Name: Laboratory Investigation

Size: px
Start display at page:

Download "Name: Laboratory Investigation"

Transcription

1 Laboratory Investigation Abstract: Analysis of the circular motion of a swinging stopper will provide insight into the causes of centripetal force and develop relationships between speed, radius and centripetal force. Name: M1

2 Procedure: 1. Measure the mass of the rubber stopper using a scale and record in the attached data table. 2. Attach 200 g of mass to the bottom of the string that passes through the tube. Refer to the diagram to understand how to measure the radius. Before swinging the stopper, measure the radius so that it will be somewhere between cm and record this value. RADIUS USED: 3. Put an alligator clip on the string just underneath the bottom of the tube and wrap the string once around one side of the clip teeth so that the clip will not slide if pushed (see diagram). PART 1 Changing Mass READ UP TO STEP 5, BEFORE BEGINNING Practice swinging Hold the apparatus as shown in the picture and use your free hand to hold the weight hanging below the tube. Begin swinging in short horizontal circles to make the stopper go in a horizontal circle around your head. Once you get it moving, slowly release the weight in your hand until it hangs freely. Place alligator clip ary the speed at which you swing the stopper until you can get the alligator clip to be just below the bottom of the tube without it touching the tube. Keep the swing constant so that the alligator clip remains in place and does not move up or down. 4. In this part of the lab we will be varying the mass hanging on the rope. Choose a starting mass of either 100 or 200 grams. If you are able to swing the mass successfully with the 100 gram weight, then start with that mass, however, if the stopper is too heavy and it is difficult to swing with such a small weight then start with the 200 gram mass. 5. We will now take data while spinning the stopper, please read the recommendations that follow, don t be lazy. Sometimes the stopper will be swinging quickly so be careful when you are counting the revolutions. The person swinging the stopper usually has the best idea about the numbers of revolutions and you can even hear the swirling noise of the stopper to help you count. The person doing the swinging can begin counting aloud from 1 27, and the person timing can start the stopwatch when they hear 5, and then stop at 25 so there will be a more accurate result of the beginning and end of the 20 revolutions. Use whatever method is best for your lab group for counting and timing. Record your data in the attached data table. Make sure the stopper is spinning at a constant rate in a horizontal circle and the alligator clip remains at the same spot (just below the tube but not touching), and record the amount of time required to make 20 revolutions of the stopper. 6. Repeat step 5 one more time so that you will have two trials total. 7. Add an additional 100 g of mass hanging to string to increase the total mass Repeat the two swing trials again and record your times on the data table. 8. Add another 100 g of mass (200 g total additional added) Repeat the two swing trials again and record your times on the data table. 9. Add a final additional 100g of mass (300 g total additional added) Repeat the two swing trials again and record your times on the data table. M2

3 PART 2 Changing Radius 1. Copy the data from the first row of part 1 table and make an exact copy in the first row of part 2 data table. 2. For rows 2 4 in the part 2 table, use the initial amount of hanging mass on the string as you did in part 1, and do not add or remove mass for any part. In this part of the lab we will vary the radius at which the stopper spins around. 3. Move the alligator clip 10 cm up or down the rope from its current location (this will make a different radius when the string is swung). Again wrap the string around one of the alligator teeth so that it will not slide if pushed. Record the value of the new radius in your table. 4. Repeat the experiment as conducted before so that the clip is just barely below the glass tube and does not move. Get the time to make 20 revolutions. Repeat this step 1 more times for a total of 2 trials. 3. Move the alligator clip to another different location (10 cm different than other trials) and record it. Measure and record the time for 20 revolutions. Repeat this step 1 more time for a total of 2 trials. 4. Again, move the alligator to a new location (10 cm different from other trials) and record the time for 20 revolutions. Repeat this step 1 more time for a total of 2 trials. END OF EXPERIMENT M3

4 Analysis Instructions A common mistake in this lab is misunderstanding which mass to use. There are two masses, the hanging mass (the one hanging below the circle attached to the string) and the mass of the stopper. Each mass is used for a different thing in the analysis. Keep in mind that the stopper is the thing that is going in the circle, so when using circular motion analysis it is the stopper mass that is being accelerated. Complete the calculations on the data worksheet. Read the directions below to assist you. (a) mass weight and Fc Why does the spinning stopper maintain its circular motion in this lab? The stopper goes in a circle because a centripetal force allows it to happen. A centripetal force is always provided by something. In this case the string tension provides the centripetal force. However, if there was no mass attached to the string then the stopper would just fly away and the hanging mass creates the tension which provides the centripetal force, so in essence the weight of the hanging mass provides the centripetal force acting on the stopper. (note, if you are one of the few people that actually read directions, this paragraph is the basis for the answer to one of the questions, congratulations.) This important relationship directly gives us F c. Now that we know the F c we can calculate other values. (b) Speed () We are going to find the speed of the stopper with two methods and compare the results. For the purposes of percent error, we will assume that Method 1 is the experimental value and Method 2 is the actual value. Method 1 (experimental ) find the speed using distance and time. In lab we found the time needed for 20 revolutions which we can easily use to find the Period. (Period =time needed to make 1 revolution) We also know the distance traveled in 1 revolution. The stopper swings in a circular path and we know the radius of this circle. The distance traveled in 1 revolution around a circle is the circles circumference C = 2 π r With the distance and time traveled, we can find the speed of the stopper in the circle. This is method 1. Method 2 (actual ) find speed using the known centripetal force In accordance with the discussion in part (a) of this analysis we know the centripetal force on the stopper. We also know the mass of the stopper and radius of the swing. Given the formula for centripetal force: F net(c) = m a c F net(c) = mv r We can see that the only unknown left in the equation is v so we can rearrange the equation to solve for v. Read the note at the top of this page again to be sure to use the correct values. (c) Find the percent error for the two methods of v Graphs Attach 2 1. Make a graph of centripetal force vs. speed(method 1) for part 1 of the lab ( y vs. x ) 2. Make a graph of speed(method 1) vs. radius for part 2 of the lab ( y vs. x ) M4

