The Welch-Satterthwaite approximation

Size: px
Start display at page:

Download "The Welch-Satterthwaite approximation"

Transcription

1 The Welch-Satterthwaite approximation Aidan Rocke Charles University of Prague October 19, 2018 Aidan Rocke (CU) Welch-Satterthwaite October 19, / 25

2 Overview 1 Motivation 2 Student s problem 3 Testing for equal variances 4 Welch generalisation 5 Concrete example in R 6 Questions Aidan Rocke (CU) Welch-Satterthwaite October 19, / 25

3 Motivation Aidan Rocke (CU) Welch-Satterthwaite October 19, / 25

4 A hypothetical experiment 1. We have a study where 38 participants were assigned to condition X, and 22 participants were assigned to condition Y. 2. The average score of both groups is the same on an experimental study(i.e. µ 1 = µ 2 = 0) so there is no effect. 3. The standard deviations of both groups differ: σ 1 = 1.11 and σ 2 = We would like to test equality of population means at the 5% significance level. 5. How can we do so while minimizing bias due to unequal sample sizes and different standard deviations? Aidan Rocke (CU) Welch-Satterthwaite October 19, / 25

5 Student s problem Aidan Rocke (CU) Welch-Satterthwaite October 19, / 25

6 Student s problem 1. How to test that two population means are equal? { H o : µ 1 = µ 2 H a : µ 1 µ 2 (1) 2. We assume i.i.d. normal samples: { X i N (µ 1, σ 2 1 ) Y i N (µ 2, σ 2 2 ) (2) 3. Let s further assume equal population variances: σ 1 = σ 2 4. Test statistic, assuming equal variances: T = X Ȳ s p 1 N N 2 sp 2 = (N 1 1)s1 2+(N 2 1)s2 2 N 1 +N 2 2 (3) 5. Problem: how is T distributed? Aidan Rocke (CU) Welch-Satterthwaite October 19, / 25

7 Student s solution 1. Note that T is distributed as follows: χ 2 v v T N (0, 1) χ 2 v v where N (0, 1) 2. Exact formula for Student s pdf with degrees of freedom v: (4) v+1 Γ( 2 ) f (t) = vπγ( v 2 3. Two-sided test with significance level α: t2 v 1 + ) ( 2 ) (5) )(1 v T > t 1 α/2,v (6) 4. Exact degrees of freedom if we assume equal variances: v = N 1 + N 2 2 (7) Aidan Rocke (CU) Welch-Satterthwaite October 19, / 25

8 Checking for equal variances Aidan Rocke (CU) Welch-Satterthwaite October 19, / 25

9 Checking for equal variances 1. We can specify the F-statistic in terms of the sample variances: F = s2 1 s For large samples, F 1 since: s1 2 P σ2 1 s2 2 P σ2 2 (8) (9) so we may use the F distribution to construct a statistical test. The problem is that the power of this test depends on min{n 1, N 2 }, which is presumably small, so we accept H o : σ 1 = σ 2 much too often! 3. Levene s test is slightly more robust, but suffers a similar weakness. Aidan Rocke (CU) Welch-Satterthwaite October 19, / 25

10 The Welch generalisation Aidan Rocke (CU) Welch-Satterthwaite October 19, / 25

11 Welch generalisation part I 1. Let s assume σ 1 σ 2 2. We can no longer pool variances so we have: T W = X Ȳ (10) s 2 1 N 1 + s2 2 N 2 3. Problem: How is T W distributed? (Hint: This depends on v.) Aidan Rocke (CU) Welch-Satterthwaite October 19, / 25

12 Welch generalisation part II 1. Welch noted that if σ and v are carefully chosen: s1 2 + s2 2 χ 2 σ 2 v N 1 N 2 v 2. To have agreement of the first moments in (11), we must solve: (11) E( s2 1 + s2 2 ) = E(χ 2 σ 2 v N 1 N 2 v ) (12) 3. In order to have agreement of the second moments: Var( s2 1 + s2 2 ) = Var(χ 2 σ 2 v N 1 N 2 v ) (13) 2. By solving both (12) and (13) we can theoretically approximate v as follows: ( σ2 1 N v = 1 + σ2 2 N 2 ) 2 (14) 1 N 1 1 ( σ2 1 N 1 ) N 2 1 ( σ2 2 N 2 ) 2 Aidan Rocke (CU) Welch-Satterthwaite October 19, / 25

13 Welch generalisation part III 1. Let s remember that: s1 2 P σ2 1 s2 2 P σ2 2 (15) 2. (15) suggests the following practical estimate of (14): v 3. Note that by inspection of (10) and (11): ( s2 1 N 1 + s2 2 N 2 ) 2 (16) 1 N 1 1 ( s2 1 N 1 ) N 2 1 ( s2 2 N 2 ) 2 where N (0, 1) χ 2 v v. T W N (0, 1) χ 2 v v (17) Aidan Rocke (CU) Welch-Satterthwaite October 19, / 25

14 Two-sample two-sided Welch test procedure 1. Define hypothesis: { H o : µ 1 = µ 2 H a : µ 1 µ 2 (18) 2. Choose significance level α, i.e. power of statistical test. 3. Calculate T W. 4. Calculate ˆv using Welch formula. 5. Perform two-sided test with signficance level α: T W > t 1 α/2,ˆv (19) Aidan Rocke (CU) Welch-Satterthwaite October 19, / 25

