LABORATORY 4: ROTATIONAL MOTION PLAYGROUND DYNAMICS: THE MERRY-GO-ROUND Written May-June 1993 by Melissa Wafer '95

Size: px
Start display at page:

Download "LABORATORY 4: ROTATIONAL MOTION PLAYGROUND DYNAMICS: THE MERRY-GO-ROUND Written May-June 1993 by Melissa Wafer '95"

Transcription

1 LABORATORY 4: ROTATIONAL MOTION PLAYGROUND DYNAMICS: THE MERRY-GO-ROUND Written May-June 1993 by Melissa Wafer '95 In this laboratory period, you will use something that should be familiar to you to explain something that is new and mysterious. You will rely on your knowledge of translational dynamics to develop an understanding of rotational dynamics. We'll also assume you're already pretty proficient on the playground; you know how the equipment works. Now it's time to figure out why - not to eliminate the mystery, but to make you even more curious. GOAL: This lab should help you to become acquainted and more comfortable with the concepts, terms, and mathematics used in the study of rotational motion. There are many concepts in rotational motion that you will touch upon briefly in this lab, but this is only the beginning. Often, they will not be spelled out for you; the questions in the lab will try to lead you in the right direction so that you can figure out for yourself the principle that is being illustrated. You should be able to draw on the knowledge you have gleaned from the readings and the classwork to help you answer the questions and draw conclusions about your observations. Hopefully there will be time at the end of the laboratory period for you to play and explore. Take advantage of this freedom and experiment with the ideas that interest you. This is mentioned now so that you will be thinking about it as you go through the lab. When you finish with the outlined exercises, delve deeper into one of the areas in this lab or start fresh with another one, and devise a method for testing it. Make as many observations as you can (even if they seem obvious at first) and then try to explain them. Use data, equations, and laws of motion to back up your argument as much as possible. This is your chance to really show some creativity and insight. A. You have a stopwatch and a meter stick at your disposal. Give the merry-go-round a good enough push so that it makes it around three times easily without stopping, and calculate its average angular velocity (angular distance traveled/time elapsed) v = φ / t in radians/second for the first three revolutions. What is its average period of revolution? Its mean frequency of revolution? Then calculate average translational velocity of a point on the edge of the merry-go-round (distance traveled/time elapsed) v = s/ t in meters/second.

2 B. Does the merry-go-round seem to maintain the same speed throughout its three revolutions? Although it is more difficult to determine (because you don't have unlimited observers and stopwatches), we can gain a more accurate representation of the merry-go-round's motion by studying its instantaneous angular velocity, ω = dφ/dt. Explain how you might make a better approximation of the merry-go-round's instantaneous angular velocity with the limited resources you have in your lab group. (Hint: What makes dφ/dt different from φ / t?) C. Instantaneous translational velocity v = ds/dt is a vector quantity and so it should include both direction and magnitude. If every point on the merry-go-round moved with the same velocity at any given time, you would observe motion without any rotation; however this is not the case. Design and execute an experiment to determine the instantaneous translational velocity of some point you define on the merry-go-round not on the axis of rotation. You have at your disposal a meter stick, a stopwatch, some masses and string. Draw a vector diagram to indicate the direction (with arrows) and magnitude (the length of the arrows) of its instantaneous translational velocity at various points on the merry-goround. D. You should have noticed that the merry-go-round slows down with each successive revolution. Explain this observation while keeping in mind the following: Newton's First Law of Motion - The Law of Inertia: A body at rest will remain at rest unless some unbalanced external force acts on it; a body in motion will remain in motion (at constant velocity) unless some unbalanced external force acts on it. E. What does it mean for angular momentum to be "conserved?" Is angular momentum conserved in this case? F. Now you need to figure out how you might best approximate the deceleration (negative acceleration) a = dv/dt of the merry-go-round using the limited resources of your group. Refer back to part B for ideas. Be sure to explain your method. Note that the phrasing of the previous question encourages you to think only of the tangential component of a. Draw a diagram of the rotating and decelerating merry-go-round showing how a has both tangential and radial components, which sum to give a total acceleration!

3 G. Give the merry-go-round a push to send it spinning. Look at the two pictures below and explain why you push it one way rather than the other. Use a mathematical equation to back up your argument and explain the symbols involved. Hint: A diagram with vectors would probably help. H. Next take the metal bar that is available and fit it into the hole in the center pole of the merrygo-round so that the bar lies along a line parallel to a radius of the merry-go-round. This bar will help you to push in the most efficient manner, as determined in the previous section. Try exerting a force at various points along the bar (that is, at various distances from the axis of rotation) Try pushing as near to the center as possible and then gradually move outward along the bar. What do you notice? Record your observations and back them up mathematically. (Hint: Use the definition for torque.) I. It doesn't take a Hercules to make this merry-go-round spin. How about after you pile on a couple of weights - is it any harder to push? Now rearrange the weights. Is it easier to push the merry-go-round when they are lined up along the perimeter or when they are all heaped in the center? Why? What is the name for this? What equation explains what you observe? Try making a couple measurements and comparisons if you have the time. Try using a person as a "weight." What does this person feel as she moves on the rotating merry-go-round? J. What happens to a ball placed on a spinning merry-go-round? Why does this happen to a ball, and why doesn't it happen to the weights you placed on the rotating merry-go-round? Explain what force is holding the weights on the merry-go-round. Give an equation to determine its magnitude and tell its direction. Make sure that you talk about the force that is acting on the weights. Hang a mass from a few feet of string and stand on the merry-go-round. Notice the position of the mass with respect to the surface of the merry-go-round as it hangs freely. Now have someone start you rotating on the merry-go-round as you hold the weight on the string.

