z = 1 92(U) "7 2 RutherfordµÚ ƒ±ïl Œ

7 Problems in Bohr s theory ØU)ºÙ õ>f f ØU)º f1ì [( Sommerfeld, relativistic Effects /The integral of the momentum associated with a coordinate around one period of the motion associated with that coordinate is an integral multiple of Planck s constant. For any physical system where the classical motion is periodic.0 Circular orbit: m e v 2πr = nh taking r = n 2 a 0 and a 0 = 2 (e 2 /4πɛ 0)m e, v c = α n fine-structure constant α = e2 /4πɛ 0 c Electrons in elliptical orbits with relativistic corrections, E = hcr[ 1 n 2 ÔnÆ ŠŸå } + α2 n ( n 4 k 3 4 )], Sommerfeld, 1916

8 Problems in Bohr s theory ØU)ºÙ õ>f f ØU)º f1ì [( Bohr ½ Maxwell>^nØmÀâ How can a hydrogen atom be stable? Quantization? Why? Electron is a wave? Einsteinµ g f[ uñ 1f XÛÀJÙ º Rutherfordµ >fxûû½ ±ŸoªÇ ĺ 3Ÿožÿl ½[$Ä, ½º q 7Lb½>f k ò Û?º Bohr)ºŸ Ï ²;Ôn Maxwell>^nØ gñ ½ [ Ø gñ [ Ø L Ûž XÛ û½?1[ (½5Ô

9 Radiative Decay An electric dipole moment ed oscillating at angular frequency ω radiates a power P, Total energy E of an electron in harmonic motion, This energy decreases at a rate equal to the power radiated, Classical radiative lifetime τ, ²;>^nØØ#N ½ ±Ï; 3œ P = e2 D 2 ω 4 12πɛ 0c 3 E = m e ω 2 D 2 /2 de dt = e2 ω 2 6πɛ 0m ec E = E 3 τ 1 τ = e2 ω 2 6πɛ 0m ec 3 Na D line (3s-3p): λ = 589nm, τ = 16ns. Sÿ-uÆ µ16.25 ns ܺœ

10 Wave-particle duality Åâ 5 Classical Physics Object Particles Fields and Waves Govern Laws Newton s Law Maxwell s Eq. Phenomena Mechanics, Heat Optics, Electromagnetism é ] º Ÿ/ïÓ3²;Vgƒþ" N. Bohr, þfåæ Œ?ØŒ±ÿþÔnþ"?ÛÔnnØ A?ØÔnþŒ±*ÿÔnþ éuïá *y (nø cùa5 ù:... Werner Heisenberg

11 Wave-particle duality Åâ 5 Photon >^ÅElectromagnetic wave, James Clerk Maxwell: Maxwell s Equations, 1860; Heinrich Hertz, 1888 çnëblackbody radiation, Max Planck: Planck s constant, > APhotoelectric effect, Albert Einstein: photons, 1905 y3...kü«1æ` Ñ ØŒ" < 7L«@ +nø[ s cãœãå vk?ûéx " A. Einsein, Berliner Tageblatt, 20 April 1924.

12 Wave-particle duality Åâ 5 Breakthrough Bohr s Hydrogen Atom, Niels Bohr, 1913 xêîñphoton-electron scattering, Arthur Compton, 1923 W Bothe and H Geiger, ÔŸÅb` Louis de Broglie, 1923: λ = h p >fûdiffraction of electrons, Clinton Davisson and Lester Germer, 1927 Compton Scattering Crystalline Diffraction pattern

13

14 First Solvay Conference, 1911 Walther Nernst, Marcel Brillouin, Ernest Solvay, Hendrik Lorentz, Emil Warburg, Jean Baptiste Perrin, Wilhelm Wien, Marie Curie, and Henri Poincaré Robert Goldschmidt, Max Planck, Heinrich Rubens, Arnold Sommerfeld, Frederick Lindemann, Maurice de Broglie, Martin Knudsen, Friedrich Hasenörl, Georges Hostelet, Edouard Herzen, James Hopwood Jeans, Ernest Rutherford, Heike Kamerlingh Onnes, Albert Einstein, Paul Langevin Photograph by Benjamin Couprie, 1911

15 Wave-particle duality Åâ 5 ²;åÆn) ÅÄ5µŒU\5 Ônþ3 m Ù" âf5µøœ 5 ; ²;n) öƒmkøœnúgñœ Üä F"SU "ÁU Bohr:... Ù` ±1þfÆ` ØX`q éuþ ÚÄþÅðéËL ^5JÑ~ " Einsteinµ Š n KéÏJ5 ï k3 4à;½œ¹eâ AT#N"

16 Duality Bohr Duality Probability

17 1927 Solvay Conference on Quantum Mechanics A. Piccard, E. Henriot, P. Ehrenfest, Ed. Herzen, Th. De Donder, E. Schröinger, E. Verschaffelt, W. Pauli, W. Heisenberg, R.H. Fowler, L. Brillouin, P. Debye, M. Knudsen, W.L. Bragg, H.A. Kramers, P.A.M. Dirac, A.H. Compton, L. de Broglie, M. Born, N. Bohr, I. Langmuir, M. Planck, M. Curie, H.A. Lorentz, A. Einstein, P. Langevin, Ch. E. Guye, C.T.R. Wilson, O.W. Richardson Photograph by Benjamin Couprie, Institut International de Physique Solvay, Brussels, Belgium

18 Wave-particle duality Åâ 5 þfåæn) ÅÄ5µƒZU\5 Coherent superposition ØI kônþ3 m Ù" âf5µˆâ5!øœ 5 Corpuscularity ïøœÿþ ; Well, an electron is also a... wave. pö5 n Complementarity Principle Niels Bohr

19 ^żê ã *âf żê âfg ã Ψ( r ) AÇÅ)º Probability Interpretation of the Wave Function τ r Max Born, 1926 Ψ( r ), Ψ( r ) 2 τ: τ éâfaç" ýï Ø kƒ " Let there be math! Here is the math for an electron...