15 Concrete example in R Aidan Rocke (CU) Welch-Satterthwaite October 19, / 25

16 Experimental details 1. N 1 = 38 participants are in group X, and N 2 = 22 participants are in group Y. 2. The average score of both groups is the same on an experimental study(i.e. µ 1 = µ 2 = 0) so there is no effect. 3. The population standard deviations differ: σ 1 = 1.11 and σ 2 = We would like to test equality of population means at the 5% significance level(i.e. 95% confidence level). 5. We shall compare the analyses of the two-sample Welch test and two-sample Student s test using 5000 simulations. Aidan Rocke (CU) Welch-Satterthwaite October 19, / 25

17 Experiment settings in R require ( car ) # Car package required for Levene s test n1 <-38 # sample size for group X n2 <-22 # sample size for group Y sd1 <-1.11 # sd of group X sd2 <-1.84 # sd of group Y m1 <-0 m2 <-0 trued < -(m2-m1 )/( sqrt (((( n1-1 )*(( sd1^2 ))) + (n2-1 )*(( sd2^2 )))/(( n1+n2)-2 ))) nsims < # number of simulated experiments p1 <-numeric ( nsims ) p2 <-numeric ( nsims ) pvaluelevene <- numeric ( nsims ) # create variables for dataframe catx <- rep ("x",n1) caty <- rep ("y",n2) condition <- c(catx, caty ) Aidan Rocke (CU) Welch-Satterthwaite October 19, / 25

18 Run 5000 simulations # define random seed set. seed (0) # run simulations for (i in 1: nsims ){ # for each simulated experiment sim _x<- rnorm (n = n1, mean = m1, sd = sd1) # simulate condition X sim _y<- rnorm (n = n2, mean = m2, sd = sd2) # simulate condition Y # perform Student and Welch t - test ## perform the student t - test and store p - value p1[i]<-t.test (sim _x,sim _y, alternative = "two. sided ", var. equal = TRUE )$p. value # perform the welch t - test and store p - value p2[i]<-t.test (sim _x,sim _y, alternative = "two. sided ", var. equal = FALSE )$p. value # create dataframe for levene s test xy <- c( sim _x,sim _y) alldata <-data. frame (xy, condition ) # perform Levene s test pvaluelevene [i]<- levenetest ( alldata$xy ~ alldata$condition, data = alldata )$"Pr(>F)"[1:1] } Aidan Rocke (CU) Welch-Satterthwaite October 19, / 25

19 Power of Levene s test 1. Levene s test result: observedpowerlevene <-sum ( pvaluelevene < 0.05)/ nsims * The observed power for the Levene test is Even though the variances in our simulation are not equal, Levene s test only reveals this difference in 63% of the tests. Aidan Rocke (CU) Welch-Satterthwaite October 19, / 25

20 Histograms of p-values: student s test Note that more than half the p-values are below 0.5, indicating a deviation from the uniform distribution. Aidan Rocke (CU) Welch-Satterthwaite October 19, / 25

21 Histograms of p-values: Welch test Note that this distribution is approximately uniform which is to be expected as p-values should be uniformly distributed under the null hypothesis. Aidan Rocke (CU) Welch-Satterthwaite October 19, / 25

22 Remarks 1. When min{n 1, N 2 } is small, Levene s test is unreliable for checking equality of variances. 2. Student s two sample test is unreliable when the variances differ significantly. 3. If variances are equal, Welch s t-test and Student s t-test return the same p-value. 4. In most cases, Welch is a good default option with respect to type I error and statistical power. 5. R uses the Welch test by default. Aidan Rocke (CU) Welch-Satterthwaite October 19, / 25

23 Questions Aidan Rocke (CU) Welch-Satterthwaite October 19, / 25

24 References: 1. Miller Jr, R. G. (1997). Beyond ANOVA: basics of applied statistics. Chapman and Hall/CRC. Chapter Student. The Probable Error of a Mean. Biometrika 6, 1-25, Delacre, M., Lakens, D., & Leys, C. (in press). Why psychologists should by default use Welchs t-test instead of Students t-test. International Review of Social Psychology. Aidan Rocke (CU) Welch-Satterthwaite October 19, / 25

25 The End Aidan Rocke (CU) Welch-Satterthwaite October 19, / 25

Stat 427/527: Advanced Data Analysis I

Stat 427/527: Advanced Data Analysis I Stat 427/527: Advanced Data Analysis I Review of Chapters 1-4 Sep, 2017 1 / 18 Concepts you need to know/interpret Numerical summaries: measures of center (mean, median, mode) measures of spread (sample

More information

Review: General Approach to Hypothesis Testing. 1. Define the research question and formulate the appropriate null and alternative hypotheses.

Review: General Approach to Hypothesis Testing. 1. Define the research question and formulate the appropriate null and alternative hypotheses. 1 Review: Let X 1, X,..., X n denote n independent random variables sampled from some distribution might not be normal!) with mean µ) and standard deviation σ). Then X µ σ n In other words, X is approximately

More information

Sampling distribution of t. 2. Sampling distribution of t. 3. Example: Gas mileage investigation. II. Inferential Statistics (8) t =

Sampling distribution of t. 2. Sampling distribution of t. 3. Example: Gas mileage investigation. II. Inferential Statistics (8) t = 2. The distribution of t values that would be obtained if a value of t were calculated for each sample mean for all possible random of a given size from a population _ t ratio: (X - µ hyp ) t s x The result

More information

Simple Linear Regression

Simple Linear Regression Simple Linear Regression MATH 282A Introduction to Computational Statistics University of California, San Diego Instructor: Ery Arias-Castro http://math.ucsd.edu/ eariasca/math282a.html MATH 282A University

More information

Two-Mean Inference. Two-Group Research. Research Designs. The Correlated Samples t Test

Two-Mean Inference. Two-Group Research. Research Designs. The Correlated Samples t Test Two-Mean Inference 6430 Two-Group Research. We wish to know whether two groups (samples) of scores (on some continuous OV, outcome variable) are different enough from one another to indicate that the two

