Constants & Atomic Data. The birth of atomic physics and quantum mechanics. debroglie s Wave Equations. Energy Calculations. λ = f = h E.

Size: px
Start display at page:

Download "Constants & Atomic Data. The birth of atomic physics and quantum mechanics. debroglie s Wave Equations. Energy Calculations. λ = f = h E."

Transcription

1 Constants & Atomic Data The birth of atomic physics and quantum mechanics Honors Physics Don Rhine Look inside back cover of book! Speed of Light (): c = 3.00 x 10 8 m/s Elementary Charge: e - = p + = 1.60 x C Planck s Constant: 6.63 x J-s Atomic masses... Electron: x kg Proton: x kg Neutron: x kg Energy Calculations Kinetic Energy: KE = ½mv 2 Speed of light: c = λν = λf λ (lamda) = wavelength [m] ν (nu) = f = frequency [Hz] = [s -1 ] Energy of a light quantum: E = hf New energy unit...for very small energy values 1 ev = 1.60 x [C-V] or [J] & Compton Scattering E in = E out (conservation of energy) E incoming photon = E energy e- needs to break away from atom + Are these 3 equations KE max = hf hf th identical? debroglie s Wave Equations By the way, momentum = mass * velocity p = mv h E λ = f = mv h Max Planck Develops First Quantum Model Blackbody radiation did not increase in energy as predicted by classical physics theory (ultraviolet catastrophe) In 1900 developed resonator model with quantized energy level resonator = vibrating molecule required standing waves a discrete energy levels E = hν Planck s Constant, h 6.63 x J-s Nobel Prize in 1918 E-M Spectrum Can describe photon by its λ, ν, or E! 1

2 E-M Spectrum Can describe photon by its λ, ν, or E! Heinrich Hertz shined light on surface to prove Maxwell s E-M wave equations worked Expected energy in E-M waves to hit and eject from surface of Strange result did not match classical physics no e - ejected below until certain color of light shined on surface Classical physics: low intensity of low-energy light should be enough to do the job over a long enough period of time...like heating water to boil over low flame Classical physics: high intensity of low-energy light should be enough to do the job over a shorter time...like heating water to boil faster over more low flames Result: No ejected! What happened?? Result: No ejected! What happened?? Classical physics: low intensity of high-energy light should be enough to do the job...like heating water to boil faster over more low flames Classical physics: low intensity of high-energy light should be enough to do the job...like heating water to boil faster over higher energy gas burner (MAPP gas vs. LP) Result: Electrons ejected! Why not before? Result: Electrons ejected! Even faster now! 2

3 Quantum Mechanics: must meet threshold energy level (hf t ) before emitted The further you are above the threshold, the faster the e - travels (higher kinetic energy, KE = ½ mv 2 ) Different s have different thresholds. Why? Quantum Mechanics: Different s have different thresholds. Why? a. slope of these lines = what? b. equations for these lines = what? Sample photoelectric effect calculation Suppose are being emitted from a with ν th = 5000 Angstroms. If the max observed electron speed is 10.8M kmh, what is the minimum wavelength of the incident photons? Why use the word minimum? What is the debroglie wavelength of the emitted electron? Diagram Data (& convert to appropriate units) Relevant equations Find relationship Solve Data ν th = 5000 Angstroms = 500 nm = 500 x 10-9 m 6 v = km 1000m 1hr hr 1km 3600s Mkmh = = / Equations KE = ½mv 2 c = λν = λf E = hf 1 ev = 1.60 x [C-V] or [J] KE max = hf hf th E incoming photon = E energy needed to break away from atom + = 1% of c m s Set up relationship & solve E in = E out (conservation of energy) E incoming photon = E energy e- needs to break away from atom + 3

4 Einstein s Next New Idea Photoelectric effect implies light is also quantized into packets of energy called photons Each photon has energy E = hf Awarded Nobel Prize in 1921 for this quantum mechanics breakthrough What other key ideas did Einstein propose (before and after this breakthrough)? Arthur Compton (1923), Nobel Prize 1927 Photon = wave or particle? If particle, can use photons to collide with, and should have billiard ball-like collisions Some energy should transfer to e -, and photon should lose some as it bounces off Use x-rays on block of carbon atoms in crystal lattice structure It worked scattered photon had lower energy By product: x-ray crystallography common technique still used today! Compton Effect Models of the Hydrogen Atom Theoretical models evolved as experimental observations provided more insight, especially the strange quantum phenomena... Ancient Atom Billiard Ball (John Dalton 1803) Plum Pudding J.J. Thomson Solar System Ernest Rutherford Quantized Energy Level Niels Bohr Particle Wave Model - debroglie Electron Cloud Model - Schrödinger PhET Simulation & Virtual Lab Exercise Ancient Idea of Atom 400 BC Leucippus & Democritus Atom = Smallest Indivisible Quantity Billiard Ball Model John Dalton ( ) Early chemist explored structure of molecules Around 1800 Dalton proposed all chemical compounds comprised of atoms that cannot be altered or destroyed Discovery of Electrons & Plum Pudding Model J.J. Thomson ( ) Electric field could bend beam from cathode ray Correctly assumed beam was composed of negatively charged particles that must be part of an atom, corpuscles (e - ) First to propose atom comprised of smaller parts Atoms neutrally charges, so assumed there must be a sea of + charges around corpuscles Thomson also predicted charge:mass ratio of e - Nobel Prize in 1906 Millikan s famous 1909 oil drop experiment measured charge (and therefore mass) of e - (1923 Nobel Prize) Crooke s Tube Cathode Ray Tube 4