20 ^żê ã *âf żêÚO)ºéżê 1 ψ² ŒÈ 2 ψk 3 ψüš ùø î ~ µ 1 ² Å Ψ e i( p r )/ ψ 2 dτuñ 2 ψœ±káû: 3 ψœ±kø½ƒïfe iφ

21 U\ nprinciple of Superposition Ψ = c 1 Ψ 1 + c 2 Ψ 2 K ÿþψ 1!Ψ 2 O ÿþša 1 Úa 2 µψ 1 a 1, Ψ 2 a 2, ÿþψ = c 1 Ψ 1 + c 2 Ψ 2 Ÿo(JºΨ? ü1fu 1 0??

22 ësnjj SK SN ëö SK f1ì => 1-5 =>1-8 BohrnØ => 7-9 =>2-9, 2-11, 2-12 => 10 OÏd"Xê => 3A =>2-5 Åâ 5 =Lv> 1.2 =Lv>1.1, 1.2 => 12 =Q> 2.1 żêAÇ)º =Lv> 1.6 => 14 =Q> 2.2 =>3-9, 3-10

23 Questions How do we know the energy levels of the hydrogen atom? How can a hydrogen atom be stable? What does a transition mean? The electron is also a... wave? What is the math for an electron?

Shapes and Structures of Molecules

Shapes and Structures of Molecules Preface Shapes and Structures of Molecules CH 4 CO 2 WRONG? REALLY? SM Hu (USTC) Structures of Atoms and Molecules Autumn 2011 1 / 60 Preface Shapes and Structures of Molecules CH 4 CO 2 WHAT is the structure

More information

Chemistry 1B-01, Fall 2012 Lectures 1-2. Chemistry 1B. Fall lectures 1-2. (ch 12 pp ) 6th [ch 12 pp ] 7th

Chemistry 1B-01, Fall 2012 Lectures 1-2. Chemistry 1B. Fall lectures 1-2. (ch 12 pp ) 6th [ch 12 pp ] 7th Chemistry 1B Fall 2012 lectures 1-2 (ch 12 pp 522-536) 6th [ch 12 pp 522-537] 7th 20 goals of lectures 1-2 The laws of nature in 1900 (successful for describing large objects) describe particles AND describe

More information

Chemistry 1B-01, Fall 2013 Lectures 1-2

Chemistry 1B-01, Fall 2013 Lectures 1-2 goals of lectures 1-2 Chemistry 1B Fall 2013 30 Nature of light and matter. Wave-particle duality chap.12 p524-531 lectures 1-2 (ch 12 pp 522-536) 6th [ch 12 pp 522-537] 7th The laws of nature in 1900

More information

2018 Quantum Physics

2018 Quantum Physics 2018 Quantum Physics Text: Sears & Zemansky, University Physics www.masteringphysics.com Lecture notes at www.tcd.ie/physics/study/current/undergraduate/lecture-notes/py1p20 TCD JF PY1P20 2018 J.B.Pethica

More information

Chemistry 1B-01, Fall 2016 Sessions 1-2. Chemistry 1B. Fall lectures topics 1-2. [ch 12 pp ] 7th

Chemistry 1B-01, Fall 2016 Sessions 1-2. Chemistry 1B. Fall lectures topics 1-2. [ch 12 pp ] 7th Chemistry 1B Fall 2016 lectures topics 1-2 [ch 12 pp 522-537] 7th 1 goals of lectures 1-2 The laws of nature in 1900 (successful for describing large objects) describe particles AND describe waves Experiments

More information

sessions lectures 3-4

sessions lectures 3-4 Chemistry 1B Fall 2016 sessions lectures 3-4 (537-542, *(543-549), 549-557) 1 quantization of energy E photon = hν absorption and emission spectra of hydrogen atom Z En J n 2 18 = 2. 178 10 2 Z=1 for H

More information

Atoms and Atomic Structure

Atoms and Atomic Structure Atoms and Atomic Structure 101 Week 13 2 A remarkable fact, which is important to science and technology: Nature is simple. 101 Week 13 3 What is matter? Physics is a reductionist science. Beneath the

More information

sessions lectures 3-4

sessions lectures 3-4 Chemistry 1B Fall 2016 sessions lectures 3-4 (537-542, *(543-549), 549-557) 1 quantization of energy E photon = h absorption and emission spectra of hydrogen atom 2 18 Z En 2. 17810 J 2 n Z=1 for H atom,

More information

Chapter 1. From Classical to Quantum Mechanics

Chapter 1. From Classical to Quantum Mechanics Chapter 1. From Classical to Quantum Mechanics Classical Mechanics (Newton): It describes the motion of a classical particle (discrete object). dp F ma, p = m = dt dx m dt F: force (N) a: acceleration