More information

T.I.H.E. IT 233 Statistics and Probability: Sem. 1: 2013 ESTIMATION AND HYPOTHESIS TESTING OF TWO POPULATIONS

T.I.H.E. IT 233 Statistics and Probability: Sem. 1: 2013 ESTIMATION AND HYPOTHESIS TESTING OF TWO POPULATIONS ESTIMATION AND HYPOTHESIS TESTING OF TWO POPULATIONS In our work on hypothesis testing, we used the value of a sample statistic to challenge an accepted value of a population parameter. We focused only

More information

Lecture 3: Inference in SLR

Lecture 3: Inference in SLR Lecture 3: Inference in SLR STAT 51 Spring 011 Background Reading KNNL:.1.6 3-1 Topic Overview This topic will cover: Review of hypothesis testing Inference about 1 Inference about 0 Confidence Intervals

More information

STA442/2101: Assignment 5

STA442/2101: Assignment 5 STA442/2101: Assignment 5 Craig Burkett Quiz on: Oct 23 rd, 2015 The questions are practice for the quiz next week, and are not to be handed in. I would like you to bring in all of the code you used to

More information

Solution E[sum of all eleven dice] = E[sum of ten d20] + E[one d6] = 10 * E[one d20] + E[one d6]

Solution E[sum of all eleven dice] = E[sum of ten d20] + E[one d6] = 10 * E[one d20] + E[one d6] Name: SOLUTIONS Midterm (take home version) To help you budget your time, questions are marked with *s. One * indicates a straight forward question testing foundational knowledge. Two ** indicate a more

More information

Statistics - Lecture Three. Linear Models. Charlotte Wickham 1.

Statistics - Lecture Three. Linear Models. Charlotte Wickham   1. Statistics - Lecture Three Charlotte Wickham wickham@stat.berkeley.edu http://www.stat.berkeley.edu/~wickham/ Linear Models 1. The Theory 2. Practical Use 3. How to do it in R 4. An example 5. Extensions

More information

Statistics Applied to Bioinformatics. Tests of homogeneity

Statistics Applied to Bioinformatics. Tests of homogeneity Statistics Applied to Bioinformatics Tests of homogeneity Two-tailed test of homogeneity Two-tailed test H 0 :m = m Principle of the test Estimate the difference between m and m Compare this estimation

More information

Statistical Inference: Estimation and Confidence Intervals Hypothesis Testing

Statistical Inference: Estimation and Confidence Intervals Hypothesis Testing Statistical Inference: Estimation and Confidence Intervals Hypothesis Testing 1 In most statistics problems, we assume that the data have been generated from some unknown probability distribution. We desire

More information

M(t) = 1 t. (1 t), 6 M (0) = 20 P (95. X i 110) i=1

M(t) = 1 t. (1 t), 6 M (0) = 20 P (95. X i 110) i=1 Math 66/566 - Midterm Solutions NOTE: These solutions are for both the 66 and 566 exam. The problems are the same until questions and 5. 1. The moment generating function of a random variable X is M(t)

More information

df=degrees of freedom = n - 1

df=degrees of freedom = n - 1 One sample t-test test of the mean Assumptions: Independent, random samples Approximately normal distribution (from intro class: σ is unknown, need to calculate and use s (sample standard deviation)) Hypotheses:

More information

Statistics in Stata Introduction to Stata

Statistics in Stata Introduction to Stata 50 55 60 65 70 Statistics in Stata Introduction to Stata Thomas Scheike Statistical Methods, Used to test simple hypothesis regarding the mean in a single group. Independent samples and data approximately

More information

STA2601. Tutorial letter 203/2/2017. Applied Statistics II. Semester 2. Department of Statistics STA2601/203/2/2017. Solutions to Assignment 03

STA2601. Tutorial letter 203/2/2017. Applied Statistics II. Semester 2. Department of Statistics STA2601/203/2/2017. Solutions to Assignment 03 STA60/03//07 Tutorial letter 03//07 Applied Statistics II STA60 Semester Department of Statistics Solutions to Assignment 03 Define tomorrow. university of south africa QUESTION (a) (i) The normal quantile

More information

Summary of Chapters 7-9

Summary of Chapters 7-9 Summary of Chapters 7-9 Chapter 7. Interval Estimation 7.2. Confidence Intervals for Difference of Two Means Let X 1,, X n and Y 1, Y 2,, Y m be two independent random samples of sizes n and m from two

More information

Analysing and presenting data: practical hints

Analysing and presenting data: practical hints Analysing and presenting data: practical hints Giorgio MATTEI giorgio.mattei@centropiaggio.unipi.it Course: Meccanica dei Tessuti Biologici Date: 17 May 2016 Equal or different? The case of two samples

More information

Confidence Intervals, Testing and ANOVA Summary

Confidence Intervals, Testing and ANOVA Summary Confidence Intervals, Testing and ANOVA Summary 1 One Sample Tests 1.1 One Sample z test: Mean (σ known) Let X 1,, X n a r.s. from N(µ, σ) or n > 30. Let The test statistic is H 0 : µ = µ 0. z = x µ 0

More information

Introductory Statistics with R: Simple Inferences for continuous data

Introductory Statistics with R: Simple Inferences for continuous data Introductory Statistics with R: Simple Inferences for continuous data Statistical Packages STAT 1301 / 2300, Fall 2014 Sungkyu Jung Department of Statistics University of Pittsburgh E-mail: sungkyu@pitt.edu

More information

22s:152 Applied Linear Regression. Chapter 8: 1-Way Analysis of Variance (ANOVA) 2-Way Analysis of Variance (ANOVA)

