Select/Special Topics in Atomic Physics

Size: px
Start display at page:

Download "Select/Special Topics in Atomic Physics"

Transcription

1 Select/Specal Topcs n Atomc Physcs P. C. Deshmukh Depatment of Physcs Indan Insttute of Technology Madas Chenna pcd@physcs.tm.ac.n Unt 4() Lectue 9 Many-Electon Atoms: Hatee-Fock Self-Consstent Feld fomalsm -

2 Leanng Goals: Poblems of cuent nteest n the physcs of atoms, molecules and othe foms of condensed matte eque a thoough undestandng of electon nteactons and electon coelatons. coelatons exchange coulomb

3 Quantum Theoy of Many Electon Atoms els Boh Albet Ensten D.R.Hatee Vladm Fock 3

4 Pmay Refeences fo HF SCF method Intemedate quantum mechancs Hans A. Bethe and Roman W. Jackw Addson-Wesley, 997 Physcs of atoms and molecules B. H. Bansden and C. J. Joachan Publshe Pentce Hall, 003 P. C. Deshmukh, Alak Bank and Dlp Angom Hatee-Fock Self-Consstent Feld Method fo Many-Electon Systems Invted atcle n DST-SERC-School publcaton (aosa, ovembe 0); collecton of atcles based on lectue couse gven at the DST-SERC School at the Bla Insttute of Technology, Plan, Januay 9-8,

5 The Many Electon Atom: H ( ) ( ) ( ) ( ) ψ = E ψ ew dffcultes! The poblem can be posed fomally, but the vey conceptualzaton of the electon poblem leads to an mmedate CATCH stuaton 5

6 Catch- : novel by Joseph Helle. A stuaton nvolvng an absud ntenal nconsstency - - awkwad stuaton whose soluton s uled out by a constant ntnsc to the stuaton. 6

7 H H ( ) ( ) ( ) ( ) ψ Z ( ) = + = < = = E ψ H D.R.Hatee Cambdge, England Futhemoe: SPI! ψ = E ψ ( ) ( ) ( ) ( ) Appoxmate umecal Solutons Self- Consstent-Feld V.A.Fock

8 The Many Electon Atom: ew dffcultes! H ( ) ( ) ( ) ( ) ψ = E ψ the soluton to the electon Schodnge equaton eques the coespondng Hamltonan, but settng up the Hamltonan tself eques the vey same solutons! 8

9 H ( q,.., q ) ψ ( q,.., q ) = E ψ ( q,.., q ) ( ) ( ) ( ) ( ) Z ( ) (,,.., ) = + = < = H q q q = h ( q ) + 0 = = ; = = F + G = H + H } meely a matte of notaton 9

10 H ( q,.., q ) ψ ( q,.., q ) = E ψ ( q,.., q ) ( ) ( ) ( ) ( ) Exact Soluton? Havng no body at all s aleady too many G. E. Bown even f t wee possble to get an exact soluton, how much space, nk, stoage would be needed to wte the soluton? 0

11 even f t wee possble to get an exact soluton, how much space, nk, stoage would be needed to wte the soluton? Hatee/ Hemann-Skllman/Johnson: Fo electons descbed by only the 3 space coodnates: 3 vaables 3 Coase 0-pont gd: 0 numbes to tabulate! Estmate fo =, 0, 80 wll you? q = (, ζ ), space a nd 'spn' coodnate

12 A lage dffeental analyze, desgned by Hatee (935) Hatee s ntal nteest: ant-acaft gunney n Pototype fo ths: small-scale machne bult fom peces of chlden's Meccano - actually solved useful equatons concened wth Boh s lectue couse atomc theoy n 934. at Cambdge (9) nfluenced Hatee Hatee s fathe: Wllam Hatee taught Engneeng at Cambdge

13 When John Ecket set up EIAC, Hatee was asked to go to the USA to advse on ts use. Electonc umecal Integato and Compute Hatee showed how to use EIAC to calculate taectoes of poectles. It may well be that the hgh-speed dgtal compute wll have as geat an nfluence on cvlzaton as the advent of nuclea powe. - Hatee (Cambdge), n 946 3

14 Appox. umecal Solutons: Self- Consstent-Feld H ( ) ( ) ( ) ( ) ψ = E ψ SCF ( ) (,,.., ) = + = < = H q q q STRATEGY 0 = = ; = δψ Z = h ( q ) + = H + H ( ) ( ) ( ) H ψ = 0 COSTRAITS We need: = δ Ψ Ω Ψ wth Ω = F; Ω = G 4

15 Hatee and Hatee: self-consstent feld Fock: ncluson of spn 5

16 Goudsmt : One of the thngs whch stuck to me s that n Paschen's expements on the helum lne,.. thee was a fobdden component whch was obvously pesent.... but you know how theoetcans ae... they then say: Poo expements. Geoge Uhlenbeck and Samuel Goudsmt Hendk Kames, anothe of Ehenfest's students. abacadaba - Uhlenbeck knd of numeology - Goudsmt 6

17 97: Paul ntoduced the matces as a bass of spn opeatos. (nonelatvstc/ad-hoc theoy of spn). Paul Aden Mauce Dac 98: Dac Relatvstc Quantum Mechancs Povded fomal bass fo electon s spn 940: Paul poved the spn-statstcs theoem of quantum feld theoy - patcles wth half-ntege spn ae femons, whle patcles wth ntege spn ae bosons. 7

18 Electon spn has ts ogn n Relatvstc QM P.A.M.Dac 98 The quantum theoy of the electon Poc. R. Soc. (London) A The quantum theoy of the electon Pat II Poc. R. Soc. (London) A

19 How does STATISTICS ente classcal mechancs, and how does t ente quantum mechancs? Equpatton Theoem: Each degee of feedom n the classcal expesson fo the Hamltonan contbutes to the AVERAGE enegy. kt B In Quantum Theoy, STATISTICS entes though TWO channels: [] Uncetanty Pncple [] SPI ; Identty of Patcles 9

20 I I Ψ ( q, q ) =Ψ( q, q ) { } Intechange opeato actng TWICE on a gemnal wavefuncton 0

21 Two-electon state: gemnal ψ ( q, q )

22 Intechange opeato I { I Ψ ( q }, q) =Ψ( q, q) actng TWICE on a gemnal wavefuncton I Ψ ( q, q ) = e Ψ( q, q ) I Ψ ( q, q ) =±Ψ( q, q ) e = Femons: spn,,,... =, e =± 0 o Bosons o Femons Bosons : spn 0,,,3, 4,... π

23 I Ψ ( q, q ) = e Ψ( q, q ) I Ψ ( q, q ) =±Ψ( q, q ) Femons: spn,,,... e spn =, e =± = 0 o π Bosons o Femons Bosons : spn 0,,,3,4,... sgn of the wavefuncton on ntechange statstcs 3

24 RELATIO BETWEE SPI & STATISTICS IS APPARET, BUT HARD TO UDERSTAD. - Tomonaga It appeas to be one of the few places n physcs whee thee s a ule whch can be stated vey smply, but fo whch no one has found a smple and easy explanaton. The explanaton s down deep n elatvstc quantum mechancs.. - Feynman, Vol.3 p4-3 Recommended efeence: The Theoy of Spn by Sn-Ito Tomonaga, tanslated n Englsh by Takesh Oka (The Unv. of Chcago Pess, 997) 4

25 Fo electons: I Ψ ( q, q ) =Ψ ( q, q ) = Ψ( q, q ) sepaablty n ' two electon ' coodnates : [ ] Ψ ( q, q ) = u ( q ) u ( q ) u ( q ) u ( q ) u ( q ) = =, ζ n, l, m, m l s ndstngushable elementay patcles 5

26 u ( q ) = =, ζ n, l, m, m l s [ ] Ψ ( q, q ) = u ( q ) u ( q ) u ( q ) u ( q ) = u( q) u( q) u ( q ) u ( q ) Rows: occuped sngle patcle states (labeled by a set of 4 quantum numbes) n the many-electon system. Columns: set of (space, spn) coodnates John C. SLATER DETERMIAT Paul excluson pncple; Antsymmety of the wavefuncton 6

27 u( q) = =, ζ n, l, m, m ( ) ψ = l s u() u() u(3) u(4)! u ( ) electon confguaton Occupancy of sngle patcle states Rows: occuped of sngle patcle states (labeled by a set of 4 quantum numbes) n the many-electon system. Columns: set of (space, spn) coodnates SLATER DETERMIAT Paul excluson pncple; Antsymmety of the wavefuncton : column (space-spn coodnate) ndex; =,,3,. : (occuped) quantum state ndex; =,,3, 7

28 Matx elements of the SLATER DETERMIAT One-electon SPI-ORBITALS u( q) = u ( q ) =, ζ n, l, m, m l s u( q) = n, l, ml m Spn ζ s pat Obtal u( q) = ψ n,, ( ) ( ) l m χ ζ l m s pat 8

29 SLATER DETERMIAT th ψ ( ) ow u () u ( ) u() = = u( q)! u () u ( ) u ( q ) = ψ ( ) χ ( ζ ) Pobablty ampltude that an electon at space-spn coodnate n, l, m m q n, l, m, m l s s n the quantum state th column l s 9

30 () ( ) ψ = = u( q)! u () u ( ) u u () u ( ) u( q) = n, l, ml ζ ms = u ( ) χ ( ζ ) n, l, m m l s : column (space-spn coodnate) ndex; =,,3,. : (occuped) quantum state ndex; =,,3,! ways of pemutng the ndstngushable electons n the quantum states ψ (,.., ) ( ) ( ) ( ).. ( )! ( ),,... = P q q P u q u q u q! P =! P A = ( ) P! P = Antsymmetse opeato: Questons: pcd@physcs.tm.ac.n [ ] 30

31 Select/Specal Topcs n Atomc Physcs P. C. Deshmukh Depatment of Physcs Indan Insttute of Technology Madas Chenna pcd@physcs.tm.ac.n Unt 4() Lectue 0 Many-Electon Atoms: Hatee-Fock Self-Consstent Feld fomalsm - 3

32 u ( q ) = n, l, m ζ m l s = u ( ) χ ( ζ ) Spn-Obtal Thee s no classcal analog to the spn pat, no to the obtal pat! obtal n, l, m m l s spn 3

33 () ( ) ψ = = u( q)! u () u ( ) u u () u ( ) u( q) = n, l, ml ζ ms = u ( ) χ ( ζ ) n, l, m m l s : column (space-spn coodnate) ndex; =,,3,. : (occuped) quantum state ndex; =,,3,! ways of pemutng the ndstngushable electons n the quantum states ψ (,.., ) ( ) ( ) ( ).. ( )! ( ),,... = p q q P u q u q u q! P = Antsymmetse opeato: A [ ]! =! P = p ( ) P 33

34 l l = l l, l = l x y z l l, l m = l( l+ ), l m l, l m = m, l m z l l l s = : fxed ntenal popety of an electon ms = s,..., s=, + l s s = s l = 0,,,3,... m = l,..., l l sx, s y = sz s sm, s = ss ( + ) sm, s s s, m = m s, m z s s s 34

35 Befoe we take up a detaled dscusson on the HF/SCF method..a quck ecaptulaton of the smallest many-electon system -electons system. 35