More information

From Last Time. Course essay reference & outline. The wavefunction and quantum jumps. More unusual aspects of quantum mechanics

From Last Time. Course essay reference & outline. The wavefunction and quantum jumps. More unusual aspects of quantum mechanics Course essay reference & outline Wednesday, Nov. 16, due in class Reference to main article Outline of essay. Essay is 500-750 words (about 2 double-spaced typed pages) So outline should be by paragraph

More information

12/04/2012. Models of the Atom. Quantum Physics versus Classical Physics The Thirty-Year War ( )

12/04/2012. Models of the Atom. Quantum Physics versus Classical Physics The Thirty-Year War ( ) Quantum Physics versus Classical Physics The Thirty-Year War (1900-1930) Interactions between Matter and Radiation Models of the Atom Bohr s Model of the Atom Planck s Blackbody Radiation Models of the

More information

The Photoelectric Effect

The Photoelectric Effect The Photoelectric Effect Light can strike the surface of some metals causing an electron to be ejected No matter how brightly the light shines, electrons are ejected only if the light has sufficient energy

More information

Planck s Quantum Hypothesis Blackbody Radiation

Planck s Quantum Hypothesis Blackbody Radiation Planck s Quantum Hypothesis Blackbody Radiation The spectrum of blackbody radiation has been measured(next slide); it is found that the frequency of peak intensity increases linearly with temperature.

More information

Stellar Astrophysics: The Interaction of Light and Matter

Stellar Astrophysics: The Interaction of Light and Matter Stellar Astrophysics: The Interaction of Light and Matter The Photoelectric Effect Methods of electron emission Thermionic emission: Application of heat allows electrons to gain enough energy to escape

More information

The Nature of Energy

The Nature of Energy The Nature of Energy For atoms and molecules, one does not observe a continuous spectrum, as one gets from a white light source.? Only a line spectrum of discrete wavelengths is observed. 2012 Pearson

More information

A Brief History of Quantum Mechanics

A Brief History of Quantum Mechanics A Brief History of Quantum Mechanics R. J. Renka Department of Computer Science & Engineering University of North Texas 01/31/2018 Wave and particle theories of light In 1630 René Descartes described light

More information

Particles and Waves Particles Waves

Particles and Waves Particles Waves Particles and Waves Particles Discrete and occupy space Exist in only one location at a time Position and velocity can be determined with infinite accuracy Interact by collisions, scattering. Waves Extended,

More information

LECTURE 6 QUANTUM PHYSICS II. Instructor: Shih-Chieh Hsu

LECTURE 6 QUANTUM PHYSICS II. Instructor: Shih-Chieh Hsu LECTURE 6 QUANTUM PHYSICS II Instructor: Shih-Chieh Hsu Development of Quantum Mechanics 2 In 1862, Kirchhoff coined black body radiation or known as cavity radiation The experiments raised the question

More information

Unknown X -Rays:high penetration

Unknown X -Rays:high penetration The nobel prize in physics 1901 Wilhelm Conrad Röntgen Germany in recognition of the extraordinary services he has rendered by the discovery of the remarkable rays subsequently named after him" Discovery

More information

The Photoelectric Effect

The Photoelectric Effect Stellar Astrophysics: The Interaction of Light and Matter The Photoelectric Effect Methods of electron emission Thermionic emission: Application of heat allows electrons to gain enough energy to escape

More information

Introduction to Quantum Theory

Introduction to Quantum Theory Introduction to Quantum Theory Dr. Russell Herman Physics and Physical Oceanography PHY 444 - Quantum Theory - Fall 2018 1 Syllabus Website: http://people.uncw.edu/hermanr/qm/ Grades Homework 30% Papers

More information

Chapter 37 Early Quantum Theory and Models of the Atom

Chapter 37 Early Quantum Theory and Models of the Atom Chapter 37 Early Quantum Theory and Models of the Atom Units of Chapter 37 37-7 Wave Nature of Matter 37-8 Electron Microscopes 37-9 Early Models of the Atom 37-10 Atomic Spectra: Key to the Structure

More information

PHYS 3313 Section 001 Lecture #14

PHYS 3313 Section 001 Lecture #14 PHYS 3313 Section 001 Lecture #14 Monday, March 6, 2017 The Classic Atomic Model Bohr Radius Bohr s Hydrogen Model and Its Limitations Characteristic X-ray Spectra 1 Announcements Midterm Exam In class

More information

Physics 1C Lecture 29B

Physics 1C Lecture 29B Physics 1C Lecture 29B Emission Spectra! The easiest gas to analyze is hydrogen gas.! Four prominent visible lines were observed, as well as several ultraviolet lines.! In 1885, Johann Balmer, found a

More information

Semiconductor Physics and Devices

Semiconductor Physics and Devices Introduction to Quantum Mechanics In order to understand the current-voltage characteristics, we need some knowledge of electron behavior in semiconductor when the electron is subjected to various potential

More information

QUANTUM MECHANICS Chapter 12

QUANTUM MECHANICS Chapter 12 QUANTUM MECHANICS Chapter 12 Colours which appear through the Prism are to be derived from the Light of the white one Sir Issac Newton, 1704 Electromagnetic Radiation (prelude) FIG Electromagnetic Radiation

