Lecture 22 Electroweak Unification

Size: px
Start display at page:

Download "Lecture 22 Electroweak Unification"

Transcription

1 Lectue 22 Electoweak Unfcaton Chal emons EW unfcaton Hggs patcle hyscs 424 Lectue 22 age 1

2 2 Obstacles to Electoweak Unfcaton Electomagnetsm and the weak foce ae exactly the same, only dffeent Whle the s massless, the weak bosons qute massve. and ae 2. The QED nteacton s puely vecto ( ), wheeas the weak nteacton combnes vecto and axal tems ( ). The fst dffeence eques the Hggs mechansm to sot out. o now, we wll meely take encouagement fom the expemental obsevaton that s so lage that ae faly smla n sze. and The second dffeence s addessed by the GWS theoy. hyscs 424 Lectue 22 age 2

3 ' ( Hdng the Lookng at the vetex facto fo the, we can make ths look lke a pue vecto nteacton f we assocate pat of the nteacton wth the femon wavefuncton: & $ " whee At ths stage, ths s just a defnton and notaton. Of couse, the subscpt suggests that s somehow the left-handed pat of. hyscs 424 Lectue 22 age 3

4 * : ) : Chalty vs. Helcty, o, we see that behaves just lke the, helcty opeato s defned as the. >@? ;=< /.0 2, / , chalty opeato and t s only n the massless lmt that helcty and chalty ae the same. hyscs 424 Lectue 22 age 4

5 ' ' Chal emons Snce acts just lke the helcty opeato femons, ;=< fo massless A C D E f f has helcty has helcty Smlaly, we can poject out the ght-handed pat of a spno: G A C D E f f has helcty has helcty hyscs 424 Lectue 22 age 5

6 O Q Q Z Z J N J N J N N N H T Z X _ S \ N b J b h J N J b Z N b N Adjont Spnos IJM? and IKJL H What about XY TU R IKJ S XY TU QR S XKY TUWV OR S O L IKJL XY TU V R IKJ S IKJM y usng the dentty XKY TUWV R N S XY SK` ^UWV R ] XY TU V R S [ we can wte XY TUWV XY R S TU V R S IKJ XY TU V R S IKJ g bdcef a XY TU V R S XY TU R IKJ S JL IKJL hyscs 424 Lectue 22 age 6

7 l k j Rentepetng the Weak Inteacton Ou dentty A means that we can thnk of the chaged weak nteacton as a pue vecto nteacton between left-handed femons. hyscs 424 Lectue 22 age 7

8 b J H Z Y Z Y Z b J h N me b b b b Z Z Z N H T n N Z N po b J Z b Z N b J Z N n N b b Z b h me Chal QED, can be expanded out nto fou chal IKJ The non-chal QED cuent cuents ( ): JM JL N J Tb T IKJL b a IKJM IKJ JM JL JL IKJM JM IKJL JM IKJM JL IKJL Snce XY SK` ^U V R ] XKY TU XY R S TU V R S coss tems n the QED cuent vansh: o p and the XY TU R S XY TU R IKJ S JM IKJL XY TU XY R S TU V R S IKJ tems suvve: p p and o o Ths means that only the b a IKJM IKJL N J IKJ JM JL hyscs 424 Lectue 22 age 8

9 7 4 G 5 st Intemsson The chaged weak cuents, as medated by the left-handed femons togethe:, couple q q The electomagnetc cuent, as medated by the, couples left-handed femons togethe, and t also couples ght-handed femons togethe: G hyscs 424 Lectue 22 age 9

10 q s s 4 7 s s 4 7 ' t ' t Weak Doublets Snce the couples left-handed leptons and the neutnos togethe, t seems natual to defne the weak doublet: In tems of, the chaged weak cuents q q can be wtten as t whee hyscs 424 Lectue 22 age 10

11 4 7 ' t ' t t y ' t Weak Isospn The matces can be constucted fom the aul spn matces va t Avu A t Ths s lookng a lot lke sospn (.e., an ntenal symmety). Suppose we defne a thd complete the symmety: wx t matx n ode to hyscs 424 Lectue 22 age 11

12 y t s A Neutal Cuent om, we can constuct a cuent (wth a facto of consstency wth ): A fo s y t A y A q A q Aha Hee s a neutal cuent oblem: Ths neutal cuent s pue and t only nvolves left-handed patcles. The, convesely, has a moe complcated stuctue and, consequently, t also couples to ght-handed patcles. hyscs 424 Lectue 22 age 12

13 y{ z w y { w y { Hypechage Although we ddn t daw attenton to t at the tme, thee s a elatonshp called the Gell-Mann Nshjma fomula whch connects the chage, sospn component, bayon numbe, and stangeness, of a quak o hadon: w A z The combnaton s defned as the hypechage and s denoted by. If we popose some sot of weak hypechage, we can then genealze the Gell-Mann Nshjma fomula to the case of weak sospn: A z hyscs 424 Lectue 22 age 13

14 y { 5 ~ G G G Hypechage Cuent, we can then constuct a weak hypechage A z om cuent: y } A A q q G q q Ths cuent s nvaant unde weak sospn, as the ght-handed tem s untouched and the left-handed tems q q fom a weak sospn snglet. hyscs 424 Lectue 22 age 14

15 ( x Goups n The Standad Model ƒ 6 ƒ 6 ƒ 6 The stong foce s descbed by QCD usng a colo symmety. ˆ wx The chaged cuents of the weak foce (.e, the ) make up 2/3 of a weak sospn symmety whch acts only on left-handed patcles. wx The electomagnetc foce s closely connected to a weak hypechage symmety. Now we have to explan how the and ase. hyscs 424 Lectue 22 age 15

16 q q s t s Genealzng to Othe Weak Doublets Although we have set up ths fomalsm n tems of the electon and ts neutno, we can just as easly use weak doublets fo othe leptons qœ Š o fo quaks, povded we account fo the CKM otatons whch dstngush the weak egenstates fom the mass egenstates: Ž Ž Ž hyscs 424 Lectue 22 age 16

17 s s s 5 5 Second Intemsson Let s stop fo anothe evew. o a weak doublet constuct 3 weak sospn cuents, we t A coespond to the -medated cuents, and sot of left-handed neutal cuent. y s some The electomagnetc cuent s G G z à We defne a weak hypechage cuent by y } hyscs 424 Lectue 22 age 17

18 š œ } x < y A œ 7 4 Combnng Weak Isospn and Hypechage In the GWS model, the weak sospn cuent tplet of vecto bosons wth a couplng stength couples to a. The weak hypechage cuent snglet vecto boson. couples wth stength } to a Quanttatvely, the nteacton tems of wx ae " œ } Ž 8 None of the fou felds, to the physcal patcles,,,, and, and coespond dectly. hyscs 424 Lectue 22 age 18