36 Two-electon (gemnal) state: ψ ( q, q ) = φ(, ) χ( ζ, ζ ) ψ ( q, q) = ψ ( q, q) = { φ( }, ) χζ (, ζ) ψ ( q { }, q) = φ(, ) χ( ζ, ζ) = φ(, ) χ( ζ, ζ ) whch pat, space pat o spn pat, { } s antsymmetc, and whch s symmetc? 36

37 Two-electon (gemnal) state: ψ ( q, q ) = φ(, ) χ( ζ, ζ ) ψ ( q, q) = ψ( q, q) = φ(, ) χ( ζ, ζ) ψ ( q { }, q) = φ(, ) χ( ζ, ζ) = φ(, ) χζ (, ζ ) S = s+ s S = 0, S = 0; M = 0 S S = ; M =, 0, S { } { } φ(, ) =+ φ(, ) and χ( ζ, ζ ) = χ( ζ, ζ ) o Snglet State Tplet State φ(, ) = φ(, ) and χ( ζ, ζ ) =+ χ( ζ, ζ ) 37

38 S = s+ s S = 0, S S = 0; M = 0 S = ; M =, 0, S Snglet State Tplet State φ(, ) =+ φ(, ) χζ (, ζ) = χ( ζ, ζ ) φ(, ) = φ(, ) χζ (, ζ) =+ χ( ζ, ζ ) Whch state has lowe enegy? Snglet o Tplet? Snglet : χζ (, ζ) = χ( ζ, ζ) ant-symmetc spn pat φ(, ) =+ φ(, ) = ( ) ( ) + ( ) ( ) ϕ ϕ ϕ ϕ Tplet : χζ (, ζ) = + χ( ζ, ζ) ant-symmetc space pat φ(, ) = φ(, ) = ( ) ( ) ( ) ( ) ϕ ϕ ϕ ϕ 38

39 S = s+ s S = 0, S S = 0; M = 0 S = ; M =, 0, S Snglet State Tplet State Snglet : χ( ζ, ζ) = χ( ζ, ζ) ant-symmetc spn pat φ(, ) =+ φ(, ) = ( ) ( ) + ( ) ( ) ϕ ϕ ϕ ϕ Tplet : χζ (, ζ) = + χ( ζ, ζ) ant-symmetc space pat φ(, ) = φ(, ) = ( ) ( ) ( ) ( ) ϕ ϕ ϕ ϕ Coulomb epulson? Tplet State s less punshed by the coulomb nteacton - Landau & Lfshtz 39

40 Coulomb and Exchange ntegals electon -dmensonal obtal bass : {, } = { ϕ } ( ) ϕ( ), ϕ( ) ϕ( ) U = = Ω = Ω dv f () f () = Ω U U U U U = = U U U U 40

41 Coulomb and Exchange ntegals electon -dmensonal obtal bass : {, } = { ϕ } ( ) ϕ( ), ϕ( ) ϕ( ) U = = U U U = U U 3 3 U = d d ϕ( ) ϕ( ) ϕ( ) ϕ( ) = J U = d d ϕ ( ) ϕ ( ) ϕ ( ) ϕ ( ) = K U 3 3 = d d ϕ ( ) ϕ ( ) ϕ ( ) ϕ ( ) = K 3 3 U = d d ϕ ( ) ϕ ( ) ϕ ( ) ϕ ( ) = J 3 3 4

42 Coulomb and Exchange ntegals U = d d ϕ ( ) ϕ ( ) ϕ ( ) ϕ ( ) = J U U U = d d ϕ ( ) ϕ ( ) ϕ ( ) ϕ ( ) = K 3 3 = d d ϕ ( ) ϕ ( ) ϕ ( ) ϕ ( ) = K U = d d ϕ ( ) ϕ ( ) ϕ ( ) ϕ ( ) = J U U J K = = U U K J 3 3 J K = K J J: Coulomb K: Exchange o : I : J 4

43 In the bass ( ) ( ), ( ) ( ), { ϕ } ϕ ϕ ϕ T Dagonalzaton: U J K = K J s not dagonal. J K J K K + J J + K K J T = K J J K K J J K K J J K 0 = 0 + J K T = T U T = U dagonal Snglet J + K K Tplet J K 43

44 In the bass ( ) ( ), ( ) ( ), { ϕ } ϕ ϕ ϕ Dagonalzaton: T = T T U J K = K J Snglet J + K K Tplet J K s not dagonal. J K J K 0 T = 0 + K J J K ϕ( ) ϕ( ) ϕ( ) ϕ( ) ϕ( ) ϕ( ) = ϕ ( ) ϕ ( ) ϕ ( ) ϕ ( ) + ϕ ( ) ϕ ( ) Tplet φ = Sngle φ 44

45 Ou nteest: SCF of the many electon system Why dd we need coulomb & exchange ntegals n advance? δψ ( ) ( ) ( ) H ψ = 0 Ψ Ω Ψ Ω= Ω= H H 45

46 δψ ( ) H ( q, q,.., q ) = H + H ( ) ( ) ( ) H ψ = 0 = δ Ψ Ω Ψ wth Ω = H and Ω= H ψ ( )! p = ( ) P { u ( q ) u ( q )... u ( q )}! P= ( ) ( ) Ω = ψ ψ... dq dq.. dq ( q, q,.. q ) ( ) P { u ( q ) u ( q )... u ( q )} ATI-SYMMETRISER Opeato! p ψ Ω! P=! tems too much wok to do! 46

47 ( ) ( ) ψ Ω ψ =!..... (,.., q ) { ( q )... ( q! = dq dqψ q Ω ( ) p P u u P= )}! p = ( )..... (,.., ) Ω { ( )... ( )}! dq dqψ q q P u q u q P=! p = ( )..... (,.., ) Ω{ ( )... ( )}! dq dqψ q q P u q u q P=! p = ( ) P... dq.. dq (,.., ) Ω P ψ q q { u... u ( q )}! P = 47

48 ( ) ( ) ψ Ω ψ =! p = ( ) P..... (,.., ) {... ( )}! dq dq Ω P ψ q q u u q P=! p p = ( ) P..... ( ) (,.., ) Ω{... ( )}! dq dq ψ q q u u q P=! = p ( ) P... dq.. dqψ ( q,.., q) Ω{ u ( q )... u ( q )}! P =! = P... dq.. dqψ ( q,.., q ) Ω{ u ( q )... u ( q )}! P= =!... dq.. dq ψ ( q,.., q ) Ω{ u ( q )... u ( q )} 48

49 ( ) ( ) ψ Ω ψ = =!... dq.. dq ψ ( q,.., q ) Ω{ u ( q )... u ( q )} ψ H ψ = ( ) ( ) = q f q ) u =!... dq.. dq ψ ( q,.., ) ( { u ( q )... ( q )} ψ ( q,.., q ) ( ) P { u ( q ) u ( q )... u ( q )}! = p! P = ψ H ψ = ( ) ( ) =.. dq.. dq u q q { ( q ).. u ( q )}! p ( ) P { ( ).. u ( )} ( ) f q u P= = Ω H,H 49

50 ψ H ψ = ( ) ( )! p d f q P= = =.. dq.. q ( ) P { u ( q ).. u ( q )} ( ){ u ( q ).. u ( q )} { u ( q ) u ( q )... u ( q )} ( ) f q = =... dq.. dq { u ( q )... u ( q )} + Tem fo Identty pemutaton! p ( ) P { u ( q ) u ( q )... u ( q )} +... dq.. dq f( q ) { u ( q )... u ( q )} P= Rest of the (! ) tems = dq d { u ( q ) u ( q )... u ( q )} ( ) f q u =..... q { ( q )... u ( q )} + R Fst, we show that the REMAIDER tems R=0 = 50

51 R =! p dq dq ( ) P { u ( q ) u ( q )... u ( q ) f q u q u =.... } ( ){ ( )... ( q )}! P= = p =... dq.. dq ( ) P { u ( q ) u ( q )... u ( q )} f( q ){ u ( q )... u ( q )} + P= OTE!! p P u q u q u q P= = +... dq.. dq ( ) { ( ) ( )... ( )} f( q ){ u ( q )... u ( q )} OTE! COSIDER now the tem wth ust one ntechange ( )... dq.. dq { u ( q ) u ( q )... u ( q )} f( q ){ u ( q )... u ( q )} = dq u ( q ) f ( q ) u ( q ) dq u ( q ) u ( q ) dq... = 0 3 q q R = 0 5

52 ψ H ψ = ( ) ( )! p d f q P= = =.. dq.. q ( ) P { u ( q ).. u ( q )} ( ){ u ( q ).. u ( q )} dq d { u ( q ) u ( q )... u ( q )} ( ) f q u =..... q { ( q )... u ( q )} + R = R = zeo 5

53 ψ H ψ = ( ) ( ) dq d q { u ( q ) u ( q ).. u ( q )} ( ) u q =.... f q { ( ).. u ( q )} = ψ H ψ = ( ) ( ) = q ( ) ( ) ( q ) d u q f q u dqu ( q) u ( q) dq u ( q ) u ( q ) dq.. dq { u ( q ) u ( q )... u ( q )} f ( q ){ u ( q )... u ( q )} = we get d u ( q ) f( q ) u ( q ) q multpled by nomalzaton ntegals... Plus smla tems fo =,3,4,. 53

54 ( ) ( ) ψ Ω ψ = =!... dq.. dq ψ ( q,.., q ) Ω{ u ( q )... u ( q )} ψ H ψ = ( ) ( ) = =... dq.. dq { u ( q ) u ( q )... u ( q )} f( q ){ u ( q )... u ( q )} ( ) ( ) ψ q = ψ H = du ( qfqu ) ( ) ( q) Questons: pcd@physcs.tm.ac.n ote the dummy label 54

55 Select/Specal Topcs n Atomc Physcs P. C. Deshmukh Depatment of Physcs Indan Insttute of Technology Madas Chenna pcd@physcs.tm.ac.n Unt 4() Lectue Many-Electon Atoms: Hatee-Fock Self-Consstent Feld fomalsm

56 ψ H ψ = ( ) ( ) = =... dq.. dq { u ( q ) u ( q )... u ( q )} f( q ){ u ( q )... u ( q )} ( ) ( ) ψ q = ψ H = du ( qfqu ) ( ) ( q) ote the dummy label 56

57 ( ) ( ) ψ d = ψ = H qu ( q) f( q) u ( q) dq dv ζ = dvu () () () f u ζ ζ = ζ 57

58 ( ) ( ) ψ qu = ψ = H d ( q) f( q) u ( q) = dvu () () () f u ζ ζ = ζ ζ ζ ζ = ζ ζ = ζ ( ) ( ) ψ H ψ = f = f = = 58

59 Matx elements of two-electon pat of the many-electon Hamltonan H = =, = 59

60 ( ) ( ) ψ Ω ψ = =!... dq.. dq ψ ( q,.., q ) Ω{ u ( q )... u ( q )} ψ H ψ = ( ) ( ) =!..... (,.., ) dq dqψ q q { u ( q )... u ( q )} =, = ψ ( q,.., q ) ( ) P { u ( q ) u ( q )... u ( q )}! p =! P = PCD_QTMEA/L3 60