5 Centripetal Force Lab Name: When turning in the lab, only turn in from this page forward. The prior pages are for your reference only Data and Calculations Table Part 1 Constant Radius, Changing Mass ALL MASSES SHOULD BE CONERTED TO kg shaded columns = data to record during lab Mass (kg) Weight of mass (N) Radius (m) Mass of Stopper (kg) for 20 revs (s) Trial 1 Trial 2 for 20 revs (s) Average for 1 rev (s) F c (N) Method 1 Method 2 % error Sample Calculations: Part 2 Constant Mass, Changing Radius Mass (kg) Weight of mass (N) Radius (m) Mass of Stopper (kg) for 20 revs (s) Trial 1 Trial 2 for 20 revs (s) Average for 1 rev (s) F c (N) Method 1 Method 2 % error

6 Questions 1.) List reasons for error in any part of this experiment. Do Not simply write human error or miscalculations or rounding ; those are not reasons for error. Reasons for error can include human factors, but you should specifically state what they are rather than writing human error. Furthermore, errors are not mistakes or things you could correct, rather they are uncontrollable and could be there no matter how many times the experiment is conducted. 2.) Explain how you found the F c acting on the stopper and why this is the correct way of calculating it. 3.) What does graph 1 suggest about the relationship between speed and centripetal force? Does this make sense, explain? (you must refer to a physics formula) 4.) What does graph 2 suggest about the relationship between speed and radius? Does this make sense, explain? (you must refer to a physics formula) 5.) Which method of solving for v do you think is more accurate and why (Don t refer to one formula being harder than the other, accuracy should be based on the values used to find answer, not the actual formulas themselves) M6

The Circular Motion Lab

The Circular Motion Lab Name Date Class Answer questions in complete sentences The Circular Motion Lab Introduction We have discussed motion in straight lines and parabolic arcs. But many things move in circles or near circles,

More information

Centripetal Force Exploring Uniform Circular Motion

Centripetal Force Exploring Uniform Circular Motion 1 Exploring Uniform Circular Motion An object that moves in a circle at constant speed, v, is said to experience uniform circular motion (UCM). The magnitude of the velocity remains constant, but the direction

More information

Name: Objective: Does F = ma work for circular motion? Seriously, does it work in real-life??? We will use. 2, and. v R

Name: Objective: Does F = ma work for circular motion? Seriously, does it work in real-life??? We will use. 2, and. v R Centripetal Force Lab Objective: Does F = ma work for circular motion? Seriously, does it work in real-life??? We will use F ma, C C Name: HONOS v a C, and v to find out in this lab. Partners: Equipment:

More information

Chapter 9: Circular Motion

Chapter 9: Circular Motion Text: Chapter 9 Think and Explain: 1-5, 7-9, 11 Think and Solve: --- Chapter 9: Circular Motion NAME: Vocabulary: rotation, revolution, axis, centripetal, centrifugal, tangential speed, Hertz, rpm, rotational

More information

Circular Motion Ch. 10 in your text book

Circular Motion Ch. 10 in your text book Circular Motion Ch. 10 in your text book Objectives Students will be able to: 1) Define rotation and revolution 2) Calculate the rotational speed of an object 3) Calculate the centripetal acceleration

More information

Force and Acceleration in Circular Motion

Force and Acceleration in Circular Motion Force and Acceleration in Circular Motion INTRODUCTION Acceleration is the time rate of change of velocity. Since velocity is a vector, it can change in two ways: its magnitude can change and its direction

More information

Vocabulary. Centripetal Force. Centripetal Acceleration. Rotate. Revolve. Linear Speed. Angular Speed. Center of Gravity. 1 Page

Vocabulary. Centripetal Force. Centripetal Acceleration. Rotate. Revolve. Linear Speed. Angular Speed. Center of Gravity. 1 Page Vocabulary Term Centripetal Force Definition Centripetal Acceleration Rotate Revolve Linear Speed Angular Speed Center of Gravity 1 Page Force Relationships 1. FORCE AND MASS a. An object swung in a uniform

More information

K/U /39 T/I /50 C /102 A

K/U /39 T/I /50 C /102 A Name: Partner: K/U /39 T/I /50 C /102 A Purpose: What is the relationship between the magnitude of the force causing the acceleration and the frequency of revolution of an object in uniform circular motion?