4 Notice how the position of the mass relative to the merry-go-round changes. Explain this change (use a free body diagram to help). K. The last section asked you about the force the merry-go-round was exerting on the weights; now how about the force the weights were exerting on the merry-go-round? We know there must be a reactive force according to Newton: Newton's Third Law of Motion : Every action has an equal (in magnitude) and opposite (in direction) reaction. L. Now go back and reread the paragraph just before section A. You're on your own! Good luck... Uncertainty : Remember to include an assessment of the uncertainty of your work. Be quantitative whenever possible (probably unlikely in this lab) and qualitative about the rest. Also mention possible sources for your uncertainty.

5 Lab 4 Checkout: Rotational Motion I While your TA is looking over the work you have done in the lab, please complete this sheet. Use only your own brain. Your answers to the first three questions will be graded as part of your lab, and your answers to all the questions will help us gauge the effectiveness of this lab. 1. What is the simple equation that links translational and rotational motion? Explain what it means in words or draw an explanatory diagram. 2. Tell two things you know about torque. You may use pictures, words, or mathematical equations. 3. What are the standard units for angular displacement, angular velocity, and angular acceleration? Comments or Suggestions: How did you feel about the lab? What was good about it? What would you change?

Lab 5: Rotational motion at the playground Essentials of Physics: PHYS 101

Lab 5: Rotational motion at the playground Essentials of Physics: PHYS 101 NAME DATE Lab 5: Rotational motion at the playground Essentials of Physics: PHYS 101 Important note: this lab meets at the playground located at the SW corner of 23 rd and University streets, about 7 blocks

More information

Lab 5: Rotational Motion II

Lab 5: Rotational Motion II Lab 5: Rotational Motion II Written October-November 1986 by Nancy Bronder '86, Tom Budka '89, Bob Hamwey GS, D. Mook revised by Mook, K. Muenchinger '93 and E. Pleger '94 July-November 1991 and by Melissa

More information

Bumper Cars. Question

Bumper Cars. Question Bumper Cars 1 You are riding on the edge of a spinning playground merry-goround. If you pull yourself to the center of the merry-go-round, what will happen to its rotation? A. It will spin faster. B. It

More information

PHYSICS 220 LAB #6: CIRCULAR MOTION

PHYSICS 220 LAB #6: CIRCULAR MOTION Name: Partners: PHYSICS 220 LAB #6: CIRCULAR MOTION The picture above is a copy of Copernicus drawing of the orbits of the planets which are nearly circular. It appeared in a book published in 1543. Since

More information

F = ma W = mg v = D t

F = ma W = mg v = D t Forces and Gravity Car Lab Name: F = ma W = mg v = D t p = mv Part A) Unit Review at D = f v = t v v Please write the UNITS for each item below For example, write kg next to mass. Name: Abbreviation: Units:

More information

Mechanics Cycle 1 Chapter 12. Chapter 12. Forces Causing Curved Motion

Mechanics Cycle 1 Chapter 12. Chapter 12. Forces Causing Curved Motion Chapter 1 Forces Causing Curved Motion A Force Must be Applied to Change Direction Coordinates, Angles, Angular Velocity, and Angular Acceleration Centripetal Acceleration and Tangential Acceleration Along

More information

Vibratory Motion -- Conceptual Solutions

Vibratory Motion -- Conceptual Solutions Vibratory Motion Vibratory Motion -- Conceptual Solutions 1.) An ideal spring attached to a mass m =.3 kg provides a force equal to -kx, where k = 47.33 nt/m is the spring's spring constant and x denotes

More information

The Circular Motion Lab

The Circular Motion Lab Name Date Class Answer questions in complete sentences The Circular Motion Lab Introduction We have discussed motion in straight lines and parabolic arcs. But many things move in circles or near circles,

More information

End-of-Chapter Exercises

End-of-Chapter Exercises End-of-Chapter Exercises Exercises 1 12 are conceptual questions that are designed to see if you have understood the main concepts of the chapter. 1. Figure 11.21 shows four different cases involving a

More information

Chapter 9: Rotational Dynamics Tuesday, September 17, 2013

Chapter 9: Rotational Dynamics Tuesday, September 17, 2013 Chapter 9: Rotational Dynamics Tuesday, September 17, 2013 10:00 PM The fundamental idea of Newtonian dynamics is that "things happen for a reason;" to be more specific, there is no need to explain rest

More information

Big Idea 4: Interactions between systems can result in changes in those systems. Essential Knowledge 4.D.1: Torque, angular velocity, angular

Big Idea 4: Interactions between systems can result in changes in those systems. Essential Knowledge 4.D.1: Torque, angular velocity, angular Unit 7: Rotational Motion (angular kinematics, dynamics, momentum & energy) Name: Big Idea 3: The interactions of an object with other objects can be described by forces. Essential Knowledge 3.F.1: Only

More information

Physics E-1ax, Fall 2014 Experiment 3. Experiment 3: Force. 2. Find your center of mass by balancing yourself on two force plates.

