Origin and discovery of quantum mechanics

Size: px
Start display at page:

Download "Origin and discovery of quantum mechanics"

Transcription

1 Origin and discovery of quantum mechanics Interplay of eye and mind Physics look at nature. Ask question about nature and try to give answer them, imagine answers. For instance, why does the sun shine? Why do stars shine? Why is the sky blue? Why do metals emit light when heated to very high temperature? In physics one can make mistakes but one cannot cheat! There are many reasons to learn quantum physics. All physics is quantum physics, from elementary particles to the big bang, semiconductors, and solar energy cells. Our world is filled with advanced technologies. Many of these new technologies come from the fundamental research within the framework of quantum theories. In order to understand modern physics, three fundamental links are necessary: quantum mechanics, statistical physics and relativity. Quantum mechanics play a key role in engineering. It will become increasingly relevant in nanotechnology, semiconductors, polymer technology, nuclear/photonic devices, magnetic devices, optics and many other things. New ideas come only from the minds of creative thinkers. Physicist learn to use their intelligence and can explain their findings. Quantum theory is subtle. Mysteries of light: Blackbody radiation In physics, two great discoveries of the 20 th century is based on properties of light: Relativity ( ) and quantum physics with black body theory ( ). In the 18th century, Newton decided that light was made of corpuscles (particles), because only particles can travel along straight lines. However, since the end of the 17th century, interference and diffraction phenomena were known and the 19th century saw the success of wave optics. Nobody could imagine the incredible answer of quantum theory. It is a matter of experiences that a hot object can emit radiation. A pieces of metal stuck into a flame can become red hot. At high temperature it can become white hot then red hot then blue hot. The discovery of quantum mechanics could have happened by analyzing frequency distribution of radiation inside an oven (black body) at temperature T. A blackbody is an object that is a perfect absorber (emitter) of radiation (in ideal case). Figure shows experimental measurements of the thermal radiation at several temperatures. What is the origin of this radiation? This was the major topic of 19th century physics. Please carefully review the following: Figure 1. Measured distribution of thermal radiation at several temperatures.

2 Consider a cubic cavity of volume V and length L. The electrons or atoms on the surface of the cavity act as harmonic oscillators. When the material is heated then electrons or atoms gain kinetic energy and they begin to oscillate. Meanwhile we mention here that energy of the classical harmonic oscillator is Oscillating charged particles emits radiation (light). The emitted radiation in the hot cavity produce standing wave and number of modes per unit frequency per unit volume (number of degrees of freedom for frequency ν) is given by: (For evaluation of number of modes visit the web page: In order to calculate energy density of emitted radiation from cavity we can use: According to the classical theories, energy of each oscillator is continuous and average energy per mode (per degree of freedom) can be calculated as follows: Where E is energy of the oscillator, k is Boltzmann constant and T is temperature. We evaluate this integral and we obtain: Then energy density of emitted radiation from a cavity can be written as: This is Rayleigh-Jeans classical formula. This formula can also be expressed interms of wavelength by using: and, we obtain: It is obvious that this formula is not compatible with the experimental results at high frequencies. Planck made the assumption that an exchange of energy between the electrons in the wall of the cavity and electromagnetic radiation can only occur in discrete amounts. Basic quantum of energy can be written as Where the constant is called Planck s

3 constant. Furthermore, energy can only come in amounts that are integer multiples of the basic quantum: An immediate mathematical consequence of this assumption is that the integrals in the average energy equation turn into discrete sums. So when we calculate the average energy per degree of freedom, we must change all integrals to sums To evaluate this formula we use analogy of the geometric series Then average energy can be written as: Then energy density is given by This worked brilliantly! It provide a good fit with the experimental results. Classically the emission and absorption of energy to be continuous. Then, Planck suddenly changed the story, moving to a totally nonclassical concept, that the oscillators could only gain and lose energy in chunks, or quanta. (Incidentally, it didn t occur to him that the radiation itself might be in quanta: he saw this quantization purely as a property of the wall oscillators.) As a result, although the exactness of his curve was widely admired, and it was the Birth of the Quantum Theory (with hindsight), no-one including Planck grasped this for several years! Other equations governing blackbody radiation Wien s displacement law Experimentally, the peak of the spectrum was found to obey with the following relation: Wavelength of maximum peak of a black body radiation can be obtained from this relation. Stefan-Boltzmann Law This law states that the power emitted per unit area of the surface of a black body is directly proportional to the fourth power of its absolute temperature. The total radiation energy perunit volume in the cavity: ν Where a= J/m 3.K 4. We can relate this energy density to the energy I emitten per second from the surface of the black body. Without further discussion

4 Where the fundamental constant. This expression had been derived earlier by Boltzmann using thermodynamics arguments. This expression is Stefan-Boltzmann expressions. Energy of the photon Planck s assumption also change our understanding about energy and intensity of electromagnetic radiation. The term intensity has a particular meaning here: it is the number of waves or photons of light reaching your detector; a brighter object is more intense but not necessarily more energetic. More energetic More intense Photon's energy depends on the frequency only, not the intensity. The photons in a beam of X-ray light are much more energetic than the photons in an intense beam of infrared light. Particles of Light: Photoelectric effect In 1887, the photoelectric effect was discovered by Heinrich Hertz. He observed that the metal plates emits electrons depends on wavelength of the light. Only light with a frequency greter than a given treshold frequency will produce a current through the circuit. Lénard (1888) found the energies of the emitted electrons to be independent of the intensity of the incident radiation. Planck s photon model explained black boody radiation. Einstein thought he saw an inconsitency in the way Planck used Maxwell s wave theory of electromagnetic radiation in his derivation. The photoelectric effect is perhaps the most direct and convincing evidence of the existence of photons and the 'corpuscular' nature of light and electromagnetic radiation. That is, it provides undeniable evidence of the quantization of the electromagnetic field and the limitations of the classical field equations of Maxwell. Mathematical Formulation and Experimental Procedure of Photoelectric effect The photoelectric effect exhibits the following: 1) There is a minimum frequency,, called the threshhold frequency (or cutoff frequency) required for the effect to occur.