More information

Experiment 4: Motion in a Plane

Experiment 4: Motion in a Plane Experiment 4: Motion in a Plane Part 1: Projectile Motion. You will verify that a projectile s velocity and acceleration components behave as described in class. A ball bearing rolls off of a ramp, becoming

More information

Investigation 3.1.1: Analyzing Uniform Circular Motion

Investigation 3.1.1: Analyzing Uniform Circular Motion Student Worksheet Investigation 3.1.1: Analyzing Uniform Circular Motion LSM 3.1-1 Questioning Hypothesizing Predicting Planning Conducting I N Q U I R Y S K I L L S Recording Analyzing Evaluating Communicating

More information

Introduction to Circular Motion

Introduction to Circular Motion Introduction to Circular Motion Research Question How do mass, speed, and radius affect the centripetal force acting on an object in circular motion? Materials 8 elastic bands, digital scale, meterstick,

More information

EXPERIMENT 4: UNIFORM CIRCULAR MOTION

EXPERIMENT 4: UNIFORM CIRCULAR MOTION LAB SECTION: NAME: EXPERIMENT 4: UNIFORM CIRCULAR MOTION Introduction: In this lab, you will calculate the force on an object moving in a circle at approximately constant speed. To calculate the force

More information

Part 1: Relationship of Radius and Time Period. PHY Lab 10: Circular Motion

Part 1: Relationship of Radius and Time Period. PHY Lab 10: Circular Motion Circular Motion The wind goes towards the south, and turns towards the north; it turns about continually, and the wind returns again to its circuits. Ecclesiastes 1:6 Introduction Most have been on a Ferris

More information

PHYSICS LAB Experiment 3 Fall 2004 CENTRIPETAL FORCE & UNIFORM CIRCULAR MOTION

PHYSICS LAB Experiment 3 Fall 2004 CENTRIPETAL FORCE & UNIFORM CIRCULAR MOTION CENTRIPETAL FORCE & UNIFORM CIRCULAR MOTION In this experiment we will explore the relationship between force and acceleration for the case of uniform circular motion. An object which experiences a constant

More information

UCM-Circular Motion. Base your answers to questions 1 and 2 on the information and diagram below.

UCM-Circular Motion. Base your answers to questions 1 and 2 on the information and diagram below. Base your answers to questions 1 and 2 on the information and diagram The diagram shows the top view of a 65-kilogram student at point A on an amusement park ride. The ride spins the student in a horizontal

More information

For each of the following questions, give clear and complete evidence for your choice in the space provided.

For each of the following questions, give clear and complete evidence for your choice in the space provided. Name (printed) First Day Stamp For each of the following questions, give clear and complete evidence for your choice in the space provided. 1. An astronomer observes that a certain heavenly body is moving

More information

Uniform Circular Motion

Uniform Circular Motion Uniform Circular Motion INTRODUCTION Uniform circular motion is the motion of an object traveling at a constant (uniform) speed in a circular path. Besides the speed, there are several other variables

More information

Centripetal Force Lab

Centripetal Force Lab Centripetal Force Lab Saddleback College Physics Department, adapted from PASCO Scientific 1. Purpose To use a PASCO apparatus containing a rotating brass object to confirm Newton s Second Law of rotation

More information

Chapter 9: Circular Motion

Chapter 9: Circular Motion Text: Chapter 9 Think and Explain: 1-5, 7-9, 11 Think and Solve: --- Chapter 9: Circular Motion NAME: Vocabulary: rotation, revolution, axis, centripetal, centrifugal, tangential speed, Hertz, rpm, rotational

More information

Experiment #7 Centripetal Force Pre-lab Questions Hints

Experiment #7 Centripetal Force Pre-lab Questions Hints Experiment #7 Centripetal Force Pre-lab Questions Hints The following are some hints for this pre-lab, since a few of these questions can be a little difficult. Note that these are not necessarily the

More information

F = ma W = mg v = D t

F = ma W = mg v = D t Forces and Gravity Car Lab Name: F = ma W = mg v = D t p = mv Part A) Unit Review at D = f v = t v v Please write the UNITS for each item below For example, write kg next to mass. Name: Abbreviation: Units:

More information

= mgcos" w. = mgsin! Text: Chapter 5: All sections of Chapter 5. Chapter 6: All sections of Chapter 6. Questions (p ) 1, 3, 7, 8, 10, 12

= mgcos w. = mgsin! Text: Chapter 5: All sections of Chapter 5. Chapter 6: All sections of Chapter 6. Questions (p ) 1, 3, 7, 8, 10, 12 Unit 3: Newtonʼs Laws NAME: Text: Chapter 5: All sections of Chapter 5. Chapter 6: All sections of Chapter 6. Questions (p. 106-7) 1, 3, 7, 8, 10, 12 Problems (p. 108-15) #1: 3, 4, 5, 7, 10, 12 #2: 19,

More information

(d) State the effect on the magnitude of the centripetal force in the following cases:

(d) State the effect on the magnitude of the centripetal force in the following cases: YEAR 12 PHYSICS: UNIFORM CIRCULAR MOTION ASSIGNMENT NAME: QUESTION 1 (a) A car of mass 1200 kg rounds a bend of radius 50m at a speed of 20ms -1. What centripetal acceleration does it experience? (b) Calculate

More information

2. To study circular motion, two students use the hand-held device shown above, which consists of a rod on which a spring scale is attached.