More information

Wave properties of matter & Quantum mechanics I. Chapter 5

Wave properties of matter & Quantum mechanics I. Chapter 5 Wave properties of matter & Quantum mechanics I Chapter 5 X-ray diffraction Max von Laue suggested that if x-rays were a form of electromagnetic radiation, interference effects should be observed. Crystals

More information

is the minimum stopping potential for which the current between the plates reduces to zero.

is the minimum stopping potential for which the current between the plates reduces to zero. Module 1 :Quantum Mechanics Chapter 2 : Introduction to Quantum ideas Introduction to Quantum ideas We will now consider some experiments and their implications, which introduce us to quantum ideas. The

More information

Theoretical Biophysics. Quantum Theory and Molecular Dynamics. Pawel Romanczuk WS 2017/18

Theoretical Biophysics. Quantum Theory and Molecular Dynamics. Pawel Romanczuk WS 2017/18 Theoretical Biophysics Quantum Theory and Molecular Dynamics Pawel Romanczuk WS 2017/18 http://lab.romanczuk.de/teaching/ 1 Introduction Two pillars of classical theoretical physics at the begin of 20th

More information

Constants & Atomic Data. The birth of atomic physics and quantum mechanics. debroglie s Wave Equations. Energy Calculations. λ = f = h E.

Constants & Atomic Data. The birth of atomic physics and quantum mechanics. debroglie s Wave Equations. Energy Calculations. λ = f = h E. Constants & Atomic Data The birth of atomic physics and quantum mechanics Honors Physics Don Rhine Look inside back cover of book! Speed of Light (): c = 3.00 x 10 8 m/s Elementary Charge: e - = p + =

More information

Structure of the Atom. Thomson s Atomic Model. Knowledge of atoms in Experiments of Geiger and Marsden 2. Experiments of Geiger and Marsden

Structure of the Atom. Thomson s Atomic Model. Knowledge of atoms in Experiments of Geiger and Marsden 2. Experiments of Geiger and Marsden CHAPTER 4 Structure of the Atom 4.1 The Atomic Models of Thomson and Rutherford 4. Rutherford Scattering 4.3 The Classic Atomic Model 4.4 The Bohr Model of the Hydrogen Atom 4.5 Successes & Failures of

More information

The birth of atomic physics and quantum mechanics. Honors Physics Don Rhine

The birth of atomic physics and quantum mechanics. Honors Physics Don Rhine The birth of atomic physics and quantum mechanics Honors Physics Don Rhine Constants & Atomic Data Look inside back cover of book! Speed of Light (vacuum): c = 3.00 x 10 8 m/s Elementary Charge: e - =

More information

CHAPTER I Review of Modern Physics. A. Review of Important Experiments

CHAPTER I Review of Modern Physics. A. Review of Important Experiments CHAPTER I Review of Modern Physics A. Review of Important Experiments Quantum Mechanics is analogous to Newtonian Mechanics in that it is basically a system of rules which describe what happens at the

More information

Chapter 27 Early Quantum Theory and Models of the Atom Discovery and Properties of the electron

Chapter 27 Early Quantum Theory and Models of the Atom Discovery and Properties of the electron Chapter 27 Early Quantum Theory and Models of the Atom 27-1 Discovery and Properties of the electron Measure charge to mass ratio e/m (J. J. Thomson, 1897) When apply magnetic field only, the rays are

More information

Early Quantum Theory & Models of the Atom (Ch 27) Discovery of electron. Blackbody Radiation. Blackbody Radiation. J. J. Thomson ( )

Early Quantum Theory & Models of the Atom (Ch 27) Discovery of electron. Blackbody Radiation. Blackbody Radiation. J. J. Thomson ( ) Early Quantum Theory & Models of the Atom (Ch 27) Discovery of electron Modern physics special relativity quantum theory J. J. Thomson (1856-1940) measured e/m directly set-up was similar to mass spectrometer

More information

2) The energy of a photon of light is proportional to its frequency and proportional to its wavelength.

2) The energy of a photon of light is proportional to its frequency and proportional to its wavelength. Advanced Chemistry Chapter 13 Review Name Per Show all work Wave Properties 1) Which one of the following is correct? A) ν + λ = c B) ν λ = c C) ν = cλ D) λ = c ν E) νλ = c 2) The energy of a photon of

More information

Early Quantum Theory and Models of the Atom

Early Quantum Theory and Models of the Atom Early Quantum Theory and Models of the Atom Electron Discharge tube (circa 1900 s) There is something ( cathode rays ) which is emitted by the cathode and causes glowing Unlike light, these rays are deflected

More information

המבנה האלקטרוני של האטום:

המבנה האלקטרוני של האטום: נושא 7: המבנה האלקטרוני של האטום: Fireworks רקע היסטורי The Electronic Structure of the Atom: Historical Background 1 Prof. Zvi C. Koren 19.07.10 movie Thomson Millikan Rutherford Maxwell Planck Einstein

More information

Chapter 28. Atomic Physics

Chapter 28. Atomic Physics Chapter 28 Atomic Physics Sir Joseph John Thomson J. J. Thomson 1856-1940 Discovered the electron Did extensive work with cathode ray deflections 1906 Nobel Prize for discovery of electron Early Models

More information

Chapter 27. Quantum Physics

Chapter 27. Quantum Physics Chapter 27 Quantum Physics Need for Quantum Physics Problems remained from classical mechanics that relativity didn t explain Blackbody Radiation The electromagnetic radiation emitted by a heated object