5 Rutherford s Scattering Experiment Mostly empty space w/ + core solar system model Ernest Rutherford, : Directed + charged alpha particles He 2+ at thin gold leaf foil (couple hundred atoms in thickness) J.J. Thomson s model predicted α particles pass through Particles were scattered! Rutherford assumed that positively charges grouped together in a nucleus caused scattering Proposed planetary model but not stable in classical physics electron orbits would lose energy and decay Proposed existence of neutron as well (proven in 1932 by Chadwick) Nobel Prize in 1913 Quantized Model of the Hydrogen Atom Niels Bohr ( ) Incorporated Planck s & Einstein s ideas Developed quantized energy model Explained (some) spectral emissions Nobel Prize 1922 Matter Waves debroglie model uses wave-particle duality Louis debroglie ( ) 1924: All moving particles behave like matter and waves simultaneously 1927 experimental evidence: (particles) moving through slits formed diffraction patterns (like waves) debroglie Wavelength & frequency: h E λ = f = m v h Matter waves explained Bohr model standing waves fit electron orbits Nobel Prize 1929 Heisenberg Uncertainty Principle Werner Heisenberg ( ) 1927: it is fundamentally impossible to make simultaneous measurements of a particle s position and momentum (mass x velocity) with infinite accuracy Result: can t pin down location of electron as assumed in Bohr & debroglie atomic models Look at debroglie s equation: h λ = m v debroglie: If you know wavelength, then you know the exact momentum (p = mv) Heisenberg said that is impossible! Nobel Prize 1932 Electron Cloud Model Erwin Schrödinger ( ) Built on debroglie and Heisenberg s ideas...developed more complex wavefunction equation (ψ) model Predicted behavior of e - in space and time think of it as predicting where and when an e - based on probability* If you map out these likely locations over time, you would see a cloud of possible locations around the nucleus* ψ 2 is proportional to the probability of finding the e - at a particular location at a particular time* The most likely location (highest probability) corresponds to the Bohr/deBroglie orbits Nobel Prize 1933 *Another scientist, Max Born ( ), is credited with developing the statistical interpretation of Schrödinger s equations. He won a Nobel Prize in The birth of quantum mechanics These were just a few of the scientists who help develop an initial understanding of a new field of physics...quantum mechanics Our understanding of the sub-atomic structure of the atom continues to evolve through both theory and experimentation Many practical applications followed (e.g., modern electronics, lasers, nuclear power) 5

The birth of atomic physics and quantum mechanics. Honors Physics Don Rhine

The birth of atomic physics and quantum mechanics. Honors Physics Don Rhine The birth of atomic physics and quantum mechanics Honors Physics Don Rhine Constants & Atomic Data Look inside back cover of book! Speed of Light (vacuum): c = 3.00 x 10 8 m/s Elementary Charge: e - =

More information

Early Quantum Theory & Models of the Atom (Ch 27) Discovery of electron. Blackbody Radiation. Blackbody Radiation. J. J. Thomson ( )

Early Quantum Theory & Models of the Atom (Ch 27) Discovery of electron. Blackbody Radiation. Blackbody Radiation. J. J. Thomson ( ) Early Quantum Theory & Models of the Atom (Ch 27) Discovery of electron Modern physics special relativity quantum theory J. J. Thomson (1856-1940) measured e/m directly set-up was similar to mass spectrometer

More information

Preview. Atomic Physics Section 1. Section 1 Quantization of Energy. Section 2 Models of the Atom. Section 3 Quantum Mechanics

Preview. Atomic Physics Section 1. Section 1 Quantization of Energy. Section 2 Models of the Atom. Section 3 Quantum Mechanics Atomic Physics Section 1 Preview Section 1 Quantization of Energy Section 2 Models of the Atom Section 3 Quantum Mechanics Atomic Physics Section 1 TEKS The student is expected to: 8A describe the photoelectric

More information

12/04/2012. Models of the Atom. Quantum Physics versus Classical Physics The Thirty-Year War ( )

12/04/2012. Models of the Atom. Quantum Physics versus Classical Physics The Thirty-Year War ( ) Quantum Physics versus Classical Physics The Thirty-Year War (1900-1930) Interactions between Matter and Radiation Models of the Atom Bohr s Model of the Atom Planck s Blackbody Radiation Models of the

More information

History of the Atomic Model

History of the Atomic Model Chapter 5 Lecture Chapter 5 Electronic Structure and Periodic Trends 5.1 Electromagnetic Radiation Learning Goal Compare the wavelength, frequency, and energy of electromagnetic radiation. Fifth Edition

More information

Planck s Quantum Hypothesis Blackbody Radiation

Planck s Quantum Hypothesis Blackbody Radiation Planck s Quantum Hypothesis Blackbody Radiation The spectrum of blackbody radiation has been measured(next slide); it is found that the frequency of peak intensity increases linearly with temperature.

More information

Greek Philosophers (cont.)

Greek Philosophers (cont.) Greek Philosophers (cont.) Many ancient scholars believed matter was composed of such things as earth, water, air, and fire. Many believed matter could be endlessly divided into smaller and smaller pieces.