61 ψ H ψ = ( ) ( ) =!..... (,.., ) dq dqψ q q { u ( q )... u ( q )} =, = ψ H ψ = ( ) ( )!!.. dq.. dq p ( ) P { u ( q ).. u ( q )} { ( ).. ( )}! P= =, = u q u q = Cancel the facto! ψ H ψ = = ( ) ( )!.... { u ( q ).. u ( q )} P= =, = p dq dq ( ) P { u ( q ).. u ( q )} 6

62 ψ H ψ = = ( ) ( ) ψ H ψ = = ( ) ( )! p.. dq.. dq ( ) P { u ( q ).. u ( q )} { ( ).. ( )} u q u q P= =, = Sepaate the! pemutatons n dentty, one-exchange, and the est of the pemutatons... dq.. dq{ u ( q ) u ( q )... u ( q )} { ( )... ( )} + u q u q =, = dentty +... dq.. dq{ u ( q ) u ( q )... u ( q )} { ( )... ( )} + u q u q =, =!... dq.. dq { ( P= =, = one ntechange p ( ) P { u ( q ) u ( q )... u ( q )}. u q u est of the pemutatons ).. ( q )} 6

63 ( ) ( ) ψ H ψ = =... dq.. dq{ u ( q ) u ( q )... u ( q )} { ( )... ( )} + u q u q =, =... dq.. dq{ u ( q ) u ( q )... u ( q )} { ( )... ( )} + u q u q =, = +!... dq.. dq { ( P= =, = p ( ) P { u ( q ) u ( q )... u ( q )}. u q u ).. ( q )} =... dq.. dq{ u ( q ) u ( q )... u ( q )} { ( )... ( )} + u q u q =, =..... { ( ) ( )... ( )} dq dq u q u q u q { ( )... ( )} + u q u q R =, = R = zeo 63

64 ψ H ψ = ( ) ( ) =... dq.. dq{ u ( q ) u ( q )... u ( q )} { ( )... ( )} + u q u q =, =... dq.. dq{ u ( q ) u ( q )... u ( q )} { ( )... ( )} u q u q =, = = =, = = = = = J K = = dqdq u ( q ) ( ) ( ) ( ) u q u q u q dq ( ) ( ) ( ) ( ) dq u q u q u q u q [ g g ] do you have to woy about? 64

65 ( ) ( ) ψ H ψ = f = f = = ψ H ψ = g g ( ) ( ) = = ( ) ( ) ψ H ψ = f + = [ ] + = = [ g g ] 65

66 Coulomb ntegal dq dq u ( q ) u ( q ) u ( q ) u ( q ) = u u = dvdv ( ) ( ) ( ) ( ) u u ζ m ζ m ζ m ζ m ζ ζ s s s s dq dq u ( q ) u ( q ) u ( q ) u ( q ) = ( ) ( ) = dvdvu u ( ) ( ) u u m ζ m ζ ζ m ζ m ζ ζ s s s s 66

67 Coulomb ntegal dq dq u ( q ) u ( q ) u ( q ) u ( q ) = = dvdvu ( ) u ( ) u ( ) u ( ) m ζ m ζ ζ m ζ m ζ ζ s s s s dq dq u ( q ) u ( q ) u ( q ) u ( q ) = = dv dv u ( ) u ( ) u ( ) u ( ) m ζ ζ m m ζ ζ m = ζ s s s s ζ 67

68 Exchange ntegal dq dq u ( q ) u ( q ) u ( q ) u ( q ) = = ( ) ( ) ( ) ( ) dqdqu q u q u q u q Integaton ove contnuous, summaton ove dscete vaables = dvdv u ( ) u ( ) ( ) ( ) u u ζ m ζ m ζ m ζ m ζ ζ s s s s 68

69 Exchange ntegal = ( ) ( ) dvdv u u ( ) ( ) u u ζ m ζ m ζ m ζ m ζ ζ s s s s Is thee any physcal ovelap between the spatal pats of the obtals? Exchange effects do not exst between two spn-obtals whose spatal pats do not ovelap. -Bethe & Jackew -Intemedate Quantum Mechancs 69

70 dq dq u ( q ) u ( q ) u ( q ) u ( q ) = = = dvdvu ( ) u ( ) u ( ) u ( ) = ( ) ( ) ( ) ( dv dv u u u u ) dv dv ζ m ζ m ζ m ζ m ζ m ζ m ζ ζ m ζ m ζ ζ ζ u u u ( m, m ) ( ) ( ) ( ) ( ) u δ s s s s s s s s s s 70

71 ( ) ( ) ψ H ψ = f + ( ) ( ) H ψ dvu = = = = ψ = () f() u () + [ g g ] The ntegals to be detemned fom atomc wavefunctons ae: + dvdv u ( ) u ( ) ( ) ( ) u u ( ms, m ) ( ) ( ) ( ) ( δ ) s dvdvu u u u 7

72 Mnmse: ψ H = dvu ( ) f( ) u ( ) + ( ) ( ) ψ = + ( ) ( ) H ψ = δψ 0 = dv u u = ( ) ( ) ( ) ( dvdv u u u u ) δ ( ) ( ) 0 ( ms, m ) ( ) ( ) ( ) ( ) s dvdvu u u u constants dv u () u () dv u () = = = = dv u u = () () 0 7

73 ' Extemum' of f ( x, y), subect to constant gxy (, ) = k At the ' Extemum' of f ( x, y), df = 0. df = 0 f dx x f + dy = 0 y f f = 0 & = 0 x y only f thee ae no constants. 73

74 f f df = 0 dx + dy = 0 x y g g constant g( x, y) = k 0 = dg = dx + dy x y f f x = = y λ g g x y UDETERMIED MULTIPLER f x f y g λ = x g λ = y 0 0 Lagange s vaatonal multple Extemum of the functon: f( x, y) λg( x, y) 74

75 Extemum of the functon: Ψ(x,y)= f ( xy, ) λgxy (, ) 0 = δψ( xy, ) f g f g = λ δx + λ δ x x y y y 75

76 Extemum of the functon: Ψ(x,y)= f ( x, y) λg( x, y) {} 0 = δ = 0 = δψ( xy, ) = δf ( xy, ) λδgxy (, ) { f ( xy, ) λgxy (, )} = δ ( ) ( ) ψ H ψ + δ = + λ () () dv u u + = δ( ms, m ) + s λ dv u u + λ dv u u λ = λ λ λ () () () () = Hemtan Matx 76

77 0 δ {} = Vaaton: one obtal at a tme. ( ) th k : u HF-SCF: Fozen Obtal Appoxmaton Othe obtals kept fozen, not vaed. Appoxmaton : Independent Patcle Appoxmaton Ignoe Coulomb coelatons Howeve, Exchange coelatons ncluded k 77

78 Many-electon coelatons Coulomb coelatons Many-Body theoy Quantum Feld nd Quantzaton methods Confguaton nteactons exchange coelatons Fem (Dac) Statstcal coelatons 78

79 ( ) ( ) ψ H ψ + 0 δ = + λ dv u () u () + = δ( ms, m ) + s λ dv u u + λ dv u u ( ) ( ) ψ H ψ = dvu () f() u () + = () () () () + ( ) ( ) ( ) ( dvdv u u ) u u δ ( ms, m ) ( ) ( ) ( ) ( ) s dvdvu u u u 79

80 δψ ( ) ( ) H ψ = dvu () f () u() + = = δ ( ) ( ) ( ) ( dvdv u u u u ) + (, ) ( ) ( ) ( ) ( δ ms m ) s dvdvu u u u th Vaaton of only the k obtal : u () k δ u = k ( ) 0 : fozen obtals 80

81 ψ H = dvu ( ) f( ) u ( ) +... VARIATIO n one-electon obtals ( ) ( ) ψ = δψ H ψ Vaaton of only the th k obtal: u { dv δu ()} k f () uk() ( ) ( ) = k ( ) dvu () (){ ()} + k f δuk

82 Mnmse: Vaaton of only the ψ H = dvu ( ) f( ) u ( ) + () th k obtal : u k ( ) ( ) ψ = + ( ) ( ) 0 ( ) ( ) ( ) ( dvdv u u u u ) δ ( ms, m ) ( ) ( ) ( ) ( ) s dvdvu u u u ( ) ( ) δψ H ψ = 0 dv u () u () dv u () = = = = dv u u = = dv u u = () () 0 Questons: pcd@physcs.tm.ac.n 8

83 Select/Specal Topcs n Atomc Physcs P. C. Deshmukh Depatment of Physcs Indan Insttute of Technology Madas Chenna pcd@physcs.tm.ac.n Unt 4(v) Lectue Many-Electon Atoms: Hatee-Fock Self-Consstent Feld fomalsm

84 Mnmse: Vaaton of only the δψ ψ H = dvu ( ) f( ) u ( ) + () th k obtal : u ( ) ( ) ψ = + ( ) ( ) H ψ = k 0 ( ) ( ) ( ) ( dvdv u u u u ) δ ( ms, m ) ( ) ( ) ( ) ( ) s dvdvu u u u Constants: dv u () u () dv u () = = = = dv u ( ) u ( ) 0 = = dv u u = ( ) ( ) 0 84

85 λ : ( ) ( ) ψ H ψ + 0 δ multples = + λ dv u () u () + = δ( ms, m ) + s λ dv u u + λ dv u u ( ) ( ) ψ H ψ = dvu () f() u () + = Lagange vaatonal () () () () + ( ) ( ) ( ) ( dvdv u u ) u u δ ( ms, m ) ( ) ( ) ( ) ( ) s dvdvu u u u 85

86 δψ ( ) ( ) H ψ = dvu () f () u() + = = δ ( ) ( ) ( ) ( dvdv u u u u ) + (, ) ( ) ( ) ( ) ( δ ms m ) s dvdvu u u u th Vaaton of only the k obtal : u () k δ u = k ( ) 0 : fozen obtals 86

87 ψ H = dvu ( ) f( ) u ( ) +... VARIATIO n one-electon obtals ( ) ( ) ψ = δψ H ψ Vaaton of only the th k obtal: u { dv δu ()} k f () uk() ( ) ( ) = k ( ) dvu () (){ ()} + k f δuk

88 H ψ ( ) ( ) = δψ { dv δu } k() f () uk() + { } dvdv δu k( ) u ( ) uk( ) u( ) + { } δ m m dvdv δu u u u ( s, ) ( ) ( ) ( ) ( ) k s k k 88

89 ( ) ( ) = δψ H ψ dv { δu k() } f () uk() + dvdv { δu k( ) } u ( ) uk( ) u( ) + δ( ms, m ) { ( ) } ( ) ( ) ( ) k s dvdv δu k u uk u Examne ths tem + dvu k() f ( ) { δuk ( ) } + dvdv u k( ) u ( ) { δuk( ) } u( ) + δ( ms, m ) ( ) ( ) { ( ) } ( ) k s dvdv u k u δuk u 89

90 f ( ) : Hemtan Opeato dv u f u k { } ( ) ( ) ( ) δ k = = dv u f u { ( )} ( ) δ ( ) k k { } 90