22s:152 Applied Linear Regression. Chapter 8: 1-Way Analysis of Variance (ANOVA) 2-Way Analysis of Variance (ANOVA) 22s:152 Applied Linear Regression Chapter 8: 1-Way Analysis of Variance (ANOVA) 2-Way Analysis of Variance (ANOVA) We now consider an analysis with only categorical predictors (i.e. all predictors are

More information

CIVL /8904 T R A F F I C F L O W T H E O R Y L E C T U R E - 8

CIVL /8904 T R A F F I C F L O W T H E O R Y L E C T U R E - 8 CIVL - 7904/8904 T R A F F I C F L O W T H E O R Y L E C T U R E - 8 Chi-square Test How to determine the interval from a continuous distribution I = Range 1 + 3.322(logN) I-> Range of the class interval

More information

Two sample Hypothesis tests in R.

Two sample Hypothesis tests in R. Example. (Dependent samples) Two sample Hypothesis tests in R. A Calculus professor gives their students a 10 question algebra pretest on the first day of class, and a similar test towards the end of the

More information

Solutions to Final STAT 421, Fall 2008

Solutions to Final STAT 421, Fall 2008 Solutions to Final STAT 421, Fall 2008 Fritz Scholz 1. (8) Two treatments A and B were randomly assigned to 8 subjects (4 subjects to each treatment) with the following responses: 0, 1, 3, 6 and 5, 7,

More information

3. Shrink the vector you just created by removing the first element. One could also use the [] operators with a negative index to remove an element.

3. Shrink the vector you just created by removing the first element. One could also use the [] operators with a negative index to remove an element. BMI 713: Computational Statistical for Biomedical Sciences Assignment 1 September 9, 2010 (due Sept 16 for Part 1; Sept 23 for Part 2 and 3) 1 Basic 1. Use the : operator to create the vector (1, 2, 3,

More information

Outline. Unit 3: Inferential Statistics for Continuous Data. Outline. Inferential statistics for continuous data. Inferential statistics Preliminaries

Outline. Unit 3: Inferential Statistics for Continuous Data. Outline. Inferential statistics for continuous data. Inferential statistics Preliminaries Unit 3: Inferential Statistics for Continuous Data Statistics for Linguists with R A SIGIL Course Designed by Marco Baroni 1 and Stefan Evert 1 Center for Mind/Brain Sciences (CIMeC) University of Trento,

More information

Levene's Test of Equality of Error Variances a

Levene's Test of Equality of Error Variances a BUTTERFAT DATA: INTERACTION MODEL Levene's Test of Equality of Error Variances a Dependent Variable: Butterfat (%) F df1 df2 Sig. 2.711 9 90.008 Tests the null hypothesis that the error variance of the

More information

Analysis of Variance. Contents. 1 Analysis of Variance. 1.1 Review. Anthony Tanbakuchi Department of Mathematics Pima Community College

Analysis of Variance. Contents. 1 Analysis of Variance. 1.1 Review. Anthony Tanbakuchi Department of Mathematics Pima Community College Introductory Statistics Lectures Analysis of Variance 1-Way ANOVA: Many sample test of means Department of Mathematics Pima Community College Redistribution of this material is prohibited without written

More information

Regression and the 2-Sample t

Regression and the 2-Sample t Regression and the 2-Sample t James H. Steiger Department of Psychology and Human Development Vanderbilt University James H. Steiger (Vanderbilt University) Regression and the 2-Sample t 1 / 44 Regression

More information

Epidemiology Principles of Biostatistics Chapter 10 - Inferences about two populations. John Koval

Epidemiology Principles of Biostatistics Chapter 10 - Inferences about two populations. John Koval Epidemiology 9509 Principles of Biostatistics Chapter 10 - Inferences about John Koval Department of Epidemiology and Biostatistics University of Western Ontario What is being covered 1. differences in

More information

ECON Introductory Econometrics. Lecture 5: OLS with One Regressor: Hypothesis Tests

ECON Introductory Econometrics. Lecture 5: OLS with One Regressor: Hypothesis Tests ECON4150 - Introductory Econometrics Lecture 5: OLS with One Regressor: Hypothesis Tests Monique de Haan (moniqued@econ.uio.no) Stock and Watson Chapter 5 Lecture outline 2 Testing Hypotheses about one

More information

Business Statistics. Lecture 10: Course Review

Business Statistics. Lecture 10: Course Review Business Statistics Lecture 10: Course Review 1 Descriptive Statistics for Continuous Data Numerical Summaries Location: mean, median Spread or variability: variance, standard deviation, range, percentiles,

More information

INTERVAL ESTIMATION AND HYPOTHESES TESTING

INTERVAL ESTIMATION AND HYPOTHESES TESTING INTERVAL ESTIMATION AND HYPOTHESES TESTING 1. IDEA An interval rather than a point estimate is often of interest. Confidence intervals are thus important in empirical work. To construct interval estimates,

More information

22s:152 Applied Linear Regression. 1-way ANOVA visual:

22s:152 Applied Linear Regression. 1-way ANOVA visual: 22s:152 Applied Linear Regression 1-way ANOVA visual: Chapter 8: 1-Way Analysis of Variance (ANOVA) 2-Way Analysis of Variance (ANOVA) 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 Y We now consider an analysis

More information

10/31/2012. One-Way ANOVA F-test

10/31/2012. One-Way ANOVA F-test PSY 511: Advanced Statistics for Psychological and Behavioral Research 1 1. Situation/hypotheses 2. Test statistic 3.Distribution 4. Assumptions One-Way ANOVA F-test One factor J>2 independent samples