More information

Early Atomic Theories and the Origins of Quantum Theory. Chapter 3.1

Early Atomic Theories and the Origins of Quantum Theory. Chapter 3.1 Early Atomic Theories and the Origins of Quantum Theory Chapter 3.1 What is Matter Made of? People have wondered about the answer to this question for thousands of years Philosophers Matter is composed

More information

PSI AP Physics How was it determined that cathode rays possessed a negative charge?

PSI AP Physics How was it determined that cathode rays possessed a negative charge? PSI AP Physics 2 Name Chapter Questions 1. How was it determined that cathode rays possessed a negative charge? 2. J. J. Thomson found that cathode rays were really particles, which were subsequently named

More information

Quantum Physics and Atomic Models Chapter Questions. 1. How was it determined that cathode rays possessed a negative charge?

Quantum Physics and Atomic Models Chapter Questions. 1. How was it determined that cathode rays possessed a negative charge? Quantum Physics and Atomic Models Chapter Questions 1. How was it determined that cathode rays possessed a negative charge? 2. J. J. Thomson found that cathode rays were really particles, which were subsequently

More information

Quantum and Atomic Physics - Multiple Choice

Quantum and Atomic Physics - Multiple Choice PSI AP Physics 2 Name 1. The Cathode Ray Tube experiment is associated with: (A) J. J. Thomson (B) J. S. Townsend (C) M. Plank (D) A. H. Compton 2. The electron charge was measured the first time in: (A)

More information

Lecture PowerPoints. Chapter 27 Physics: Principles with Applications, 7th edition Giancoli

Lecture PowerPoints. Chapter 27 Physics: Principles with Applications, 7th edition Giancoli Lecture PowerPoints Chapter 27 Physics: Principles with Applications, 7th edition Giancoli This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching

More information

Historical Background of Quantum Mechanics

Historical Background of Quantum Mechanics Historical Background of Quantum Mechanics The Nature of Light The Structure of Matter Dr. Sabry El-Taher 1 The Nature of Light Dr. Sabry El-Taher 2 In 1801 Thomas Young: gave experimental evidence for

More information

Particle Theory of Matter. By the late 1700s, scientists had adopted the Particle Theory of Matter. This theory states that:

Particle Theory of Matter. By the late 1700s, scientists had adopted the Particle Theory of Matter. This theory states that: Particle Theory of Matter By the late 1700s, scientists had adopted the Particle Theory of Matter. This theory states that: all matter is made up of very tiny particles each pure substance has its own

More information

CHAPTER 27 Quantum Physics

CHAPTER 27 Quantum Physics CHAPTER 27 Quantum Physics Units Discovery and Properties of the Electron Planck s Quantum Hypothesis; Blackbody Radiation Photon Theory of Light and the Photoelectric Effect Energy, Mass, and Momentum

More information

Atomic Structure Discovered. Dalton s Atomic Theory. Discovery of the Electron 10/30/2012

Atomic Structure Discovered. Dalton s Atomic Theory. Discovery of the Electron 10/30/2012 Atomic Structure Discovered Ancient Greeks Democritus (460-362 BC) - indivisible particles called atoms Prevailing argument (Plato and Aristotle) - matter is continuously and infinitely divisible John

More information

Chapter 7: The Quantum-Mechanical Model of the Atom

Chapter 7: The Quantum-Mechanical Model of the Atom C h e m i s t r y 1 A : C h a p t e r 7 P a g e 1 Chapter 7: The Quantum-Mechanical Model of the Atom Homework: Read Chapter 7. Work out sample/practice exercises Check for the MasteringChemistry.com assignment

More information

Chapter 27. Quantum Physics

Chapter 27. Quantum Physics Chapter 27 Quantum Physics Need for Quantum Physics Problems remained from classical mechanics that relativity didn t explain Blackbody Radiation The electromagnetic radiation emitted by a heated object

More information

Atomic Models. A model uses familiar ideas to explain unfamiliar facts observed in nature. A model can be changed as new information is collected.

Atomic Models. A model uses familiar ideas to explain unfamiliar facts observed in nature. A model can be changed as new information is collected. This model of the atom may look familiar to you. This is the Bohr model. In this model, the nucleus is orbited by electrons, which are in different energy levels. Atomic Models A model uses familiar ideas

More information

Professor K. Atomic structure

Professor K. Atomic structure Professor K Atomic structure Review Reaction- the formation and breaking of chemical bonds Bond- a transfer or sharing of electrons Electrons Abbreviated e - What are they? How were they discovered? Early

More information

4/14/2015. Models of the Atom. Quantum Physics versus Classical Physics The Thirty-Year War ( ) Classical Model of Atom

4/14/2015. Models of the Atom. Quantum Physics versus Classical Physics The Thirty-Year War ( ) Classical Model of Atom Quantum Physics versus Classical Physics The Thirty-Year War (1900-1930) Models of the Atom Interactions between Matter and Radiation Models of the Atom Bohr s Model of the Atom Planck s Blackbody Radiation

More information

Where are we? Check-In

Where are we? Check-In Where are we? Check-In ü Building Blocks of Matter ü Moles, molecules, grams, gases, ü The Bohr Model solutions, and percent composition Coulomb s Law ü Empirical and Molecular formulas Photoelectron Spectroscopy

More information

Atomic Theory. Early models

Atomic Theory. Early models Atomic Theory Early models Ancient Greece Late 18 th century 4 elements Earth, Water, Wind, Fire: Matter is made up in different combinations of these 4 elements. First atom proposed by Democritus (Greek)

More information

Atomic Theory Development

Atomic Theory Development Atomic Theory Development Born as early as 400 BC, it took more than 2000 years before Science was ready to accept the idea of atomic structure of matter and another 150 years to develop a good model!