5 2) The maximum kinetic energy of the photoelectrons does not depend on the intensity of the light. 3) The maximum kinetic energy of the photoelectrons increases as the frequency of the light increases. 4) There is no appreciable time delay between the illumination of the surface and the emission of the photoelectrons. Observation of the photoelectric effect is accomplished with the arrangement shown. Ejection of photoelectrons causes a current to be registered in the ammeter A. Increasing the voltage V repels the electrons from the cathode C. The value of V that reduces the current to zero is called the stopping voltage V s. Then the work done on the photoelectron to keep it from reaching the cathode (collector) is. ; The electrons is bounded to the metal surface with a potential energy., where U = potential energy of an electron, and -φ is the highest value of U. Energy conservation requires: φ is called the photoelectric work function of the metal. The particle-particle collision concept explains the immediate ejection of photoelectrons. Since K max cannot be less than zero, the minimum frequency is explained: for Where ν c is cutoff frequency and the result shows no dependence on light intensity for K max. The other experiments shows particle properties of light are: Compton scattering Raman scattering Wave-Particle Duality Pair Production : Pair production is the formation or materialization of two electrons, one negative and the other positive (positron), from a pulse of electromagnetic energy traveling through matter, usually in the vicinity of an atomic nucleus. Pair production is a direct conversion of radiant energy to matter. It is one of the principal ways in which highenergy gamma rays are absorbed in matter. For pair production to occur, the electromagnetic energy, in a discrete quantity called a photon, must be at least equivalent to the mass of two electrons. The mass m of a single electron is equivalent to 0.51 million electron volts (MeV) of energy E as calculated from the equation formulated by Albert Einstein, E = mc 2, in which c is a constant equal to the velocity of light. To produce two electrons, therefore, the photon energy must be at least 1.02 MeV. Photon energy in excess of this amount, when

6 pair production occurs, is converted into motion of the electron-positron pair. If pair production occurs in a track detector, such as a cloud chamber, to which a magnetic field is properly applied, the electron and the positron curve away from the point of formation in opposite directions in arcs of equal curvature. In this way pair production was first detected (1933). The positron that is formed quickly disappears by reconversion into photons in the process of annihilation with another electron in matter. Wave Behavior of Particle What is this wave? (Review diffraction and intereference phenomena) And why is this result so extraordinary? After particle behavior of wave accepted, the question became whether this was true only for light or whether material objects also exhibited wave-like behavior. De Broglie's Hypothesis In his 1923, Louis de Broglie made a bold assertion. Considering Einstein's relationship of wavelength to momentum p, de Broglie proposed that this relationship would determine the wavelength λ of any matter, in the relationship: This wavelength is called the de Broglie wavelength. This equation and energy of the photon can be written as: Where is angular wavenumber and ω is angular frequency. Significance of the de Broglie Hypothesis The de Broglie hypothesis showed that wave particle duality was not merely an aberrant behavior of light, but rather was a fundamental principle exhibited by both radiation and matter. As such, it becomes possible to use wave equations to describe material behavior, so long as one properly applies the de Broglie wavelength. This would prove crucial to the development of quantum mechanics. Experimental Confirmation Electron diffraction In 1927, physicists Clinton Davisson and Lester Germer, of Bell Labs, performed an experiment where they fired electrons at a crystalline nickel target. The resulting diffraction pattern matched the predictions of the de Broglie wavelength. Electron diffraction refers to the wave nature of electrons. Electrons are incident on a crystal. The periodic structure of a crystalline solid acts as a diffraction grating. Interference of electrons shows that electron act as wave. Electrons are accelerated in an electric potential, then their velocities are: Then de Broglie relation takes the form: Where is energy of fired electrons. Neutral atoms Experiments with diffration and reflection of neutral atoms confirm the application of the de Broglie hypothesis to atoms, i.e. the existence of atomic waves which undergo diffraction, interference and allow quantum reflection by the tails of the attractive potential.

7 This effect has been used to demonstrate atomic holography, and it may allow the construction of an atom probe imaging system with nanometer resolution. The description of these phenomena is based on the wave properties of neutral atoms, confirming the de Broglie hypothesis. Waves of molecules Recent experiments even confirm the relations for molecules and even macromolecules, which are normally considered too large to undergo quantum mechanical effects. In 1999, a research team in Vienna demonstrated diffraction for molecules as large as fullerenes. The researchers calculated a De Broglie wavelength of the most probable C 60 velocity as 2.5 picometer. In general, the De Broglie hypothesis is expected to apply to any well isolated object. Macroscopic Objects & Wavelength Though de Broglie's hypothesis predicts wavelengths for matter of any size, there are realistic limits on when it's useful. A baseball thrown at a pitcher has a de Broglie wavelength that is smaller than the diameter of a proton... by about 20 orders of magnitude. The wave aspects of a macroscopic object are so tiny as to be unobservable in any useful sense. Bohr Atom In 1911, Rutherford introduced a new model of the atom in which cloud of negatively charged electrons surrounding a small, dense, positively charged nucleus. This model is result of experimental data and Rutherford naturally considered a planetary-model atom. The laws of classical mechanics (i.e. the Larmor formula, power radiated by a charged particle as it accelerates.), predict that the electron will release electromagnetic radiation while orbiting a nucleus. Because the electron would lose energy, it would gradually spiral inwards, collapsing into the nucleus. This atom model is disastrous, because it predicts that all atoms are unstable. To overcome this difficulty, Niels Bohr proposed, in 1913, what is now called the Bohr model of the atom. He suggested that electrons could only have certain classical motions: 1. The electrons can only travel in special orbits: at a certain discrete set of distances from the nucleus with specific energies. 2. The electrons of an atom revolve around the nucleus in orbits. These orbits are associated with definite energies and are also called energy shells or energy levels. Thus, the electrons do not continuously lose energy as they travel in a particular orbit. They can only gain and lose energy by jumping from one allowed orbit to another, absorbing or emitting electromagnetic radiation with a frequency ν determined by the energy difference of the levels according to the Planck relation: 3. Kinetic energy of the electron in the orbit is related to the frequency of the motion of the electron: For a circular orbit the angular momentum L is restricted to be an integer multiple of a fixed unit: where n = 1, 2, 3,... is called the principal quantum number. The lowest value of n is 1; this gives a smallest possible orbital radius of nm known as the Bohr radius. Bohr's condition, that the angular momentum is an integer multiple of ħ was later reinterpreted by de Broglie as a standing wave condition: the electron is described by a wave and a whole number of wavelengths must fit along the circumference of the electron's orbit:

8 The Bohr model gives almost exact results only for a system where two charged points orbit each other at speeds much less than that of light. To calculate the orbits requires two assumptions: 1. (Classical Rule)The electron is held in a circular orbit by electrostatic attraction. The centripetal force is equal to the Coulomb force. It also determines the total energy at any radius: The total energy is negative and inversely proportional to r. This means that it takes energy to pull the orbiting electron away from the proton. For infinite values of r, the energy is zero, corresponding to a motionless electron infinitely far from the proton. 2. (Quantum rule) The angular momentum so that the allowed orbit radius at any n is: The energy of the n-th level is determined by the radius: An electron in the lowest energy level of hydrogen (n = 1) therefore has 13.6 ev less energy than a motionless electron infinitely far from the nucleus. The combination of natural constants in the energy formula is called the Rydberg energy (R E ): This expression is clarified by interpreting it in combinations which form more natural units. We define is rest mass energy of the electron (511 kev) and is the fine structure constant then Bohr Atom and Rydberg formula The Rydberg formula, which was known empirically before Bohr's formula, is now in Bohr's theory seen as describing the energies of transitions or quantum jumps between one orbital energy level, and another. When the electron moves from one energy level to another, a photon is emitted. Using the derived formula for the different 'energy' levels of hydrogen one may determine the 'wavelengths' of light that a hydrogen atom can emit. The energy of a photon emitted by a hydrogen atom is given by the difference of two hydrogen energy levels: where n f is the final energy level, and n i is the initial energy level. Since the energy of a photon is the wavelength of the photon given off is given by

9 This is known as the Rydberg formula, and the Rydberg constant R is R E / hc. This formula was known in the nineteenth century to scientists studying spectroscopy, but there was no theoretical explanation for this form or a theoretical prediction for the value of R, until Bohr. In fact, Bohr's derivation of the Rydberg constant, as well as the concomitant agreement of Bohr's formula with experimentally observed spectral lines of the Lyman (n f = 1), Balmer (n f = 2), and Paschen (n f = 3) series, and successful theoretical prediction of other lines not yet observed, was one reason that his model was immediately accepted. Improvement of Bohr Model Several enhancements to the Bohr model were proposed; most notably the Sommerfeld model or Bohr-Sommerfeld model, which suggested that electrons travel in elliptical orbits around a nucleus instead of the Bohr model's circular orbits. This model supplemented the quantized angular momentum condition of the Bohr model with an additional radial quantization condition, the Sommerfeld-Wilson quantization condition where p r is the radial momentum canonically conjugate to the coordinate q which is the radial position and T is one full orbital period. The Bohr-Sommerfeld model was fundamentally inconsistent and led to many paradoxes. The Sommerfeld quantization can be performed in different canonical coordinates, and sometimes gives answers which are different. In the end, the model was replaced by the modern quantum mechanical treatment of the hydrogen atom, which was first given by Wolfgang Pauli in 1925, using Heisenberg's matrix mechanics. The current picture of the hydrogen atom is based on the atomic orbitals of wave mechanics which Erwin Schrödinger developed in However, this is not to say that the Bohr model was without its successes. Calculations based on the Bohr-Sommerfeld model were able to accurately explain a number of more complex atomic spectral effects. Quantum Tunneling and Quantum Uncertainty Tunneling is a fascinating phenomena both in its own rights and for its many applications. Tunneling refers to the quantum mechanical phenomenon where a particle tunnels through a barrier that it classically could not surmount. The uncertainty principle was first recognized by the German physicist Werner Heisenberg in 1926 as a corollary of the wave-particle duality of nature. He realized that it was impossible to observe a subatomic particle like an electron with a standard optical microscope, no matter how powerful, because an electron is smaller than the wavelength of visible light. Roughly stated, this is the mathematical origin of the uncertainty principle. The particle position and momentum cannot be known simultaneously to arbitrary precision. Mathematically, Heisenberg's result looks like this: Now the uncertainty principle is not something we notice in everyday life. For example, we can weigh an automobile (to find its mass), and all automobiles have speedometers, so we can calculate the momentum. But doing so will not make the position of the car suddenly become hazy (especially if we're inside it). So measuring the momentum of the car seems to produce no uncertainty in the car's position. The reason we don't notice the uncertainty principle in everyday life is because of the size of Planck's constant. It's very small

10 The Copenhagen Interpretation If you ask ten different physicists what the Copenhagen interpretation is, you'll get nine similar (but not exactly the same) answers, and one "Who cares?" The Copenhagen interpretation of quantum physics can be summarized as: 1. The wave function is a complete description of a wave-particle. 2. When a measurement of a wave-particle is made, its wave function collapses. 3. If two properties of a wave-particle are related by an uncertainty relation (such as the Heisenberg uncertainty principle), no measurement can simultaneously determine both properties to a precision greater than the uncertainty relation allows. References Quantum Mechanics, David McMahon Introduction To Quantum Mechanics, Harald J W Müller-Kristen

CHAPTER 27 Quantum Physics

CHAPTER 27 Quantum Physics CHAPTER 27 Quantum Physics Units Discovery and Properties of the Electron Planck s Quantum Hypothesis; Blackbody Radiation Photon Theory of Light and the Photoelectric Effect Energy, Mass, and Momentum

More information

Chapter 27 Early Quantum Theory and Models of the Atom Discovery and Properties of the electron

Chapter 27 Early Quantum Theory and Models of the Atom Discovery and Properties of the electron Chapter 27 Early Quantum Theory and Models of the Atom 27-1 Discovery and Properties of the electron Measure charge to mass ratio e/m (J. J. Thomson, 1897) When apply magnetic field only, the rays are

More information

Planck s Quantum Hypothesis Blackbody Radiation

Planck s Quantum Hypothesis Blackbody Radiation Planck s Quantum Hypothesis Blackbody Radiation The spectrum of blackbody radiation has been measured(next slide); it is found that the frequency of peak intensity increases linearly with temperature.

More information

Chapter 37 Early Quantum Theory and Models of the Atom. Copyright 2009 Pearson Education, Inc.