19 < ~ ~ Ÿ ~ and Ogn of the Wth a lttle bt of algebac manpulaton, y y A A A A ~ A y y A A ~ A y y 7 A ž 4 A ž by and 4 whee we defne the A A ž ' hyscs 424 Lectue 22 age 19

20 " Ž œ < Vetex actos and om the geneal nteacton } s we see that the couplng nvolvng the 7 7 q Wth A q q wth a vetex and an couples to an we fnd that the facto of 8 hyscs 424 Lectue 22 age 20

21 } x y œ Spontaneous Electoweak Symmety eakng The detals wll have to wat untl we look at the Hggs mechansm, but t tuns out that the pocess whch endows mass to the symmety. and the beaks the wx Ths electoweak SS allows the neutal states of the two symmetes ( and ) to mx. Hee s whee the weak mxng angle,, comes n: œ y hyscs 424 Lectue 22 age 21

22 " " Ž Ž œ " Ž 5 " Ž Ž Ž Ogn of Electomagnetsm Wth the electoweak mxng, the nteacton tems fo the neutal patcles ae } y Œ } y y Œ } y 8 s to epesent the If. y We wll substtute electomagnetc feld, then } } y 5 y 5 ~ y 8 hyscs 424 Lectue 22 age 22

23 Ž " Ž " 5 5 Ogn of the Usng nteacton tem s the y } y y y om ths, we defne 8ª hyscs 424 Lectue 22 age 23

24 ««5 " ˆ " ˆ ¾ ³ ˆ µ µ and Wokng Out Let s look at the up quak. Wth y ª ª ª À» ±@± ±²¼ ±@±@±@½ C ±@± ±²D ±@±@±@E ª º ¹ vetex factos to Standad. šâá 7 In ths way, we establsh the Model femons of the fom hyscs 424 Lectue 22 age 24

25 Ã 7 Å Couplngs to the In a smla fashon, we can wok out how the othe femons couple to the : A A qä A A A È y A Æ8Ç A y A ÆÉ hyscs 424 Lectue 22 age 25

26 7 4 y x œ y œ Summay We can eplace the couplngs of the weak nteacton wth vecto couplngs between left-handed femons. The and make up 2/3 of an weak sospn symmety. We postulate as the emanng pat. Meanwhle, a feld. wx } weak hypechage symmety couples to a om electoweak symmety beakng, the gve us the feld ( ) of QED and the. and mx to All couplngs ae elated to each othe by the weak mxng angle. hyscs 424 Lectue 22 age 26

27 The Standad Model Hggs The Hggs couples to evey massve patcle n the Standad Model. hyscs 424 Lectue 22 age 27

28 Ê Ê Ê Ê Ê Ê Ê Ã Ê Ê Ê Ã Ê Hggs oson Vetces Ë Ë Ë Ë hyscs 424 Lectue 22 age 28

29 What Makes Us So Sue the Hggs Exsts? One wod: untaty. Just as we nfeed the exstence of the and the based on the pathologcal hgh-enegy behavo of cetan scatteng coss sectons, we fnd that hgh-enegy dvegences n scatteng ae cued by the Hggs boson. Techncally, ths doesn t mean that the dsease has to be cued by the Hggs boson, but thee had bette be somethng new befoe 1 TeV. The Hggs just happens to be the smplest somethng new. hyscs 424 Lectue 22 age 29

30 Ê Ì Ð³ Ë Ï Î Î Ï Constants on The mass of the Hggs s whee s fxed by and s an unknown dmensonless couplng co nstant. Õ Ö :Í Ô ÑÓÒ :Í :Í can t be too lage, lest we volate untaty. can t be too small, lest the weak vacuum become unstable (.e., an even lowe-enegy state exsts elsewhee). Even at eneges below, the Hggs appeas n Standad Model loop dagams. Ths allows us to nfe the most lkely mass of the Hggs. :Í The Standad Model Hggs has a mass somewhee between 115 GeV and about 200 GeV. LHC wll soon sot ths out. hyscs 424 Lectue 22 age 30

31 LE1, SLD Data LE2, pp Data 68 CL m W [GeV] α m H [GeV] elmnay m t [GeV] hyscs 424 Lectue 22 age 31

32 6 5 4 Theoy uncetanty α had = α (5) ± ± ncl. low Q 2 data χ Excluded m H [GeV] elmnay hyscs 424 Lectue 22 age 32

33 hyscs 424 Lectue 22 age 33

34 hyscs 424 Lectue 22 age 34

35 hyscs 424 Lectue 22 age 35

36 hyscs 424 Lectue 22 age 36

37 hyscs 424 Lectue 22 age 37

38 hyscs 424 Lectue 22 age 38

39 hyscs 424 Lectue 22 age 39

40 hyscs 424 Lectue 22 age 40

Summer Workshop on the Reaction Theory Exercise sheet 8. Classwork

Summer Workshop on the Reaction Theory Exercise sheet 8. Classwork Joned Physcs Analyss Cente Summe Wokshop on the Reacton Theoy Execse sheet 8 Vncent Matheu Contact: http://www.ndana.edu/~sst/ndex.html June June To be dscussed on Tuesday of Week-II. Classwok. Deve all

More information

Set of square-integrable function 2 L : function space F

Set of square-integrable function 2 L : function space F Set of squae-ntegable functon L : functon space F Motvaton: In ou pevous dscussons we have seen that fo fee patcles wave equatons (Helmholt o Schödnge) can be expessed n tems of egenvalue equatons. H E,

More information

PHYS 705: Classical Mechanics. Derivation of Lagrange Equations from D Alembert s Principle

PHYS 705: Classical Mechanics. Derivation of Lagrange Equations from D Alembert s Principle 1 PHYS 705: Classcal Mechancs Devaton of Lagange Equatons fom D Alembet s Pncple 2 D Alembet s Pncple Followng a smla agument fo the vtual dsplacement to be consstent wth constants,.e, (no vtual wok fo

More information

Mechanics Physics 151

Mechanics Physics 151 Mechancs Physcs 151 Lectue 18 Hamltonan Equatons of Moton (Chapte 8) What s Ahead We ae statng Hamltonan fomalsm Hamltonan equaton Today and 11/6 Canoncal tansfomaton 1/3, 1/5, 1/10 Close lnk to non-elatvstc

More information

Particle Physics. From Monday: Summary. Lecture 9: Quantum Chromodynamics (QCD) q 2 m 2 Z. !q q!q q scattering

Particle Physics. From Monday: Summary. Lecture 9: Quantum Chromodynamics (QCD) q 2 m 2 Z. !q q!q q scattering Paticle Physics Lectue 9: Quantum Chomodynamics (QCD)!Colou chage and symmety!gluons!qcd Feynman Rules!! scatteing!jets! 1 Fom Monday: Summay Weak Neutal Cuent Caied by the massive Z-boson: acts on all