2. To study circular motion, two students use the hand-held device shown above, which consists of a rod on which a spring scale is attached. 1. A ball of mass M attached to a string of length L moves in a circle in a vertical plane as shown above. At the top of the circular path, the tension in the string is twice the weight of the ball. At

More information

Electric and Magnetic Forces

Electric and Magnetic Forces Imagine that you had two superpowers. Both powers allow you to move things without touching them. You can even move things located on the other side of a wall! One power is the ability to pull something

More information

PHYSICS LAB Experiment 6 Fall 2004 WORK AND ENERGY GRAVITY

PHYSICS LAB Experiment 6 Fall 2004 WORK AND ENERGY GRAVITY PHYSICS 183 - LAB Experiment 6 Fall 004 WORK AND ENERGY GRAVITY In this experiment we will study the effects of the work-energy theorem, which states that the change in the kinetic energy (1/Mv ) of an

More information

Upon collision, the clay and steel block stick together and move to the right with a speed of

Upon collision, the clay and steel block stick together and move to the right with a speed of 1. A 2.0-kilogram ball traveling north at 4.0 meters per second collides head on with a 1.0-kilogram ball traveling south at 8.0 meters per second. What is the magnitude of the total momentum of the two

More information

PHYS221 Experiment 7 - Centripetal Force

PHYS221 Experiment 7 - Centripetal Force Experiment 7 - Centripetal Force Spring Tension Setting Bob Apparatus Variable Speed Control Automatic Counter Fig. 7-1 Centripetal Force Apparatus. Note: NO HANGER when upright! Fig. 7-2 Centripetal Force

More information

Quest Chapter 09. Eliminate the obviously wrong answers. Consider what is changing: speed, velocity, some part of velocity? Choose carefully.

Quest Chapter 09. Eliminate the obviously wrong answers. Consider what is changing: speed, velocity, some part of velocity? Choose carefully. 1 A dragster maintains a speedometer reading of 100 km/h and passes through a curve with a constant radius. Which statement is true? 1. The dragster rounded the curve at a changing speed of 100 km/h. 2.

More information

Circular Motion. I. Centripetal Impulse. The centripetal impulse was Sir Isaac Newton s favorite force.

Circular Motion. I. Centripetal Impulse. The centripetal impulse was Sir Isaac Newton s favorite force. Circular Motion I. Centripetal Impulse The centripetal impulse was Sir Isaac Newton s favorite force. The Polygon Approximation. Newton made a business of analyzing the motion of bodies in circular orbits,

More information

https://njctl.org/courses/science/ap-physics-c-mechanics/attachments/summerassignment-3/

https://njctl.org/courses/science/ap-physics-c-mechanics/attachments/summerassignment-3/ AP Physics C Summer Assignment 2017 1. Complete the problem set that is online, entitled, AP C Physics C Summer Assignment 2017. I also gave you a copy of the problem set. You may work in groups as a matter

More information

Unit 5 Circular Motion & Gravitation

Unit 5 Circular Motion & Gravitation Unit 5 Circular Motion & Gravitation Essential Fundamentals of Circular Motion & Gravitation 1. A radian is a ratio of an arc s circumference to its diameter. Early E. C.: / 1 Total HW Points Unit 5: /

More information

10 UNIFORM CIRCULAR MOTION

10 UNIFORM CIRCULAR MOTION 0 UNIFORM CIRCULAR MOTION OBJECTIVE To study the relationship between rotational frequency, radius, and centripetal force. INTRODUCTION The inward force which causes an object to revolve in a circle with

More information

Lecture 10. Example: Friction and Motion

Lecture 10. Example: Friction and Motion Lecture 10 Goals: Exploit Newton s 3 rd Law in problems with friction Employ Newton s Laws in 2D problems with circular motion Assignment: HW5, (Chapter 7, due 2/24, Wednesday) For Tuesday: Finish reading

More information

PH 2213 : Chapter 05 Homework Solutions

PH 2213 : Chapter 05 Homework Solutions PH 2213 : Chapter 05 Homework Solutions Problem 5.4 : The coefficient of static friction between hard rubber and normal street pavement is about 0.90. On how steep a hill (maximum angle) can you leave

More information

The Pendulum. Goals and Introduction

The Pendulum. Goals and Introduction The Pendulum Goals and Introduction In this experiment, we will examine the relationships between the period, frequency and length of a simple pendulum. The oscillation of a pendulum swinging back and

More information

End-of-Chapter Exercises

End-of-Chapter Exercises End-of-Chapter Exercises For all these exercises, assume that all strings are massless and all pulleys are both massless and frictionless. We will improve our model and learn how to account for the mass

More information

9.1 Harmonic Motion. Motion in cycles. linear motion - motion that goes from one place to another without repeating.

9.1 Harmonic Motion. Motion in cycles. linear motion - motion that goes from one place to another without repeating. 9.1 Harmonic Motion A bicyclist pedaling past you on the street moves in linear motion. Linear motion gets us from one place to another (Figure 9.1A). This chapter is about another kind of motion called

More information

D. 2πmv 2 (Total 1 mark)

D. 2πmv 2 (Total 1 mark) 1. A particle of mass m is moving with constant speed v in uniform circular motion. What is the total work done by the centripetal force during one revolution? A. Zero B. 2 mv 2 C. mv 2 D. 2πmv 2 2. A