91 δψ Facto out δu ( ) k H ψ ( ) ( ) = Facto out δu k ( ) f : Hemtan { } dv δu k( ) f ( ) uk( ) + { } ( ) ( ) ( ) ( dvdv δu k u uk u ) + { } (, ) ( ) ( ) ( ) ( δ ms m ) k s dvdv δu k u uk u + { ( )} dv δuk { ( ) ( )} f u k + { } ( ) ( ) ( ) ( dvdv u k u δuk u ) + (, ) { } ( ) ( ) ( ) ( δ ms m ) k s dvdv u k u δuk u 9

92 fu ( ) k( ) + { ( ) } dv δu k ( ) ( ) ( ) ( ) ( ) u uk u δψ H ψ = + dv δ ( m, ) ( ) ( ) s m k s u k u + { () dv δuk }( ) 9

93 ( ) ( ) ψ H ψ + 0 δ = + λ () () dv u u + = δ( ms, m ) + s λ dv u u + λ dv u u 0 = δ H + () () () () λ ( ) ( ) dv u u + = + δ ( ) ( ) δ( m, ) ( ) ( ) s m + s λ dv u u + λ dv u u 93

94 0 ( ) ( ) λ dv u u + = = δ H + δ δ( ms, m ) + ( ) ( ) ( ) ( ) s λ dv u u + λ dv u u δ u = k ( ) 0 λkk dv ( δuk ( ) ) uk ( ) λkk dv uk ( ) ( δuk ( + ) ) 0 = δ H + + δ( ms, m ) ( ( ) ) ( ) ( ) ( ( ) k s λ k dv δuk u + λk dv u δuk ) uˆ duˆ= 0 0 = δ H + δ( ms, m ) k s λ k dv δuk u + λk dv u δuk ( ( )) ( ) ( ) ( ) ( ) 94

95 fu ( ) ( ) k + { } ( ) ( ) ( ) ( ) u k u dv δu k u + + dv (, ) ( ) ( δ m ) s m k s u k u 0= + (, ) ( ) δ ms m k s λ ku { + dv δuk () }( ) + δ ( m ( ( )) ( ) ( ) ( ( )), ) s m + k s λ k dv δuk u λk dv u δuk 95

96 fu ( ) ( ) k + { } ( ) ( ) ( ) ( ) u k u dv δu k u = dv (, ) ( ) ( ) δ ms m k s u k u + (, ) ( ) δ ms m k s λ ku { + dv δuk () }( ) The ntegals must go to zeo egadless of the (abtay) vaaton n the sngle patcle obtal Ths facto must be zeo. also: ( ) = 0 96

97 fu ( ) ( ) k + ( ) ( ) ( ) { ( ) u k u dv δu k u } + + dv (, ) ( ) ( δ ) ms m k s u k u + δ( ms, m ) ( ) k s λ ku 0= + dv{ δuk () }( ) The ntegals must go to zeo egadless of the (abtay) vaaton n the sngle patcle obtals 97

98 fu ( ) ( ) k + ( ) ( ) ( ) { ( ) u k u dv δu k u } + + dv (, ) ( ) ( δ ) ms m k s u k u + δ( ms, m ) ( ) k s λ ku 0= + dv{ δuk () }( ) k + u ( ) ( ) dv uk( ) u( ) δ ( ms, m ) ( ) ( ) k s u k u ( m, ) ( ) s m k s λ ku also ( ) = f( ) u ( ) δ = 0 : 0 98

99 f( ) uk ( ) + u ( ) + ( ) ( ) ( ) (, ) ( ) ( dv uk u δ ms m ) = k s u k u = δ( m, m ) λ u s s k k ( ) Coupled ntego-dffeental equatons: teatve numecal solutons HF Equaton: CODITIO that must be satsfed fo ( ) ( ) δψ H ψ = 0 subect to the constants: omalzaton and Othogonalty 99

100 f( ) uk ( ) + u ( ) + ( ) ( ) ( ) (, ) ( ) ( dv uk u δ ms m ) = k s u k u ( m, m ) λ u λ k = δ k : vaatonal paametes [ C] [ ][ C] k [ ] = [ ] λ = λ λ λ k s s k ( ) λ = λ dagonal λ δ = (, ) C = C δ m m s s [ C] = [ C] : Untay 00

101 u ( ) f( ) uk( ) + dv ( uk( ) u( ) ( ms, m ) ( ) ( δ )) k s u k u = = δ( m, m ) λ u [ C] [ ][ C] s s k dagonal λ = λ = λδ u () c u () ' = k k k = = k = c u () k u c u ' () = l l() l= k k ( ) [ C] = [ C] ' u c c.... u ' u u =

102 ' f( ) u ( ) + ' u ( ) ( ' ' ' ' dv ) u( ) u( ) δ ( ms, m ) ( ) ( ) s u u = = λ u ' ' ( ) Hatee-Fock-Dac coupled ntego-dffeental equatons : dagonal fom f( ) u ( ) + u ( ) dv u u m m u u = λ u ( ) ( ) ( ) δ ( s, s ) ( ) ( ) ( ) 0

103 f( ) u ( ) + u ( ) dv u u m m u u = λ u ( ) ( ) ( ) δ ( s, s ) ( ) ( ) ( ) ε = f( ) u ( ) + u ( ) dv u u m m u u = ε u λ ( ) ( ) ( ) δ ( s, s ) ( ) ( ) ( ) 03

104 HF Equaton: CODITIO that must be satsfed fo ( ) ( ) f( ) u ( ) + ε = λ u ( ) dv u u m m u u = ε u δψ H ψ = 0 subect to the constants: omalzaton and Othogonalty ( ) ( ) ( ) δ ( s, s ) ( ) ( ) ( ) Questons: pcd@physcs.tm.ac.n What s the connecton wth obsevables? Is ths an egenvalue equaton? 04

105 Select/Specal Topcs n Atomc Physcs P. C. Deshmukh Depatment of Physcs Indan Insttute of Technology Madas Chenna pcd@physcs.tm.ac.n Unt 4(v) Lectue 3 Many-Electon Atoms: Hatee-Fock Self-Consstent Feld fomalsm

106 HF Equaton: CODITIO that must be ( ) ( ) satsfed fo δψ H ψ = 0 subect to the constants: omalzaton and Othogonalty f( ) u ( ) + u ( ) dv u u m m u u = ε u ( ) ( ) ( ) δ ( s, s ) ( ) ( ) ( ) Is ths an egen-value equaton? whee ε = λ What s the physcal meanng of the Lagange multples? How does the HF SCF fomalsm connect to obsevables? 06

107 f( ) u ( ) + u ( ) dv u u m m u u = ε u ( ) ( ) ( ) δ ( s, s ) ( ) ( ) ( ) dvu ( ) f ( ) u( ) + u ( ) u ( ) dv dv u u m m u u = ε dv u ( ) u u ( ) Multply by thoughout and ntegate ove ( ) ( ) ( ) δ ( s, s ) ( ) ( ) ( ) = 07

108 dvu ( ) f ( ) u( ) + u ( ) ( ) u dv dv u u m m u u = ε One electon ntegals ( ) ( ) ( ) δ ( s, s ) ( ) ( ) Two electon exchange ntegals Two electon coulomb ntegals 08

109 dvu () f () u () f = One electon ntegals Two electon coulomb dq ntegals dqu ( q) u ( ) ( ) ( ) = q u q u q = dvdvu ( ) u ( ) u ( ) u ( ) = g dq dq u ( q ) u ( q ) u ( q ) u ( q ) = = δ = ( m, ) s m ( ) ( ) ( ) ( ) s dv dv u u u u = g Two electon exchange ntegals 09

110 dvu ( ) f ( ) u( ) + u ( ) ( ) u dv dv u u m m u u = ε = ( ) ( ) ( ) δ ( s, s ) ( ) ( ) [ ] f + g g = ε [ ] f + g g = ε = = = = 0

111 [ ] f + g g = ε = = = = ψ H ψ = f = f ( ) ( ) ( ) ( ) f + [ g g ] = ψ H ψ = = = = = ( ) ( ) ψ H ψ = g g = = ( ) ( ) ( ) ( ) [ ] ψ H ψ + ψ H ψ = ε =

112 (3) E( ψ ) =< f >+< f >+< 3 f 3>+ + ( J K ) + ( J K ) + ( J K ) ( ) E f f J K () ( ψ n = 0) =< >+< 3 3>+ 3 3 ( ) ( ) E E f J K J K E Example: 3-electon system: (3) () ( ψ ) ( ψ n = 0) =< > = ε ( ) ( ( )) ( ) E ψ ψ = ε [ ] snce: k f k + k g k k g k = ε k Fozen obtal appoxmaton ( n = 0) k k = λ kk

113 ( ) ( ) ( ) ψ H ψ = f + n n g g = ( ) ( ψ ) = + = E f n n J K wth n [ ] [ ] k f k + k g k k g k = ε k [ ] ( ) ( ) ( ) ψ H ψ = f + n n g g E( ψ k ( ) = 0 (and fozen obtal appoxmaton) ) = f + n n J K E ( ( )) ( ) E ( ) ψ ψ = ε n: occupaton numbes ( n = 0) k summaton ove - sngle-patcle states k 3

114 E (3) () ( ψ ) E( ψ n = 0) = ε = λ E ( ) ( ( )) ( ) E ψ ψ = ε = λ ( n = 0) k k kk Tallng C.Koopmans Physca 04 (934) Hans Kames s student The Sveges Rksbank Pze n Economc Scences n Memoy of Alfed obel 975 4

115 Does the HF equaton look lke an egen-value equaton? Is t and egenvalue poblem? f( ) u ( ) + u ( ) dv u u m m u u = ε u HF equaton ( ) ( ) ( ) δ ( s, s ) ( ) ( ) u ( ) + f( ) u ( ) dv u ( ) u ( ) δ u ( ) u ( ) ( ) ( ms, m ) ( ) s dv u = ε u ( ) 5

116 u ( ) + J f( ) u ( ) dv u ( ) u ( ) u ( ) u ( ) δ( m, m ) dv u ( ) = u s s ε Multply by χ ζ, m s u ( ) f( ) u ( q ) dv u ( ) u ( q ) + J ( ) ( ) u ( ) u ( ) δ( m, m ) dv u ( ) χ ζ = ε u q s s s, m ( ) ( ) 6

117 u ( ) f( ) u ( q ) dv u ( ) u ( q ) + u ( ) u ( ) δ( m, m ) dv u ( ) χ ζ = ε u q s s s, m ( ) ( ) dect u ( ) ( ) q u q coulomb m V ( q) = dq s ζ ζ ms = ζ u ( ) ( ) u dect V ( q) u( q) = dv u( q) dect f( ) u ( q ) + V ( q ) u ( q ) u ( ) u ( ) δ( m, m ) dv u ( ) χ ζ = ε u q s s s, m ( ) ( ) 7

118 f( ) u ( q ) + V ( q ) u ( q ) dect u ( ) u ( ) δ( m, m ) dv u ( ) χ ζ = ε u q s s s, m u ( ) ( ) q φ q exchange V ( q) φ ( q) = dq u ( q) u ( ) ( ) q u q exchange V ( q) u( q) = dq u ( q) ζ m ζ ζ m = δ m, s s s s ( ) ( ) u ( ) ( ) u ex V ( q) u( q) = δ m, ( ) ( ) s m dv u χ ζ s, m s m 8