Physics E-1ax, Fall 2014 Experiment 3. Experiment 3: Force. 2. Find your center of mass by balancing yourself on two force plates. Learning Goals Experiment 3: Force After you finish this lab, you will be able to: 1. Use Logger Pro to analyze video and calculate position, velocity, and acceleration. 2. Find your center of mass by

More information

EXPERIMENT 7: ANGULAR KINEMATICS AND TORQUE (V_3)

EXPERIMENT 7: ANGULAR KINEMATICS AND TORQUE (V_3) TA name Lab section Date TA Initials (on completion) Name UW Student ID # Lab Partner(s) EXPERIMENT 7: ANGULAR KINEMATICS AND TORQUE (V_3) 121 Textbook Reference: Knight, Chapter 13.1-3, 6. SYNOPSIS In

More information

Worksheet for Exploration 10.1: Constant Angular Velocity Equation

Worksheet for Exploration 10.1: Constant Angular Velocity Equation Worksheet for Exploration 10.1: Constant Angular Velocity Equation By now you have seen the equation: θ = θ 0 + ω 0 *t. Perhaps you have even derived it for yourself. But what does it really mean for the

More information

Chapter 8: Rotational Motion

Chapter 8: Rotational Motion Lecture Outline Chapter 8: Rotational Motion This lecture will help you understand: Circular Motion Rotational Inertia Torque Center of Mass and Center of Gravity Centripetal Force Centrifugal Force Rotating

More information

CHAPTER 8: ROTATIONAL OF RIGID BODY PHYSICS. 1. Define Torque

CHAPTER 8: ROTATIONAL OF RIGID BODY PHYSICS. 1. Define Torque 7 1. Define Torque 2. State the conditions for equilibrium of rigid body (Hint: 2 conditions) 3. Define angular displacement 4. Define average angular velocity 5. Define instantaneous angular velocity

More information

Name: Laboratory Investigation

Name: Laboratory Investigation Laboratory Investigation Abstract: Analysis of the circular motion of a swinging stopper will provide insight into the causes of centripetal force and develop relationships between speed, radius and centripetal

More information

Rotational Inertia (Rotational Kinematics and Dynamics)

Rotational Inertia (Rotational Kinematics and Dynamics) PHYSICS LAB 8 SP211 Rotational Inertia (Rotational Kinematics and Dynamics) I. Introduction NOTE: Please take a stopwatch (or a wristwatch with a built in stopwatch) to lab if one is available to you;

More information

Physics 130: Questions to study for midterm #1 from Chapter 8

Physics 130: Questions to study for midterm #1 from Chapter 8 Physics 130: Questions to study for midterm #1 from Chapter 8 1. If the beaters on a mixer make 800 revolutions in 5 minutes, what is the average rotational speed of the beaters? a. 2.67 rev/min b. 16.8

More information

Casting Physics Simplified Part Two. Frames of Reference

Casting Physics Simplified Part Two. Frames of Reference Casting Physics Simplified Part Two Part one of this paper discussed physics that applies to linear motion, i.e., motion in a straight line. This section of the paper will expand these concepts to angular

More information

Newton s Wagon. Materials. friends rocks wagon balloon fishing line tape stopwatch measuring tape. Lab Time Part 1

Newton s Wagon. Materials. friends rocks wagon balloon fishing line tape stopwatch measuring tape. Lab Time Part 1 Newton s Wagon Overview: The natural state of objects is to follow a straight line. In fact, Newton s First Law of Motion states that objects in motion will tend to stay in motion unless they are acted

More information

Please read this introductory material carefully; it covers topics you might not yet have seen in class.

Please read this introductory material carefully; it covers topics you might not yet have seen in class. b Lab Physics 211 Lab 10 Torque What You Need To Know: Please read this introductory material carefully; it covers topics you might not yet have seen in class. F (a) (b) FIGURE 1 Forces acting on an object

More information

Slide 1 / 37. Rotational Motion

Slide 1 / 37. Rotational Motion Slide 1 / 37 Rotational Motion Slide 2 / 37 Angular Quantities An angle θ can be given by: where r is the radius and l is the arc length. This gives θ in radians. There are 360 in a circle or 2π radians.

More information

Rotational Motion Test

Rotational Motion Test Rotational Motion Test Multiple Choice: Write the letter that best answers the question. Each question is worth 2pts. 1. Angular momentum is: A.) The sum of moment of inertia and angular velocity B.) The

More information

Electric and Magnetic Forces

Electric and Magnetic Forces Imagine that you had two superpowers. Both powers allow you to move things without touching them. You can even move things located on the other side of a wall! One power is the ability to pull something

More information

Circular Motion Ch. 10 in your text book

Circular Motion Ch. 10 in your text book Circular Motion Ch. 10 in your text book Objectives Students will be able to: 1) Define rotation and revolution 2) Calculate the rotational speed of an object 3) Calculate the centripetal acceleration

More information

Lab Partner(s) TA Initials (on completion) EXPERIMENT 7: ANGULAR KINEMATICS AND TORQUE

Lab Partner(s) TA Initials (on completion) EXPERIMENT 7: ANGULAR KINEMATICS AND TORQUE TA name Lab section Date TA Initials (on completion) Name UW Student ID # Lab Partner(s) EXPERIMENT 7: ANGULAR KINEMATICS AND TORQUE 117 Textbook Reference: Walker, Chapter 10-1,2, Chapter 11-1,3 SYNOPSIS