More information

EXPERIMENT 7: ANGULAR KINEMATICS AND TORQUE (V_3)

EXPERIMENT 7: ANGULAR KINEMATICS AND TORQUE (V_3) TA name Lab section Date TA Initials (on completion) Name UW Student ID # Lab Partner(s) EXPERIMENT 7: ANGULAR KINEMATICS AND TORQUE (V_3) 121 Textbook Reference: Knight, Chapter 13.1-3, 6. SYNOPSIS In

More information

Motion in Two Dimensions: Centripetal Acceleration

Motion in Two Dimensions: Centripetal Acceleration Motion in Two Dimensions: Centripetal Acceleration Name: Group Members: Date: TA s Name: Apparatus: Rotating platform, long string, liquid accelerometer, meter stick, masking tape, stopwatch Objectives:

More information

Momentum Review. Lecture 13 Announcements. Multi-step problems: collision followed by something else. Center of Mass

Momentum Review. Lecture 13 Announcements. Multi-step problems: collision followed by something else. Center of Mass Lecture 13 Announcements 1. While you re waiting for class to start, please fill in the How to use the blueprint equation steps, in your own words.. Exam results: Momentum Review Equations p = mv Conservation

More information

LABORATORY 4: ROTATIONAL MOTION PLAYGROUND DYNAMICS: THE MERRY-GO-ROUND Written May-June 1993 by Melissa Wafer '95

LABORATORY 4: ROTATIONAL MOTION PLAYGROUND DYNAMICS: THE MERRY-GO-ROUND Written May-June 1993 by Melissa Wafer '95 LABORATORY 4: ROTATIONAL MOTION PLAYGROUND DYNAMICS: THE MERRY-GO-ROUND Written May-June 1993 by Melissa Wafer '95 In this laboratory period, you will use something that should be familiar to you to explain

More information

Lab 6 Forces Part 2. Physics 225 Lab

Lab 6 Forces Part 2. Physics 225 Lab b Lab 6 Forces Part 2 Introduction This is the second part of the lab that you started last week. If you happen to have missed that lab then you should go back and read it first since this lab will assume

More information

Homework #19 (due Friday 5/6)

Homework #19 (due Friday 5/6) Homework #19 (due Friday 5/6) Physics ID number Group Letter One issue that people often have trouble with at this point is distinguishing between tangential acceleration and centripetal acceleration for

More information

Chapter 2. Forces & Newton s Laws

Chapter 2. Forces & Newton s Laws Chapter 2 Forces & Newton s Laws 1st thing you need to know Everything from chapter 1 Speed formula Acceleration formula All their units There is only 1 main formula, but some equations will utilize previous

More information

Lab 5: Rotational motion at the playground Essentials of Physics: PHYS 101

Lab 5: Rotational motion at the playground Essentials of Physics: PHYS 101 NAME DATE Lab 5: Rotational motion at the playground Essentials of Physics: PHYS 101 Important note: this lab meets at the playground located at the SW corner of 23 rd and University streets, about 7 blocks

More information

Section Vertical Circular Motion

Section Vertical Circular Motion Section 11.3 Vertical Circular Motion When a ball on the end of a string is swung in a vertical circle, the ball is accelerating because A. the speed is changing. B. the direction is changing. C. the speed

More information

Lab 10 Circular Motion and Centripetal Acceleration

Lab 10 Circular Motion and Centripetal Acceleration Lab 10 Circular Motion and Centripetal Equipment Calculator, Computer, PASCO 850 Universal Interface Partially-assembled Centripetal Force Apparatus Photogate Cable Pair of Banana Wires Objective Verify

More information

Static and Kinetic Friction

Static and Kinetic Friction Ryerson University - PCS 120 Introduction Static and Kinetic Friction In this lab we study the effect of friction on objects. We often refer to it as a frictional force yet it doesn t exactly behave as

More information

Episode 225: Quantitative circular motion

Episode 225: Quantitative circular motion Episode 225: Quantitative circular motion Summary Discussion: Linear and angular velocity. (10 minutes) Worked example: Calculating ω. (10 minutes) Discussion: Degrees and radians. (5 minutes) Student

More information

Lab/Demo 4 Circular Motion and Energy PHYS 1800

Lab/Demo 4 Circular Motion and Energy PHYS 1800 Lab/Demo 4 Circular Motion and Energy PHYS 1800 Objectives: Demonstrate the dependence of centripetal force on mass, velocity and radius. Learn to use these dependencies to predict circular motion Demonstrate

More information

Chapter 4: Newton s First Law

Chapter 4: Newton s First Law Text: Chapter 4 Think and Explain: 1-12 Think and Solve: 2 Chapter 4: Newton s First Law NAME: Vocabulary: force, Newton s 1st law, equilibrium, friction, inertia, kilogram, newton, law of inertia, mass,

More information

Physics. Chapter 8 Rotational Motion

Physics. Chapter 8 Rotational Motion Physics Chapter 8 Rotational Motion Circular Motion Tangential Speed The linear speed of something moving along a circular path. Symbol is the usual v and units are m/s Rotational Speed Number of revolutions

More information

Electric Charge and the Electrostatic Force

Electric Charge and the Electrostatic Force Electric Charge and the Electrostatic Force Goals and Introduction When two electrically-charged objects are brought near each other, they can either attract or repel, depending on the sign of each of