More information

Integral Vector Operations and Related Theorems Applications in Mechanics and E&M

Integral Vector Operations and Related Theorems Applications in Mechanics and E&M Dola Bagayoko (0) Integal Vecto Opeatons and elated Theoems Applcatons n Mechancs and E&M Ι Basc Defnton Please efe to you calculus evewed below. Ι, ΙΙ, andιιι notes and textbooks fo detals on the concepts

More information

Physics 202, Lecture 2. Announcements

Physics 202, Lecture 2. Announcements Physcs 202, Lectue 2 Today s Topcs Announcements Electc Felds Moe on the Electc Foce (Coulomb s Law The Electc Feld Moton of Chaged Patcles n an Electc Feld Announcements Homewok Assgnment #1: WebAssgn

More information

Energy in Closed Systems

Energy in Closed Systems Enegy n Closed Systems Anamta Palt palt.anamta@gmal.com Abstact The wtng ndcates a beakdown of the classcal laws. We consde consevaton of enegy wth a many body system n elaton to the nvese squae law and

More information

Physics 2A Chapter 11 - Universal Gravitation Fall 2017

Physics 2A Chapter 11 - Universal Gravitation Fall 2017 Physcs A Chapte - Unvesal Gavtaton Fall 07 hese notes ae ve pages. A quck summay: he text boxes n the notes contan the esults that wll compse the toolbox o Chapte. hee ae thee sectons: the law o gavtaton,

More information

Chapter 23: Electric Potential

Chapter 23: Electric Potential Chapte 23: Electc Potental Electc Potental Enegy It tuns out (won t show ths) that the tostatc foce, qq 1 2 F ˆ = k, s consevatve. 2 Recall, fo any consevatve foce, t s always possble to wte the wok done

More information

P 365. r r r )...(1 365

P 365. r r r )...(1 365 SCIENCE WORLD JOURNAL VOL (NO4) 008 www.scecncewoldounal.og ISSN 597-64 SHORT COMMUNICATION ANALYSING THE APPROXIMATION MODEL TO BIRTHDAY PROBLEM *CHOJI, D.N. & DEME, A.C. Depatment of Mathematcs Unvesty

More information

Physics 11b Lecture #2. Electric Field Electric Flux Gauss s Law

Physics 11b Lecture #2. Electric Field Electric Flux Gauss s Law Physcs 11b Lectue # Electc Feld Electc Flux Gauss s Law What We Dd Last Tme Electc chage = How object esponds to electc foce Comes n postve and negatve flavos Conseved Electc foce Coulomb s Law F Same

More information

24-2: Electric Potential Energy. 24-1: What is physics

24-2: Electric Potential Energy. 24-1: What is physics D. Iyad SAADEDDIN Chapte 4: Electc Potental Electc potental Enegy and Electc potental Calculatng the E-potental fom E-feld fo dffeent chage dstbutons Calculatng the E-feld fom E-potental Potental of a

More information

E For K > 0. s s s s Fall Physical Chemistry (II) by M. Lim. singlet. triplet

E For K > 0. s s s s Fall Physical Chemistry (II) by M. Lim. singlet. triplet Eneges of He electonc ψ E Fo K > 0 ψ = snglet ( )( ) s s+ ss αβ E βα snglet = ε + ε + J s + Ks Etplet = ε + ε + J s Ks αα ψ tplet = ( s s ss ) ββ ( αβ + βα ) s s s s s s s s ψ G = ss( αβ βα ) E = ε + ε

More information

CSJM University Class: B.Sc.-II Sub:Physics Paper-II Title: Electromagnetics Unit-1: Electrostatics Lecture: 1 to 4

CSJM University Class: B.Sc.-II Sub:Physics Paper-II Title: Electromagnetics Unit-1: Electrostatics Lecture: 1 to 4 CSJM Unvesty Class: B.Sc.-II Sub:Physcs Pape-II Ttle: Electomagnetcs Unt-: Electostatcs Lectue: to 4 Electostatcs: It deals the study of behavo of statc o statonay Chages. Electc Chage: It s popety by

More information

Stellar Astrophysics. dt dr. GM r. The current model for treating convection in stellar interiors is called mixing length theory:

Stellar Astrophysics. dt dr. GM r. The current model for treating convection in stellar interiors is called mixing length theory: Stella Astophyscs Ovevew of last lectue: We connected the mean molecula weght to the mass factons X, Y and Z: 1 1 1 = X + Y + μ 1 4 n 1 (1 + 1) = X μ 1 1 A n Z (1 + ) + Y + 4 1+ z A Z We ntoduced the pessue

More information

Tian Zheng Department of Statistics Columbia University

Tian Zheng Department of Statistics Columbia University Haplotype Tansmsson Assocaton (HTA) An "Impotance" Measue fo Selectng Genetc Makes Tan Zheng Depatment of Statstcs Columba Unvesty Ths s a jont wok wth Pofesso Shaw-Hwa Lo n the Depatment of Statstcs at

More information

Problem Set 10 Solutions

Problem Set 10 Solutions Chemisty 6 D. Jean M. Standad Poblem Set 0 Solutions. Give the explicit fom of the Hamiltonian opeato (in atomic units) fo the lithium atom. You expession should not include any summations (expand them

More information

Rigid Bodies: Equivalent Systems of Forces

Rigid Bodies: Equivalent Systems of Forces Engneeng Statcs, ENGR 2301 Chapte 3 Rgd Bodes: Equvalent Sstems of oces Intoducton Teatment of a bod as a sngle patcle s not alwas possble. In geneal, the se of the bod and the specfc ponts of applcaton

More information

Generating Functions, Weighted and Non-Weighted Sums for Powers of Second-Order Recurrence Sequences

Generating Functions, Weighted and Non-Weighted Sums for Powers of Second-Order Recurrence Sequences Geneatng Functons, Weghted and Non-Weghted Sums fo Powes of Second-Ode Recuence Sequences Pantelmon Stăncă Aubun Unvesty Montgomey, Depatment of Mathematcs Montgomey, AL 3614-403, USA e-mal: stanca@studel.aum.edu

More information

Contact, information, consultations

Contact, information, consultations ontact, nfomaton, consultatons hemsty A Bldg; oom 07 phone: 058-347-769 cellula: 664 66 97 E-mal: wojtek_c@pg.gda.pl Offce hous: Fday, 9-0 a.m. A quote of the week (o camel of the week): hee s no expedence

More information

V. Principles of Irreversible Thermodynamics. s = S - S 0 (7.3) s = = - g i, k. "Flux": = da i. "Force": = -Â g a ik k = X i. Â J i X i (7.