More information

Introduction to Quantum Physics. Early Atomic Physics

Introduction to Quantum Physics. Early Atomic Physics Introduction to Quantum Physics Early Atomic Physics What is Quantum Physics Quantum Physics is a collection of laws which explain observations of the tiny building blocks of all matter. The world of the

More information

Particle nature of light & Quantization

Particle nature of light & Quantization Particle nature of light & Quantization A quantity is quantized if its possible values are limited to a discrete set. An example from classical physics is the allowed frequencies of standing waves on a

More information

1 The Cathode Rays experiment is associated. with: Millikan A B. Thomson. Townsend. Plank Compton

1 The Cathode Rays experiment is associated. with: Millikan A B. Thomson. Townsend. Plank Compton 1 The Cathode Rays experiment is associated with: A B C D E Millikan Thomson Townsend Plank Compton 1 2 The electron charge was measured the first time in: A B C D E Cathode ray experiment Photoelectric

More information

Chapter 37 Early Quantum Theory and Models of the Atom

Chapter 37 Early Quantum Theory and Models of the Atom Chapter 37 Early Quantum Theory and Models of the Atom Units of Chapter 37 37-7 Wave Nature of Matter 37-8 Electron Microscopes 37-9 Early Models of the Atom 37-10 Atomic Spectra: Key to the Structure

More information

Lecture 6 - Atomic Structure. Chem 103, Section F0F Unit II - Quantum Theory and Atomic Structure Lecture 6. Lecture 6 - Introduction

Lecture 6 - Atomic Structure. Chem 103, Section F0F Unit II - Quantum Theory and Atomic Structure Lecture 6. Lecture 6 - Introduction Chem 103, Section F0F Unit II - Quantum Theory and Atomic Structure Lecture 6 Light and other forms of electromagnetic radiation Light interacting with matter The properties of light and matter Lecture

More information

Einstein. Quantum Physics at a glance. Planck s Hypothesis (blackbody radiation) (ultraviolet catastrophe) Quantized Energy

Einstein. Quantum Physics at a glance. Planck s Hypothesis (blackbody radiation) (ultraviolet catastrophe) Quantized Energy Quantum Physics at a glance Quantum Physics deals with the study of light and particles at atomic and smaller levels. Planck s Hypothesis (blackbody radiation) (ultraviolet catastrophe) Quantized Energy

More information

Lecture 11 Atomic Structure

Lecture 11 Atomic Structure Lecture 11 Atomic Structure Earlier in the semester, you read about the discoveries that lead to the proposal of the nuclear atom, an atom of atomic number Z, composed of a positively charged nucleus surrounded

More information

Atomic Theory. Democritus to the Planetary Model

Atomic Theory. Democritus to the Planetary Model Atomic Theory Democritus to the Planetary Model Democritus Greek philosopher (460-370 BCE) Believed in the philosophy of materialism With Leucippus, they though that matter can not be divided infinitely.

More information

Honors Ch3 and Ch4. Atomic History and the Atom

Honors Ch3 and Ch4. Atomic History and the Atom Honors Ch3 and Ch4 Atomic History and the Atom Ch. 3.1 The Atom is Defined 400 B.C. the Greek philosopher Democritus said that the world was made of two things: Empty space and tiny particles called atoms

More information

Explain how Planck resolved the ultraviolet catastrophe in blackbody radiation. Calculate energy of quanta using Planck s equation.

Explain how Planck resolved the ultraviolet catastrophe in blackbody radiation. Calculate energy of quanta using Planck s equation. Objectives Explain how Planck resolved the ultraviolet catastrophe in blackbody radiation. Calculate energy of quanta using Planck s equation. Solve problems involving maximum kinetic energy, work function,

More information

The Photoelectric Effect

The Photoelectric Effect The Photoelectric Effect Light can strike the surface of some metals causing an electron to be ejected No matter how brightly the light shines, electrons are ejected only if the light has sufficient energy

More information

Atomic Theory. Developing the Nuclear Model of the Atom. Saturday, January 20, 18

Atomic Theory. Developing the Nuclear Model of the Atom. Saturday, January 20, 18 Atomic Theory Developing the Nuclear Model of the Atom Democritus Theory: Atom, the indivisible particle c. 300 BC Democritus Problem: No scientific evidence c. 300 BC Dalton Theory: The solid sphere model

More information

Democritus & Leucippus (~400 BC) Greek philosophers: first to propose that matter is made up of particles called atomos, the Greek word for atoms

Democritus & Leucippus (~400 BC) Greek philosophers: first to propose that matter is made up of particles called atomos, the Greek word for atoms Chemistry Ms. Ye Name Date Block The Evolution of the Atomic Model Since atoms are too small to see even with a very powerful microscope, scientists rely upon indirect evidence and models to help them

More information

CHEMISTRY. Chapter 6 Electronic Structure of Atoms

CHEMISTRY. Chapter 6 Electronic Structure of Atoms CHEMISTRY The Central Science 8 th Edition Chapter 6 Electronic Structure of Atoms Kozet YAPSAKLI Who are these men? Ancient Philosophy Who: Aristotle, Democritus When: More than 2000 years ago Where:

More information

Chapter 7 Atomic Structure -1 Quantum Model of Atom. Dr. Sapna Gupta

Chapter 7 Atomic Structure -1 Quantum Model of Atom. Dr. Sapna Gupta Chapter 7 Atomic Structure -1 Quantum Model of Atom Dr. Sapna Gupta The Electromagnetic Spectrum The electromagnetic spectrum includes many different types of radiation which travel in waves. Visible light

More information

Chapter #1 - Atomic Structure

Chapter #1 - Atomic Structure Chapter #1 - Atomic Structure Atomic Theories Democritus (460-340 BC) Democritus believed that all matter consisted of extremely small particles that could not be divided. He called them atoms from the

More information

Chapter 27 Early Quantum Theory and Models of the Atom Discovery and Properties of the electron

Chapter 27 Early Quantum Theory and Models of the Atom Discovery and Properties of the electron Chapter 27 Early Quantum Theory and Models of the Atom 27-1 Discovery and Properties of the electron Measure charge to mass ratio e/m (J. J. Thomson, 1897) When apply magnetic field only, the rays are

More information

Quantum Theory of Light

Quantum Theory of Light King Saud University College of Applied Studies and Community Service Department of Natural Sciences Quantum Theory of Light General Physics II PHYS 111 Nouf Alkathran nalkathran@ksu.edu.sa Outline Definition

More information

Learning Objectives and Worksheet I. Chemistry 1B-AL Fall 2016

Learning Objectives and Worksheet I. Chemistry 1B-AL Fall 2016 Learning Objectives and Worksheet I Chemistry 1B-AL Fall 2016 Lectures (1 2) Nature of Light and Matter, Quantization of Energy, and the Wave Particle Duality Read: Chapter 12, Pages: 524 526 Supplementary

More information

Chapter 37 Early Quantum Theory and Models of the Atom. Copyright 2009 Pearson Education, Inc.

Chapter 37 Early Quantum Theory and Models of the Atom. Copyright 2009 Pearson Education, Inc. Chapter 37 Early Quantum Theory and Models of the Atom Planck s Quantum Hypothesis; Blackbody Radiation Photon Theory of Light and the Photoelectric Effect Energy, Mass, and Momentum of a Photon Compton

More information

Chapter 27 Quantum Physics

Chapter 27 Quantum Physics Key Ideas Two Principles of Relativity: The laws of physics are the same for all uniformly moving observers. The speed of light is the same for all observers. Consequences: Different observers measure

More information

Dalton Thompson Rutherford Bohr Modern Model ("Wave. Models of the Atom

Dalton Thompson Rutherford Bohr Modern Model (Wave. Models of the Atom Dalton Thompson Rutherford Bohr Modern Model ("Wave Models of the Atom Mechanical" Model) Aim: To discuss the scientists and their contributions to the current atomic model. Focus: Rutherford's Gold Foil

More information

The origins of atomic theory

The origins of atomic theory Models of the atom It is important to realise that a lot of what we know about the structure of atoms has been developed over a long period of time. This is often how scientific knowledge develops, with

More information

PROGRESSION OF THE ATOMIC MODEL

PROGRESSION OF THE ATOMIC MODEL PROGRESSION OF THE ATOMIC MODEL By 1808, it was widely accepted that matter was made up of ELEMENTS, which consisted of tiny PARTICLES called ATOMS. After 2000 years - DEMOCRITUS was right all along John

More information

UNIT 4 Electrons in Atoms. Advanced Chemistry 235 Lanphier High School Mr. David Peeler

UNIT 4 Electrons in Atoms. Advanced Chemistry 235 Lanphier High School Mr. David Peeler UNIT 4 Electrons in Atoms Advanced Chemistry 235 Lanphier High School Mr. David Peeler Section 4.1 Models of the Atom OBJECTIVES: Identify the inadequacies in the Rutherford atomic model. Section 4.1 Models

More information

Physics 30 Modern Physics Unit: Atomic Basics

Physics 30 Modern Physics Unit: Atomic Basics Physics 30 Modern Physics Unit: Atomic Basics Models of the Atom The Greeks believed that if you kept dividing matter into smaller and smaller pieces, you would eventually come to a bit of matter that

More information

What is matter? Matter is anything that has mass and takes up space. Matter is made up of atoms.

What is matter? Matter is anything that has mass and takes up space. Matter is made up of atoms. Matter What is matter? Matter is anything that has mass and takes up space. Matter is made up of atoms. Is it matter? Can you measure the object? Does it take up space? Does the object have a mass? Come

More information

Get out your diagram from your research paper. Get out a sheet of paper to take some notes on.

Get out your diagram from your research paper. Get out a sheet of paper to take some notes on. Bellwork: Get out your diagram from your research paper. Get out a sheet of paper to take some notes on. Fill in the Following Table in your notes (assume an atom unless otherwise stated: Symbol Protons

More information

Supplemental Activities. Module: Atomic Theory. Section: Electromagnetic Radiation and Matter - Key

Supplemental Activities. Module: Atomic Theory. Section: Electromagnetic Radiation and Matter - Key Supplemental Activities Module: Atomic Theory Section: Electromagnetic Radiation and Matter - Key Introduction to Electromagnetic Radiation Activity 1 1. What are the two components that make up electromagnetic

More information

Atomic Theories Chapter 4.1. How do we know about atoms when no one has ever seen inside an atom?