More information

Name: School: Class: Teacher: Date:

Name: School: Class: Teacher: Date: ame: School: Class: Teacher: Date: Materials needed: Pencil, stopwatch, and scientific calculator d v λ f λ λ Wave Pool Side View During wave cycles, waves crash along the shore every few seconds. The

More information

Experiment 3: Centripetal Force

Experiment 3: Centripetal Force 012-05293F Complete Rotational System Experiment 3: Centripetal Force EQUIPMENT NEEDED - Centripetal Force Accessory (ME-8952) - Rotating Platform (ME-8951) - Stopwatch - Balance - Graph paper (2 sheets)

More information

Ch 5 Uniform Circular Motion

Ch 5 Uniform Circular Motion Ch 5 Uniform Circular Motion Uniform Circular Motion Means constant speed in a circle. Velocity is not constant. A centripetal force accelerates a body by changing the direction of the body's velocity

More information

PSI AP Physics B Circular Motion

PSI AP Physics B Circular Motion PSI AP Physics B Circular Motion Multiple Choice 1. A ball is fastened to a string and is swung in a vertical circle. When the ball is at the highest point of the circle its velocity and acceleration directions

More information

Period: Date: Review - UCM & Energy. Page 1. Base your answers to questions 1 and 2 on the information and diagram below.

Period: Date: Review - UCM & Energy. Page 1. Base your answers to questions 1 and 2 on the information and diagram below. Base your answers to questions 1 and 2 on the information and diagram below. The diagram shows the top view of a -kilogram student at point A on an amusement park ride. The ride spins the student in a

More information

Circular Motion CENTRIPETAL ACCELERATION. tf-t,

Circular Motion CENTRIPETAL ACCELERATION. tf-t, Circular Motion Ill SECTION OBJECTIVES Solve problems involving centripetal acceleration. Solve problems involving centripetal force. Explain how the apparent existence of an outward force in circular

More information

An object moving in a circle with radius at speed is said to be undergoing.

An object moving in a circle with radius at speed is said to be undergoing. Circular Motion Study Guide North Allegheny High School Mr. Neff An object moving in a circle with radius at speed is said to be undergoing. In this case, the object is because it is constantly changing

More information

a c = v2 F = ma F = Gm 1m 2 r d out RMA = F out r 2 " = Fd sin# IMA = d in eff = RMA F in IMA = W out

a c = v2 F = ma F = Gm 1m 2 r d out RMA = F out r 2  = Fd sin# IMA = d in eff = RMA F in IMA = W out Name: Physics Chapter 7 Study Guide ----------------------------------------------------------------------------------------------------- Useful Information: a c = v2 F = ma F = Gm 1m 2 r r 2 " = Fd sin#

More information

Section 9.2. Centripetal Acceleration Centripetal Force

Section 9.2. Centripetal Acceleration Centripetal Force Section 9.2 Centripetal Acceleration Centripetal Force Centripetal Acceleration Uniform Circular Motion The motion of an object in a circular path at a constant speed is known as uniform circular motion

More information

5. A car moves with a constant speed in a clockwise direction around a circular path of radius r, as represented in the diagram above.

5. A car moves with a constant speed in a clockwise direction around a circular path of radius r, as represented in the diagram above. 1. The magnitude of the gravitational force between two objects is 20. Newtons. If the mass of each object were doubled, the magnitude of the gravitational force between the objects would be A) 5.0 N B)

More information

Circular Motion. ว Note and Worksheet 2. Recall that the defining equation for instantaneous acceleration is

Circular Motion. ว Note and Worksheet 2. Recall that the defining equation for instantaneous acceleration is Circular Motion Imagine you have attached a rubber stopper to the end of a string and are whirling the stopper around your head in a horizontal circle. If both the speed of the stopper and the radius of

More information

Lab 3 Acceleration. What You Need To Know: Physics 211 Lab

Lab 3 Acceleration. What You Need To Know: Physics 211 Lab b Lab 3 Acceleration Physics 211 Lab What You Need To Know: The Physics In the previous lab you learned that the velocity of an object can be determined by finding the slope of the object s position vs.

More information

HATZIC SECONDARY SCHOOL

HATZIC SECONDARY SCHOOL HATZIC SECONDARY SCHOOL PROVINCIAL EXAMINATION ASSIGNMENT CIRCULAR MOTION MULTIPLE CHOICE / 30 OPEN ENDED / 65 TOTAL / 95 NAME: 1. An object travels along a path at constant speed. There is a constant

More information

In the y direction, the forces are balanced, which means our force equation is simply F A = F C.

In the y direction, the forces are balanced, which means our force equation is simply F A = F C. Unit 3: Dynamics and Gravitation DYNAMICS Dynamics combine the concept of forces with our understanding of motion (kinematics) to relate forces to acceleration in objects. Newton s Second Law states that

More information

PC1141 Physics I Circular Motion

PC1141 Physics I Circular Motion PC1141 Physics I Circular Motion 1 Purpose Demonstration the dependence of the period in circular motion on the centripetal force Demonstration the dependence of the period in circular motion on the radius

More information

Rotation. PHYS 101 Previous Exam Problems CHAPTER

Rotation. PHYS 101 Previous Exam Problems CHAPTER PHYS 101 Previous Exam Problems CHAPTER 10 Rotation Rotational kinematics Rotational inertia (moment of inertia) Kinetic energy Torque Newton s 2 nd law Work, power & energy conservation 1. Assume that

More information

SEE the list given for chapter 04 where Newton s laws were introduced.