V. Principles of Irreversible Thermodynamics. s = S - S 0 (7.3) s = = - g i, k. Flux: = da i. Force: = -Â g a ik k = X i. Â J i X i (7. Themodynamcs and Knetcs of Solds 71 V. Pncples of Ievesble Themodynamcs 5. Onsage s Teatment s = S - S 0 = s( a 1, a 2,...) a n = A g - A n (7.6) Equlbum themodynamcs detemnes the paametes of an equlbum

More information

UNIT10 PLANE OF REGRESSION

UNIT10 PLANE OF REGRESSION UIT0 PLAE OF REGRESSIO Plane of Regesson Stuctue 0. Intoducton Ojectves 0. Yule s otaton 0. Plane of Regesson fo thee Vaales 0.4 Popetes of Resduals 0.5 Vaance of the Resduals 0.6 Summay 0.7 Solutons /

More information

3. A Review of Some Existing AW (BT, CT) Algorithms

3. A Review of Some Existing AW (BT, CT) Algorithms 3. A Revew of Some Exstng AW (BT, CT) Algothms In ths secton, some typcal ant-wndp algothms wll be descbed. As the soltons fo bmpless and condtoned tansfe ae smla to those fo ant-wndp, the pesented algothms

More information

19 The Born-Oppenheimer Approximation

19 The Born-Oppenheimer Approximation 9 The Bon-Oppenheme Appoxmaton The full nonelatvstc Hamltonan fo a molecule s gven by (n a.u.) Ĥ = A M A A A, Z A + A + >j j (883) Lets ewte the Hamltonan to emphasze the goal as Ĥ = + A A A, >j j M A

More information

8 Baire Category Theorem and Uniform Boundedness

8 Baire Category Theorem and Uniform Boundedness 8 Bae Categoy Theoem and Unfom Boundedness Pncple 8.1 Bae s Categoy Theoem Valdty of many esults n analyss depends on the completeness popety. Ths popety addesses the nadequacy of the system of atonal

More information

Doublet structure of Alkali spectra:

Doublet structure of Alkali spectra: Doublet stuctue of : Caeful examination of the specta of alkali metals shows that each membe of some of the seies ae closed doublets. Fo example, sodium yellow line, coesponding to 3p 3s tansition, is

More information

Structure of Hadrons. quarks d (down) s (strange) c (charm)

Structure of Hadrons. quarks d (down) s (strange) c (charm) quaks Flavo A t t 0 S B T Q(e) Mc 2 (GeV) u (up) 1 3 1 2-1 2 0 0 0 0 2 3 0.002-0.008 d (down) 1 3 1 2 1 2 0 0 0 0-1 3 0.005-0.015 s (stange) 1 3 0 0-1 0 0 0-1 3 0.1-0.3 c (cham) 1 3 0 0 0 1 0 0 2 3 1.0-1.6

More information

Chapter Fifiteen. Surfaces Revisited

Chapter Fifiteen. Surfaces Revisited Chapte Ffteen ufaces Revsted 15.1 Vecto Descpton of ufaces We look now at the vey specal case of functons : D R 3, whee D R s a nce subset of the plane. We suppose s a nce functon. As the pont ( s, t)

More information

Chapter I Matrices, Vectors, & Vector Calculus 1-1, 1-9, 1-10, 1-11, 1-17, 1-18, 1-25, 1-27, 1-36, 1-37, 1-41.

Chapter I Matrices, Vectors, & Vector Calculus 1-1, 1-9, 1-10, 1-11, 1-17, 1-18, 1-25, 1-27, 1-36, 1-37, 1-41. Chapte I Matces, Vectos, & Vecto Calculus -, -9, -0, -, -7, -8, -5, -7, -36, -37, -4. . Concept of a Scala Consde the aa of patcles shown n the fgue. he mass of the patcle at (,) can be epessed as. M (,

More information

CSU ATS601 Fall Other reading: Vallis 2.1, 2.2; Marshall and Plumb Ch. 6; Holton Ch. 2; Schubert Ch r or v i = v r + r (3.

CSU ATS601 Fall Other reading: Vallis 2.1, 2.2; Marshall and Plumb Ch. 6; Holton Ch. 2; Schubert Ch r or v i = v r + r (3. 3 Eath s Rotaton 3.1 Rotatng Famewok Othe eadng: Valls 2.1, 2.2; Mashall and Plumb Ch. 6; Holton Ch. 2; Schubet Ch. 3 Consde the poston vecto (the same as C n the fgue above) otatng at angula velocty.

More information

A. Thicknesses and Densities

A. Thicknesses and Densities 10 Lab0 The Eath s Shells A. Thcknesses and Denstes Any theoy of the nteo of the Eath must be consstent wth the fact that ts aggegate densty s 5.5 g/cm (ecall we calculated ths densty last tme). In othe

More information

Correspondence Analysis & Related Methods

Correspondence Analysis & Related Methods Coespondence Analyss & Related Methods Ineta contbutons n weghted PCA PCA s a method of data vsualzaton whch epesents the tue postons of ponts n a map whch comes closest to all the ponts, closest n sense

More information

Groupoid and Topological Quotient Group

Groupoid and Topological Quotient Group lobal Jounal of Pue and Appled Mathematcs SSN 0973-768 Volume 3 Numbe 7 07 pp 373-39 Reseach nda Publcatons http://wwwpublcatoncom oupod and Topolocal Quotent oup Mohammad Qasm Manna Depatment of Mathematcs

More information

Physics 207 Lecture 16

Physics 207 Lecture 16 Physcs 07 Lectue 6 Goals: Lectue 6 Chapte Extend the patcle odel to gd-bodes Undestand the equlbu of an extended object. Analyze ollng oton Undestand otaton about a fxed axs. Eploy consevaton of angula

More information

The Poisson bracket and magnetic monopoles

The Poisson bracket and magnetic monopoles FYST420 Advanced electodynamics Olli Aleksante Koskivaaa Final poject ollikoskivaaa@gmail.com The Poisson backet and magnetic monopoles Abstact: In this wok magnetic monopoles ae studied using the Poisson

More information

SOME NEW SELF-DUAL [96, 48, 16] CODES WITH AN AUTOMORPHISM OF ORDER 15. KEYWORDS: automorphisms, construction, self-dual codes

SOME NEW SELF-DUAL [96, 48, 16] CODES WITH AN AUTOMORPHISM OF ORDER 15. KEYWORDS: automorphisms, construction, self-dual codes Факултет по математика и информатика, том ХVІ С, 014 SOME NEW SELF-DUAL [96, 48, 16] CODES WITH AN AUTOMORPHISM OF ORDER 15 NIKOLAY I. YANKOV ABSTRACT: A new method fo constuctng bnay self-dual codes wth

More information

ALL QUESTIONS ARE WORTH 20 POINTS. WORK OUT FIVE PROBLEMS.