More information

Chapter 7: Statistical Inference (Two Samples)

Chapter 7: Statistical Inference (Two Samples) Chapter 7: Statistical Inference (Two Samples) Shiwen Shen University of South Carolina 2016 Fall Section 003 1 / 41 Motivation of Inference on Two Samples Until now we have been mainly interested in a

More information

Topic 16 Interval Estimation

Topic 16 Interval Estimation Topic 16 Interval Estimation Confidence Intervals for 1 / 14 Outline Overview z intervals t intervals Two Sample t intervals 2 / 14 Overview The quality of an estimator can be evaluated using its bias

More information

4/6/16. Non-parametric Test. Overview. Stephen Opiyo. Distinguish Parametric and Nonparametric Test Procedures

4/6/16. Non-parametric Test. Overview. Stephen Opiyo. Distinguish Parametric and Nonparametric Test Procedures Non-parametric Test Stephen Opiyo Overview Distinguish Parametric and Nonparametric Test Procedures Explain commonly used Nonparametric Test Procedures Perform Hypothesis Tests Using Nonparametric Procedures

More information

EC2001 Econometrics 1 Dr. Jose Olmo Room D309

EC2001 Econometrics 1 Dr. Jose Olmo Room D309 EC2001 Econometrics 1 Dr. Jose Olmo Room D309 J.Olmo@City.ac.uk 1 Revision of Statistical Inference 1.1 Sample, observations, population A sample is a number of observations drawn from a population. Population:

More information

Lecture 15. Hypothesis testing in the linear model

Lecture 15. Hypothesis testing in the linear model 14. Lecture 15. Hypothesis testing in the linear model Lecture 15. Hypothesis testing in the linear model 1 (1 1) Preliminary lemma 15. Hypothesis testing in the linear model 15.1. Preliminary lemma Lemma

More information

Introduction to the Analysis of Variance (ANOVA)

Introduction to the Analysis of Variance (ANOVA) Introduction to the Analysis of Variance (ANOVA) The Analysis of Variance (ANOVA) The analysis of variance (ANOVA) is a statistical technique for testing for differences between the means of multiple (more

More information

Chapter 10: Inferences based on two samples

Chapter 10: Inferences based on two samples November 16 th, 2017 Overview Week 1 Week 2 Week 4 Week 7 Week 10 Week 12 Chapter 1: Descriptive statistics Chapter 6: Statistics and Sampling Distributions Chapter 7: Point Estimation Chapter 8: Confidence

More information

Two Sample Problems. Two sample problems

Two Sample Problems. Two sample problems Two Sample Problems Two sample problems The goal of inference is to compare the responses in two groups. Each group is a sample from a different population. The responses in each group are independent

More information

COMPARING SEVERAL MEANS: ANOVA

COMPARING SEVERAL MEANS: ANOVA LAST UPDATED: November 15, 2012 COMPARING SEVERAL MEANS: ANOVA Objectives 2 Basic principles of ANOVA Equations underlying one-way ANOVA Doing a one-way ANOVA in R Following up an ANOVA: Planned contrasts/comparisons

More information

Sampling Distributions: Central Limit Theorem

Sampling Distributions: Central Limit Theorem Review for Exam 2 Sampling Distributions: Central Limit Theorem Conceptually, we can break up the theorem into three parts: 1. The mean (µ M ) of a population of sample means (M) is equal to the mean (µ)

More information

Outline The Rank-Sum Test Procedure Paired Data Comparing Two Variances Lab 8: Hypothesis Testing with R. Week 13 Comparing Two Populations, Part II

Outline The Rank-Sum Test Procedure Paired Data Comparing Two Variances Lab 8: Hypothesis Testing with R. Week 13 Comparing Two Populations, Part II Week 13 Comparing Two Populations, Part II Week 13 Objectives Coverage of the topic of comparing two population continues with new procedures and a new sampling design. The week concludes with a lab session.

More information

Statistical Inference Part 2. t test for single mean. t tests useful for PSYCH 710. Review of Statistical Inference (Part 2) Week 2

Statistical Inference Part 2. t test for single mean. t tests useful for PSYCH 710. Review of Statistical Inference (Part 2) Week 2 Statistical Inference Part PSYCH 70 eview Statistical Inference (Part ) Week Pr. Patrick ennett t-tests Effect Size Equivalence Tests Consequences Low Power s P t tests useful for t test for single mean

More information

Independent Samples t tests. Background for Independent Samples t test

Independent Samples t tests. Background for Independent Samples t test Independent Samples t tests Dr. J. Kyle Roberts Southern Methodist University Simmons School of Education and Human Development Department of Teaching and Learning Background for Independent Samples t

More information

Chapter 10: Analysis of variance (ANOVA)

Chapter 10: Analysis of variance (ANOVA) Chapter 10: Analysis of variance (ANOVA) ANOVA (Analysis of variance) is a collection of techniques for dealing with more general experiments than the previous one-sample or two-sample tests. We first

More information

Chapter 23: Inferences About Means

Chapter 23: Inferences About Means Chapter 3: Inferences About Means Sample of Means: number of observations in one sample the population mean (theoretical mean) sample mean (observed mean) is the theoretical standard deviation of the population

More information

Two-Sample Inferential Statistics

Two-Sample Inferential Statistics The t Test for Two Independent Samples 1 Two-Sample Inferential Statistics In an experiment there are two or more conditions One condition is often called the control condition in which the treatment is

More information

LAB 2. HYPOTHESIS TESTING IN THE BIOLOGICAL SCIENCES- Part 2

LAB 2. HYPOTHESIS TESTING IN THE BIOLOGICAL SCIENCES- Part 2 LAB 2. HYPOTHESIS TESTING IN THE BIOLOGICAL SCIENCES- Part 2 Data Analysis: The mean egg masses (g) of the two different types of eggs may be exactly the same, in which case you may be tempted to accept

More information

+ Specify 1 tail / 2 tail

+ Specify 1 tail / 2 tail Week 2: Null hypothesis Aeroplane seat designer wonders how wide to make the plane seats. He assumes population average hip size μ = 43.2cm Sample size n = 50 Question : Is the assumption μ = 43.2cm reasonable?