119 f( ) u ( q ) + V ( q ) u ( q ) dect u ( ) ( ) u δ( ms, m ) ( ) ( ) = ( ) s dv u χ ζ ε u q, m s u ( ) ( ) u ex V ( q) u( q) = δ m, ( ) ( ) s m dv u χ ζ s, m s u ( ) ( ) u ex V ( q) u( q) = δ m, ( ) ( ) s m dv u χ ζ s, m s f ( ) u ( q ) + V ( q ) u ( q ) V ( q ) u ( q ) = ε u q ( ) dect ex f ( ) u ( q ) + V u ( q ) V u ( q ) = ε u q ( ) d ex f ( ) u ( q ) + V u ( q ) = ε u q ( ) HF deceptvely smple - Bansden & Joachan 9

120 T C.Koopmans Physca 04 (934) Fozen Obtal Appoxmaton E ( ) ( ( )) ( ) E ψ ψ = ε = λ ( n = 0) What s the physcal meanng of the Lagange multples? How does the HF SCF fomalsm connect to obsevables? Ionzaton enegy : Electon spectoscopy fo chemcal analyss ESCA Chemcal shfts Ka Manne Böe Segbahn 98 obel pze fo fo ESCA (XPS/PES/UVPES) - wth Bloembegen and Schawlow fo Lase Spectoscopy k k kk 0

121 Beyond the Hatee-Fock. Relatvstc effects. Begn wth Dac eq., athe than Schodnge Dac-Hatee-Fock. - Johnson, Desclaux, Gant Beyong the IPA: - ndependent patcle appoxmaton -sngle patcle models - Include many body (many-electon) coelatons

122 Electon Coelatons [] Exchange / Fem-Dac / Statstcal HF / DF [] Coulomb Coelatons MCHF / MCDF / CI / MBPT / RPA / RRPA / RRPA-R.. nd Quantzaton Methods: most convenent E(HF/DHF) E(Gound State) Coelaton Enegy

123 Hatee and Hatee Fock / Slate 3

124 f ( ) u ( q ) + V u ( q ) = ε u q Hatee-Fock-Dac SCF coupled ntego-dffeental equatons Two component : Fou u ( ) ( ) q = u χ ( ζ), m u s ( q) 0 ( ) o ( ) Ω ˆ κm u 0 u ( ) HF m m ' ' s, m' = m s s = Component G () () ˆ nκ Ωκm = () () ˆ Fnκ Ω κm ( ) : supepostons of two-component Paul spnos χζ ( ) defnton ˆ Ω = Y () χ ( ζ) m m m m Unt 3, Slde numbes 76-8 Relatvstc SCF: DHF Sphecal Hamonc Spnos Ωm 4

125 Sphecal Hamonc Spnos fo = Ωm fo = + + m Y () ˆ =, m ' = m Ω m = m Y () ˆ =, m ' = m+ m+ Y () ˆ + =+, m ' = m Ω m = + m+ Y () ˆ + =+, m ' = m+ August Septembe 0 PCD STAP Unt 3 slde no.80 5

126 f( ) u ( q ) + V ( q ) u ( q ) dect u ( ) u ( ) δ( m, m ) dv u ( ) χ ζ = ε u q s s s, m f ( ) u ( q ) + V u ( q ) V u ( q ) = ε u q ( ) d ex ( ) ( ) u ( ) ( ) u dect V ( q) u( q) = dv u( q) u ( ) ( ) ex u V ( q) u( q) = δ m, ( ) ( ) s m dv u χ ζ s, m s Local densty Local Densty Appoxmaton to exchange - John C. Slate (LDA) LDA=? X appox 6

127 Alex Dalgaano Havad-Smthsonan Cente fo Astophyscs Ugo Fano 9-00 ext: Unt 5 SPECTROSCOPY... M.J.Seaton Much of atomc and molecula physcs today s about the study of ELECTRO CORRELATIOS, RELATIVISTIC EFFECTS n spectoscopy, collson dynamcs,. Questons: pcd@physcs.tm.ac.c Jan Lndebeg Unvesty of Aahus Walte R Johnson Unv. of ote Dame 7

Slide 1. Quantum Mechanics: the Practice

Slide 1. Quantum Mechanics: the Practice Slde Quantum Mecancs: te Pactce Slde Remnde: Electons As Waves Wavelengt momentum = Planck? λ p = = 6.6 x 0-34 J s Te wave s an exctaton a vbaton: We need to know te ampltude of te exctaton at evey pont

More information

Density Functional Theory I

Density Functional Theory I Densty Functonal Theoy I cholas M. Hason Depatment of Chemsty Impeal College Lonon & Computatonal Mateals Scence Daesbuy Laboatoy ncholas.hason@c.ac.uk Densty Functonal Theoy I The Many Electon Schönge

More information

THE MANY-BODY PROBLEM

THE MANY-BODY PROBLEM 3.30: Lectue 5 Feb 5 005 THE MANY-BODY PROBLEM Feb 5 005 3.30 Atomstc Modelng of Mateals -- Geband Cede and Ncola Maza When s a patcle lke a wave? Wavelength momentum = Planck λ p = h h = 6.6 x 0-34 J

More information

E For K > 0. s s s s Fall Physical Chemistry (II) by M. Lim. singlet. triplet

E For K > 0. s s s s Fall Physical Chemistry (II) by M. Lim. singlet. triplet Eneges of He electonc ψ E Fo K > 0 ψ = snglet ( )( ) s s+ ss αβ E βα snglet = ε + ε + J s + Ks Etplet = ε + ε + J s Ks αα ψ tplet = ( s s ss ) ββ ( αβ + βα ) s s s s s s s s ψ G = ss( αβ βα ) E = ε + ε

More information

19 The Born-Oppenheimer Approximation

19 The Born-Oppenheimer Approximation 9 The Bon-Oppenheme Appoxmaton The full nonelatvstc Hamltonan fo a molecule s gven by (n a.u.) Ĥ = A M A A A, Z A + A + >j j (883) Lets ewte the Hamltonan to emphasze the goal as Ĥ = + A A A, >j j M A

More information

Complex atoms and the Periodic System of the elements

Complex atoms and the Periodic System of the elements Complex atoms and the Peodc System of the elements Non-cental foces due to electon epulson Cental feld appoxmaton electonc obtals lft degeneacy of l E n l = R( hc) ( n δ ) l Aufbau pncple Lectue Notes

More information

Energy in Closed Systems

Energy in Closed Systems Enegy n Closed Systems Anamta Palt palt.anamta@gmal.com Abstact The wtng ndcates a beakdown of the classcal laws. We consde consevaton of enegy wth a many body system n elaton to the nvese squae law and

More information

24-2: Electric Potential Energy. 24-1: What is physics

24-2: Electric Potential Energy. 24-1: What is physics D. Iyad SAADEDDIN Chapte 4: Electc Potental Electc potental Enegy and Electc potental Calculatng the E-potental fom E-feld fo dffeent chage dstbutons Calculatng the E-feld fom E-potental Potental of a

More information

Mechanics Physics 151

Mechanics Physics 151 Mechancs Physcs 151 Lectue 18 Hamltonan Equatons of Moton (Chapte 8) What s Ahead We ae statng Hamltonan fomalsm Hamltonan equaton Today and 11/6 Canoncal tansfomaton 1/3, 1/5, 1/10 Close lnk to non-elatvstc

More information

Thermodynamics of solids 4. Statistical thermodynamics and the 3 rd law. Kwangheon Park Kyung Hee University Department of Nuclear Engineering

Thermodynamics of solids 4. Statistical thermodynamics and the 3 rd law. Kwangheon Park Kyung Hee University Department of Nuclear Engineering Themodynamcs of solds 4. Statstcal themodynamcs and the 3 d law Kwangheon Pak Kyung Hee Unvesty Depatment of Nuclea Engneeng 4.1. Intoducton to statstcal themodynamcs Classcal themodynamcs Statstcal themodynamcs

More information

Electron density: Properties of electron density (non-negative): => exchange-correlation functionals should respect these conditions.

Electron density: Properties of electron density (non-negative): => exchange-correlation functionals should respect these conditions. lecton densty: ρ ( =... Ψ(,,..., ds d... d Pobablty of fndng one electon of abtay spn wthn a volume element d (othe electons may be anywhee. s Popetes of electon densty (non-negatve:.. 3. ρ ( d = ρ( =

More information

Set of square-integrable function 2 L : function space F

Set of square-integrable function 2 L : function space F Set of squae-ntegable functon L : functon space F Motvaton: In ou pevous dscussons we have seen that fo fee patcles wave equatons (Helmholt o Schödnge) can be expessed n tems of egenvalue equatons. H E,

More information

THE TIME-DEPENDENT CLOSE-COUPLING METHOD FOR ELECTRON-IMPACT DIFFERENTIAL IONIZATION CROSS SECTIONS FOR ATOMS AND MOLECULES

THE TIME-DEPENDENT CLOSE-COUPLING METHOD FOR ELECTRON-IMPACT DIFFERENTIAL IONIZATION CROSS SECTIONS FOR ATOMS AND MOLECULES Intenatonal The Tme-Dependent cence Pess Close-Couplng IN: 9-59 Method fo Electon-Impact Dffeental Ionzaton Coss ectons fo Atoms... REVIEW ARTICE THE TIME-DEPENDENT COE-COUPING METHOD FOR EECTRON-IMPACT

More information

Chapter 23: Electric Potential

Chapter 23: Electric Potential Chapte 23: Electc Potental Electc Potental Enegy It tuns out (won t show ths) that the tostatc foce, qq 1 2 F ˆ = k, s consevatve. 2 Recall, fo any consevatve foce, t s always possble to wte the wok done

More information

Physics 11b Lecture #2. Electric Field Electric Flux Gauss s Law

Physics 11b Lecture #2. Electric Field Electric Flux Gauss s Law Physcs 11b Lectue # Electc Feld Electc Flux Gauss s Law What We Dd Last Tme Electc chage = How object esponds to electc foce Comes n postve and negatve flavos Conseved Electc foce Coulomb s Law F Same

More information

Chapter Fifiteen. Surfaces Revisited

Chapter Fifiteen. Surfaces Revisited Chapte Ffteen ufaces Revsted 15.1 Vecto Descpton of ufaces We look now at the vey specal case of functons : D R 3, whee D R s a nce subset of the plane. We suppose s a nce functon. As the pont ( s, t)

More information

Physics 2A Chapter 11 - Universal Gravitation Fall 2017

Physics 2A Chapter 11 - Universal Gravitation Fall 2017 Physcs A Chapte - Unvesal Gavtaton Fall 07 hese notes ae ve pages. A quck summay: he text boxes n the notes contan the esults that wll compse the toolbox o Chapte. hee ae thee sectons: the law o gavtaton,

More information

Integral Vector Operations and Related Theorems Applications in Mechanics and E&M

Integral Vector Operations and Related Theorems Applications in Mechanics and E&M Dola Bagayoko (0) Integal Vecto Opeatons and elated Theoems Applcatons n Mechancs and E&M Ι Basc Defnton Please efe to you calculus evewed below. Ι, ΙΙ, andιιι notes and textbooks fo detals on the concepts

More information

A. Thicknesses and Densities

A. Thicknesses and Densities 10 Lab0 The Eath s Shells A. Thcknesses and Denstes Any theoy of the nteo of the Eath must be consstent wth the fact that ts aggegate densty s 5.5 g/cm (ecall we calculated ths densty last tme). In othe

More information

A how to guide to second quantization method.