Atomic Theories Chapter 4.1. How do we know about atoms when no one has ever seen inside an atom? Atomic Theories Chapter 4.1 How do we know about atoms when no one has ever seen inside an atom? Greek Philosopher Democritus Lived 460 370 BCE Believed it is IMPOSSIBLE to divide matter ad infinitum.

More information

Atomic Theory Timeline

Atomic Theory Timeline Atomic Theory Timeline Democritus 450 B.C. Democritus was a Greek philosopher who came to the conclusion that everything was made up of tiny particles. He used the term atomos. Unfortunately, since Democritus

More information

AP Physics Study Guide Modern Physics I. Atomic Physics and Quantum Effects 1. Who is generally credited with the discovery of the electron?

AP Physics Study Guide Modern Physics I. Atomic Physics and Quantum Effects 1. Who is generally credited with the discovery of the electron? AP Physics Study Guide Modern Physics I. Atomic Physics and Quantum Effects 1. Who is generally credited with the discovery of the electron? 2. What was it that J. J. Thomson actually measured? 3. Regarding

More information

History of Atomic Theory

History of Atomic Theory Unit 2 The Atom History of Atomic Theory A. Democritus and Aristotle Democritus named the "atom" - means indivisible Dalton (with work of Lavoisier, Proust, and Gay-Lussac) 1. atomic theory - first based

More information

Chapter 27 Lecture Notes

Chapter 27 Lecture Notes Chapter 27 Lecture Notes Physics 2424 - Strauss Formulas: λ P T = 2.80 10-3 m K E = nhf = nhc/λ fλ = c hf = K max + W 0 λ = h/p λ - λ = (h/mc)(1 - cosθ) 1/λ = R(1/n 2 f - 1/n 2 i ) Lyman Series n f = 1,

More information

Supplemental Activities. Module: Atomic Theory. Section: Electromagnetic Radiation and Matter

Supplemental Activities. Module: Atomic Theory. Section: Electromagnetic Radiation and Matter Supplemental Activities Module: Atomic Theory Section: Electromagnetic Radiation and Matter Introduction to Electromagnetic Radiation Activity 1 1. What are the two components that make up electromagnetic

More information

CHEMISTRY Matter and Change

CHEMISTRY Matter and Change CHEMISTRY Matter and Change Chapter 5: Electrons in Atoms 5 Section 5.1 Section Section 5.3 Table Of Contents Light and Quantized Energy Electron Configuration Compare the wave and particle natures of

More information

PhET Simulation Exploration Models of the Hydrogen Atom

PhET Simulation Exploration Models of the Hydrogen Atom Name Period Date PhET Simulation Exploration Models of the Hydrogen Atom http://phet.colorado.edu/simulations/sims.php?sim=models_of_the_hydrogen_atom Tie to Planck and Quanta Overview One of the most

More information

History of the Atom. Scientists and Their Contribution to the Model of an Atom

History of the Atom. Scientists and Their Contribution to the Model of an Atom History of the Atom Scientists and Their Contribution to the Model of an Atom 1700s 1800s 1900s History of the Atom Timeline 1766 1844 Antoine Lavoisier makes J.J. a substantial Thomson number discovers

More information

Atomic Structure. History of Atomic Theory

Atomic Structure. History of Atomic Theory Atomic Structure History of Atomic Theory Democritus (460-370 BC) Was the to come up with the idea of atom Believed that all matter was composed of Which is derived from the Greek word Atomos meaning He

More information

3. Particle nature of matter

3. Particle nature of matter 3. Particle nature of matter 3.1 atomic nature of matter Democrit(us) 470-380 B.C.: there is only atoms and empty space, everything else is mere opinion (atoms are indivisible) Dalton (chemist) 180: chemical

More information

Topic III Quest Study Guide

Topic III Quest Study Guide Topic III Quest Study Guide A. Early Concepts: Democritus: Democritus: Greek Philosopher 400 B.C. Matter is composed of atoms, which move through empty space Atoms are solid, homogeneous indestructible

More information

9/23/2012. Democritus 400 B.C. Greek philosopher Proposed that all materials are made from atoms. Coined Greek word atmos, meaning indivisible.

9/23/2012. Democritus 400 B.C. Greek philosopher Proposed that all materials are made from atoms. Coined Greek word atmos, meaning indivisible. Mr. Sudbury Atoms are too small to see with your eyes. Atoms are too small to see with the most powerful microscopes. Scientist use models to explain atoms. A scientific model is an representation containing

More information

Atomic Spectra. What does this have to do with atomic models?

Atomic Spectra. What does this have to do with atomic models? Atomic Physics -2 Atomic Spectra Fill a glass tube with pure atomic gas Apply a high voltage between electrodes Current flows through gas & tube glows Color depends on type of gas Light emitted is composed

More information

The History of the Atom. How did we learn about the atom?