More information

PHY 123 Lab 1 - Error and Uncertainty and the Simple Pendulum

PHY 123 Lab 1 - Error and Uncertainty and the Simple Pendulum To print higher-resolution math symbols, click the Hi-Res Fonts for Printing button on the jsmath control panel. PHY 13 Lab 1 - Error and Uncertainty and the Simple Pendulum Important: You need to print

More information

Physics 8 Friday, October 20, 2017

Physics 8 Friday, October 20, 2017 Physics 8 Friday, October 20, 2017 HW06 is due Monday (instead of today), since we still have some rotation ideas to cover in class. Pick up the HW07 handout (due next Friday). It is mainly rotation, plus

More information

Unit 1: Equilibrium and Center of Mass

Unit 1: Equilibrium and Center of Mass Unit 1: Equilibrium and Center of Mass FORCES What is a force? Forces are a result of the interaction between two objects. They push things, pull things, keep things together, pull things apart. It s really

More information

Moon Project Handout. I: A Mental Model of the Sun, Moon, and Earth (Do in class.)

Moon Project Handout. I: A Mental Model of the Sun, Moon, and Earth (Do in class.) Moon Project Handout Summary: You will recreate and interpret the geometric and timing measurements performed by the Ancient Greeks in order to determine the sizes of the Sun, Moon, and Earth and the distances

More information

LABORATORY IV OSCILLATIONS

LABORATORY IV OSCILLATIONS LABORATORY IV OSCILLATIONS You are familiar with many objects that oscillate -- a tuning fork, a pendulum, the strings of a guitar, or the beating of a heart. At the microscopic level, you have probably

More information

Physics 101: Lecture 08 Centripetal Acceleration and Circular Motion

Physics 101: Lecture 08 Centripetal Acceleration and Circular Motion Physics 101: Lecture 08 Centripetal Acceleration and Circular Motion http://www.youtube.com/watch?v=zyf5wsmxrai Today s lecture will cover Chapter 5 Physics 101: Lecture 8, Pg 1 Circular Motion Act B A

More information

The Pendulum. Goals and Introduction

The Pendulum. Goals and Introduction The Pendulum Goals and Introduction In this experiment, we will examine the relationships between the period, frequency and length of a simple pendulum. The oscillation of a pendulum swinging back and

More information

Today. Ch. 8 on Rotation. Note, all lectures and pre-lectures posted up as always at

Today. Ch. 8 on Rotation. Note, all lectures and pre-lectures posted up as always at Ch. 8 on Rotation Today Note, all lectures and pre-lectures posted up as always at http://www.hunter.cuny.edu/physics/courses/physics100/spring-2016 Looking ahead: Sep 27, Review (Chs 2,3,4,5,6,7,8) Sep

More information

Cabrillo College Physics 10L. LAB 8 Magnetism. Read Hewitt Chapter 24

Cabrillo College Physics 10L. LAB 8 Magnetism. Read Hewitt Chapter 24 Cabrillo College Physics 10L Name LAB 8 Magnetism Read Hewitt Chapter 24 What to learn and explore Magnetic forces are very closely related to electric forces--for example, they share the property that

More information

Grade 7/8 Math Circles March 8 & Physics

Grade 7/8 Math Circles March 8 & Physics Faculty of Mathematics Waterloo, Ontario N2L 3G1 Centre for Education in Mathematics and Computing Grade 7/8 Math Circles March 8 & 9 2016 Physics Physics is the study of how the universe behaves. This

More information

Chapter 9: Circular Motion

Chapter 9: Circular Motion Text: Chapter 9 Think and Explain: 1-5, 7-9, 11 Think and Solve: --- Chapter 9: Circular Motion NAME: Vocabulary: rotation, revolution, axis, centripetal, centrifugal, tangential speed, Hertz, rpm, rotational

More information

EDUCATION DAY WORKBOOK

EDUCATION DAY WORKBOOK Grades 9 12 EDUCATION DAY WORKBOOK It is with great thanks for their knowledge and expertise that the individuals who devised this book are recognized. MAKING MEASUREMENTS Time: Solve problems using a

More information

TORQUE. Chapter 10 pages College Physics OpenStax Rice University AP College board Approved.

TORQUE. Chapter 10 pages College Physics OpenStax Rice University AP College board Approved. TORQUE Chapter 10 pages 343-384 College Physics OpenStax Rice University AP College board Approved. 1 SECTION 10.1 PAGE 344; ANGULAR ACCELERATION ω = Δθ Δt Where ω is velocity relative to an angle, Δθ

More information

Angular Momentum System of Particles Concept Questions

Angular Momentum System of Particles Concept Questions Question 1: Angular Momentum Angular Momentum System of Particles Concept Questions A non-symmetric body rotates with an angular speed ω about the z axis. Relative to the origin 1. L 0 is constant. 2.

More information

Quest Chapter 09. Eliminate the obviously wrong answers. Consider what is changing: speed, velocity, some part of velocity? Choose carefully.

Quest Chapter 09. Eliminate the obviously wrong answers. Consider what is changing: speed, velocity, some part of velocity? Choose carefully. 1 A dragster maintains a speedometer reading of 100 km/h and passes through a curve with a constant radius. Which statement is true? 1. The dragster rounded the curve at a changing speed of 100 km/h. 2.