Chapter 37 Early Quantum Theory and Models of the Atom. Copyright 2009 Pearson Education, Inc. Chapter 37 Early Quantum Theory and Models of the Atom Planck s Quantum Hypothesis; Blackbody Radiation Photon Theory of Light and the Photoelectric Effect Energy, Mass, and Momentum of a Photon Compton

More information

is the minimum stopping potential for which the current between the plates reduces to zero.

is the minimum stopping potential for which the current between the plates reduces to zero. Module 1 :Quantum Mechanics Chapter 2 : Introduction to Quantum ideas Introduction to Quantum ideas We will now consider some experiments and their implications, which introduce us to quantum ideas. The

More information

Semiconductor Physics and Devices

Semiconductor Physics and Devices Introduction to Quantum Mechanics In order to understand the current-voltage characteristics, we need some knowledge of electron behavior in semiconductor when the electron is subjected to various potential

More information

The Photoelectric Effect

The Photoelectric Effect The Photoelectric Effect Light can strike the surface of some metals causing an electron to be ejected No matter how brightly the light shines, electrons are ejected only if the light has sufficient energy

More information

Chapter 27. Quantum Physics

Chapter 27. Quantum Physics Chapter 27 Quantum Physics Need for Quantum Physics Problems remained from classical mechanics that relativity didn t explain Blackbody Radiation The electromagnetic radiation emitted by a heated object

More information

Lecture PowerPoints. Chapter 27 Physics: Principles with Applications, 7th edition Giancoli

Lecture PowerPoints. Chapter 27 Physics: Principles with Applications, 7th edition Giancoli Lecture PowerPoints Chapter 27 Physics: Principles with Applications, 7th edition Giancoli This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching

More information

Chapter 37 Early Quantum Theory and Models of the Atom

Chapter 37 Early Quantum Theory and Models of the Atom Chapter 37 Early Quantum Theory and Models of the Atom Units of Chapter 37 37-7 Wave Nature of Matter 37-8 Electron Microscopes 37-9 Early Models of the Atom 37-10 Atomic Spectra: Key to the Structure

More information

Preview. Atomic Physics Section 1. Section 1 Quantization of Energy. Section 2 Models of the Atom. Section 3 Quantum Mechanics

Preview. Atomic Physics Section 1. Section 1 Quantization of Energy. Section 2 Models of the Atom. Section 3 Quantum Mechanics Atomic Physics Section 1 Preview Section 1 Quantization of Energy Section 2 Models of the Atom Section 3 Quantum Mechanics Atomic Physics Section 1 TEKS The student is expected to: 8A describe the photoelectric

More information

Stellar Astrophysics: The Interaction of Light and Matter

Stellar Astrophysics: The Interaction of Light and Matter Stellar Astrophysics: The Interaction of Light and Matter The Photoelectric Effect Methods of electron emission Thermionic emission: Application of heat allows electrons to gain enough energy to escape

More information

Physical Electronics. First class (1)

Physical Electronics. First class (1) Physical Electronics First class (1) Bohr s Model Why don t the electrons fall into the nucleus? Move like planets around the sun. In circular orbits at different levels. Amounts of energy separate one

More information

General Physics (PHY 2140)

General Physics (PHY 2140) General Physics (PHY 2140) Lecture 27 Modern Physics Quantum Physics Blackbody radiation Plank s hypothesis http://www.physics.wayne.edu/~apetrov/phy2140/ Chapter 27 1 Quantum Physics 2 Introduction: Need

More information

Chapter 27 Lecture Notes

Chapter 27 Lecture Notes Chapter 27 Lecture Notes Physics 2424 - Strauss Formulas: λ P T = 2.80 10-3 m K E = nhf = nhc/λ fλ = c hf = K max + W 0 λ = h/p λ - λ = (h/mc)(1 - cosθ) 1/λ = R(1/n 2 f - 1/n 2 i ) Lyman Series n f = 1,

More information

1. Historical perspective

1. Historical perspective Atomic and Molecular Physics/Lecture notes presented by Dr. Fouad Attia Majeed/Third year students/college of Education (Ibn Hayyan)/Department of Physics/University of Babylon. 1. Historical perspective

More information

CHAPTER 3 The Experimental Basis of Quantum Theory

CHAPTER 3 The Experimental Basis of Quantum Theory CHAPTER 3 The Experimental Basis of Quantum Theory 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 Discovery of the X Ray and the Electron Determination of Electron Charge Line Spectra Quantization As far as I can

More information

Chapter 28. Atomic Physics

Chapter 28. Atomic Physics Chapter 28 Atomic Physics Sir Joseph John Thomson J. J. Thomson 1856-1940 Discovered the electron Did extensive work with cathode ray deflections 1906 Nobel Prize for discovery of electron Early Models

More information

Particle nature of light & Quantization

Particle nature of light & Quantization Particle nature of light & Quantization A quantity is quantized if its possible values are limited to a discrete set. An example from classical physics is the allowed frequencies of standing waves on a

More information

CHEMISTRY Topic #1: Atomic Structure and Nuclear Chemistry Fall 2017 Dr. Susan Findlay See Exercises 3.1 to 3.3

CHEMISTRY Topic #1: Atomic Structure and Nuclear Chemistry Fall 2017 Dr. Susan Findlay See Exercises 3.1 to 3.3 CHEMISTRY 1000 Topic #1: Atomic Structure and Nuclear Chemistry Fall 2017 Dr. Susan Findlay See Exercises 3.1 to 3.3 Light: Wave? Particle? Both! Modern models of the atom were derived by studying the

More information

Class 21. Early Quantum Mechanics and the Wave Nature of Matter. Physics 106. Winter Press CTRL-L to view as a slide show. Class 21.

Class 21. Early Quantum Mechanics and the Wave Nature of Matter. Physics 106. Winter Press CTRL-L to view as a slide show. Class 21. Early and the Wave Nature of Matter Winter 2018 Press CTRL-L to view as a slide show. Last Time Last time we discussed: Optical systems Midterm 2 Today we will discuss: Quick of X-ray diffraction Compton

More information

We also find the development of famous Schrodinger equation to describe the quantization of energy levels of atoms.

We also find the development of famous Schrodinger equation to describe the quantization of energy levels of atoms. Lecture 4 TITLE: Quantization of radiation and matter: Wave-Particle duality Objectives In this lecture, we will discuss the development of quantization of matter and light. We will understand the need

More information

The Photoelectric Effect

The Photoelectric Effect Stellar Astrophysics: The Interaction of Light and Matter The Photoelectric Effect Methods of electron emission Thermionic emission: Application of heat allows electrons to gain enough energy to escape

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS LSN 12-1A: INTERACTIONS OF MATTER WITH RADIATION Questions From Reading Activity? Essential Idea: The microscopic quantum world offers a range of phenomena,

More information

Chapter 28. Atomic Physics

Chapter 28. Atomic Physics Chapter 28 Atomic Physics Quantum Numbers and Atomic Structure The characteristic wavelengths emitted by a hot gas can be understood using quantum numbers. No two electrons can have the same set of quantum

More information

Radiation - Electromagnetic Waves (EMR): wave consisting of oscillating electric and magnetic fields that move at the speed of light through space.