ALL QUESTIONS ARE WORTH 20 POINTS. WORK OUT FIVE PROBLEMS. GNRAL PHYSICS PH -3A (D. S. Mov) Test (/3/) key STUDNT NAM: STUDNT d #: -------------------------------------------------------------------------------------------------------------------------------------------

More information

-Δ u = λ u. u(x,y) = u 1. (x) u 2. (y) u(r,θ) = R(r) Θ(θ) Δu = 2 u + 2 u. r = x 2 + y 2. tan(θ) = y/x. r cos(θ) = cos(θ) r.

-Δ u = λ u. u(x,y) = u 1. (x) u 2. (y) u(r,θ) = R(r) Θ(θ) Δu = 2 u + 2 u. r = x 2 + y 2. tan(θ) = y/x. r cos(θ) = cos(θ) r. The Laplace opeato in pola coodinates We now conside the Laplace opeato with Diichlet bounday conditions on a cicula egion Ω {(x,y) x + y A }. Ou goal is to compute eigenvalues and eigenfunctions of the

More information

Solving the Dirac Equation: Using Fourier Transform

Solving the Dirac Equation: Using Fourier Transform McNa Schola Reeach Jounal Volume Atcle Solvng the ac quaton: Ung oue Tanfom Vncent P. Bell mby-rddle Aeonautcal Unvety, Vncent.Bell@my.eau.edu ollow th and addtonal wok at: http://common.eau.edu/na Recommended

More information

Test 1 phy What mass of a material with density ρ is required to make a hollow spherical shell having inner radius r i and outer radius r o?

Test 1 phy What mass of a material with density ρ is required to make a hollow spherical shell having inner radius r i and outer radius r o? Test 1 phy 0 1. a) What s the pupose of measuement? b) Wte all fou condtons, whch must be satsfed by a scala poduct. (Use dffeent symbols to dstngush opeatons on ectos fom opeatons on numbes.) c) What

More information

Multipole Radiation. March 17, 2014

Multipole Radiation. March 17, 2014 Multpole Radaton Mach 7, 04 Zones We wll see that the poblem of hamonc adaton dvdes nto thee appoxmate egons, dependng on the elatve magntudes of the dstance of the obsevaton pont,, and the wavelength,

More information

Machine Learning. Spectral Clustering. Lecture 23, April 14, Reading: Eric Xing 1

Machine Learning. Spectral Clustering. Lecture 23, April 14, Reading: Eric Xing 1 Machne Leanng -7/5 7/5-78, 78, Spng 8 Spectal Clusteng Ec Xng Lectue 3, pl 4, 8 Readng: Ec Xng Data Clusteng wo dffeent ctea Compactness, e.g., k-means, mxtue models Connectvty, e.g., spectal clusteng

More information

Part V: Velocity and Acceleration Analysis of Mechanisms

Part V: Velocity and Acceleration Analysis of Mechanisms Pat V: Velocty an Acceleaton Analyss of Mechansms Ths secton wll evew the most common an cuently pactce methos fo completng the knematcs analyss of mechansms; escbng moton though velocty an acceleaton.

More information

Many Electron Atoms. Electrons can be put into approximate orbitals and the properties of the many electron systems can be catalogued

Many Electron Atoms. Electrons can be put into approximate orbitals and the properties of the many electron systems can be catalogued Many Electon Atoms The many body poblem cannot be solved analytically. We content ouselves with developing appoximate methods that can yield quite accuate esults (but usually equie a compute). The electons

More information

(8) Gain Stage and Simple Output Stage

(8) Gain Stage and Simple Output Stage EEEB23 Electoncs Analyss & Desgn (8) Gan Stage and Smple Output Stage Leanng Outcome Able to: Analyze an example of a gan stage and output stage of a multstage amplfe. efeence: Neamen, Chapte 11 8.0) ntoducton

More information

iclicker Quiz a) True b) False Theoretical physics: the eternal quest for a missing minus sign and/or a factor of two. Which will be an issue today?

iclicker Quiz a) True b) False Theoretical physics: the eternal quest for a missing minus sign and/or a factor of two. Which will be an issue today? Clce Quz I egsteed my quz tansmtte va the couse webste (not on the clce.com webste. I ealze that untl I do so, my quz scoes wll not be ecoded. a Tue b False Theoetcal hyscs: the etenal quest fo a mssng

More information

Complex atoms and the Periodic System of the elements

Complex atoms and the Periodic System of the elements Complex atoms and the Peodc System of the elements Non-cental foces due to electon epulson Cental feld appoxmaton electonc obtals lft degeneacy of l E n l = R( hc) ( n δ ) l Aufbau pncple Lectue Notes

More information

Matrix Elements of Many-Electron Wavefunctions. noninteger principal quantum number. solutions to Schröd. Eq. outside sphere of radius r

Matrix Elements of Many-Electron Wavefunctions. noninteger principal quantum number. solutions to Schröd. Eq. outside sphere of radius r 30 - Matx Eements of Many-Eecton Wavefunctons Last tme: ν = R En, f ( ν, ) g ( ν, ) need both f and g to satsfy bounday condton fo E < 0 as ν = n µ πµ s phase shft of f ( ν, ) nonntege pncpa quantum numbe

More information

PHYS Week 5. Reading Journals today from tables. WebAssign due Wed nite

PHYS Week 5. Reading Journals today from tables. WebAssign due Wed nite PHYS 015 -- Week 5 Readng Jounals today fom tables WebAssgn due Wed nte Fo exclusve use n PHYS 015. Not fo e-dstbuton. Some mateals Copyght Unvesty of Coloado, Cengage,, Peason J. Maps. Fundamental Tools

More information

Scalars and Vectors Scalar

Scalars and Vectors Scalar Scalas and ectos Scala A phscal quantt that s completel chaacteed b a eal numbe (o b ts numecal value) s called a scala. In othe wods a scala possesses onl a magntude. Mass denst volume tempeatue tme eneg

More information

MODULE 5a and 5b (Stewart, Sections 12.2, 12.3) INTRO: In MATH 1114 vectors were written either as rows (a1, a2,..., an) or as columns a 1 a. ...

