APPLICATION OF FINITE INTEGRAL TRANSFORMATION METHOD TO THE SOLUTION OF MIXED PROBLEMS FOR PARABOLIC EQUATIONS WITH A CONTROL

Size: px
Start display at page:

Download "APPLICATION OF FINITE INTEGRAL TRANSFORMATION METHOD TO THE SOLUTION OF MIXED PROBLEMS FOR PARABOLIC EQUATIONS WITH A CONTROL"

Transcription

1 PROCEEDINGS OF IAM V7 N 8 pp94-5 APPLICATION OF FINITE INTEGRAL TRANSFORMATION METHOD TO THE SOLUTION OF MIXED PROBLEMS FOR PARABOLIC EQUATIONS WITH A CONTROL * Elmaga A Gaymov Baku Sa Univriy Az 4 Baku Azrbaijan gaymov-lmagha@ramblrru Abrac In h prn papr w u h mho of fini ingral ranformaion o h oluion of mi problm for parabolic quaion wih a conrol an wih irrgular bounary coniion Th analyic rprnaion of h oluion of h conir problm i obain For h accibiliy of a wi rang of rar on om parabolic mol problm h mho of fini ingral ranformaion i lf i a Kywor: Claic oluion fini ingral ranformaion mho conrol quaion irrgular boynary coniion AMS Subjc Claificaion: 35K 35K35 Inroucion Throughou h horical an appli imporanc a mi problm for parial iffrnial quaion rfr o on of h urgn problm of mahmaic an mahmaical phyic Som problm of lcroynamic problm of unrgroun hyromchanic nonaionary problm for mahmaical phyic quaion ar ruc o uch problm Symbolic calculu u by nginr-lcrician O Hvyi wa on of h convnin bu mahmaically no raonabl ool In h bginning of h XIX cnury Fourir ugg h mho of paraion of variabl for ingraion of om linar parial iffrnial quaion unr h givn bounary an iniial coniion Applicaion of h Fourir mho o h oluion of mi problm wih para variabl ruc o h problm of panion of an arbirary funcion from om cla in ign funcion corrponing o h pcral problm In 87 for olving mi problm wih conan cofficin Cauchy [] ugg h riu mho h nc of which i in rprnaion of an "arbirary" funcion in h form of ingral riu On of h mho for olving mi problm for parial iffrnial quaion i h mho of ingral ranformaion ha wa uccfully u by Laplac AL Cauchy [] ML Raulov [] an ohr In hi rarch ML Raulov u h ingral ranformaion ϕ = ϕ * Работа была представлена на семинаре Института Прикладной Математики

2 Elmaga A Gaymov: APPLICATION OF FINITE INTEGRAL TRANSFORMATION an for ϕ aum ha ϕ ning o zro a i an analyic funcion in h omain π R δ = : R arg + δ δ > 4 arg h coniion uniformly wih rpc o of horm on pag 5 of h papr [] No ha if for Rδ aifying h inqualiy R > ML Raulov rmin ϕ by formula hn hi ingral gnrally paking ivrg Bu if Ω = π R arg Raulov woul ak ϕ in 4 h form of an in omain R δ \ Ω rmin h funcion ϕ by analyic coninuaion hn h coniion of inc of uch a coninuaion houl b clarifi aiionally o ha hi aumpion b fulfill Furhrmor ML Raulov cp on pcial funcion ϕ = from p45 [] o no how h cla of funcion ϕ for which ϕ aifi hi aumpion In [] [] i i aum ha unr uiabl numbring θ j θ j ar h roo of h characriic quaion of pcral problm h following coniion ar fulfill R[ θ ] R[ θ ] R[ θn ] [ α β ] ω whr ω i om infini par of plan whrin w look for aympoic bhavior of h ym of funamnal paricular oluion of a homognou quaion corrponing o pcral problm In applicaion faibiliy of coniion ruc o h fac ha: A argumn θ j an argumn of hir iffrnc ar inpnn of [ α β ] for ampl : rrain 3 on pag 3 [] ha in our opinion i a mor rigi rrain No ha whn olving mi problm [4] w ar rric in coniraion of a paramric problm no on h whol infini par of - plan bu only in om π par in h cor arg + δ of -plan an bcau of ha w g ri of 4 rigi conrain A Thr i a wi rang of mi problm of horical an pracical imporanc ha ar no olv by h known Fourir GD Birkhoff [] Ya D Tamarkin [] MA Naimark [9 ] ML Raulov [] mho In h ca of 95