Radiation - Electromagnetic Waves (EMR): wave consisting of oscillating electric and magnetic fields that move at the speed of light through space. Radiation - Electromagnetic Waves (EMR): wave consisting of oscillating electric and magnetic fields that move at the speed of light through space. Photon: a quantum of light or electromagnetic wave. Quantum:

More information

Early Quantum Theory and Models of the Atom

Early Quantum Theory and Models of the Atom Early Quantum Theory and Models of the Atom Electron Discharge tube (circa 1900 s) There is something ( cathode rays ) which is emitted by the cathode and causes glowing Unlike light, these rays are deflected

More information

CHAPTER 3 The Experimental Basis of Quantum

CHAPTER 3 The Experimental Basis of Quantum CHAPTER 3 The Experimental Basis of Quantum 3.1 Discovery of the X Ray and the Electron 3.2 Determination of Electron Charge 3.3 Line Spectra 3.4 Quantization 3.5 Blackbody Radiation 3.6 Photoelectric

More information

Chapter 39. Particles Behaving as Waves

Chapter 39. Particles Behaving as Waves Chapter 39 Particles Behaving as Waves 39.1 Electron Waves Light has a dual nature. Light exhibits both wave and particle characteristics. Louis de Broglie postulated in 1924 that if nature is symmetric,

More information

Astronomy The Nature of Light

Astronomy The Nature of Light Astronomy The Nature of Light A. Dayle Hancock adhancock@wm.edu Small 239 Office hours: MTWR 10-11am Measuring the speed of light Light is an electromagnetic wave The relationship between Light and temperature

More information

QUANTUM MECHANICS Chapter 12

QUANTUM MECHANICS Chapter 12 QUANTUM MECHANICS Chapter 12 Colours which appear through the Prism are to be derived from the Light of the white one Sir Issac Newton, 1704 Electromagnetic Radiation (prelude) FIG Electromagnetic Radiation

More information

CHEMISTRY. Chapter 6 Electronic Structure of Atoms

CHEMISTRY. Chapter 6 Electronic Structure of Atoms CHEMISTRY The Central Science 8 th Edition Chapter 6 Electronic Structure of Atoms Kozet YAPSAKLI Who are these men? Ancient Philosophy Who: Aristotle, Democritus When: More than 2000 years ago Where:

More information

Modern Physics for Scientists and Engineers International Edition, 4th Edition

Modern Physics for Scientists and Engineers International Edition, 4th Edition Modern Physics for Scientists and Engineers International Edition, 4th Edition http://optics.hanyang.ac.kr/~shsong Review: 1. THE BIRTH OF MODERN PHYSICS 2. SPECIAL THEORY OF RELATIVITY 3. THE EXPERIMENTAL

More information

SCH4U: History of the Quantum Theory

SCH4U: History of the Quantum Theory SCH4U: History of the Quantum Theory Black Body Radiation When an object is heated, it initially glows red hot and at higher temperatures becomes white hot. This white light must consist of all of the

More information

Lecture 11 Atomic Structure

Lecture 11 Atomic Structure Lecture 11 Atomic Structure Earlier in the semester, you read about the discoveries that lead to the proposal of the nuclear atom, an atom of atomic number Z, composed of a positively charged nucleus surrounded

More information

Electronic structure of atoms

Electronic structure of atoms Chapter 1 Electronic structure of atoms light photons spectra Heisenberg s uncertainty principle atomic orbitals electron configurations the periodic table 1.1 The wave nature of light Much of our understanding

More information

Outline Chapter 9 The Atom Photons Photons The Photoelectron Effect Photons Photons

Outline Chapter 9 The Atom Photons Photons The Photoelectron Effect Photons Photons Outline Chapter 9 The Atom 9-1. Photoelectric Effect 9-3. What Is Light? 9-4. X-rays 9-5. De Broglie Waves 9-6. Waves of What? 9-7. Uncertainty Principle 9-8. Atomic Spectra 9-9. The Bohr Model 9-10. Electron

More information

Energy levels and atomic structures lectures chapter one

Energy levels and atomic structures lectures chapter one Structure of Atom An atom is the smallest constituent unit of ordinary matter that has the properties of a element. Every solid, liquid, gas, and plasma is composed of neutral or ionized atoms. Atoms are

More information

CHAPTER I Review of Modern Physics. A. Review of Important Experiments

CHAPTER I Review of Modern Physics. A. Review of Important Experiments CHAPTER I Review of Modern Physics A. Review of Important Experiments Quantum Mechanics is analogous to Newtonian Mechanics in that it is basically a system of rules which describe what happens at the

More information

Physics. Light Quanta

Physics. Light Quanta Physics Light Quanta Quantum Theory Is light a WAVE or a PARTICLE? Particle tiny object like a bullet, has mass and travels in straight lines unless a force acts upon it Waves phenomena that extend in

More information

Lecture 6 - Atomic Structure. Chem 103, Section F0F Unit II - Quantum Theory and Atomic Structure Lecture 6. Lecture 6 - Introduction

Lecture 6 - Atomic Structure. Chem 103, Section F0F Unit II - Quantum Theory and Atomic Structure Lecture 6. Lecture 6 - Introduction Chem 103, Section F0F Unit II - Quantum Theory and Atomic Structure Lecture 6 Light and other forms of electromagnetic radiation Light interacting with matter The properties of light and matter Lecture

More information

CHAPTER 3 Prelude to Quantum Theory. Observation of X Rays. Thomson s Cathode-Ray Experiment. Röntgen s X-Ray Tube

CHAPTER 3 Prelude to Quantum Theory. Observation of X Rays. Thomson s Cathode-Ray Experiment. Röntgen s X-Ray Tube CHAPTER Prelude to Quantum Theory.1 Discovery of the X Ray and the Electron. Determination of Electron Charge. Line Spectra.4 Quantization.5 Blackbody Radiation.6 Photoelectric Effect.7 X-Ray Production.8

More information

Chapter 1. From Classical to Quantum Mechanics

Chapter 1. From Classical to Quantum Mechanics Chapter 1. From Classical to Quantum Mechanics Classical Mechanics (Newton): It describes the motion of a classical particle (discrete object). dp F ma, p = m = dt dx m dt F: force (N) a: acceleration

More information

12/04/2012. Models of the Atom. Quantum Physics versus Classical Physics The Thirty-Year War ( )

12/04/2012. Models of the Atom. Quantum Physics versus Classical Physics The Thirty-Year War ( ) Quantum Physics versus Classical Physics The Thirty-Year War (1900-1930) Interactions between Matter and Radiation Models of the Atom Bohr s Model of the Atom Planck s Blackbody Radiation Models of the

More information

Chapter 5 Light and Matter

Chapter 5 Light and Matter Chapter 5 Light and Matter Stars and galaxies are too far for us to send a spacecraft or to visit (in our lifetimes). All we can receive from them is light But there is much we can learn (composition,

More information

Physics 1C. Chapter 28 !!!!