More information

BIOL Biometry LAB 6 - SINGLE FACTOR ANOVA and MULTIPLE COMPARISON PROCEDURES

BIOL Biometry LAB 6 - SINGLE FACTOR ANOVA and MULTIPLE COMPARISON PROCEDURES BIOL 458 - Biometry LAB 6 - SINGLE FACTOR ANOVA and MULTIPLE COMPARISON PROCEDURES PART 1: INTRODUCTION TO ANOVA Purpose of ANOVA Analysis of Variance (ANOVA) is an extremely useful statistical method

More information

MANOVA is an extension of the univariate ANOVA as it involves more than one Dependent Variable (DV). The following are assumptions for using MANOVA:

MANOVA is an extension of the univariate ANOVA as it involves more than one Dependent Variable (DV). The following are assumptions for using MANOVA: MULTIVARIATE ANALYSIS OF VARIANCE MANOVA is an extension of the univariate ANOVA as it involves more than one Dependent Variable (DV). The following are assumptions for using MANOVA: 1. Cell sizes : o

More information

Comparing two samples

Comparing two samples 28 Comparing two samples Many applications are concerned with two groups of observations of the same kind that originate from two possibly different model distributions, and the question is whether these

More information

4.1 Hypothesis Testing

4.1 Hypothesis Testing 4.1 Hypothesis Testing z-test for a single value double-sided and single-sided z-test for one average z-test for two averages double-sided and single-sided t-test for one average the F-parameter and F-table

More information

i=1 X i/n i=1 (X i X) 2 /(n 1). Find the constant c so that the statistic c(x X n+1 )/S has a t-distribution. If n = 8, determine k such that

i=1 X i/n i=1 (X i X) 2 /(n 1). Find the constant c so that the statistic c(x X n+1 )/S has a t-distribution. If n = 8, determine k such that Math 47 Homework Assignment 4 Problem 411 Let X 1, X,, X n, X n+1 be a random sample of size n + 1, n > 1, from a distribution that is N(µ, σ ) Let X = n i=1 X i/n and S = n i=1 (X i X) /(n 1) Find the

More information

One-way between-subjects ANOVA. Comparing three or more independent means

One-way between-subjects ANOVA. Comparing three or more independent means One-way between-subjects ANOVA Comparing three or more independent means Data files SpiderBG.sav Attractiveness.sav Homework: sourcesofself-esteem.sav ANOVA: A Framework Understand the basic principles

More information

The Chi-Square and F Distributions

The Chi-Square and F Distributions Department of Psychology and Human Development Vanderbilt University Introductory Distribution Theory 1 Introduction 2 Some Basic Properties Basic Chi-Square Distribution Calculations in R Convergence

More information

Mock Exam - 2 hours - use of basic (non-programmable) calculator is allowed - all exercises carry the same marks - exam is strictly individual

Mock Exam - 2 hours - use of basic (non-programmable) calculator is allowed - all exercises carry the same marks - exam is strictly individual Mock Exam - 2 hours - use of basic (non-programmable) calculator is allowed - all exercises carry the same marks - exam is strictly individual Question 1. Suppose you want to estimate the percentage of

More information

Comparing two independent samples

Comparing two independent samples In many applications it is necessary to compare two competing methods (for example, to compare treatment effects of a standard drug and an experimental drug). To compare two methods from statistical point

More information

Chapter 9: Hypothesis Testing Sections

Chapter 9: Hypothesis Testing Sections Chapter 9: Hypothesis Testing Sections 9.1 Problems of Testing Hypotheses 9.2 Testing Simple Hypotheses 9.3 Uniformly Most Powerful Tests Skip: 9.4 Two-Sided Alternatives 9.6 Comparing the Means of Two

More information

1-Way Fixed Effects ANOVA

1-Way Fixed Effects ANOVA 1-Way Fixed Effects ANOVA James H. Steiger Department of Psychology and Human Development Vanderbilt University James H. Steiger (Vanderbilt University) 1 / 19 1-Way Fixed Effects ANOVA 1 Introduction

More information

Within Cases. The Humble t-test

Within Cases. The Humble t-test Within Cases The Humble t-test 1 / 21 Overview The Issue Analysis Simulation Multivariate 2 / 21 Independent Observations Most statistical models assume independent observations. Sometimes the assumption

More information

Resampling and the Bootstrap

Resampling and the Bootstrap Resampling and the Bootstrap Axel Benner Biostatistics, German Cancer Research Center INF 280, D-69120 Heidelberg benner@dkfz.de Resampling and the Bootstrap 2 Topics Estimation and Statistical Testing

More information

Statistical inference (estimation, hypothesis tests, confidence intervals) Oct 2018

Statistical inference (estimation, hypothesis tests, confidence intervals) Oct 2018 Statistical inference (estimation, hypothesis tests, confidence intervals) Oct 2018 Sampling A trait is measured on each member of a population. f(y) = propn of individuals in the popn with measurement

More information

1 Hypothesis testing for a single mean

1 Hypothesis testing for a single mean This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License. Your use of this material constitutes acceptance of that license and the conditions of use of materials on this