3 PROCEEDINGS OF IAM V7 N 8 irrgular bounary coniion panion in ign an aocia funcion ha a numbr of pcific faur Th auhor rcrch how ha whn olving h problm i i no obligaory o u Brikhoff- Tamarkin-Naimark-Raulov' panion formula In hi papr w ugg h mho of fini ingral ranformaion ha ami o fin h oluion of irrgular mi problm unr mor gnral bounary coniion an wakr conrain on h problm aa Fini ingral ranformaion L f b a compl ω a ral funcion of h ral argumn T T f ω f ω L T i om poiiv numbr an [ ] ~ Dfiniion W call h funcion f whr W hav: ~ f ~ f + = ω p ω η η f T ± rmin by h formula = ω p ω η η f [ T ] i a compl numbr h imag of h funcion f Thorm E L C T ] L [ T ] ω ω η η > < T f b boun an coninuou cp numrabl numbr of poin a which i may hav iconinuiy of fir kin wih rpc o} [ T ] Thn for all < < T f ± lim f i h funcion ± rprn by i own imag in h form f ± = p ω f 4 ± π θ L whr L i an in fini mooh lin in -plan who a rahr ian par coinci wih coninuaion of h ray π arg + a =± + θ ; a θ < θ < π / ar om conan an in 4 h ingral wih rpc o L i unroo in h n of principal valu Aum f i = f for i < < i+ fi i = f i + f i i+ = f i+ whr i = < < < m = T ar om poin 96 for 3

4 Elmaga A Gaymov: APPLICATION OF FINITE INTEGRAL TRANSFORMATION Corollary If ω C [ T ] ω > for [ T ] funcion f i ar aboluly coninuou wih rpc o [ i+ ] i = m θ = a wll > an h i m i a naural numbr hn 4 hol for Fini ingral ranformaion mhofor parabolic quaion Hr for a wi rang of rar on h following irrgular mol problm for parabolic quaion w a h fini ingral ranformaion mho Mol problm To fin h claic oluion u = u of h quaion u u = a + F < < < T 5 aifying h irrgular coniion u = ϕ K u = ϕ = < T 6 an h iniial coniion u = f 7 = whr F ϕ ϕ f ar h known funcion a-con L quaion b parabolic in IG Provky n i l arg a π a = a arg a θ a > 4 whr θ i om numbr aifying h inqualiy π < θ < 8 4 L h funcion F ϕ f T Sag Obaining opraion problm For > applying h fini ingral ranformaion ϕ b coninuou for φ = φ i a compl paramr o 5-6 an uing 7 an hn prforming on h imag u ~ opraion corrponing o h givn opraion on u w g h following opraion problm : a u = p u f F < < 9 97

5 PROCEEDINGS OF IAM V7 N 8 whr ~ u = v + f + ~ ϕ ; = K ~ u ~ = ϕ u ~ = u v u = ~ F = ~ ϕ = ϕ k k F Rmark On our iincion from h auhor ngag in uch problm i ha unlik h opraion problm conruc by u in h prn ca h righ han i of h opraion problm conain h ough-for funcion u a wll Sag Suying h paramric problm For olving h opraion problm - a fir w uy h paramric problm 3-4 corrponing o i a y'' y = ψ 3 U y y / = = γ U y K y = γ 4 whr ψ C[ ] γ γ ar arbirary numbr In [4] w hav hown ha whn uying mi problm for parabolic ym of orr p i uffic o conir h omain of chang of paramr in h form π R δ = : R arg + δ δ > 4 p Conqunly hr an in h qul w will aum ha π Rδ = : R arg + δ 4 p whr R i a rahr larg poiiv numbr rmark 5 δ < δ < θ 5 i an arbirarily fi numbr rmark 4 an 7 W ak h ym of funamnal paricular oluion of a homognou quaion corrponing o 3 in h form 98