Physics 1C. Chapter 28 !!!! Physics 1C Chapter 28!!!! "Splitting the atom is like trying to shoot a gnat in the Albert Hall at night and using ten million rounds of ammunition on the off chance of getting it. That should convince

More information

Physics 1C Lecture 29B

Physics 1C Lecture 29B Physics 1C Lecture 29B Emission Spectra! The easiest gas to analyze is hydrogen gas.! Four prominent visible lines were observed, as well as several ultraviolet lines.! In 1885, Johann Balmer, found a

More information

Historical Background of Quantum Mechanics

Historical Background of Quantum Mechanics Historical Background of Quantum Mechanics The Nature of Light The Structure of Matter Dr. Sabry El-Taher 1 The Nature of Light Dr. Sabry El-Taher 2 In 1801 Thomas Young: gave experimental evidence for

More information

Chapter 7 Atomic Structure -1 Quantum Model of Atom. Dr. Sapna Gupta

Chapter 7 Atomic Structure -1 Quantum Model of Atom. Dr. Sapna Gupta Chapter 7 Atomic Structure -1 Quantum Model of Atom Dr. Sapna Gupta The Electromagnetic Spectrum The electromagnetic spectrum includes many different types of radiation which travel in waves. Visible light

More information

UNIT 4 Electrons in Atoms. Advanced Chemistry 235 Lanphier High School Mr. David Peeler

UNIT 4 Electrons in Atoms. Advanced Chemistry 235 Lanphier High School Mr. David Peeler UNIT 4 Electrons in Atoms Advanced Chemistry 235 Lanphier High School Mr. David Peeler Section 4.1 Models of the Atom OBJECTIVES: Identify the inadequacies in the Rutherford atomic model. Section 4.1 Models

More information

WAVE NATURE OF LIGHT

WAVE NATURE OF LIGHT WAVE NATURE OF LIGHT Light is electromagnetic radiation, a type of energy composed of oscillating electric and magnetic fields. The fields oscillate perpendicular to each other. In vacuum, these waves

More information

THE NATURE OF THE ATOM. alpha particle source

THE NATURE OF THE ATOM. alpha particle source chapter THE NATURE OF THE ATOM www.tutor-homework.com (for tutoring, homework help, or help with online classes) Section 30.1 Rutherford Scattering and the Nuclear Atom 1. Which model of atomic structure

More information

The Atom. Result for Hydrogen. For example: the emission spectrum of Hydrogen: Screen. light. Hydrogen gas. Diffraction grating (or prism)

The Atom. Result for Hydrogen. For example: the emission spectrum of Hydrogen: Screen. light. Hydrogen gas. Diffraction grating (or prism) The Atom What was know about the atom in 1900? First, the existence of atoms was not universally accepted at this time, but for those who did think atoms existed, they knew: 1. Atoms are small, but they

More information

Physics 1C Lecture 29A. Finish off Ch. 28 Start Ch. 29

Physics 1C Lecture 29A. Finish off Ch. 28 Start Ch. 29 Physics 1C Lecture 29A Finish off Ch. 28 Start Ch. 29 Particle in a Box Let s consider a particle confined to a one-dimensional region in space. Following the quantum mechanics approach, we need to find

More information

Chapter 7. The Quantum Mechanical Model of the Atom

Chapter 7. The Quantum Mechanical Model of the Atom Chapter 7 The Quantum Mechanical Model of the Atom The Nature of Light:Its Wave Nature Light is a form of electromagnetic radiation composed of perpendicular oscillating waves, one for the electric field

More information

Electronic structure the number of electrons in an atom as well as the distribution of electrons around the nucleus and their energies

Electronic structure the number of electrons in an atom as well as the distribution of electrons around the nucleus and their energies Chemistry: The Central Science Chapter 6: Electronic Structure of Atoms Electronic structure the number of electrons in an atom as well as the distribution of electrons around the nucleus and their energies

More information

Chapter 6 Electronic structure of atoms

Chapter 6 Electronic structure of atoms Chapter 6 Electronic structure of atoms light photons spectra Heisenberg s uncertainty principle atomic orbitals electron configurations the periodic table 6.1 The wave nature of light Visible light is

More information

Particles and Waves Particles Waves

Particles and Waves Particles Waves Particles and Waves Particles Discrete and occupy space Exist in only one location at a time Position and velocity can be determined with infinite accuracy Interact by collisions, scattering. Waves Extended,

More information

LIGHT. Question. Until very recently, the study of ALL astronomical objects, outside of the Solar System, has been with telescopes observing light.

LIGHT. Question. Until very recently, the study of ALL astronomical objects, outside of the Solar System, has been with telescopes observing light. LIGHT Question Until very recently, the study of ALL astronomical objects, outside of the Solar System, has been with telescopes observing light. What kind of information can we get from light? 1 Light

More information

Quantum Physics and Atomic Models Chapter Questions. 1. How was it determined that cathode rays possessed a negative charge?

Quantum Physics and Atomic Models Chapter Questions. 1. How was it determined that cathode rays possessed a negative charge? Quantum Physics and Atomic Models Chapter Questions 1. How was it determined that cathode rays possessed a negative charge? 2. J. J. Thomson found that cathode rays were really particles, which were subsequently

More information

SECTION A Quantum Physics and Atom Models

SECTION A Quantum Physics and Atom Models AP Physics Multiple Choice Practice Modern Physics SECTION A Quantum Physics and Atom Models 1. Light of a single frequency falls on a photoelectric material but no electrons are emitted. Electrons may

More information

Chapter 7. The Quantum- Mechanical Model of the Atom. Chapter 7 Lecture Lecture Presentation. Sherril Soman Grand Valley State University

Chapter 7. The Quantum- Mechanical Model of the Atom. Chapter 7 Lecture Lecture Presentation. Sherril Soman Grand Valley State University Chapter 7 Lecture Lecture Presentation Chapter 7 The Quantum- Mechanical Model of the Atom Sherril Soman Grand Valley State University The Beginnings of Quantum Mechanics Until the beginning of the twentieth

More information

Early Quantum Theory & Models of the Atom (Ch 27) Discovery of electron. Blackbody Radiation. Blackbody Radiation. J. J. Thomson ( )

Early Quantum Theory & Models of the Atom (Ch 27) Discovery of electron. Blackbody Radiation. Blackbody Radiation. J. J. Thomson ( ) Early Quantum Theory & Models of the Atom (Ch 27) Discovery of electron Modern physics special relativity quantum theory J. J. Thomson (1856-1940) measured e/m directly set-up was similar to mass spectrometer

More information

The Duality of Light. Electromagnetic Radiation. Light as a Wave

The Duality of Light. Electromagnetic Radiation. Light as a Wave In this unit, you will be introduced to the dual nature of light, the quantum theory and Bohr s planetary atomic model. The planetary model was an improvement on the nuclear model and attempted to answer

More information

Introduction to Modern Physics NE 131 Physics for Nanotechnology Engineering

Introduction to Modern Physics NE 131 Physics for Nanotechnology Engineering Introduction to Modern Physics NE 131 Physics for Nanotechnology Engineering Dr. Jamie Sanchez-Fortún Stoker Department of Physics, University of Waterloo Fall 2005 1 Introduction to Modern Physics 1.1

More information

PSI AP Physics How was it determined that cathode rays possessed a negative charge?