More information

Stat 529 (Winter 2011) Experimental Design for the Two-Sample Problem. Motivation: Designing a new silver coins experiment

Stat 529 (Winter 2011) Experimental Design for the Two-Sample Problem. Motivation: Designing a new silver coins experiment Stat 529 (Winter 2011) Experimental Design for the Two-Sample Problem Reading: 2.4 2.6. Motivation: Designing a new silver coins experiment Sample size calculations Margin of error for the pooled two sample

More information

The Components of a Statistical Hypothesis Testing Problem

The Components of a Statistical Hypothesis Testing Problem Statistical Inference: Recall from chapter 5 that statistical inference is the use of a subset of a population (the sample) to draw conclusions about the entire population. In chapter 5 we studied one

More information

Introduction to Business Statistics QM 220 Chapter 12

Introduction to Business Statistics QM 220 Chapter 12 Department of Quantitative Methods & Information Systems Introduction to Business Statistics QM 220 Chapter 12 Dr. Mohammad Zainal 12.1 The F distribution We already covered this topic in Ch. 10 QM-220,

More information

AMS7: WEEK 7. CLASS 1. More on Hypothesis Testing Monday May 11th, 2015

AMS7: WEEK 7. CLASS 1. More on Hypothesis Testing Monday May 11th, 2015 AMS7: WEEK 7. CLASS 1 More on Hypothesis Testing Monday May 11th, 2015 Testing a Claim about a Standard Deviation or a Variance We want to test claims about or 2 Example: Newborn babies from mothers taking

More information

Ch. 7. One sample hypothesis tests for µ and σ

Ch. 7. One sample hypothesis tests for µ and σ Ch. 7. One sample hypothesis tests for µ and σ Prof. Tesler Math 18 Winter 2019 Prof. Tesler Ch. 7: One sample hypoth. tests for µ, σ Math 18 / Winter 2019 1 / 23 Introduction Data Consider the SAT math

More information

Lecture 5: Hypothesis tests for more than one sample

Lecture 5: Hypothesis tests for more than one sample 1/23 Lecture 5: Hypothesis tests for more than one sample Måns Thulin Department of Mathematics, Uppsala University thulin@math.uu.se Multivariate Methods 8/4 2011 2/23 Outline Paired comparisons Repeated

More information

Research Article A Nonparametric Two-Sample Wald Test of Equality of Variances

Research Article A Nonparametric Two-Sample Wald Test of Equality of Variances Advances in Decision Sciences Volume 211, Article ID 74858, 8 pages doi:1.1155/211/74858 Research Article A Nonparametric Two-Sample Wald Test of Equality of Variances David Allingham 1 andj.c.w.rayner

More information

Math 141. Lecture 16: More than one group. Albyn Jones 1. jones/courses/ Library 304. Albyn Jones Math 141

Math 141. Lecture 16: More than one group. Albyn Jones 1.   jones/courses/ Library 304. Albyn Jones Math 141 Math 141 Lecture 16: More than one group Albyn Jones 1 1 Library 304 jones@reed.edu www.people.reed.edu/ jones/courses/141 Comparing two population means If two distributions have the same shape and spread,

More information

One-Way ANOVA Cohen Chapter 12 EDUC/PSY 6600

One-Way ANOVA Cohen Chapter 12 EDUC/PSY 6600 One-Way ANOVA Cohen Chapter 1 EDUC/PSY 6600 1 It is easy to lie with statistics. It is hard to tell the truth without statistics. -Andrejs Dunkels Motivating examples Dr. Vito randomly assigns 30 individuals

More information

Analysis of Variance: Repeated measures

Analysis of Variance: Repeated measures Repeated-Measures ANOVA: Analysis of Variance: Repeated measures Each subject participates in all conditions in the experiment (which is why it is called repeated measures). A repeated-measures ANOVA is

More information

STAT420 Midterm Exam. University of Illinois Urbana-Champaign October 19 (Friday), :00 4:15p. SOLUTIONS (Yellow)

STAT420 Midterm Exam. University of Illinois Urbana-Champaign October 19 (Friday), :00 4:15p. SOLUTIONS (Yellow) STAT40 Midterm Exam University of Illinois Urbana-Champaign October 19 (Friday), 018 3:00 4:15p SOLUTIONS (Yellow) Question 1 (15 points) (10 points) 3 (50 points) extra ( points) Total (77 points) Points

More information

Inferences About the Difference Between Two Means

Inferences About the Difference Between Two Means 7 Inferences About the Difference Between Two Means Chapter Outline 7.1 New Concepts 7.1.1 Independent Versus Dependent Samples 7.1. Hypotheses 7. Inferences About Two Independent Means 7..1 Independent

More information

T-test: means of Spock's judge versus all other judges 1 12:10 Wednesday, January 5, judge1 N Mean Std Dev Std Err Minimum Maximum

T-test: means of Spock's judge versus all other judges 1 12:10 Wednesday, January 5, judge1 N Mean Std Dev Std Err Minimum Maximum T-test: means of Spock's judge versus all other judges 1 The TTEST Procedure Variable: pcwomen judge1 N Mean Std Dev Std Err Minimum Maximum OTHER 37 29.4919 7.4308 1.2216 16.5000 48.9000 SPOCKS 9 14.6222

More information

Statistical Computing Session 4: Random Simulation

Statistical Computing Session 4: Random Simulation Statistical Computing Session 4: Random Simulation Paul Eilers & Dimitris Rizopoulos Department of Biostatistics, Erasmus University Medical Center p.eilers@erasmusmc.nl Masters Track Statistical Sciences,

More information

Review of probability and statistics 1 / 31

Review of probability and statistics 1 / 31 Review of probability and statistics 1 / 31 2 / 31 Why? This chapter follows Stock and Watson (all graphs are from Stock and Watson). You may as well refer to the appendix in Wooldridge or any other introduction