A how to guide to second quantization method. Phys. 67 (Graduate Quantum Mechancs Sprng 2009 Prof. Pu K. Lam. Verson 3 (4/3/2009 A how to gude to second quantzaton method. -> Second quantzaton s a mathematcal notaton desgned to handle dentcal partcle

More information

P 365. r r r )...(1 365

P 365. r r r )...(1 365 SCIENCE WORLD JOURNAL VOL (NO4) 008 www.scecncewoldounal.og ISSN 597-64 SHORT COMMUNICATION ANALYSING THE APPROXIMATION MODEL TO BIRTHDAY PROBLEM *CHOJI, D.N. & DEME, A.C. Depatment of Mathematcs Unvesty

More information

8 Baire Category Theorem and Uniform Boundedness

8 Baire Category Theorem and Uniform Boundedness 8 Bae Categoy Theoem and Unfom Boundedness Pncple 8.1 Bae s Categoy Theoem Valdty of many esults n analyss depends on the completeness popety. Ths popety addesses the nadequacy of the system of atonal

More information

Test 1 phy What mass of a material with density ρ is required to make a hollow spherical shell having inner radius r i and outer radius r o?

Test 1 phy What mass of a material with density ρ is required to make a hollow spherical shell having inner radius r i and outer radius r o? Test 1 phy 0 1. a) What s the pupose of measuement? b) Wte all fou condtons, whch must be satsfed by a scala poduct. (Use dffeent symbols to dstngush opeatons on ectos fom opeatons on numbes.) c) What

More information

PHYS 705: Classical Mechanics. Derivation of Lagrange Equations from D Alembert s Principle

PHYS 705: Classical Mechanics. Derivation of Lagrange Equations from D Alembert s Principle 1 PHYS 705: Classcal Mechancs Devaton of Lagange Equatons fom D Alembet s Pncple 2 D Alembet s Pncple Followng a smla agument fo the vtual dsplacement to be consstent wth constants,.e, (no vtual wok fo

More information

Lecture 10: Condensed matter systems

Lecture 10: Condensed matter systems Lectue 0: Codesed matte systems Itoducg matte ts codesed state.! Ams: " Idstgushable patcles ad the quatum atue of matte: # Cosequeces # Revew of deal gas etopy # Femos ad Bosos " Quatum statstcs. # Occupato

More information

gravity r2,1 r2 r1 by m 2,1

gravity r2,1 r2 r1 by m 2,1 Gavtaton Many of the foundatons of classcal echancs wee fst dscoveed when phlosophes (ealy scentsts and atheatcans) ted to explan the oton of planets and stas. Newton s ost faous fo unfyng the oton of

More information

ON THE FRESNEL SINE INTEGRAL AND THE CONVOLUTION

ON THE FRESNEL SINE INTEGRAL AND THE CONVOLUTION IJMMS 3:37, 37 333 PII. S16117131151 http://jmms.hndaw.com Hndaw Publshng Cop. ON THE FRESNEL SINE INTEGRAL AND THE CONVOLUTION ADEM KILIÇMAN Receved 19 Novembe and n evsed fom 7 Mach 3 The Fesnel sne

More information

A Brief Guide to Recognizing and Coping With Failures of the Classical Regression Assumptions

A Brief Guide to Recognizing and Coping With Failures of the Classical Regression Assumptions A Bef Gude to Recognzng and Copng Wth Falues of the Classcal Regesson Assumptons Model: Y 1 k X 1 X fxed n epeated samples IID 0, I. Specfcaton Poblems A. Unnecessay explanatoy vaables 1. OLS s no longe

More information

Part V: Velocity and Acceleration Analysis of Mechanisms

Part V: Velocity and Acceleration Analysis of Mechanisms Pat V: Velocty an Acceleaton Analyss of Mechansms Ths secton wll evew the most common an cuently pactce methos fo completng the knematcs analyss of mechansms; escbng moton though velocty an acceleaton.

More information

Solving the Dirac Equation: Using Fourier Transform

Solving the Dirac Equation: Using Fourier Transform McNa Schola Reeach Jounal Volume Atcle Solvng the ac quaton: Ung oue Tanfom Vncent P. Bell mby-rddle Aeonautcal Unvety, Vncent.Bell@my.eau.edu ollow th and addtonal wok at: http://common.eau.edu/na Recommended

More information

CSJM University Class: B.Sc.-II Sub:Physics Paper-II Title: Electromagnetics Unit-1: Electrostatics Lecture: 1 to 4

CSJM University Class: B.Sc.-II Sub:Physics Paper-II Title: Electromagnetics Unit-1: Electrostatics Lecture: 1 to 4 CSJM Unvesty Class: B.Sc.-II Sub:Physcs Pape-II Ttle: Electomagnetcs Unt-: Electostatcs Lectue: to 4 Electostatcs: It deals the study of behavo of statc o statonay Chages. Electc Chage: It s popety by

More information

PHYS Week 5. Reading Journals today from tables. WebAssign due Wed nite

PHYS Week 5. Reading Journals today from tables. WebAssign due Wed nite PHYS 015 -- Week 5 Readng Jounals today fom tables WebAssgn due Wed nte Fo exclusve use n PHYS 015. Not fo e-dstbuton. Some mateals Copyght Unvesty of Coloado, Cengage,, Peason J. Maps. Fundamental Tools

More information

Machine Learning. Spectral Clustering. Lecture 23, April 14, Reading: Eric Xing 1

Machine Learning. Spectral Clustering. Lecture 23, April 14, Reading: Eric Xing 1 Machne Leanng -7/5 7/5-78, 78, Spng 8 Spectal Clusteng Ec Xng Lectue 3, pl 4, 8 Readng: Ec Xng Data Clusteng wo dffeent ctea Compactness, e.g., k-means, mxtue models Connectvty, e.g., spectal clusteng

More information

Generating Functions, Weighted and Non-Weighted Sums for Powers of Second-Order Recurrence Sequences

Generating Functions, Weighted and Non-Weighted Sums for Powers of Second-Order Recurrence Sequences Geneatng Functons, Weghted and Non-Weghted Sums fo Powes of Second-Ode Recuence Sequences Pantelmon Stăncă Aubun Unvesty Montgomey, Depatment of Mathematcs Montgomey, AL 3614-403, USA e-mal: stanca@studel.aum.edu

More information

Supersymmetry in Disorder and Chaos (Random matrices, physics of compound nuclei, mathematics of random processes)

Supersymmetry in Disorder and Chaos (Random matrices, physics of compound nuclei, mathematics of random processes) Supesymmety n Dsoe an Chaos Ranom matces physcs of compoun nucle mathematcs of anom pocesses Lteatue: K.B. Efetov Supesymmety n Dsoe an Chaos Cambge Unvesty Pess 997999 Supesymmety an Tace Fomulae I.V.

More information

Event Shape Update. T. Doyle S. Hanlon I. Skillicorn. A. Everett A. Savin. Event Shapes, A. Everett, U. Wisconsin ZEUS Meeting, October 15,

Event Shape Update. T. Doyle S. Hanlon I. Skillicorn. A. Everett A. Savin. Event Shapes, A. Everett, U. Wisconsin ZEUS Meeting, October 15, Event Shape Update A. Eveett A. Savn T. Doyle S. Hanlon I. Skllcon Event Shapes, A. Eveett, U. Wsconsn ZEUS Meetng, Octobe 15, 2003-1 Outlne Pogess of Event Shapes n DIS Smla to publshed pape: Powe Coecton

More information

Contact, information, consultations

Contact, information, consultations ontact, nfomaton, consultatons hemsty A Bldg; oom 07 phone: 058-347-769 cellula: 664 66 97 E-mal: wojtek_c@pg.gda.pl Offce hous: Fday, 9-0 a.m. A quote of the week (o camel of the week): hee s no expedence

More information

4 SingularValue Decomposition (SVD)

4 SingularValue Decomposition (SVD) /6/00 Z:\ jeh\self\boo Kannan\Jan-5-00\4 SVD 4 SngulaValue Decomposton (SVD) Chapte 4 Pat SVD he sngula value decomposton of a matx s the factozaton of nto the poduct of thee matces = UDV whee the columns

More information

UNIT10 PLANE OF REGRESSION

UNIT10 PLANE OF REGRESSION UIT0 PLAE OF REGRESSIO Plane of Regesson Stuctue 0. Intoducton Ojectves 0. Yule s otaton 0. Plane of Regesson fo thee Vaales 0.4 Popetes of Resduals 0.5 Vaance of the Resduals 0.6 Summay 0.7 Solutons /

More information

COMPLEMENTARY ENERGY METHOD FOR CURVED COMPOSITE BEAMS

COMPLEMENTARY ENERGY METHOD FOR CURVED COMPOSITE BEAMS ultscence - XXX. mcocd Intenatonal ultdscplnay Scentfc Confeence Unvesty of skolc Hungay - pl 06 ISBN 978-963-358-3- COPLEENTRY ENERGY ETHOD FOR CURVED COPOSITE BES Ákos József Lengyel István Ecsed ssstant

More information

Chapter I Matrices, Vectors, & Vector Calculus 1-1, 1-9, 1-10, 1-11, 1-17, 1-18, 1-25, 1-27, 1-36, 1-37, 1-41.

Chapter I Matrices, Vectors, & Vector Calculus 1-1, 1-9, 1-10, 1-11, 1-17, 1-18, 1-25, 1-27, 1-36, 1-37, 1-41. Chapte I Matces, Vectos, & Vecto Calculus -, -9, -0, -, -7, -8, -5, -7, -36, -37, -4. . Concept of a Scala Consde the aa of patcles shown n the fgue. he mass of the patcle at (,) can be epessed as. M (,

More information

Applied Statistical Mechanics Lecture Note - 13 Molecular Dynamics Simulation

Applied Statistical Mechanics Lecture Note - 13 Molecular Dynamics Simulation Appled Statstcal Mechancs Lectue Note - 3 Molecula Dynamcs Smulaton 고려대학교화공생명공학과강정원 Contents I. Basc Molecula Dynamcs Smulaton Method II. Popetes Calculatons n MD III. MD n Othe Ensembles I. Basc MD Smulaton

More information

Distinct 8-QAM+ Perfect Arrays Fanxin Zeng 1, a, Zhenyu Zhang 2,1, b, Linjie Qian 1, c

Distinct 8-QAM+ Perfect Arrays Fanxin Zeng 1, a, Zhenyu Zhang 2,1, b, Linjie Qian 1, c nd Intenatonal Confeence on Electcal Compute Engneeng and Electoncs (ICECEE 15) Dstnct 8-QAM+ Pefect Aays Fanxn Zeng 1 a Zhenyu Zhang 1 b Lnje Qan 1 c 1 Chongqng Key Laboatoy of Emegency Communcaton Chongqng

More information

Stellar Astrophysics. dt dr. GM r. The current model for treating convection in stellar interiors is called mixing length theory:

Stellar Astrophysics. dt dr. GM r. The current model for treating convection in stellar interiors is called mixing length theory: Stella Astophyscs Ovevew of last lectue: We connected the mean molecula weght to the mass factons X, Y and Z: 1 1 1 = X + Y + μ 1 4 n 1 (1 + 1) = X μ 1 1 A n Z (1 + ) + Y + 4 1+ z A Z We ntoduced the pessue

More information

V. Principles of Irreversible Thermodynamics. s = S - S 0 (7.3) s = = - g i, k. "Flux": = da i. "Force": = -Â g a ik k = X i. Â J i X i (7.