The History of the Atom. How did we learn about the atom? The History of the Atom How did we learn about the atom? The Atomic Theory of Matter All matter is made up of fundamental particles. What does fundamental mean? The Greek Philosophers, 400 B.C. Democritus

More information

EARLY VIEWS: The Ancient Greeks

EARLY VIEWS: The Ancient Greeks Feb 7 11:59 AM EARLY VIEWS: The Ancient Greeks Empedocles (c. 450 B.C.) proposed Four Element theory he thought that matter was composed of four elements: AIR, EARTH, FIRE and WATER elements mixed together

More information

THE NATURE OF THE ATOM. alpha particle source

THE NATURE OF THE ATOM. alpha particle source chapter THE NATURE OF THE ATOM www.tutor-homework.com (for tutoring, homework help, or help with online classes) Section 30.1 Rutherford Scattering and the Nuclear Atom 1. Which model of atomic structure

More information

General Physics (PHY 2140)

General Physics (PHY 2140) General Physics (PHY 2140) Lecture 27 Modern Physics Quantum Physics Blackbody radiation Plank s hypothesis http://www.physics.wayne.edu/~apetrov/phy2140/ Chapter 27 1 Quantum Physics 2 Introduction: Need

More information

7.1 Development of a Modern Atomic Theory

7.1 Development of a Modern Atomic Theory 7.1 Development of a Modern Atomic Theory Development of the Atomic Theory Many scientists in different countries have contributed to the understanding of matter - atoms John Dalton Credited with developing

More information

An Introduction to Atomic Theory. VCE Chemistry Unit 1: The Big Ideas of Chemistry Area of Study 1 The Periodic Table

An Introduction to Atomic Theory. VCE Chemistry Unit 1: The Big Ideas of Chemistry Area of Study 1 The Periodic Table An Introduction to Atomic Theory VCE Chemistry Unit 1: The Big Ideas of Chemistry Area of Study 1 The Periodic Table From Democritus to Dalton Two thousand years ago, Democritus proposed that matter consisted

More information

Atomic Theory. Past and Present: pieces of a puzzle

Atomic Theory. Past and Present: pieces of a puzzle Atomic Theory Past and Present: pieces of a puzzle The First Atomic Hypothesis Democritus (460 370 BC): Greek philosopher Speculated that matter is composed of atoms which move through empty space Atoms

More information

CHEMISTRY. Matter and Change. Table Of Contents. Section 4.1 Early Ideas About Matter. Unstable Nuclei and Radioactive Decay

CHEMISTRY. Matter and Change. Table Of Contents. Section 4.1 Early Ideas About Matter. Unstable Nuclei and Radioactive Decay CHEMISTRY 4 Table Of Contents Matter and Change Section 4.1 Early Ideas About Matter Chapter 4: The Structure of the Atom Section 4.2 Section 4.3 Section 4.4 Defining the Atom How Atoms Differ Unstable

More information

Models of the Atom. Spencer Clelland & Katelyn Mason

Models of the Atom. Spencer Clelland & Katelyn Mason Models of the Atom Spencer Clelland & Katelyn Mason First Things First Electrons were accepted to be part of the atom structure by scientists in the1900 s. The first model of the atom was visualized as

More information

Alan Mortimer PhD. Ideas of Modern Physics

Alan Mortimer PhD. Ideas of Modern Physics Alan Mortimer PhD Ideas of Modern Physics Electromagnetic Waves Last Week Special Relativity General Relativity The Quantum World Index Planck s Law Atomic Structure and emission lines Matter waves Uncertainty

More information

Atomic Structure. Standing Waves x10 8 m/s. (or Hz or 1/s) λ Node

Atomic Structure. Standing Waves x10 8 m/s. (or Hz or 1/s) λ Node Atomic Structure Topics: 7.1 Electromagnetic Radiation 7.2 Planck, Einstein, Energy, and Photons 7.3 Atomic Line Spectra and Niels Bohr 7.4 The Wave Properties of the Electron 7.5 Quantum Mechanical View

More information

Bellwork: 2/6/2013. atom is the. atom below. in an atom is found in the. mostly. 2. The smallest part of an. 1. Label the parts of the

Bellwork: 2/6/2013. atom is the. atom below. in an atom is found in the. mostly. 2. The smallest part of an. 1. Label the parts of the Bellwork: 2/6/2013 1. Label the parts of the atom below. B 2. The smallest part of an atom is the. 3. The majority of the mass in an atom is found in the. A C 4. An atom is made up of mostly. Bellwork:

More information

Exam 2 Development of Quantum Mechanics

Exam 2 Development of Quantum Mechanics PHYS40 (Spring 00) Riq Parra Exam # (Friday, April 1 th, 00) Exam Development of Quantum Mechanics Do NOT write your name on this exam. Write your class ID number on the top right hand corner of each problem

More information

Memorial to a Scientist

Memorial to a Scientist Memorial to a Scientist 1. My Question of Inquiry: Use this sheet to outline how you will collect and present the information to the class. My Group s Scientist: 1 Part I: Memorial to a Scientist: John

More information

SNC1D1 History of the Atom

SNC1D1 History of the Atom SNC1D1 History of the Atom What is the atom? Atoms are the building block for all matter: Atoms make up elements! Elements combine to make compounds!2 ATOMIC MODEL TIMELINE 400 B.C PRESENT DAY ATOMIC MODEL

More information

Evolution of Atomic Theory

Evolution of Atomic Theory Evolution of Atomic Theory Mrs. Baldessari Chemistry Scientists that changed our view of the atom?greatest Chemistry Discoveries?? YouTube Aristotle What: All matter is a combo of fire, air, earth or water

More information

Democritus & Leucippus (~400 BC) Greek philosophers: first to propose that matter is made up of particles called atomos, the Greek word for atoms

Democritus & Leucippus (~400 BC) Greek philosophers: first to propose that matter is made up of particles called atomos, the Greek word for atoms AP Chemistry Ms. Ye Name Date Block The Evolution of the Atomic Model Since atoms are too small to see even with a very powerful microscope, scientists rely upon indirect evidence and models to help them

More information

Nuclear Chemistry. Atomic Structure Notes Start on Slide 20 from the second class lecture

Nuclear Chemistry. Atomic Structure Notes Start on Slide 20 from the second class lecture Nuclear Chemistry Atomic Structure Notes Start on Slide 20 from the second class lecture The Birth of an Idea Democritus, 400 B.C. coined the term atom If you divide matter into smaller and smaller pieces,

More information

Do Now: Recall 1. What is an atom? What have you learned about the word atom so far this semester?