More information

Ballistic Pendulum. Equipment- ballistic pendulum apparatus, 2 meter ruler, 30 cm ruler, blank paper, carbon paper, masking tape, scale PRECAUTION

Ballistic Pendulum. Equipment- ballistic pendulum apparatus, 2 meter ruler, 30 cm ruler, blank paper, carbon paper, masking tape, scale PRECAUTION Ballistic Pendulum Equipment- ballistic pendulum apparatus, 2 meter ruler, 30 cm ruler, blank paper, carbon paper, masking tape, scale PRECAUTION In this experiment a steel ball is projected horizontally

More information

Circular Motion Tangential Speed. Conceptual Physics 11 th Edition. Circular Motion Rotational Speed. Circular Motion

Circular Motion Tangential Speed. Conceptual Physics 11 th Edition. Circular Motion Rotational Speed. Circular Motion Conceptual Physics 11 th Edition Circular Motion Tangential Speed The distance traveled by a point on the rotating object divided by the time taken to travel that distance is called its tangential speed

More information

p = mv L = Iω L =! r x p or, if we use translational parameters:

p = mv L = Iω L =! r x p or, if we use translational parameters: ANGULAR MOMENTUM Torque is the rotational counterpart to force. So whereas when a net force is applied, a body accelerates, when a net torque is applied, a body angularly accelerates. Angular momentum

More information

PHYSICS LAB: CONSTANT MOTION

PHYSICS LAB: CONSTANT MOTION PHYSICS LAB: CONSTANT MOTION Introduction Experimentation is fundamental to physics (and all science, for that matter) because it allows us to prove or disprove our hypotheses about how the physical world

More information

Newton s Laws: Force and Motion

Newton s Laws: Force and Motion Newton s Laws: Force and Motion The First Law: Force and Inertia The Second Law: Force, Mass and Acceleration The Third Law: Action and Reaction The First Law: Force and Inertia Investigation Key Question:

More information

Part Two: Earlier Material

Part Two: Earlier Material Part Two: Earlier Material Problem 1: (Momentum and Impulse) A superball of m 1 = 0.08kg, starting at rest, is dropped from a height falls h 0 = 3.0m above the ground and bounces back up to a height of

More information

Chapter 8 - Rotational Dynamics and Equilibrium REVIEW

Chapter 8 - Rotational Dynamics and Equilibrium REVIEW Pagpalain ka! (Good luck, in Filipino) Date Chapter 8 - Rotational Dynamics and Equilibrium REVIEW TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false. 1) When a rigid body

More information

Chapter 2. Forces & Newton s Laws

Chapter 2. Forces & Newton s Laws Chapter 2 Forces & Newton s Laws 1st thing you need to know Everything from chapter 1 Speed formula Acceleration formula All their units There is only 1 main formula, but some equations will utilize previous

More information

Chapter Seven Notes: Newton s Third Law of Motion Action and Reaction

Chapter Seven Notes: Newton s Third Law of Motion Action and Reaction Chapter Seven Notes: Newton s Third Law of Motion Action and Reaction A force is always part of a mutual action that involves another force. A mutual action is an interaction between one thing and another

More information

Physics 6A Lab Experiment 6

Physics 6A Lab Experiment 6 Biceps Muscle Model Physics 6A Lab Experiment 6 Introduction This lab will begin with some warm-up exercises to familiarize yourself with the theory, as well as the experimental setup. Then you ll move

More information

Figure Two. Then the two vector equations of equilibrium are equivalent to three scalar equations:

Figure Two. Then the two vector equations of equilibrium are equivalent to three scalar equations: 2004- v 10/16 2. The resultant external torque (the vector sum of all external torques) acting on the body must be zero about any origin. These conditions can be written as equations: F = 0 = 0 where the

More information

Level 11 - Tarzan Rides the Merry-Go-Round!

Level 11 - Tarzan Rides the Merry-Go-Round! Group #4 Name: Partner(s): Level 11 - Tarzan Rides the Merry-Go-Round! Side View pivot Top View blue yellow clay ball hot wire green red clay ball The Scenario: Tarzan is being chased (as usual). He must

More information

PHYS 1405 Conceptual Physics I Laboratory # 2 Hooke s Law

PHYS 1405 Conceptual Physics I Laboratory # 2 Hooke s Law PHYS 1405 Conceptual Physics I Laboratory # 2 Hooke s Law Investigation: How does the force felt by a spring vary as we stretch it, and how can we determine the stiffness of a spring? What to measure:

More information

Partner s Name: EXPERIMENT MOTION PLOTS & FREE FALL ACCELERATION

Partner s Name: EXPERIMENT MOTION PLOTS & FREE FALL ACCELERATION Name: Partner s Name: EXPERIMENT 500-2 MOTION PLOTS & FREE FALL ACCELERATION APPARATUS Track and cart, pole and crossbar, large ball, motion detector, LabPro interface. Software: Logger Pro 3.4 INTRODUCTION

More information

PE q. F E = q. = kq 1q 2 d 2. Q = ne F e

PE q. F E = q. = kq 1q 2 d 2. Q = ne F e Chapters 32 & 33: Electrostatics NAME: Text: Chapter 32 Chapter 33 Think and Explain: 1-6, 8 Think and Explain: 1, 4, 5, 8, 10 Think and Solve: Think and Solve: 1-2 Vocabulary: electric forces, charge,