More information

Lesson Plan. 1) Students will be aware of some key experimental findings and theoretical

Lesson Plan. 1) Students will be aware of some key experimental findings and theoretical Aleksey Kocherzhenko Lesson Plan Physical Chemistry I: Quantum Mechanics (this is a sophomore/junior-level course) Prerequisites: General Chemistry, Introductory Physics, Calculus, Differential Equations

More information

Wave Motion and Electromagnetic Radiation. Introduction Jan. 18, Jie Zhang

Wave Motion and Electromagnetic Radiation. Introduction Jan. 18, Jie Zhang Wave Motion and Electromagnetic Radiation Introduction Jan. 18, 2010 Jie Zhang PHYS 306 Spring, 2010 Introduction This class is about the physics of LIGHT. Textbook: Optics by Ghatak (2010) Content What

More information

Energy levels and atomic structures lectures chapter one

Energy levels and atomic structures lectures chapter one Structure of Atom An atom is the smallest constituent unit of ordinary matter that has the properties of a element. Every solid, liquid, gas, and plasma is composed of neutral or ionized atoms. Atoms are

More information

Historical Background of Quantum Mechanics

Historical Background of Quantum Mechanics Historical Background of Quantum Mechanics The Nature of Light The Structure of Matter Dr. Sabry El-Taher 1 The Nature of Light Dr. Sabry El-Taher 2 In 1801 Thomas Young: gave experimental evidence for

More information

College Physics B - PHY2054C

College Physics B - PHY2054C of College - PHY2054C The of 11/17/2014 My Office Hours: Tuesday 10:00 AM - Noon 206 Keen Building Outline of 1 2 of 3 4 of Puzzling The blackbody intensity falls to zero at both long and short wavelengths,

More information

Atoms, nuclei, particles

Atoms, nuclei, particles Atoms, nuclei, particles Nikolaos Kidonakis Physics for Georgia Academic Decathlon September 2016 Age-old questions What are the fundamental particles of matter? What are the fundamental forces of nature?

More information

Modern Physics for Scientists and Engineers International Edition, 4th Edition

Modern Physics for Scientists and Engineers International Edition, 4th Edition Modern Physics for Scientists and Engineers International Edition, 4th Edition http://optics.hanyang.ac.kr/~shsong Review: 1. THE BIRTH OF MODERN PHYSICS 2. SPECIAL THEORY OF RELATIVITY 3. THE EXPERIMENTAL

More information

Bohr Model. In addition to the atomic line spectra of single electron atoms, there were other successes of the Bohr Model

Bohr Model. In addition to the atomic line spectra of single electron atoms, there were other successes of the Bohr Model Bohr Model In addition to the atomic line spectra of single electron atoms, there were other successes of the Bohr Model X-ray spectra Frank-Hertz experiment X-ray Spectra Recall the x-ray spectra shown

More information

CHAPTER 5 Wave Properties of Matter and Quantum Mechanics I

CHAPTER 5 Wave Properties of Matter and Quantum Mechanics I CHAPTER 5 Wave Properties of Matter and Quantum Mechanics I 5.1 X-Ray Scattering 5.2 De Broglie Waves 5.3 Electron Scattering 5.4 Wave Motion 5.5 Waves or Particles? 5.6 Uncertainty Principle 5.7 Probability,

More information

PHY 571: Quantum Physics

PHY 571: Quantum Physics PHY 571: Quantum Physics John Venables 5-1675, john.venables@asu.edu Spring 2008 Introduction and Background Topics Module 1, Lectures 1-3 Introduction to Quantum Physics Discussion of Aims Starting and

More information

The Duality of Light. Electromagnetic Radiation. Light as a Wave

The Duality of Light. Electromagnetic Radiation. Light as a Wave In this unit, you will be introduced to the dual nature of light, the quantum theory and Bohr s planetary atomic model. The planetary model was an improvement on the nuclear model and attempted to answer

More information

The Structure of the Atom Review

The Structure of the Atom Review The Structure of the Atom Review Atoms are composed of PROTONS + positively charged mass = 1.6726 x 10 27 kg NEUTRONS neutral mass = 1.6750 x 10 27 kg ELECTRONS negatively charged mass = 9.1096 x 10 31

More information

Chapter 37 Early Quantum Theory and Models of the Atom. Copyright 2009 Pearson Education, Inc.

Chapter 37 Early Quantum Theory and Models of the Atom. Copyright 2009 Pearson Education, Inc. Chapter 37 Early Quantum Theory and Models of the Atom Planck s Quantum Hypothesis; Blackbody Radiation Photon Theory of Light and the Photoelectric Effect Energy, Mass, and Momentum of a Photon Compton

More information

Chapter 28. Atomic Physics

Chapter 28. Atomic Physics Chapter 28 Atomic Physics Quantum Numbers and Atomic Structure The characteristic wavelengths emitted by a hot gas can be understood using quantum numbers. No two electrons can have the same set of quantum

More information

Discovered the electron

Discovered the electron Aubrey High School AP Chemistry 8 Atomic Theory Name Period Date / / 8.0 Prep Problems History of the Atom 1. Describe the contributions of the following scientists and their research to the theory of