MODULE 5a and 5b (Stewart, Sections 12.2, 12.3) INTRO: In MATH 1114 vectors were written either as rows (a1, a2,..., an) or as columns a 1 a. ... MODULE 5a and 5b (Stewat, Sections 2.2, 2.3) INTRO: In MATH 4 vectos wee witten eithe as ows (a, a2,..., an) o as columns a a 2... a n and the set of all such vectos of fixed length n was called the vecto

More information

Photodisintegration of light nuclei

Photodisintegration of light nuclei Photodsntegaton of lght nucle N Banea The Hebew Unvesty Jeusalem Guseppna Olandn Tento (Italy) Wnfed Ledemann Tento (Italy) Sona Bacca Damstadt (Gemany) Doon Gazt Jeusalem (Isael) Yael Ronen Jeusalem (Isael)

More information

Slide 1. Quantum Mechanics: the Practice

Slide 1. Quantum Mechanics: the Practice Slde Quantum Mecancs: te Pactce Slde Remnde: Electons As Waves Wavelengt momentum = Planck? λ p = = 6.6 x 0-34 J s Te wave s an exctaton a vbaton: We need to know te ampltude of te exctaton at evey pont

More information

Physics 2020, Spring 2005 Lab 5 page 1 of 8. Lab 5. Magnetism

Physics 2020, Spring 2005 Lab 5 page 1 of 8. Lab 5. Magnetism Physics 2020, Sping 2005 Lab 5 page 1 of 8 Lab 5. Magnetism PART I: INTRODUCTION TO MAGNETS This week we will begin wok with magnets and the foces that they poduce. By now you ae an expet on setting up

More information

Engineering Mechanics. Force resultants, Torques, Scalar Products, Equivalent Force systems

Engineering Mechanics. Force resultants, Torques, Scalar Products, Equivalent Force systems Engneeng echancs oce esultants, Toques, Scala oducts, Equvalent oce sstems Tata cgaw-hll Companes, 008 Resultant of Two oces foce: acton of one bod on anothe; chaacteed b ts pont of applcaton, magntude,

More information

Calculation of Quark-antiquark Potential Coefficient and Charge Radius of Light Mesons

Calculation of Quark-antiquark Potential Coefficient and Charge Radius of Light Mesons Applied Physics Reseach ISSN: 96-9639 Vol., No., May E-ISSN: 96-9647 Calculation of Quak-antiquak Potential Coefficient and Chage Radius of Light Mesons M.R. Shojaei (Coesponding autho ) Depatment of Physics

More information

PY208 Matter & Interactions Final Exam S2005

PY208 Matter & Interactions Final Exam S2005 PY Matte & Inteactions Final Exam S2005 Name (pint) Please cicle you lectue section below: 003 (Ramakishnan 11:20 AM) 004 (Clake 1:30 PM) 005 (Chabay 2:35 PM) When you tun in the test, including the fomula

More information

Wave Equations. Michael Fowler, University of Virginia

Wave Equations. Michael Fowler, University of Virginia Wave Equatons Mcael Fowle, Unvesty of Vgna Potons and Electons We ave seen tat electons and potons beave n a vey smla fason bot exbt dffacton effects, as n te double slt expement, bot ave patcle lke o

More information

Rydberg-Rydberg Interactions

Rydberg-Rydberg Interactions Rydbeg-Rydbeg Inteactions F. Robicheaux Aubun Univesity Rydbeg gas goes to plasma Dipole blockade Coheent pocesses in fozen Rydbeg gases (expts) Theoetical investigation of an excitation hopping though

More information

Links in edge-colored graphs

Links in edge-colored graphs Lnks n edge-coloed gaphs J.M. Becu, M. Dah, Y. Manoussaks, G. Mendy LRI, Bât. 490, Unvesté Pas-Sud 11, 91405 Osay Cedex, Fance Astact A gaph s k-lnked (k-edge-lnked), k 1, f fo each k pas of vetces x 1,

More information

Event Shape Update. T. Doyle S. Hanlon I. Skillicorn. A. Everett A. Savin. Event Shapes, A. Everett, U. Wisconsin ZEUS Meeting, October 15,

Event Shape Update. T. Doyle S. Hanlon I. Skillicorn. A. Everett A. Savin. Event Shapes, A. Everett, U. Wisconsin ZEUS Meeting, October 15, Event Shape Update A. Eveett A. Savn T. Doyle S. Hanlon I. Skllcon Event Shapes, A. Eveett, U. Wsconsn ZEUS Meetng, Octobe 15, 2003-1 Outlne Pogess of Event Shapes n DIS Smla to publshed pape: Powe Coecton

More information

Appendix B The Relativistic Transformation of Forces

Appendix B The Relativistic Transformation of Forces Appendix B The Relativistic Tansfomation of oces B. The ou-foce We intoduced the idea of foces in Chapte 3 whee we saw that the change in the fou-momentum pe unit time is given by the expession d d w x

More information

Supersymmetry in Disorder and Chaos (Random matrices, physics of compound nuclei, mathematics of random processes)

Supersymmetry in Disorder and Chaos (Random matrices, physics of compound nuclei, mathematics of random processes) Supesymmety n Dsoe an Chaos Ranom matces physcs of compoun nucle mathematcs of anom pocesses Lteatue: K.B. Efetov Supesymmety n Dsoe an Chaos Cambge Unvesty Pess 997999 Supesymmety an Tace Fomulae I.V.

More information

The geometric construction of Ewald sphere and Bragg condition:

The geometric construction of Ewald sphere and Bragg condition: The geometic constuction of Ewald sphee and Bagg condition: The constuction of Ewald sphee must be done such that the Bagg condition is satisfied. This can be done as follows: i) Daw a wave vecto k in

More information

1. Starting with the local version of the first law of thermodynamics q. derive the statement of the first law of thermodynamics for a control volume

1. Starting with the local version of the first law of thermodynamics q. derive the statement of the first law of thermodynamics for a control volume EN10: Contnuum Mechancs Homewok 5: Alcaton of contnuum mechancs to fluds Due 1:00 noon Fda Febua 4th chool of Engneeng Bown Unvest 1. tatng wth the local veson of the fst law of themodnamcs q jdj q t and

More information

PHYS 1441 Section 002. Lecture #3

PHYS 1441 Section 002. Lecture #3 PHYS 1441 Section 00 Chapte 1 Lectue #3 Wednesday, Sept. 6, 017 Coulomb s Law The Electic Field & Field Lines Electic Fields and Conductos Motion of a Chaged Paticle in an Electic Field Electic Dipoles

More information

Qualifying Examination Electricity and Magnetism Solutions January 12, 2006

Qualifying Examination Electricity and Magnetism Solutions January 12, 2006 1 Qualifying Examination Electicity and Magnetism Solutions Januay 12, 2006 PROBLEM EA. a. Fist, we conside a unit length of cylinde to find the elationship between the total chage pe unit length λ and

More information

( ) Make-up Tests. From Last Time. Electric Field Flux. o The Electric Field Flux through a bit of area is