More information

Physics 6A Lab Experiment 6

Physics 6A Lab Experiment 6 Rewritten Biceps Lab Introduction This lab will be different from the others you ve done so far. First, we ll have some warmup exercises to familiarize yourself with some of the theory, as well as the

More information

Centripetal Acceleration & Angular Momentum. Physics - 4 th Six Weeks

Centripetal Acceleration & Angular Momentum. Physics - 4 th Six Weeks Centripetal Acceleration & Angular Momentum Physics - 4 th Six Weeks Centripetal Force and Acceleration Centripetal Acceleration (A C ) is the acceleration of an object towards the center of a curved or

More information

= o + t = ot + ½ t 2 = o + 2

= o + t = ot + ½ t 2 = o + 2 Chapters 8-9 Rotational Kinematics and Dynamics Rotational motion Rotational motion refers to the motion of an object or system that spins about an axis. The axis of rotation is the line about which the

More information

Holt Physics Chapter 7. Rotational Motion

Holt Physics Chapter 7. Rotational Motion Holt Physics Chapter 7 Rotational Motion Measuring Rotational Motion Spinning objects have rotational motion Axis of rotation is the line about which rotation occurs A point that moves around an axis undergoes

More information

STUDY GUIDE 4: Equilibrium, Angular Kinematics, and Dynamics

STUDY GUIDE 4: Equilibrium, Angular Kinematics, and Dynamics PH 1110 Term C11 STUDY GUIDE 4: Equilibrium, Angular Kinematics, and Dynamics Objectives 25. Define torque. Solve problems involving objects in static equilibrium. 26. Define angular displacement, angular

More information

MITOCW free_body_diagrams

MITOCW free_body_diagrams MITOCW free_body_diagrams This is a bungee jumper at the bottom of his trajectory. This is a pack of dogs pulling a sled. And this is a golf ball about to be struck. All of these scenarios can be represented

More information

Vocabulary. Centripetal Force. Centripetal Acceleration. Rotate. Revolve. Linear Speed. Angular Speed. Center of Gravity. 1 Page

Vocabulary. Centripetal Force. Centripetal Acceleration. Rotate. Revolve. Linear Speed. Angular Speed. Center of Gravity. 1 Page Vocabulary Term Centripetal Force Definition Centripetal Acceleration Rotate Revolve Linear Speed Angular Speed Center of Gravity 1 Page Force Relationships 1. FORCE AND MASS a. An object swung in a uniform

More information

CHAPTER 9 -- VIBRATORY MOTION QUESTION SOLUTIONS

CHAPTER 9 -- VIBRATORY MOTION QUESTION SOLUTIONS Solutions--Ch. 9 (Vibratory Motion) CHAPTER 9 -- VIBRATORY MOTION QUESTION SOLUTIONS 9.1) An ideal spring attached to a mass m =.3 kg provides a force equal to -kx, where k = 47.33 nt/m is the spring's

More information

Exam I Physics 101: Lecture 08 Centripetal Acceleration and Circular Motion Today s lecture will cover Chapter 5 Exam I is Monday, Oct. 7 (2 weeks!

Exam I Physics 101: Lecture 08 Centripetal Acceleration and Circular Motion Today s lecture will cover Chapter 5 Exam I is Monday, Oct. 7 (2 weeks! Exam I Physics 101: Lecture 08 Centripetal Acceleration and Circular Motion http://www.youtube.com/watch?v=zyf5wsmxrai Today s lecture will cover Chapter 5 Exam I is Monday, Oct. 7 ( weeks!) Physics 101:

More information

A N D. c h a p t e r 1 2 M O T I O N F O R C E S

A N D. c h a p t e r 1 2 M O T I O N F O R C E S F O R C E S A N D c h a p t e r 1 2 M O T I O N What is a FORCE? A FORCE is a push or pull that acts on an object. A force can cause a resting object to move OR Accelerate a moving object by: changing

More information

Lecture 3. Rotational motion and Oscillation 06 September 2018

Lecture 3. Rotational motion and Oscillation 06 September 2018 Lecture 3. Rotational motion and Oscillation 06 September 2018 Wannapong Triampo, Ph.D. Angular Position, Velocity and Acceleration: Life Science applications Recall last t ime. Rigid Body - An object

More information

Forces and motion. 1 Explaining motion. 2 Identifying forces. 1 of 9

Forces and motion. 1 Explaining motion. 2 Identifying forces. 1 of 9 1 of 9 Forces and motion 1 Explaining motion The reason why force is an important idea in physics is because the motion of any object can be explained by the forces acting on the object. The procedure

More information

Mechanics, Heat, Oscillations and Waves Prof. V. Balakrishnan Department of Physics Indian Institute of Technology, Madras

Mechanics, Heat, Oscillations and Waves Prof. V. Balakrishnan Department of Physics Indian Institute of Technology, Madras Mechanics, Heat, Oscillations and Waves Prof. V. Balakrishnan Department of Physics Indian Institute of Technology, Madras Lecture 08 Vectors in a Plane, Scalars & Pseudoscalers Let us continue today with

More information

PHYSICS - CLUTCH CH 14: ANGULAR MOMENTUM.