More information

PHY202 Quantum Mechanics. Topic 1. Introduction to Quantum Physics

PHY202 Quantum Mechanics. Topic 1. Introduction to Quantum Physics PHY202 Quantum Mechanics Topic 1 Introduction to Quantum Physics Outline of Topic 1 1. Dark clouds over classical physics 2. Brief chronology of quantum mechanics 3. Black body radiation 4. The photoelectric

More information

CHEMISTRY Topic #1: Atomic Structure and Nuclear Chemistry Fall 2017 Dr. Susan Findlay See Exercises 3.1 to 3.3

CHEMISTRY Topic #1: Atomic Structure and Nuclear Chemistry Fall 2017 Dr. Susan Findlay See Exercises 3.1 to 3.3 CHEMISTRY 1000 Topic #1: Atomic Structure and Nuclear Chemistry Fall 2017 Dr. Susan Findlay See Exercises 3.1 to 3.3 Light: Wave? Particle? Both! Modern models of the atom were derived by studying the

More information

Origin and discovery of quantum mechanics

Origin and discovery of quantum mechanics Origin and discovery of quantum mechanics Interplay of eye and mind Physics look at nature. Ask question about nature and try to give answer them, imagine answers. For instance, why does the sun shine?

More information

Fundamentals of Spectroscopy for Optical Remote Sensing. Course Outline 2009

Fundamentals of Spectroscopy for Optical Remote Sensing. Course Outline 2009 Fundamentals of Spectroscopy for Optical Remote Sensing Course Outline 2009 Part I. Fundamentals of Quantum Mechanics Chapter 1. Concepts of Quantum and Experimental Facts 1.1. Blackbody Radiation and

More information

Derivation of Quantum Mechanics

Derivation of Quantum Mechanics Derivation of Quantum Mechanics Andrew Forrester January 28, 29 Contents 1 Explanation 1 2 Derivation of Quantum Mechanics... and Quantum Field Theory 1 2.1 Questions..............................................

More information

Quantum Mechanics. Physics April 2002 Lecture 9. Planck Bohr Schroedinger Heisenberg

Quantum Mechanics. Physics April 2002 Lecture 9. Planck Bohr Schroedinger Heisenberg Quantum Mechanics Physics 102 18 April 2002 Lecture 9 Planck Bohr Schroedinger Heisenberg From: http://www.th.physik.uni-frankfurt.de/~jr/portraits.html 18 Apr 2002 Physics 102 Lecture 9 1 Blackbody radiation

More information

Surprise, surprise, surprise

Surprise, surprise, surprise Experiment Rutherford had two grad students, Marsden and Geiger. It was decided that Geiger would gain some practice by conducting a series of experiments with gold and alpha particles. The positively

More information

CHAPTER 27 Quantum Physics

CHAPTER 27 Quantum Physics CHAPTER 27 Quantum Physics Units Discovery and Properties of the Electron Planck s Quantum Hypothesis; Blackbody Radiation Photon Theory of Light and the Photoelectric Effect Energy, Mass, and Momentum

More information

OPTI 511R: OPTICAL PHYSICS & LASERS

OPTI 511R: OPTICAL PHYSICS & LASERS OPTI 511R: OPTICAL PHYSICS & LASERS Instructor: R. Jason Jones Office Hours: TBD Teaching Assistant: Robert Rockmore Office Hours: Wed. (TBD) h"p://wp.op)cs.arizona.edu/op)511r/ h"p://wp.op)cs.arizona.edu/op)511r/

More information

Ch 7 Quantum Theory of the Atom (light and atomic structure)

Ch 7 Quantum Theory of the Atom (light and atomic structure) Ch 7 Quantum Theory of the Atom (light and atomic structure) Electromagnetic Radiation - Electromagnetic radiation consists of oscillations in electric and magnetic fields. The oscillations can be described

More information

Roots of quantum mechanics

Roots of quantum mechanics Roots of quantum mechanics 1900 1913 1925 * * * * * Ry = Rydberg; Th = Thomson; Le = Lenard; Pl = Planck; Wi = Wien; Ei = Einstein; Ha = Haas; De = Debye; Eh = Ehrenfest; Ru = Rutherford; Bo = Bohr; So

More information

Students are required to pass a minimum of 15 AU of PAP courses including the following courses:

Students are required to pass a minimum of 15 AU of PAP courses including the following courses: School of Physical and Mathematical Sciences Division of Physics and Applied Physics Minor in Physics Curriculum - Minor in Physics Requirements for the Minor: Students are required to pass a minimum of

More information

Electronic Structure of Atoms. Chapter 6

Electronic Structure of Atoms. Chapter 6 Electronic Structure of Atoms Chapter 6 Electronic Structure of Atoms 1. The Wave Nature of Light All waves have: a) characteristic wavelength, λ b) amplitude, A Electronic Structure of Atoms 1. The Wave

More information

Particle nature of light & Quantization

Particle nature of light & Quantization Particle nature of light & Quantization A quantity is quantized if its possible values are limited to a discrete set. An example from classical physics is the allowed frequencies of standing waves on a

More information

E n = n h ν. The oscillators must absorb or emit energy in discrete multiples of the fundamental quantum of energy given by.