( ) Make-up Tests. From Last Time. Electric Field Flux. o The Electric Field Flux through a bit of area is Mon., 3/23 Wed., 3/25 Thus., 3/26 Fi., 3/27 Mon., 3/30 Tues., 3/31 21.4-6 Using Gauss s & nto to Ampee s 21.7-9 Maxwell s, Gauss s, and Ampee s Quiz Ch 21, Lab 9 Ampee s Law (wite up) 22.1-2,10 nto to

More information

PHYSICS 151 Notes for Online Lecture #36

PHYSICS 151 Notes for Online Lecture #36 Electomagnetism PHYSICS 151 Notes fo Online Lectue #36 Thee ae fou fundamental foces in natue: 1) gavity ) weak nuclea 3) electomagnetic 4) stong nuclea The latte two opeate within the nucleus of an atom

More information

Lecture 7: Angular Momentum, Hydrogen Atom

Lecture 7: Angular Momentum, Hydrogen Atom Lectue 7: Angula Momentum, Hydogen Atom Vecto Quantization of Angula Momentum and Nomalization of 3D Rigid Roto wavefunctions Conside l, so L 2 2 2. Thus, we have L 2. Thee ae thee possibilities fo L z

More information

Density Functional Theory I

Density Functional Theory I Densty Functonal Theoy I cholas M. Hason Depatment of Chemsty Impeal College Lonon & Computatonal Mateals Scence Daesbuy Laboatoy ncholas.hason@c.ac.uk Densty Functonal Theoy I The Many Electon Schönge

More information

Interatomic Forces. Overview

Interatomic Forces. Overview Inteatomic Foces Oveview an de Walls (shot ange ~1/ 6, weak ~0.010.1 e) Ionic (long ange, ~1/, stong ~510 e) Metallic (no simple dependence, ~0.1e) Covalent (no simple dependence, diectional,~3 e) Hydogen

More information

THE MANY-BODY PROBLEM

THE MANY-BODY PROBLEM 3.30: Lectue 5 Feb 5 005 THE MANY-BODY PROBLEM Feb 5 005 3.30 Atomstc Modelng of Mateals -- Geband Cede and Ncola Maza When s a patcle lke a wave? Wavelength momentum = Planck λ p = h h = 6.6 x 0-34 J

More information

PHYSICS 272 Electric & Magnetic Interactions

PHYSICS 272 Electric & Magnetic Interactions PHYS 7: Matte and Inteactions II -- Electic And Magnetic Inteactions http://www.physics.pudue.edu/academic_pogams/couses/phys7/ PHYSICS 7 Electic & Magnetic Inteactions Lectue 3 Chaged Objects; Polaization

More information

Electromagnetism Physics 15b

Electromagnetism Physics 15b lectomagnetism Physics 15b Lectue #20 Dielectics lectic Dipoles Pucell 10.1 10.6 What We Did Last Time Plane wave solutions of Maxwell s equations = 0 sin(k ωt) B = B 0 sin(k ωt) ω = kc, 0 = B, 0 ˆk =

More information

gravity r2,1 r2 r1 by m 2,1

gravity r2,1 r2 r1 by m 2,1 Gavtaton Many of the foundatons of classcal echancs wee fst dscoveed when phlosophes (ealy scentsts and atheatcans) ted to explan the oton of planets and stas. Newton s ost faous fo unfyng the oton of

More information

COMPLEMENTARY ENERGY METHOD FOR CURVED COMPOSITE BEAMS

COMPLEMENTARY ENERGY METHOD FOR CURVED COMPOSITE BEAMS ultscence - XXX. mcocd Intenatonal ultdscplnay Scentfc Confeence Unvesty of skolc Hungay - pl 06 ISBN 978-963-358-3- COPLEENTRY ENERGY ETHOD FOR CURVED COPOSITE BES Ákos József Lengyel István Ecsed ssstant

More information

TEST-03 TOPIC: MAGNETISM AND MAGNETIC EFFECT OF CURRENT Q.1 Find the magnetic field intensity due to a thin wire carrying current I in the Fig.

TEST-03 TOPIC: MAGNETISM AND MAGNETIC EFFECT OF CURRENT Q.1 Find the magnetic field intensity due to a thin wire carrying current I in the Fig. TEST-03 TPC: MAGNETSM AND MAGNETC EFFECT F CURRENT Q. Fnd the magnetc feld ntensty due to a thn we cayng cuent n the Fg. - R 0 ( + tan) R () 0 ( ) R 0 ( + ) R 0 ( + tan ) R Q. Electons emtted wth neglgble

More information

MATH 220: SECOND ORDER CONSTANT COEFFICIENT PDE. We consider second order constant coefficient scalar linear PDEs on R n. These have the form

MATH 220: SECOND ORDER CONSTANT COEFFICIENT PDE. We consider second order constant coefficient scalar linear PDEs on R n. These have the form MATH 220: SECOND ORDER CONSTANT COEFFICIENT PDE ANDRAS VASY We conside second ode constant coefficient scala linea PDEs on R n. These have the fom Lu = f L = a ij xi xj + b i xi + c i whee a ij b i and

More information

Voltage ( = Electric Potential )

Voltage ( = Electric Potential ) V-1 of 10 Voltage ( = lectic Potential ) An electic chage altes the space aound it. Thoughout the space aound evey chage is a vecto thing called the electic field. Also filling the space aound evey chage

More information

Class 2. Lesson 1 Stationary Point Charges and Their Forces. Basic Rules of Electrostatics. Basic Rules of Electrostatics

Class 2. Lesson 1 Stationary Point Charges and Their Forces. Basic Rules of Electrostatics. Basic Rules of Electrostatics Lesson 1 Stationay Point Chages and Thei Foces Class Today we will: lean the basic chaacteistics o the electostatic oce eview the popeties o conductos and insulatos lean what is meant by electostatic induction

More information

6. Introduction to Transistor Amplifiers: Concepts and Small-Signal Model

6. Introduction to Transistor Amplifiers: Concepts and Small-Signal Model 6. ntoucton to anssto mples: oncepts an Small-Sgnal Moel Lectue notes: Sec. 5 Sea & Smth 6 th E: Sec. 5.4, 5.6 & 6.3-6.4 Sea & Smth 5 th E: Sec. 4.4, 4.6 & 5.3-5.4 EE 65, Wnte203, F. Najmaba Founaton o

More information

Unit 7: Sources of magnetic field

Unit 7: Sources of magnetic field Unit 7: Souces of magnetic field Oested s expeiment. iot and Savat s law. Magnetic field ceated by a cicula loop Ampèe s law (A.L.). Applications of A.L. Magnetic field ceated by a: Staight cuent-caying

More information

= e2. = 2e2. = 3e2. V = Ze2. where Z is the atomic numnber. Thus, we take as the Hamiltonian for a hydrogenic. H = p2 r. (19.4)