SEE the list given for chapter 04 where Newton s laws were introduced. PH2213 : Examples from Chapter 5 : Applying Newton s Laws Key Concepts Newton s Laws (basically Σ F = m a ) allow us to relate the forces acting on an object (left-hand side) to the motion of the object,

More information

There are two ways of defining acceleration we need to be aware of.

There are two ways of defining acceleration we need to be aware of. www.liontutors.com PHYS 250 Exam 1 Supplement Circular Motion Centripetal Acceleration There are two ways of defining acceleration we need to be aware of. The one we ve been using so far deals with linear

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Diagram 1 A) B - A. B) A - B. C) A + B. D) A B.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Diagram 1 A) B - A. B) A - B. C) A + B. D) A B. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) In the diagram shown, the unknown vector is 1) Diagram 1 A) B - A. B) A - B. C) A + B.

More information

Please read this introductory material carefully; it covers topics you might not yet have seen in class.

Please read this introductory material carefully; it covers topics you might not yet have seen in class. b Lab Physics 211 Lab 10 Torque What You Need To Know: Please read this introductory material carefully; it covers topics you might not yet have seen in class. F (a) (b) FIGURE 1 Forces acting on an object

More information

Physics 20 Amusement Park WEM

Physics 20 Amusement Park WEM Physics 20 Amusement Park Physics @ WEM Page 1 of 6 Group Members: Mindbender Rollercoaster Materials Needed: Stopwatch Maximum Height: 41.5 m First Hill Drop: 38.7 m Radius of the 1 st Loop: 7.177 m Height

More information

AP* Circular & Gravitation Free Response Questions

AP* Circular & Gravitation Free Response Questions 1992 Q1 AP* Circular & Gravitation Free Response Questions A 0.10-kilogram solid rubber ball is attached to the end of a 0.80-meter length of light thread. The ball is swung in a vertical circle, as shown

More information

PHYSICS 220 LAB #6: CIRCULAR MOTION

PHYSICS 220 LAB #6: CIRCULAR MOTION Name: Partners: PHYSICS 220 LAB #6: CIRCULAR MOTION The picture above is a copy of Copernicus drawing of the orbits of the planets which are nearly circular. It appeared in a book published in 1543. Since

More information

Magnetism and Gravity

Magnetism and Gravity Imagine that you had two superpowers. Both powers allow you to move things without touching them. You can even move things located on the other side of a wall! One power is the ability to pull anything

More information

Honors Assignment - Circular and Periodic Motion

Honors Assignment - Circular and Periodic Motion Honors Assignment - Circular and Periodic Motion Reading: Chapter 5, and 11 1 through 11 5 Objectives/HW: Assignment #1 M: # 1 6 Assignment #2 M: # 7 15 Assignment #3 Text: Chap 5 # 6, 12 M: # 17 22 Assignment

More information

Circular Motion: IN-CLASS REVIEW

Circular Motion: IN-CLASS REVIEW Circular Motion: IN-CLASS REVIEW Lyzinski, CRHS-South Basic Circular Motion Equations: You need to know how to get the centripetal acceleration and the centripetal force in terms of T (period) instead

More information

A. B. C. D. E. v x. ΣF x

A. B. C. D. E. v x. ΣF x Q4.3 The graph to the right shows the velocity of an object as a function of time. Which of the graphs below best shows the net force versus time for this object? 0 v x t ΣF x ΣF x ΣF x ΣF x ΣF x 0 t 0

More information

PHYSICS 221 SPRING EXAM 1: February 20, 2014; 8:15pm 10:15pm

PHYSICS 221 SPRING EXAM 1: February 20, 2014; 8:15pm 10:15pm PHYSICS 221 SPRING 2014 EXAM 1: February 20, 2014; 8:15pm 10:15pm Name (printed): Recitation Instructor: Section # INSTRUCTIONS: This exam contains 25 multiple-choice questions plus 2 extra credit questions,

More information

ASTRONAUT PUSHES SPACECRAFT

ASTRONAUT PUSHES SPACECRAFT ASTRONAUT PUSHES SPACECRAFT F = 40 N m a = 80 kg m s = 15000 kg a s = F/m s = 40N/15000 kg = 0.0027 m/s 2 a a = -F/m a = -40N/80kg = -0.5 m/s 2 If t push = 0.5 s, then v s = a s t push =.0014 m/s, and

More information

Circular Motion. 2 types of Acceleration. Centripetal Force and Acceleration. In a circle. Constant Velocity vs. Constant Speed.