PSI AP Physics How was it determined that cathode rays possessed a negative charge? PSI AP Physics 2 Name Chapter Questions 1. How was it determined that cathode rays possessed a negative charge? 2. J. J. Thomson found that cathode rays were really particles, which were subsequently named

More information

Quantum Mechanics. Physics April 2002 Lecture 9. Planck Bohr Schroedinger Heisenberg

Quantum Mechanics. Physics April 2002 Lecture 9. Planck Bohr Schroedinger Heisenberg Quantum Mechanics Physics 102 18 April 2002 Lecture 9 Planck Bohr Schroedinger Heisenberg From: http://www.th.physik.uni-frankfurt.de/~jr/portraits.html 18 Apr 2002 Physics 102 Lecture 9 1 Blackbody radiation

More information

Modern Physics (Lec. 1)

Modern Physics (Lec. 1) Modern Physics (Lec. 1) Physics Fundamental Science Concerned with the fundamental principles of the Universe Foundation of other physical sciences Has simplicity of fundamental concepts Divided into five

More information

General Physics (PHY 2140)

General Physics (PHY 2140) General Physics (PHY 140) Lecture 33 Modern Physics Atomic Physics Atomic spectra Bohr s theory of hydrogen http://www.physics.wayne.edu/~apetrov/phy140/ Chapter 8 1 Lightning Review Last lecture: 1. Atomic

More information

UNIT : QUANTUM THEORY AND THE ATOM

UNIT : QUANTUM THEORY AND THE ATOM Name St.No. Date(YY/MM/DD) / / Section UNIT 102-10: QUANTUM THEORY AND THE ATOM OBJECTIVES Atomic Spectra for Hydrogen, Mercury and Neon. 1. To observe various atomic spectra with a diffraction grating

More information

74 My God, He Plays Dice! Chapter 10. Bohr-Einstein Atom

74 My God, He Plays Dice! Chapter 10. Bohr-Einstein Atom 74 My God, He Plays Dice! Bohr-Einstein Atom Bohr Atom Bohr-Einstein Atom Niels Bohr is widely, and correctly, believed to be the third most important contributor to quantum mechanics, after Max Planck

More information

Surprise, surprise, surprise

Surprise, surprise, surprise Experiment Rutherford had two grad students, Marsden and Geiger. It was decided that Geiger would gain some practice by conducting a series of experiments with gold and alpha particles. The positively

More information

Physics 1C. Modern Physics Lecture

Physics 1C. Modern Physics Lecture Physics 1C Modern Physics Lecture "I ask you to look both ways. For the road to a knowledge of the stars leads through the atom; and important knowledge of the atom has been reached through the stars."

More information

27-1 Planck Solves the Ultraviolet Catastrophe

27-1 Planck Solves the Ultraviolet Catastrophe 27-1 Planck Solves the Ultraviolet Catastrophe By the end of the 19 th century, most physicists were confident that the world was well understood. Aside from a few nagging questions, everything seemed

More information

General Physics (PHY 2140) Lecture 14

General Physics (PHY 2140) Lecture 14 General Physics (PHY 2140) Lecture 14 Modern Physics 1. Relativity Einstein s General Relativity 2. Quantum Physics Blackbody Radiation Photoelectric Effect X-Rays Diffraction by Crystals The Compton Effect

More information

Chapter 29 Atomic Physics. Looking Ahead. Slide 29-1

Chapter 29 Atomic Physics. Looking Ahead. Slide 29-1 Chapter 29 Atomic Physics Looking Ahead Slide 29-1 Atomic Spectra and the Bohr Model In the mid 1800s it became apparent that the spectra of atomic gases is comprised of individual emission lines. Slide

More information

The birth of atomic physics and quantum mechanics. Honors Physics Don Rhine

The birth of atomic physics and quantum mechanics. Honors Physics Don Rhine The birth of atomic physics and quantum mechanics Honors Physics Don Rhine Constants & Atomic Data Look inside back cover of book! Speed of Light (vacuum): c = 3.00 x 10 8 m/s Elementary Charge: e - =

More information

CHE3935. Lecture 2. Introduction to Quantum Mechanics

CHE3935. Lecture 2. Introduction to Quantum Mechanics CHE3935 Lecture 2 Introduction to Quantum Mechanics 1 The History Quantum mechanics is strange to us because it deals with phenomena that are, for the most part, unobservable at the macroscopic level i.e.,

More information

Conceptual Physics Fundamentals

Conceptual Physics Fundamentals Conceptual Physics Fundamentals Chapter 15: QUANTUM THEORY This lecture will help you understand: The Photoelectric Effect Absorption Spectra Fluorescence Incandescence Lasers Wave-Particle Duality Particles

More information

Chapter One. The Old Quantum Theory. 1-1 Why Quantum Mechanics.