Do Now: Recall 1. What is an atom? What have you learned about the word atom so far this semester? Chemistry Ms. Ye Name Date Block Do Now: Recall 1. What is an atom? What have you learned about the word atom so far this semester? Atoms Video: 1. Proper Portioned Giant Atom Model of Science: Structure

More information

Updating the Atomic Theory

Updating the Atomic Theory Updating the Atomic Theory Three major differences between modern atomic theory and Dalton s atomic theory 1. Atoms are NOT indivisible. They are made up of smaller particles: electrons, protons and neutrons.

More information

PhET Simulation Exploration Models of the Hydrogen Atom

PhET Simulation Exploration Models of the Hydrogen Atom Name Period Date PhET Simulation Exploration Models of the Hydrogen Atom http://phet.colorado.edu/simulations/sims.php?sim=models_of_the_hydrogen_atom Tie to Planck and Quanta Overview One of the most

More information

The Atom and Quantum Mechanics

The Atom and Quantum Mechanics The Atom and Quantum Mechanics Last time... In a spherical geometry the sum of the angles of a triangle > 180 What is the principle of equivalence? What three observations confirmed Einstein s Theory of

More information

Physics 1C. Lecture 28D

Physics 1C. Lecture 28D Physics 1C Lecture 28D "I ask you to look both ways. For the road to a knowledge of the stars leads through the atom; and important knowledge of the atom has been reached through the stars." --Sir Arthur

More information

27-1 Planck Solves the Ultraviolet Catastrophe

27-1 Planck Solves the Ultraviolet Catastrophe 27-1 Planck Solves the Ultraviolet Catastrophe By the end of the 19 th century, most physicists were confident that the world was well understood. Aside from a few nagging questions, everything seemed

More information

The Development of Atomic Theory

The Development of Atomic Theory The Development of Atomic Theory Democritus (400 BC) John Dalton (1803) J.J. Thomson (1897) Ernest Rutherford (1911) James Chadwick (1932) - suggested that matter is composed of indivisible particles called

More information

Properties of Light. Arrangement of Electrons in Atoms. The Development of a New Atomic Model. Electromagnetic Radiation CHAPTER 4

Properties of Light. Arrangement of Electrons in Atoms. The Development of a New Atomic Model. Electromagnetic Radiation CHAPTER 4 CHAPTER 4 Arrangement of Electrons in Atoms The Development of a New Atomic Model The Rutherford model was a great improvement over the Thomson model of the atom. But, there was one major question that

More information

The Death of Classical Physics. The Rise of the Photon

The Death of Classical Physics. The Rise of the Photon The Death of Classical Physics The Rise of the Photon A fundamental question: What is Light? James Clerk Maxwell 1831-1879 Electromagnetic Wave Max Planck 1858-1947 Photon Maxwell's Equations (1865) Maxwell's

More information

The Structure of the Atom Review

The Structure of the Atom Review The Structure of the Atom Review Atoms are composed of PROTONS + positively charged mass = 1.6726 x 10 27 kg NEUTRONS neutral mass = 1.6750 x 10 27 kg ELECTRONS negatively charged mass = 9.1096 x 10 31

More information

Do Now: Recall 1. What is an atom? What have you learned about the word atom so far this semester?

Do Now: Recall 1. What is an atom? What have you learned about the word atom so far this semester? Chemistry Ms. Ye Name Date Block Do Now: Recall 1. What is an atom? What have you learned about the word atom so far this semester? Atoms Video: 1. Proper Portioned Giant Atom Model of Science: Structure

More information

c = λν 10/23/13 What gives gas-filled lights their colors? Chapter 5 Electrons In Atoms

c = λν 10/23/13 What gives gas-filled lights their colors? Chapter 5 Electrons In Atoms CHEMISTRY & YOU What gives gas-filled lights their colors? Chapter 5 Electrons In Atoms 5.1 Revising the Atomic Model 5. Electron Arrangement in Atoms 5.3 Atomic and the Quantum Mechanical Model An electric

More information

What is the current atomic model?

What is the current atomic model? 4.1 Atoms Basic Units of Matter What is the current atomic model? Matter is anything that has mass and takes up space, such as gases, solids, and liquids. Matter is not sound, heat, or light these are

More information

HONORS CHEMISTRY. Chapter 4 Atomic Structure

HONORS CHEMISTRY. Chapter 4 Atomic Structure HONORS CHEMISTRY Chapter 4 Atomic Structure History of the Atomic Theory DEMOCRITUS (400 BC) 1st atomic theory World is made of empty space & tiny particles called atoms. Atomos - Greek for indivisible

More information

From a visible light perspective, a body is black if it absorbs all light that strikes it in the visible part of the spectrum.

From a visible light perspective, a body is black if it absorbs all light that strikes it in the visible part of the spectrum. 4/28 Black Body Radiation From a visible light perspective, a body is black if it absorbs all light that strikes it in the visible part of the spectrum. A white body is white because it reflects all of

More information