Circular Motion. 2 types of Acceleration. Centripetal Force and Acceleration. In a circle. Constant Velocity vs. Constant Speed. Circular Motion What does it mean to accelerate Centripetal Force and Acceleration Constant Velocity vs. Constant Speed. 2 types of Acceleration In a circle Direction of acceleration / velocity top view

More information

Blueberry Muffin Nov. 29/30, 2016 Period: Names:

Blueberry Muffin Nov. 29/30, 2016 Period: Names: Blueberry Muffin Nov. 29/30, 2016 Period: Names: Congratulations! 1. To solve the problems, use your etextbook, physical textbooks, physics websites, your Sketchbooks. 2. Show your thinking through calculations,

More information

AP C - Webreview ch 7 (part I) Rotation and circular motion

AP C - Webreview ch 7 (part I) Rotation and circular motion Name: Class: _ Date: _ AP C - Webreview ch 7 (part I) Rotation and circular motion Multiple Choice Identify the choice that best completes the statement or answers the question. 1. 2 600 rev/min is equivalent

More information

Testing Newton s 2nd Law

Testing Newton s 2nd Law Testing Newton s 2nd Law Goal: To test Newton s 2nd law (ΣF = ma) and investigate the relationship between force, mass, and acceleration for objects. Lab Preparation To prepare for this lab you will want

More information

Uniform Circular Motion

Uniform Circular Motion Uniform Circular Motion Uniform circular motion is the motion of an object in a circular path with a velocity that has a constant magnitude and a direction that is constantly changing. This is due to a

More information

Q16.: A 5.0 kg block is lowered with a downward acceleration of 2.8 m/s 2 by means of a rope. The force of the block on the rope is:(35 N, down)

Q16.: A 5.0 kg block is lowered with a downward acceleration of 2.8 m/s 2 by means of a rope. The force of the block on the rope is:(35 N, down) Old Exam Question Ch. 5 T072 Q13.Two blocks of mass m 1 = 24.0 kg and m 2, respectively, are connected by a light string that passes over a massless pulley as shown in Fig. 2. If the tension in the string

More information

Measurement of Mass, Length, and Time

Measurement of Mass, Length, and Time Measurement of Mass, Length, and Time INTRODUCTION In an experiment 1 we define and determine the relationship between physical characteristics of nature that have been observed. Measurement of those physical

More information

AP PHYSICS 1 UNIT 4 / FINAL 1 PRACTICE TEST

AP PHYSICS 1 UNIT 4 / FINAL 1 PRACTICE TEST AP PHYSICS 1 UNIT 4 / FINAL 1 PRACTICE TEST NAME FREE RESPONSE PROBLEMS Put all answers on this test. Show your work for partial credit. Circle or box your answers. Include the correct units and the correct

More information

Lab Partner(s) TA Initials (on completion) EXPERIMENT 7: ANGULAR KINEMATICS AND TORQUE

Lab Partner(s) TA Initials (on completion) EXPERIMENT 7: ANGULAR KINEMATICS AND TORQUE TA name Lab section Date TA Initials (on completion) Name UW Student ID # Lab Partner(s) EXPERIMENT 7: ANGULAR KINEMATICS AND TORQUE 117 Textbook Reference: Walker, Chapter 10-1,2, Chapter 11-1,3 SYNOPSIS

More information

Centripetal Force and Centripetal Acceleration Questions

Centripetal Force and Centripetal Acceleration Questions Centripetal Force and Centripetal Acceleration Questions A 2.10 m rope attaches a tire to an overhanging tree limb. A girl swinging on the tire has a tangential speed of 2.50 m/s. If the magnitude of the

More information

Physics 207 Lecture 10. Lecture 10. Employ Newton s Laws in 2D problems with circular motion

Physics 207 Lecture 10. Lecture 10. Employ Newton s Laws in 2D problems with circular motion Lecture 10 Goals: Employ Newton s Laws in 2D problems with circular motion Assignment: HW5, (Chapters 8 & 9, due 3/4, Wednesday) For Tuesday: Finish reading Chapter 8, start Chapter 9. Physics 207: Lecture

More information

Static and Kinetic Friction

Static and Kinetic Friction Experiment Static and Kinetic Friction Prelab Questions 1. Examine the Force vs. time graph and the Position vs. time graph below. The horizontal time scales are the same. In Region I, explain how an object

More information

Kinetic Friction. Experiment #13

Kinetic Friction. Experiment #13 Kinetic Friction Experiment #13 Joe Solution E01234567 Partner- Jane Answers PHY 221 Lab Instructor- Nathaniel Franklin Wednesday, 11 AM-1 PM Lecture Instructor Dr. Jacobs Abstract The purpose of this

More information

Page 2. Q1.A satellite X is in a circular orbit of radius r about the centre of a spherical planet of mass

Page 2. Q1.A satellite X is in a circular orbit of radius r about the centre of a spherical planet of mass Q1. satellite X is in a circular orbit of radius r about the centre of a spherical planet of mass M. Which line, to, in the table gives correct expressions for the centripetal acceleration a and the speed

More information

AP Physics 1 Lesson 10.a Law of Universal Gravitation Homework Outcomes

AP Physics 1 Lesson 10.a Law of Universal Gravitation Homework Outcomes AP Physics 1 Lesson 10.a Law of Universal Gravitation Homework Outcomes 1. Use Law of Universal Gravitation to solve problems involving different masses. 2. Determine changes in gravitational and kinetic

More information

A N D. c h a p t e r 1 2 M O T I O N F O R C E S

A N D. c h a p t e r 1 2 M O T I O N F O R C E S F O R C E S A N D c h a p t e r 1 2 M O T I O N What is a FORCE? A FORCE is a push or pull that acts on an object. A force can cause a resting object to move OR Accelerate a moving object by: changing

More information