Chapter One. The Old Quantum Theory. 1-1 Why Quantum Mechanics. Chapter One The Old Quantum Theory 1-1 Why Quantum Mechanics. The birth of quantum mechanics can be dated to 1925, when physicists such as Werner Heisenberg and Erwin Schrödinger invented mathematical

More information

Particle Detectors and Quantum Physics (2) Stefan Westerhoff Columbia University NYSPT Summer Institute 2002

Particle Detectors and Quantum Physics (2) Stefan Westerhoff Columbia University NYSPT Summer Institute 2002 Particle Detectors and Quantum Physics (2) Stefan Westerhoff Columbia University NYSPT Summer Institute 2002 More Quantum Physics We know now how to detect light (or photons) One possibility to detect

More information

UNIT 7 ATOMIC AND NUCLEAR PHYSICS

UNIT 7 ATOMIC AND NUCLEAR PHYSICS 1 UNIT 7 ATOMIC AND NUCLEAR PHYSICS PHYS:1200 LECTURE 33 ATOMIC AND NUCLEAR PHYSICS (1) The physics that we have presented thus far in this course is classified as Classical Physics. Classical physics

More information

Quantum Theory of Light

Quantum Theory of Light King Saud University College of Applied Studies and Community Service Department of Natural Sciences Quantum Theory of Light General Physics II PHYS 111 Nouf Alkathran nalkathran@ksu.edu.sa Outline Definition

More information

298 Chapter 6 Electronic Structure and Periodic Properties of Elements

298 Chapter 6 Electronic Structure and Periodic Properties of Elements 98 Chapter 6 Electronic Structure and Periodic Properties of Elements 6. The Bohr Model By the end of this section, you will be able to: Describe the Bohr model of the hydrogen atom Use the Rydberg equation

More information

Chapter 1 Early Quantum Phenomena

Chapter 1 Early Quantum Phenomena Chapter Early Quantum Phenomena... 8 Early Quantum Phenomena... 8 Photo- electric effect... Emission Spectrum of Hydrogen... 3 Bohr s Model of the atom... 4 De Broglie Waves... 7 Double slit experiment...

More information

Ch 7 Quantum Theory of the Atom (light and atomic structure)

Ch 7 Quantum Theory of the Atom (light and atomic structure) Ch 7 Quantum Theory of the Atom (light and atomic structure) Electromagnetic Radiation - Electromagnetic radiation consists of oscillations in electric and magnetic fields. The oscillations can be described

More information

Exam 2 Development of Quantum Mechanics

Exam 2 Development of Quantum Mechanics PHYS40 (Spring 00) Riq Parra Exam # (Friday, April 1 th, 00) Exam Development of Quantum Mechanics Do NOT write your name on this exam. Write your class ID number on the top right hand corner of each problem

More information

A Much Closer Look at Atomic Structure

A Much Closer Look at Atomic Structure Ideas We Will Clear Up Before You Graduate: WRONG IDEAS 1. The electron always behaves as a particle. BETTER SUPPORTED BY EXPERIMENTS 1. There s a wavelength associated with very small particles like the

More information

Models of the Atom. Spencer Clelland & Katelyn Mason

Models of the Atom. Spencer Clelland & Katelyn Mason Models of the Atom Spencer Clelland & Katelyn Mason First Things First Electrons were accepted to be part of the atom structure by scientists in the1900 s. The first model of the atom was visualized as

More information

CHEMISTRY Matter and Change

CHEMISTRY Matter and Change CHEMISTRY Matter and Change Chapter 5: Electrons in Atoms 5 Section 5.1 Section Section 5.3 Table Of Contents Light and Quantized Energy Electron Configuration Compare the wave and particle natures of

More information

Constants & Atomic Data. The birth of atomic physics and quantum mechanics. debroglie s Wave Equations. Energy Calculations. λ = f = h E.

Constants & Atomic Data. The birth of atomic physics and quantum mechanics. debroglie s Wave Equations. Energy Calculations. λ = f = h E. Constants & Atomic Data The birth of atomic physics and quantum mechanics Honors Physics Don Rhine Look inside back cover of book! Speed of Light (): c = 3.00 x 10 8 m/s Elementary Charge: e - = p + =

More information

LECTURE 6 QUANTUM PHYSICS II. Instructor: Shih-Chieh Hsu

LECTURE 6 QUANTUM PHYSICS II. Instructor: Shih-Chieh Hsu LECTURE 6 QUANTUM PHYSICS II Instructor: Shih-Chieh Hsu Development of Quantum Mechanics 2 In 1862, Kirchhoff coined black body radiation or known as cavity radiation The experiments raised the question

More information

Topics Covered in Chapter. Light and Other Electromagnetic Radiation. A Subatomic Interlude II. A Subatomic Interlude. A Subatomic Interlude III

Topics Covered in Chapter. Light and Other Electromagnetic Radiation. A Subatomic Interlude II. A Subatomic Interlude. A Subatomic Interlude III Light and Other Electromagnetic Radiation Topics Covered in Chapter 1.Structure of Atoms 2.Origins of Electromagnetic Radiation 3.Objects with Different Temperature and their Electromagnetic Radiation

More information

Light and Other Electromagnetic Radiation

Light and Other Electromagnetic Radiation Light and Other Electromagnetic Radiation 1 Topics Covered in Chapter 1.Structure of Atoms 2.Origins of Electromagnetic Radiation 3.Objects with Different Temperature and their Electromagnetic Radiation

More information

Announcements. Some Examples. Lecture 6 Chapter. 2 Special Relativity. Relativistic Dynamics. Problems. Problems

Announcements. Some Examples. Lecture 6 Chapter. 2 Special Relativity. Relativistic Dynamics. Problems. Problems Announcements HW2: Ch.2-70, 75, 76, 87, 92, 97, 99, 104, 111 HW1 die: now, HW2 due: 2/9 (by class hour) How was your 1 st Lab? -- Any question? Lab manual is posted on the course web *** Course Web Page

More information

WAVES AND PARTICLES. (c)

WAVES AND PARTICLES. (c) WAVES AND PARTICLES 1. An electron and a proton are accelerated through the same potential difference. The ration of their De Broglie wave length will be -- (a) (b) (c) (d) 1 2. What potential must be

More information

Dual Nature of Matter

Dual Nature of Matter Emission of electrons: Dual Nature of Matter We know that metals have free electrons (negatively charged particles) that are responsible for their conductivity. However, the free electrons cannot normally

More information

AP Chemistry. Chapter 6 Electronic Structure of Atoms

AP Chemistry. Chapter 6 Electronic Structure of Atoms AP Chemistry Chapter 6 Electronic Structure of Atoms Section 6.1 Wave Nature of Light When we say "light," we generally are referring to visible light a type of electromagnetic radiation But actually Visible

More information

OpenStax-CNX module: m The Bohr Model. OpenStax College. Abstract

OpenStax-CNX module: m The Bohr Model. OpenStax College. Abstract OpenStax-CNX module: m51039 1 The Bohr Model OpenStax College This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 4.0 By the end of this section, you will

More information

Learning Objectives and Worksheet I. Chemistry 1B-AL Fall 2016

Learning Objectives and Worksheet I. Chemistry 1B-AL Fall 2016 Learning Objectives and Worksheet I Chemistry 1B-AL Fall 2016 Lectures (1 2) Nature of Light and Matter, Quantization of Energy, and the Wave Particle Duality Read: Chapter 12, Pages: 524 526 Supplementary

More information