PHYSICS - CLUTCH CH 14: ANGULAR MOMENTUM. !! www.clutchprep.com EXAMPLE: HOLDING WEIGHTS ON A SPINNING STOOL EXAMPLE: You stand on a stool that is free to rotate about an axis perpendicular to itself and through its center. Suppose that your combined

More information

Energy and Angular Momentum

Energy and Angular Momentum Notes 13 Rotation Page 1 Energy and Angular Momentum The kinetic energy associate with a rotating object is simply the sum of the regular kinetic energies. Our goal is to state the rotational kinetic energy

More information

PHYSICS Kinematics in One Dimension

PHYSICS Kinematics in One Dimension PHYSICS Kinematics in One Dimension August 13, 2012 www.njctl.org 1 Motion in One Dimension Return to Table of Contents 2 Distance We all know what the distance between two objects is... So what is it?

More information

Physics 110 Third Hour Exam

Physics 110 Third Hour Exam Physics 110 Third Hour Exam Name: Answer Key Part I Short answers: Answer all questions with only one response in the margin.(3 pts each for a total of 30 pts). Note: for partial credit write a clear phrase

More information

Rotational Motion. 1 Introduction. 2 Equipment. 3 Procedures. 3.1 Initializing the Software. 3.2 Single Platter Experiment

Rotational Motion. 1 Introduction. 2 Equipment. 3 Procedures. 3.1 Initializing the Software. 3.2 Single Platter Experiment Rotational Motion Introduction In this lab you will investigate different aspects of rotational motion, including moment of inertia and the conservation of energy using the smart pulley and the rotation

More information

Rotational Motion. Chapter 8: Rotational Motion. Angular Position. Rotational Motion. Ranking: Rolling Cups 9/21/12

Rotational Motion. Chapter 8: Rotational Motion. Angular Position. Rotational Motion. Ranking: Rolling Cups 9/21/12 Rotational Motion Chapter 8: Rotational Motion In physics we distinguish two types of motion for objects: Translational Motion (change of location): Whole object moves through space. Rotational Motion

More information

Chapter 6. Net or Unbalanced Forces. Copyright 2011 NSTA. All rights reserved. For more information, go to

Chapter 6. Net or Unbalanced Forces. Copyright 2011 NSTA. All rights reserved. For more information, go to Chapter 6 Net or Unbalanced Forces Changes in Motion and What Causes Them Teacher Guide to 6.1/6.2 Objectives: The students will be able to explain that the changes in motion referred to in Newton s first

More information

Circular Motion. Conceptual Physics 11 th Edition. Circular Motion Tangential Speed

Circular Motion. Conceptual Physics 11 th Edition. Circular Motion Tangential Speed Conceptual Physics 11 th Edition Circular Motion Rotational Inertia Torque Center of Mass and Center of Gravity Centripetal Force Centrifugal Force Chapter 8: ROTATION Rotating Reference Frames Simulated

More information

Rotation of Rigid Objects

Rotation of Rigid Objects Notes 12 Rotation and Extended Objects Page 1 Rotation of Rigid Objects Real objects have "extent". The mass is spread out over discrete or continuous positions. THERE IS A DISTRIBUTION OF MASS TO "AN

More information

Motion. Ifitis60milestoRichmondandyouaretravelingat30miles/hour, itwilltake2hourstogetthere. Tobecorrect,speedisrelative. Ifyou. time.

Motion. Ifitis60milestoRichmondandyouaretravelingat30miles/hour, itwilltake2hourstogetthere. Tobecorrect,speedisrelative. Ifyou. time. Motion Motion is all around us. How something moves is probably the first thing we notice about some process. Quantifying motion is the were we learn how objects fall and thus gravity. Even our understanding

More information

Momentum Review. Lecture 13 Announcements. Multi-step problems: collision followed by something else. Center of Mass

Momentum Review. Lecture 13 Announcements. Multi-step problems: collision followed by something else. Center of Mass Lecture 13 Announcements 1. While you re waiting for class to start, please fill in the How to use the blueprint equation steps, in your own words.. Exam results: Momentum Review Equations p = mv Conservation

More information

In the absence of an external force, the momentum of an object remains unchanged conservation of momentum. In this. rotating objects tend to

In the absence of an external force, the momentum of an object remains unchanged conservation of momentum. In this. rotating objects tend to Rotating objects tend to keep rotating while non- rotating objects tend to remain non-rotating. In the absence of an external force, the momentum of an object remains unchanged conservation of momentum.

More information

Preview. Circular Motion and Gravitation Section 1. Section 1 Circular Motion. Section 2 Newton s Law of Universal Gravitation

Preview. Circular Motion and Gravitation Section 1. Section 1 Circular Motion. Section 2 Newton s Law of Universal Gravitation Circular Motion and Gravitation Section 1 Preview Section 1 Circular Motion Section 2 Newton s Law of Universal Gravitation Section 3 Motion in Space Section 4 Torque and Simple Machines Circular Motion

More information

NEWTON S FIRST LAW OF MOTION. Law of Inertia

NEWTON S FIRST LAW OF MOTION. Law of Inertia NEWTON S FIRST LAW OF MOTION Law of Inertia An object at rest will remain at rest unless acted on by an unbalanced force. An object in motion continues in motion with the same speed and in the same direction

More information

YPP December 2012: Angular Momentum Makes the World Go Round

YPP December 2012: Angular Momentum Makes the World Go Round YPP December 2012: Angular Momentum Makes the World Go Round Laboratory Introduction The purpose of this lab is to study the various aspects of rotation to determine how shape, size, mass, or distribution