E n = n h ν. The oscillators must absorb or emit energy in discrete multiples of the fundamental quantum of energy given by. Planck s s Radiation Law Planck made two modifications to the classical theory The oscillators (of electromagnetic origin) can only have certain discrete energies determined by E n = n h ν with n is an

More information

Chapter 7 Atomic Structure -1 Quantum Model of Atom. Dr. Sapna Gupta

Chapter 7 Atomic Structure -1 Quantum Model of Atom. Dr. Sapna Gupta Chapter 7 Atomic Structure -1 Quantum Model of Atom Dr. Sapna Gupta The Electromagnetic Spectrum The electromagnetic spectrum includes many different types of radiation which travel in waves. Visible light

More information

Quantum Mysteries. Scott N. Walck. September 2, 2018

Quantum Mysteries. Scott N. Walck. September 2, 2018 Quantum Mysteries Scott N. Walck September 2, 2018 Key events in the development of Quantum Theory 1900 Planck proposes quanta of light 1905 Einstein explains photoelectric effect 1913 Bohr suggests special

More information

Atomic Structure and Processes

Atomic Structure and Processes Chapter 5 Atomic Structure and Processes 5.1 Elementary atomic structure Bohr Orbits correspond to principal quantum number n. Hydrogen atom energy levels where the Rydberg energy is R y = m e ( e E n

More information

WAVE PARTICLE DUALITY

WAVE PARTICLE DUALITY WAVE PARTICLE DUALITY Evidence for wave-particle duality Photoelectric effect Compton effect Electron diffraction Interference of matter-waves Consequence: Heisenberg uncertainty principle PHOTOELECTRIC

More information

The Death of Classical Physics. The Rise of the Photon

The Death of Classical Physics. The Rise of the Photon The Death of Classical Physics The Rise of the Photon A fundamental question: What is Light? James Clerk Maxwell 1831-1879 Electromagnetic Wave Max Planck 1858-1947 Photon Maxwell's Equations (1865) Maxwell's

More information

Radiation and the Atom

Radiation and the Atom Radiation and the Atom PHYS Lecture Departamento de Física Instituto Superior de Engenharia do Porto cav@isep.ipp.pt Overview SI Units and Prefixes Radiation Electromagnetic Radiation Electromagnetic Spectrum

More information

PY 351 Modern Physics - Lecture notes, 1

PY 351 Modern Physics - Lecture notes, 1 PY 351 Modern Physics - Lecture notes, 1 Copyright by Claudio Rebbi, Boston University, October 2016, October 2017. These notes cannot be duplicated and distributed without explicit permission of the author.

More information

Nuclear Fusion and Radiation

Nuclear Fusion and Radiation Nuclear Fusion and Radiation Lecture 2 (Meetings 3 & 4) Eugenio Schuster schuster@lehigh.edu Mechanical Engineering and Mechanics Lehigh University Nuclear Fusion and Radiation p. 1/41 Modern Physics Concepts

More information

20th Century Atomic Theory- Hydrogen Atom

20th Century Atomic Theory- Hydrogen Atom Background for (mostly) Chapter 12 of EDR 20th Century Atomic Theory- Hydrogen Atom EDR Section 12.7 Rutherford's scattering experiments (Raff 11.2.3) in 1910 lead to a "planetary" model of the atom where

More information

General Physics (PHY 2140)

General Physics (PHY 2140) General Physics (PHY 140) Lecture 33 Modern Physics Atomic Physics Atomic spectra Bohr s theory of hydrogen http://www.physics.wayne.edu/~apetrov/phy140/ Chapter 8 1 Lightning Review Last lecture: 1. Atomic

More information

Atomic Structure Discovered. Dalton s Atomic Theory. Discovery of the Electron 10/30/2012

Atomic Structure Discovered. Dalton s Atomic Theory. Discovery of the Electron 10/30/2012 Atomic Structure Discovered Ancient Greeks Democritus (460-362 BC) - indivisible particles called atoms Prevailing argument (Plato and Aristotle) - matter is continuously and infinitely divisible John

More information

Chapter 1. Introduction. 1.1 Historical notes

Chapter 1. Introduction. 1.1 Historical notes Chapter 1 Introduction 1.1 Historical notes In the nineteenth century the profession of a specialized scientist was created, i.e. the main scientific activity moved to university-like institutions. As

More information

Lecture 6 - Atomic Structure. Chem 103, Section F0F Unit II - Quantum Theory and Atomic Structure Lecture 6. Lecture 6 - Introduction

Lecture 6 - Atomic Structure. Chem 103, Section F0F Unit II - Quantum Theory and Atomic Structure Lecture 6. Lecture 6 - Introduction Chem 103, Section F0F Unit II - Quantum Theory and Atomic Structure Lecture 6 Light and other forms of electromagnetic radiation Light interacting with matter The properties of light and matter Lecture

More information

Chapter 27 Lecture Notes

Chapter 27 Lecture Notes Chapter 27 Lecture Notes Physics 2424 - Strauss Formulas: λ P T = 2.80 10-3 m K E = nhf = nhc/λ fλ = c hf = K max + W 0 λ = h/p λ - λ = (h/mc)(1 - cosθ) 1/λ = R(1/n 2 f - 1/n 2 i ) Lyman Series n f = 1,

More information

UNIT 4 Electrons in Atoms. Advanced Chemistry 235 Lanphier High School Mr. David Peeler