V. Principles of Irreversible Thermodynamics. s = S - S 0 (7.3) s = = - g i, k. Flux: = da i. Force: = -Â g a ik k = X i. Â J i X i (7. Themodynamcs and Knetcs of Solds 71 V. Pncples of Ievesble Themodynamcs 5. Onsage s Teatment s = S - S 0 = s( a 1, a 2,...) a n = A g - A n (7.6) Equlbum themodynamcs detemnes the paametes of an equlbum

More information

SOME NEW SELF-DUAL [96, 48, 16] CODES WITH AN AUTOMORPHISM OF ORDER 15. KEYWORDS: automorphisms, construction, self-dual codes

SOME NEW SELF-DUAL [96, 48, 16] CODES WITH AN AUTOMORPHISM OF ORDER 15. KEYWORDS: automorphisms, construction, self-dual codes Факултет по математика и информатика, том ХVІ С, 014 SOME NEW SELF-DUAL [96, 48, 16] CODES WITH AN AUTOMORPHISM OF ORDER 15 NIKOLAY I. YANKOV ABSTRACT: A new method fo constuctng bnay self-dual codes wth

More information

Lecture 22 Electroweak Unification

Lecture 22 Electroweak Unification Lectue 22 Electoweak Unfcaton Chal emons EW unfcaton Hggs patcle hyscs 424 Lectue 22 age 1 2 Obstacles to Electoweak Unfcaton Electomagnetsm and the weak foce ae exactly the same, only dffeent... 1. Whle

More information

Multipole Radiation. March 17, 2014

Multipole Radiation. March 17, 2014 Multpole Radaton Mach 7, 04 Zones We wll see that the poblem of hamonc adaton dvdes nto thee appoxmate egons, dependng on the elatve magntudes of the dstance of the obsevaton pont,, and the wavelength,

More information

Dynamics of Rigid Bodies

Dynamics of Rigid Bodies Dynamcs of Rgd Bodes A gd body s one n whch the dstances between consttuent patcles s constant thoughout the moton of the body,.e. t keeps ts shape. Thee ae two knds of gd body moton: 1. Tanslatonal Rectlnea

More information

Large scale magnetic field generation by accelerated particles in galactic medium

Large scale magnetic field generation by accelerated particles in galactic medium Lage scale magnetc feld geneaton by acceleated patcles n galactc medum I.N.Toptygn Sant Petesbug State Polytechncal Unvesty, depatment of Theoetcal Physcs, Sant Petesbug, Russa 2.Reason explonatons The

More information

Khintchine-Type Inequalities and Their Applications in Optimization

Khintchine-Type Inequalities and Their Applications in Optimization Khntchne-Type Inequaltes and The Applcatons n Optmzaton Anthony Man-Cho So Depatment of Systems Engneeng & Engneeng Management The Chnese Unvesty of Hong Kong ISDS-Kolloquum Unvestaet Wen 29 June 2009

More information

Rotational Kinematics. Rigid Object about a Fixed Axis Western HS AP Physics 1

Rotational Kinematics. Rigid Object about a Fixed Axis Western HS AP Physics 1 Rotatonal Knematcs Rgd Object about a Fxed Axs Westen HS AP Physcs 1 Leanng Objectes What we know Unfom Ccula Moton q s Centpetal Acceleaton : Centpetal Foce: Non-unfom a F c c m F F F t m ma t What we

More information

Physics 1501 Lecture 19

Physics 1501 Lecture 19 Physcs 1501 ectue 19 Physcs 1501: ectue 19 Today s Agenda Announceents HW#7: due Oct. 1 Mdte 1: aveage 45 % Topcs otatonal Kneatcs otatonal Enegy Moents of Ineta Physcs 1501: ectue 19, Pg 1 Suay (wth copason

More information

The Feynman path integral

The Feynman path integral The Feynman path ntegral Aprl 3, 205 Hesenberg and Schrödnger pctures The Schrödnger wave functon places the tme dependence of a physcal system n the state, ψ, t, where the state s a vector n Hlbert space

More information

ALL QUESTIONS ARE WORTH 20 POINTS. WORK OUT FIVE PROBLEMS.

ALL QUESTIONS ARE WORTH 20 POINTS. WORK OUT FIVE PROBLEMS. GNRAL PHYSICS PH -3A (D. S. Mov) Test (/3/) key STUDNT NAM: STUDNT d #: -------------------------------------------------------------------------------------------------------------------------------------------

More information

3. A Review of Some Existing AW (BT, CT) Algorithms

3. A Review of Some Existing AW (BT, CT) Algorithms 3. A Revew of Some Exstng AW (BT, CT) Algothms In ths secton, some typcal ant-wndp algothms wll be descbed. As the soltons fo bmpless and condtoned tansfe ae smla to those fo ant-wndp, the pesented algothms

More information

Rigid Bodies: Equivalent Systems of Forces

Rigid Bodies: Equivalent Systems of Forces Engneeng Statcs, ENGR 2301 Chapte 3 Rgd Bodes: Equvalent Sstems of oces Intoducton Teatment of a bod as a sngle patcle s not alwas possble. In geneal, the se of the bod and the specfc ponts of applcaton

More information

Review. Physics 231 fall 2007

Review. Physics 231 fall 2007 Reew Physcs 3 all 7 Man ssues Knematcs - moton wth constant acceleaton D moton, D pojectle moton, otatonal moton Dynamcs (oces) Enegy (knetc and potental) (tanslatonal o otatonal moton when detals ae not

More information

Groupoid and Topological Quotient Group

Groupoid and Topological Quotient Group lobal Jounal of Pue and Appled Mathematcs SSN 0973-768 Volume 3 Numbe 7 07 pp 373-39 Reseach nda Publcatons http://wwwpublcatoncom oupod and Topolocal Quotent oup Mohammad Qasm Manna Depatment of Mathematcs

More information

Correspondence Analysis & Related Methods

Correspondence Analysis & Related Methods Coespondence Analyss & Related Methods Ineta contbutons n weghted PCA PCA s a method of data vsualzaton whch epesents the tue postons of ponts n a map whch comes closest to all the ponts, closest n sense

More information

Many Electron Atoms. Electrons can be put into approximate orbitals and the properties of the many electron systems can be catalogued

Many Electron Atoms. Electrons can be put into approximate orbitals and the properties of the many electron systems can be catalogued Many Electon Atoms The many body poblem cannot be solved analytically. We content ouselves with developing appoximate methods that can yield quite accuate esults (but usually equie a compute). The electons

More information

763622S ADVANCED QUANTUM MECHANICS Solution Set 1 Spring c n a n. c n 2 = 1.

763622S ADVANCED QUANTUM MECHANICS Solution Set 1 Spring c n a n. c n 2 = 1. 7636S ADVANCED QUANTUM MECHANICS Soluton Set 1 Sprng 013 1 Warm-up Show that the egenvalues of a Hermtan operator  are real and that the egenkets correspondng to dfferent egenvalues are orthogonal (b)

More information

3.1 Electrostatic Potential Energy and Potential Difference

3.1 Electrostatic Potential Energy and Potential Difference 3. lectostatc Potental negy and Potental Dffeence RMMR fom mechancs: - The potental enegy can be defned fo a system only f consevatve foces act between ts consttuents. - Consevatve foces may depend only

More information

Physics Exam II Chapters 25-29

Physics Exam II Chapters 25-29 Physcs 114 1 Exam II Chaptes 5-9 Answe 8 of the followng 9 questons o poblems. Each one s weghted equally. Clealy mak on you blue book whch numbe you do not want gaded. If you ae not sue whch one you do

More information

Physics 207 Lecture 16

Physics 207 Lecture 16 Physcs 07 Lectue 6 Goals: Lectue 6 Chapte Extend the patcle odel to gd-bodes Undestand the equlbu of an extended object. Analyze ollng oton Undestand otaton about a fxed axs. Eploy consevaton of angula

More information

PHY688, Statistical Mechanics

PHY688, Statistical Mechanics Department of Physcs & Astronomy 449 ESS Bldg. Stony Brook Unversty January 31, 2017 Nuclear Astrophyscs James.Lattmer@Stonybrook.edu Thermodynamcs Internal Energy Densty and Frst Law: ε = E V = Ts P +

More information

Complementi di Fisica Lecture 19

Complementi di Fisica Lecture 19 Complement d Fsca Lectue 9 Lvo Lance Unvestà d Teste Teste, 0--04 Couse Outlne - Remnde The phscs of semconducto devces: an ntoducton Quantum Mechancs: an ntoducton just a few moe comments on: (3-d) Hdogen

More information

Chapter 8. Linear Momentum, Impulse, and Collisions

Chapter 8. Linear Momentum, Impulse, and Collisions Chapte 8 Lnea oentu, Ipulse, and Collsons 8. Lnea oentu and Ipulse The lnea oentu p of a patcle of ass ovng wth velocty v s defned as: p " v ote that p s a vecto that ponts n the sae decton as the velocty

More information

Professor Wei Zhu. 1. Sampling from the Normal Population

Professor Wei Zhu. 1. Sampling from the Normal Population AMS570 Pofesso We Zhu. Samplg fom the Nomal Populato *Example: We wsh to estmate the dstbuto of heghts of adult US male. It s beleved that the heght of adult US male follows a omal dstbuto N(, ) Def. Smple

More information

1. A body will remain in a state of rest, or of uniform motion in a straight line unless it

1. A body will remain in a state of rest, or of uniform motion in a straight line unless it Pncples of Dnamcs: Newton's Laws of moton. : Foce Analss 1. A bod wll eman n a state of est, o of unfom moton n a staght lne unless t s acted b etenal foces to change ts state.. The ate of change of momentum

More information

where the sums are over the partcle labels. In general H = p2 2m + V s(r ) V j = V nt (jr, r j j) (5) where V s s the sngle-partcle potental and V nt

where the sums are over the partcle labels. In general H = p2 2m + V s(r ) V j = V nt (jr, r j j) (5) where V s s the sngle-partcle potental and V nt Physcs 543 Quantum Mechancs II Fall 998 Hartree-Fock and the Self-consstent Feld Varatonal Methods In the dscusson of statonary perturbaton theory, I mentoned brey the dea of varatonal approxmaton schemes.