More information

TORQUE Diandra Leslie-Pelecky Edited by Anne Starace

TORQUE Diandra Leslie-Pelecky Edited by Anne Starace TORQUE Diandra Leslie-Pelecky Edited by Anne Starace Abstract: As you may have noticed, it is much more difficult to hold an object at arm s length than close to your body and door handles are placed on

More information

APC PHYSICS CHAPTER 11 Mr. Holl Rotation

APC PHYSICS CHAPTER 11 Mr. Holl Rotation APC PHYSICS CHAPTER 11 Mr. Holl Rotation Student Notes 11-1 Translation and Rotation All of the motion we have studied to this point was linear or translational. Rotational motion is the study of spinning

More information

Preview. Circular Motion and Gravitation Section 1. Section 1 Circular Motion. Section 2 Newton s Law of Universal Gravitation

Preview. Circular Motion and Gravitation Section 1. Section 1 Circular Motion. Section 2 Newton s Law of Universal Gravitation Circular Motion and Gravitation Section 1 Preview Section 1 Circular Motion Section 2 Newton s Law of Universal Gravitation Section 3 Motion in Space Section 4 Torque and Simple Machines Circular Motion

More information

Name: Period: Date: 2. How is the ball s acceleration related to the force Julia applies to the ball?

Name: Period: Date: 2. How is the ball s acceleration related to the force Julia applies to the ball? Name: Period: Date: IMPULSE AND MOMENTUM CONTENTS Impulse and Momentum... 1 Background... 1 The Concepts of Impulse and Momentum... 2 Relationship to Newton s Second Law... 4 Journaling Assignment... 5

More information

LABORATORY II DESCRIPTION OF MOTION IN TWO DIMENSIONS

LABORATORY II DESCRIPTION OF MOTION IN TWO DIMENSIONS LABORATORY II DESCRIPTION OF MOTION IN TWO DIMENSIONS This laboratory allows you to continue the study of accelerated motion in more realistic situations. The cars you used in Laboratory I moved in only

More information

Forces and Newton s Laws

Forces and Newton s Laws chapter 3 section 1 Forces Forces and Newton s Laws What You ll Learn how force and motion are related what friction is between objects the difference between mass and weight Before You Read When you hit

More information

Holt Physics Chapter 8. Rotational Equilibrium and Dynamics

Holt Physics Chapter 8. Rotational Equilibrium and Dynamics Holt Physics Chapter 8 Rotational Equilibrium and Dynamics Apply two equal and opposite forces acting at the center of mass of a stationary meter stick. F 1 F 2 F 1 =F 2 Does the meter stick move? F ext

More information

Learning Goals The particle model for a complex object: use the center of mass! located at the center of mass

Learning Goals The particle model for a complex object: use the center of mass! located at the center of mass PS 12A Lab 3: Forces Names: Learning Goals After you finish this lab, you will be able to: 1. Use Logger Pro to analyze video and calculate position, velocity, and acceleration. 2. Measure the normal force

More information

PHYS 185 Final Exam December 4, 2012

PHYS 185 Final Exam December 4, 2012 PHYS 185 Final Exam December 4, 2012 Name: Answer the questions in the spaces provided on the question sheets. If you run out of room for an answer, continue on the back of the page. Please make an effort

More information

Rotational Motion. Variable Translational Motion Rotational Motion Position x θ Velocity v dx/dt ω dθ/dt Acceleration a dv/dt α dω/dt

Rotational Motion. Variable Translational Motion Rotational Motion Position x θ Velocity v dx/dt ω dθ/dt Acceleration a dv/dt α dω/dt Team: Rotational Motion Rotational motion is everywhere. When you push a door, it rotates. When you pedal a bike, the wheel rotates. When you start an engine, many parts rotate. Electrons rotate in an

More information

Flipping Physics Lecture Notes: Demonstrating Rotational Inertia (or Moment of Inertia)

Flipping Physics Lecture Notes: Demonstrating Rotational Inertia (or Moment of Inertia) Flipping Physics Lecture Notes: Demonstrating Rotational Inertia (or Moment of Inertia) Have you ever struggled to describe Rotational Inertia to your students? Even worse, have you ever struggled to understand

More information

Magnetism and Gravity

Magnetism and Gravity Imagine that you had two superpowers. Both powers allow you to move things without touching them. You can even move things located on the other side of a wall! One power is the ability to pull anything

More information

Gravity Pre-Lab 1. Why do you need an inclined plane to measure the effects due to gravity?

Gravity Pre-Lab 1. Why do you need an inclined plane to measure the effects due to gravity? Lab Exercise: Gravity (Report) Your Name & Your Lab Partner s Name Due Date Gravity Pre-Lab 1. Why do you need an inclined plane to measure the effects due to gravity? 2. What are several advantage of

More information

Test 7 wersja angielska

Test 7 wersja angielska Test 7 wersja angielska 7.1A One revolution is the same as: A) 1 rad B) 57 rad C) π/2 rad D) π rad E) 2π rad 7.2A. If a wheel turns with constant angular speed then: A) each point on its rim moves with

More information

Lab 8: Ballistic Pendulum

Lab 8: Ballistic Pendulum Lab 8: Ballistic Pendulum Caution In this experiment a steel ball is projected horizontally across the room with sufficient speed to injure a person. Be sure the line of fire is clear before firing the

More information