UNIT 4 Electrons in Atoms. Advanced Chemistry 235 Lanphier High School Mr. David Peeler UNIT 4 Electrons in Atoms Advanced Chemistry 235 Lanphier High School Mr. David Peeler Section 4.1 Models of the Atom OBJECTIVES: Identify the inadequacies in the Rutherford atomic model. Section 4.1 Models

More information

Atoms, Electrons and Light MS. MOORE CHEMISTRY

Atoms, Electrons and Light MS. MOORE CHEMISTRY Atoms, Electrons and Light MS. MOORE CHEMISTRY Atoms Remember Rutherford??? What did he discover with his gold foil experiment. A: Atoms contain a dense nucleus where the protons and neutrons reside. ATOMS

More information

Chapter 6 Electronic structure of atoms

Chapter 6 Electronic structure of atoms Chapter 6 Electronic structure of atoms light photons spectra Heisenberg s uncertainty principle atomic orbitals electron configurations the periodic table 6.1 The wave nature of light Visible light is

More information

CHAPTER 5. The Structure of Atoms

CHAPTER 5. The Structure of Atoms CHAPTER 5 The Structure of Atoms Chapter Outline Subatomic Particles Fundamental Particles The Discovery of Electrons Canal Rays and Protons Rutherford and the Nuclear Atom Atomic Number Neutrons Mass

More information

THE NATURE OF THE ATOM. alpha particle source

THE NATURE OF THE ATOM. alpha particle source chapter THE NATURE OF THE ATOM www.tutor-homework.com (for tutoring, homework help, or help with online classes) Section 30.1 Rutherford Scattering and the Nuclear Atom 1. Which model of atomic structure

More information

Models of the Atom. Spencer Clelland & Katelyn Mason

Models of the Atom. Spencer Clelland & Katelyn Mason Models of the Atom Spencer Clelland & Katelyn Mason First Things First Electrons were accepted to be part of the atom structure by scientists in the1900 s. The first model of the atom was visualized as

More information

Chapter 7. The Quantum Mechanical Model of the Atom

Chapter 7. The Quantum Mechanical Model of the Atom Chapter 7 The Quantum Mechanical Model of the Atom The Nature of Light:Its Wave Nature Light is a form of electromagnetic radiation composed of perpendicular oscillating waves, one for the electric field

More information

ATOMIC STRUCTURE. Kotz Ch 7 & Ch 22 (sect 4,5)

ATOMIC STRUCTURE. Kotz Ch 7 & Ch 22 (sect 4,5) ATOMIC STRUCTURE Kotz Ch 7 & Ch 22 (sect 4,5) properties of light spectroscopy quantum hypothesis hydrogen atom Heisenberg Uncertainty Principle orbitals ELECTROMAGNETIC RADIATION subatomic particles (electron,

More information

Quantum Theory of the Atom

Quantum Theory of the Atom The Wave Nature of Light Quantum Theory of the Atom Electromagnetic radiation carries energy = radiant energy some forms are visible light, x rays, and radio waves Wavelength ( λ) is the distance between

More information

Physics 1C Lecture 29A. Finish off Ch. 28 Start Ch. 29

Physics 1C Lecture 29A. Finish off Ch. 28 Start Ch. 29 Physics 1C Lecture 29A Finish off Ch. 28 Start Ch. 29 Particle in a Box Let s consider a particle confined to a one-dimensional region in space. Following the quantum mechanics approach, we need to find

More information

Chapter 39. Particles Behaving as Waves

Chapter 39. Particles Behaving as Waves Chapter 39 Particles Behaving as Waves 39.1 Electron Waves Light has a dual nature. Light exhibits both wave and particle characteristics. Louis de Broglie postulated in 1924 that if nature is symmetric,

More information

Chapter 6: The Electronic Structure of the Atom Electromagnetic Spectrum. All EM radiation travels at the speed of light, c = 3 x 10 8 m/s

Chapter 6: The Electronic Structure of the Atom Electromagnetic Spectrum. All EM radiation travels at the speed of light, c = 3 x 10 8 m/s Chapter 6: The Electronic Structure of the Atom Electromagnetic Spectrum V I B G Y O R All EM radiation travels at the speed of light, c = 3 x 10 8 m/s Electromagnetic radiation is a wave with a wavelength

More information

There are a number of experimental observations that could not be explained by classical physics. For our purposes, the main one include:

There are a number of experimental observations that could not be explained by classical physics. For our purposes, the main one include: Chapter 1 Introduction 1.1 Historical Background There are a number of experimental observations that could not be explained by classical physics. For our purposes, the main one include: The blackbody

More information

Physics. Light Quanta

Physics. Light Quanta Physics Light Quanta Quantum Theory Is light a WAVE or a PARTICLE? Particle tiny object like a bullet, has mass and travels in straight lines unless a force acts upon it Waves phenomena that extend in

More information

Electronic structure the number of electrons in an atom as well as the distribution of electrons around the nucleus and their energies

Electronic structure the number of electrons in an atom as well as the distribution of electrons around the nucleus and their energies Chemistry: The Central Science Chapter 6: Electronic Structure of Atoms Electronic structure the number of electrons in an atom as well as the distribution of electrons around the nucleus and their energies

More information

Chapter 1 The Bohr Atom

Chapter 1 The Bohr Atom Chapter 1 The Bohr Atom 1 Introduction Niels Bohr was a Danish physicist who made a fundamental contribution to our understanding of atomic structure and quantum mechanics. He made the first successful

More information