More information

The Greatest Deviation Correlation Coefficient and its Geometrical Interpretation

The Greatest Deviation Correlation Coefficient and its Geometrical Interpretation By Rudy A. Gdeon The Unvesty of Montana The Geatest Devaton Coelaton Coeffcent and ts Geometcal Intepetaton The Geatest Devaton Coelaton Coeffcent (GDCC) was ntoduced by Gdeon and Hollste (987). The GDCC

More information

Physics 202, Lecture 2. Announcements

Physics 202, Lecture 2. Announcements Physcs 202, Lectue 2 Today s Topcs Announcements Electc Felds Moe on the Electc Foce (Coulomb s Law The Electc Feld Moton of Chaged Patcles n an Electc Feld Announcements Homewok Assgnment #1: WebAssgn

More information

Remember: When an object falls due to gravity its potential energy decreases.

Remember: When an object falls due to gravity its potential energy decreases. Chapte 5: lectc Potental As mentoned seveal tmes dung the uate Newton s law o gavty and Coulomb s law ae dentcal n the mathematcal om. So, most thngs that ae tue o gavty ae also tue o electostatcs! Hee

More information

A Scheme for Calculating Atomic Structures beyond the Spherical Approximation

A Scheme for Calculating Atomic Structures beyond the Spherical Approximation Jounal of Moden Physcs,,, 4-4 do:.46/jmp..55 Publshed Onlne May (http://www.crp.og/jounal/jmp) A cheme fo Calculatng Atomc tuctues beyond the phecal Appoxmaton Abstact Mtyasu Myasta, Katsuhko Hguch, Masahko

More information

Scalars and Vectors Scalar

Scalars and Vectors Scalar Scalas and ectos Scala A phscal quantt that s completel chaacteed b a eal numbe (o b ts numecal value) s called a scala. In othe wods a scala possesses onl a magntude. Mass denst volume tempeatue tme eneg

More information

Lecture 7: Angular Momentum, Hydrogen Atom

Lecture 7: Angular Momentum, Hydrogen Atom Lectue 7: Angula Momentum, Hydogen Atom Vecto Quantization of Angula Momentum and Nomalization of 3D Rigid Roto wavefunctions Conside l, so L 2 2 2. Thus, we have L 2. Thee ae thee possibilities fo L z

More information

Multistage Median Ranked Set Sampling for Estimating the Population Median

Multistage Median Ranked Set Sampling for Estimating the Population Median Jounal of Mathematcs and Statstcs 3 (: 58-64 007 ISSN 549-3644 007 Scence Publcatons Multstage Medan Ranked Set Samplng fo Estmatng the Populaton Medan Abdul Azz Jeman Ame Al-Oma and Kamaulzaman Ibahm

More information

iclicker Quiz a) True b) False Theoretical physics: the eternal quest for a missing minus sign and/or a factor of two. Which will be an issue today?

iclicker Quiz a) True b) False Theoretical physics: the eternal quest for a missing minus sign and/or a factor of two. Which will be an issue today? Clce Quz I egsteed my quz tansmtte va the couse webste (not on the clce.com webste. I ealze that untl I do so, my quz scoes wll not be ecoded. a Tue b False Theoetcal hyscs: the etenal quest fo a mssng

More information

The quasi-gaussian entropy theory: Free energy calculations based on the potential energy distribution function

The quasi-gaussian entropy theory: Free energy calculations based on the potential energy distribution function The quas-gaussan entopy theoy: Fee enegy calculatons based on the potental enegy dstbuton functon A. Amade, M. E. F. Apol, A. D Nola, a) and H. J. C. Beendsen Gonngen Bomolecula Scences and Botechnology

More information

4D N = 1 Supersymmetric Yang-Mills Theories on Kahler-Ricci Soliton

4D N = 1 Supersymmetric Yang-Mills Theories on Kahler-Ricci Soliton Jounal of Mathematcs and Statstcs (4): 44-445, 0 ISSN 549-3644 0 Scence Publcatons do:0.344/mssp.0.44.445 Publshed Onlne (4) 0 (http://www.thescpub.com/mss.toc) 4D N = Supesymmetc Yang-Mlls Theoes on Kahle-Rcc

More information

Tian Zheng Department of Statistics Columbia University

Tian Zheng Department of Statistics Columbia University Haplotype Tansmsson Assocaton (HTA) An "Impotance" Measue fo Selectng Genetc Makes Tan Zheng Depatment of Statstcs Columba Unvesty Ths s a jont wok wth Pofesso Shaw-Hwa Lo n the Depatment of Statstcs at

More information

Learning the structure of Bayesian belief networks

Learning the structure of Bayesian belief networks Lectue 17 Leanng the stuctue of Bayesan belef netwoks Mlos Hauskecht mlos@cs.ptt.edu 5329 Sennott Squae Leanng of BBN Leanng. Leanng of paametes of condtonal pobabltes Leanng of the netwok stuctue Vaables:

More information

(8) Gain Stage and Simple Output Stage

(8) Gain Stage and Simple Output Stage EEEB23 Electoncs Analyss & Desgn (8) Gan Stage and Smple Output Stage Leanng Outcome Able to: Analyze an example of a gan stage and output stage of a multstage amplfe. efeence: Neamen, Chapte 11 8.0) ntoducton

More information

The Unique Solution of Stochastic Differential Equations With. Independent Coefficients. Dietrich Ryter.

The Unique Solution of Stochastic Differential Equations With. Independent Coefficients. Dietrich Ryter. The Unque Soluton of Stochastc Dffeental Equatons Wth Independent Coeffcents Detch Ryte RyteDM@gawnet.ch Mdatweg 3 CH-4500 Solothun Swtzeland Phone +4132 621 13 07 SDE s must be solved n the ant-itô sense

More information

Review of Vector Algebra and Vector Calculus Operations

Review of Vector Algebra and Vector Calculus Operations Revew of Vecto Algeba and Vecto Calculus Opeatons Tpes of vaables n Flud Mechancs Repesentaton of vectos Dffeent coodnate sstems Base vecto elatons Scala and vecto poducts Stess Newton s law of vscost

More information

ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM

ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM An elastc wave s a deformaton of the body that travels throughout the body n all drectons. We can examne the deformaton over a perod of tme by fxng our look

More information

PHYS 2421 Fields and Waves

PHYS 2421 Fields and Waves PHYS 242 Felds nd Wves Instucto: Joge A. López Offce: PSCI 29 A, Phone: 747-7528 Textook: Unvesty Physcs e, Young nd Feedmn 23. Electc potentl enegy 23.2 Electc potentl 23.3 Clcultng electc potentl 23.4

More information

Asymptotic Solutions of the Kinetic Boltzmann Equation and Multicomponent Non-Equilibrium Gas Dynamics

Asymptotic Solutions of the Kinetic Boltzmann Equation and Multicomponent Non-Equilibrium Gas Dynamics Jounal of Appled Mathematcs and Physcs 6 4 687-697 Publshed Onlne August 6 n ScRes http://wwwscpog/jounal/jamp http://dxdoog/436/jamp64877 Asymptotc Solutons of the Knetc Boltzmann Equaton and Multcomponent

More information

Quantum Mechanics for Scientists and Engineers. David Miller

Quantum Mechanics for Scientists and Engineers. David Miller Quantum Mechancs for Scentsts and Engneers Davd Mller Types of lnear operators Types of lnear operators Blnear expanson of operators Blnear expanson of lnear operators We know that we can expand functons

More information

4.4 Continuum Thermomechanics

4.4 Continuum Thermomechanics 4.4 Contnuum Themomechancs The classcal themodynamcs s now extended to the themomechancs of a contnuum. The state aables ae allowed to ay thoughout a mateal and pocesses ae allowed to be eesble and moe

More information

12. The Hamilton-Jacobi Equation Michael Fowler

12. The Hamilton-Jacobi Equation Michael Fowler 1. The Hamlton-Jacob Equaton Mchael Fowler Back to Confguraton Space We ve establshed that the acton, regarded as a functon of ts coordnate endponts and tme, satsfes ( ) ( ) S q, t / t+ H qpt,, = 0, and

More information

Chapter 13 - Universal Gravitation

Chapter 13 - Universal Gravitation Chapte 3 - Unesal Gataton In Chapte 5 we studed Newton s thee laws of moton. In addton to these laws, Newton fomulated the law of unesal gataton. Ths law states that two masses ae attacted by a foce gen

More information

b Ψ Ψ Principles of Organic Chemistry lecture 22, page 1

b Ψ Ψ Principles of Organic Chemistry lecture 22, page 1 Pinciples of Oganic Chemisty lectue, page. Basis fo LCAO and Hückel MO Theoy.. Souces... Hypephysics online. http://hypephysics.phy-ast.gsu.edu/hbase/quantum/qm.html#c... Zimmeman, H. E., Quantum Mechanics

More information

If there are k binding constraints at x then re-label these constraints so that they are the first k constraints.

If there are k binding constraints at x then re-label these constraints so that they are the first k constraints. Mathematcal Foundatons -1- Constaned Optmzaton Constaned Optmzaton Ma{ f ( ) X} whee X {, h ( ), 1,, m} Necessay condtons fo to be a soluton to ths mamzaton poblem Mathematcally, f ag Ma{ f ( ) X}, then

More information

N = N t ; t 0. N is the number of claims paid by the

N = N t ; t 0. N is the number of claims paid by the Iulan MICEA, Ph Mhaela COVIG, Ph Canddate epatment of Mathematcs The Buchaest Academy of Economc Studes an CECHIN-CISTA Uncedt Tac Bank, Lugoj SOME APPOXIMATIONS USE IN THE ISK POCESS OF INSUANCE COMPANY

More information

LASER ABLATION ICP-MS: DATA REDUCTION

LASER ABLATION ICP-MS: DATA REDUCTION Lee, C-T A Lase Ablaton Data educton 2006 LASE ABLATON CP-MS: DATA EDUCTON Cn-Ty A. Lee 24 Septembe 2006 Analyss and calculaton of concentatons Lase ablaton analyses ae done n tme-esolved mode. A ~30 s

More information

Summer Workshop on the Reaction Theory Exercise sheet 8. Classwork

Summer Workshop on the Reaction Theory Exercise sheet 8. Classwork Joned Physcs Analyss Cente Summe Wokshop on the Reacton Theoy Execse sheet 8 Vncent Matheu Contact: http://www.ndana.edu/~sst/ndex.html June June To be dscussed on Tuesday of Week-II. Classwok. Deve all

More information

Physics 607 Exam 1. ( ) = 1, Γ( z +1) = zγ( z) x n e x2 dx = 1. e x2

Physics 607 Exam 1. ( ) = 1, Γ( z +1) = zγ( z) x n e x2 dx = 1. e x2 Physcs 607 Exam 1 Please be well-organzed, and show all sgnfcant steps clearly n all problems. You are graded on your wor, so please do not just wrte down answers wth no explanaton! Do all your wor on

More information

Department of Statistics University of Toronto STA305H1S / 1004 HS Design and Analysis of Experiments Term Test - Winter Solution

Department of Statistics University of Toronto STA305H1S / 1004 HS Design and Analysis of Experiments Term Test - Winter Solution Department of Statstcs Unversty of Toronto STA35HS / HS Desgn and Analyss of Experments Term Test - Wnter - Soluton February, Last Name: Frst Name: Student Number: Instructons: Tme: hours. Ads: a non-programmable

More information