= e2. = 2e2. = 3e2. V = Ze2. where Z is the atomic numnber. Thus, we take as the Hamiltonian for a hydrogenic. H = p2 r. (19.4) Chapte 9 Hydogen Atom I What is H int? That depends on the physical system and the accuacy with which it is descibed. A natual stating point is the fom H int = p + V, (9.) µ which descibes a two-paticle

More information

Hamiltonian multivector fields and Poisson forms in multisymplectic field theory

Hamiltonian multivector fields and Poisson forms in multisymplectic field theory JOURNAL OF MATHEMATICAL PHYSICS 46, 12005 Hamltonan multvecto felds and Posson foms n multsymplectc feld theoy Mchael Foge a Depatamento de Matemátca Aplcada, Insttuto de Matemátca e Estatístca, Unvesdade

More information

6.6 The Marquardt Algorithm

6.6 The Marquardt Algorithm 6.6 The Mqudt Algothm lmttons of the gdent nd Tylo expnson methods ecstng the Tylo expnson n tems of ch-sque devtves ecstng the gdent sech nto n tetve mtx fomlsm Mqudt's lgothm utomtclly combnes the gdent

More information

Queues, Stack Modules, and Abstract Data Types. CS2023 Winter 2004

Queues, Stack Modules, and Abstract Data Types. CS2023 Winter 2004 Queues Stack Modules and Abstact Data Types CS2023 Wnte 2004 Outcomes: Queues Stack Modules and Abstact Data Types C fo Java Pogammes Chapte 11 (11.5) and C Pogammng - a Moden Appoach Chapte 19 Afte the

More information

5.61 Physical Chemistry Lecture #23 page 1 MANY ELECTRON ATOMS

5.61 Physical Chemistry Lecture #23 page 1 MANY ELECTRON ATOMS 5.6 Physical Chemisty Lectue #3 page MAY ELECTRO ATOMS At this point, we see that quantum mechanics allows us to undestand the helium atom, at least qualitatively. What about atoms with moe than two electons,

More information

Chapter 3: Theory of Modular Arithmetic 38

Chapter 3: Theory of Modular Arithmetic 38 Chapte 3: Theoy of Modula Aithmetic 38 Section D Chinese Remainde Theoem By the end of this section you will be able to pove the Chinese Remainde Theoem apply this theoem to solve simultaneous linea conguences

More information

Dynamics of Rigid Bodies

Dynamics of Rigid Bodies Dynamcs of Rgd Bodes A gd body s one n whch the dstances between consttuent patcles s constant thoughout the moton of the body,.e. t keeps ts shape. Thee ae two knds of gd body moton: 1. Tanslatonal Rectlnea

More information

A NEW VARIABLE STIFFNESS SPRING USING A PRESTRESSED MECHANISM

A NEW VARIABLE STIFFNESS SPRING USING A PRESTRESSED MECHANISM Poceedings of the ASME 2010 Intenational Design Engineeing Technical Confeences & Computes and Infomation in Engineeing Confeence IDETC/CIE 2010 August 15-18, 2010, Monteal, Quebec, Canada DETC2010-28496

More information

Review of Vector Algebra and Vector Calculus Operations

Review of Vector Algebra and Vector Calculus Operations Revew of Vecto Algeba and Vecto Calculus Opeatons Tpes of vaables n Flud Mechancs Repesentaton of vectos Dffeent coodnate sstems Base vecto elatons Scala and vecto poducts Stess Newton s law of vscost

More information

A thermodynamic degree of freedom solution to the galaxy cluster problem of MOND. Abstract

A thermodynamic degree of freedom solution to the galaxy cluster problem of MOND. Abstract A themodynamic degee of feedom solution to the galaxy cluste poblem of MOND E.P.J. de Haas (Paul) Nijmegen, The Nethelands (Dated: Octobe 23, 2015) Abstact In this pape I discus the degee of feedom paamete

More information

Math 301: The Erdős-Stone-Simonovitz Theorem and Extremal Numbers for Bipartite Graphs

Math 301: The Erdős-Stone-Simonovitz Theorem and Extremal Numbers for Bipartite Graphs Math 30: The Edős-Stone-Simonovitz Theoem and Extemal Numbes fo Bipatite Gaphs May Radcliffe The Edős-Stone-Simonovitz Theoem Recall, in class we poved Tuán s Gaph Theoem, namely Theoem Tuán s Theoem Let

More information

COLLEGE OF FOUNDATION AND GENERAL STUDIES PUTRAJAYA CAMPUS FINAL EXAMINATION TRIMESTER /2017

COLLEGE OF FOUNDATION AND GENERAL STUDIES PUTRAJAYA CAMPUS FINAL EXAMINATION TRIMESTER /2017 COLLEGE OF FOUNDATION AND GENERAL STUDIES PUTRAJAYA CAMPUS FINAL EXAMINATION TRIMESTER 1 016/017 PROGRAMME SUBJECT CODE : Foundaton n Engneeng : PHYF115 SUBJECT : Phscs 1 DATE : Septembe 016 DURATION :

More information

Parity Conservation in the weak (beta decay) interaction

Parity Conservation in the weak (beta decay) interaction Paity Consevation in the weak (beta decay) inteaction The paity opeation The paity opeation involves the tansfomation In ectangula coodinates -- x Æ -x y Æ -y z Æ -z In spheical pola coodinates -- Æ q

More information

Physics Exam II Chapters 25-29

Physics Exam II Chapters 25-29 Physcs 114 1 Exam II Chaptes 5-9 Answe 8 of the followng 9 questons o poblems. Each one s weghted equally. Clealy mak on you blue book whch numbe you do not want gaded. If you ae not sue whch one you do

More information

Q. Obtain the Hamiltonian for a one electron atom in the presence of an external magnetic field.

Q. Obtain the Hamiltonian for a one electron atom in the presence of an external magnetic field. Syed Ashad Hussain Lectue Deatment of Physics Tiua Univesity www.sahussaintu.wodess.com Q. Obtain the Hamiltonian fo a one electon atom in the esence of an extenal magnetic field. To have an idea about

More information

VEKTORANALYS FLUX INTEGRAL LINE INTEGRAL. and. Kursvecka 2. Kapitel 4 5. Sidor 29 50

VEKTORANALYS FLUX INTEGRAL LINE INTEGRAL. and. Kursvecka 2. Kapitel 4 5. Sidor 29 50 VEKTORANAYS Ksecka INE INTEGRA and UX INTEGRA Kaptel 4 5 Sdo 9 5 A wnd TARGET PROBEM We want to psh a mne cat along a path fom A to B. Bt the wnd s blowng. How mch enegy s needed? (.e. how mch s the wok?

More information