More information

Statistics Part IV Confidence Limits and Hypothesis Testing. Joe Nahas University of Notre Dame

Statistics Part IV Confidence Limits and Hypothesis Testing. Joe Nahas University of Notre Dame Statistics Part IV Confidence Limits and Hypothesis Testing Joe Nahas University of Notre Dame Statistic Outline (cont.) 3. Graphical Display of Data A. Histogram B. Box Plot C. Normal Probability Plot

More information

Sociology 6Z03 Review II

Sociology 6Z03 Review II Sociology 6Z03 Review II John Fox McMaster University Fall 2016 John Fox (McMaster University) Sociology 6Z03 Review II Fall 2016 1 / 35 Outline: Review II Probability Part I Sampling Distributions Probability

More information

Lecture 9. ANOVA: Random-effects model, sample size

Lecture 9. ANOVA: Random-effects model, sample size Lecture 9. ANOVA: Random-effects model, sample size Jesper Rydén Matematiska institutionen, Uppsala universitet jesper@math.uu.se Regressions and Analysis of Variance fall 2015 Fixed or random? Is it reasonable

More information

Linear Combinations of Group Means

Linear Combinations of Group Means Linear Combinations of Group Means Look at the handicap example on p. 150 of the text. proc means data=mth567.disability; class handicap; var score; proc sort data=mth567.disability; by handicap; proc

More information

Topic 22 Analysis of Variance

Topic 22 Analysis of Variance Topic 22 Analysis of Variance Comparing Multiple Populations 1 / 14 Outline Overview One Way Analysis of Variance Sample Means Sums of Squares The F Statistic Confidence Intervals 2 / 14 Overview Two-sample

More information

Do not copy, post, or distribute

Do not copy, post, or distribute 14 CORRELATION ANALYSIS AND LINEAR REGRESSION Assessing the Covariability of Two Quantitative Properties 14.0 LEARNING OBJECTIVES In this chapter, we discuss two related techniques for assessing a possible

More information

On Assumptions. On Assumptions

On Assumptions. On Assumptions On Assumptions An overview Normality Independence Detection Stem-and-leaf plot Study design Normal scores plot Correction Transformation More complex models Nonparametric procedure e.g. time series Robustness

More information

STAT 135 Lab 7 Distributions derived from the normal distribution, and comparing independent samples.

STAT 135 Lab 7 Distributions derived from the normal distribution, and comparing independent samples. STAT 135 Lab 7 Distributions derived from the normal distribution, and comparing independent samples. Rebecca Barter March 16, 2015 The χ 2 distribution The χ 2 distribution We have seen several instances

More information

Using R in 200D Luke Sonnet

Using R in 200D Luke Sonnet Using R in 200D Luke Sonnet Contents Working with data frames 1 Working with variables........................................... 1 Analyzing data............................................... 3 Random

More information

Comparison of Two Samples

Comparison of Two Samples 2 Comparison of Two Samples 2.1 Introduction Problems of comparing two samples arise frequently in medicine, sociology, agriculture, engineering, and marketing. The data may have been generated by observation

More information

Statistics Primer. ORC Staff: Jayme Palka Peter Boedeker Marcus Fagan Trey Dejong

Statistics Primer. ORC Staff: Jayme Palka Peter Boedeker Marcus Fagan Trey Dejong Statistics Primer ORC Staff: Jayme Palka Peter Boedeker Marcus Fagan Trey Dejong 1 Quick Overview of Statistics 2 Descriptive vs. Inferential Statistics Descriptive Statistics: summarize and describe data

More information

Comparing Means from Two-Sample

Comparing Means from Two-Sample Comparing Means from Two-Sample Kwonsang Lee University of Pennsylvania kwonlee@wharton.upenn.edu April 3, 2015 Kwonsang Lee STAT111 April 3, 2015 1 / 22 Inference from One-Sample We have two options to

More information

Inference in Regression Analysis

Inference in Regression Analysis Inference in Regression Analysis Dr. Frank Wood Frank Wood, fwood@stat.columbia.edu Linear Regression Models Lecture 4, Slide 1 Today: Normal Error Regression Model Y i = β 0 + β 1 X i + ǫ i Y i value

More information

A nonparametric two-sample wald test of equality of variances

A nonparametric two-sample wald test of equality of variances University of Wollongong Research Online Faculty of Informatics - Papers (Archive) Faculty of Engineering and Information Sciences 211 A nonparametric two-sample wald test of equality of variances David

More information

T-tests for 2 Independent Means

T-tests for 2 Independent Means T-tests for 2 Independent Means January 15, 2019 Contents t-test for 2 independent means Tutorial Example 1: one-tailed test for independent means, equal sample sizes Error Bars Example 2: two-tailed test

More information

CE3502. Environmental Measurements, Monitoring & Data Analysis. ANOVA: Analysis of. T-tests: Excel options

CE3502. Environmental Measurements, Monitoring & Data Analysis. ANOVA: Analysis of. T-tests: Excel options CE350. Environmental Measurements, Monitoring & Data Analysis ANOVA: Analysis of Variance T-tests: Excel options Paired t-tests tests (use s diff, ν =n=n x y ); Unpaired, variance equal (use s pool, ν

More information

MAT3378 (Winter 2016)

MAT3378 (Winter 2016) MAT3378 (Winter 2016) Assignment 2 - SOLUTIONS Total number of points for Assignment 2: 12 The following questions will be marked: Q1, Q2, Q4 Q1. (4 points) Assume that Z 1,..., Z n are i.i.d. normal random

More information