6 Elmaga A Gaymov: APPLICATION OF FINITE INTEGRAL TRANSFORMATION y = p [ ] y = p a a 6 h funamnal oluion of quaion 3 w ak in h form P = p aπ a 7 No ha hr funamnal oluion P an h ym of funamnal paricular oluion y y ar chon o ha for δ hy ar craing funcion wih rpc o Rmark I i known ha h Grn funcion of h problm 3-4 ar inpnn on h choic of h funamnal oluion P an h ym of funamnal paricular oluion y y Hr hir uch choic R for δ fr u from h opraion prform in [ ] ovr h rminan conain in h prion of h Grn funcion Th nominaor of h Grn funcion of h problm 3-4 will b U y U y = 8 U y U y Epaning h rminan 8 w hav M M M S M S = α M + α M + + α M S + O Rδ 9 whr M i h high poibl gr wih rpc o S i om nonngaiv ingr α ν ar om numbr Incinally w no ha w can ak h numbr S conain in 9 rahr larg i for Rδ for w can g mor ac aympoic if h funcion conain in h lf han i of h paramric problm 3 4 ar rahr mooh Rmark 3 In [4] for h quaion wih variabl cofficin an "gnral" bounary coniion ufficin coniion impo on h cofficin of h paramric problm ha provi o obain aympoic o h rquir accuracy S for Rδ ar givn Dfiniion W ay ha bounary coniion of paramric problm 3-4 ar wll-impo if a la on of h numbr αm αm αm S from 9 i nonzro From hi finiion w immialy g: 99

7 PROCEEDINGS OF IAM V7 N 8 -If h bounary coniion of h paramric problm ar rgular in h n of Birkhoff -Tamarkin - Naimark-Raulov hn hy ar wll-po by our finiion Bu h invr amn i no ru 3 L irrgular coniion 4 b wll-po an in h qunc h fir nonzro numbr b α whr q q Z i om ingr q W cho h numbr R o larg ha q α q for R δ Now how h ufficincy of h coniion proviing wll-pon of irrgular coniion 4 4 n n j L K C [ ] K K = for j n whr n i om naural numbr Taking ino accoun 6 in 8 w g hav = K a a K a Uing h conrain 4 ingraing h following ingral by par w n = + a a n a a j K K K + j= n n a K a + Taking ino accoun w hav a a ε n whr in > ε = θ δ a δ j 3 R 4 Rmark 4 In 5 lcion of h numbr δ aifying h inqualiy δ < θ provi poiiviy of h numbr ε conain in 4 No ha p c p [ lim = ε whr p i any ral numbr c i om poiiv conan p p 5 Taking ino accoun in w g n+ n n = a K + O R n n+ δ 6

8 Elmaga A Gaymov: APPLICATION OF FINITE INTEGRAL TRANSFORMATION ha how wll -pon of irrgular coniion 4 Thu w ablih Lmma L conain 4 b fulfill Thn for Rδ for h quaion 3 h irrgular coniion 4 ar wll-po Now w choo h numbr R o larg ha n n a K a Rδ 7 n Rmark 5 Th numbr R i chon from h following wo coniion: -in h omain R δ o fin o h rquir accuracy h aympoic rprnaion of h ym of funamnal paricular oluion of homognou quaion corrponing o h quaion of h paramric problm in h prn mol ampl w i no n i -in h omain R δ for -nominaor of h Grn funcion of h paramric problm o g h lowr ima of yp in h prn ca of yp 7 From 7 i follow ha for Rδ hi inqualiy impli h valiiy of h following claic horm Thorm L h conrain' 4 b fulfill ψ C[ ] γ an γ b arbirary numbr hn for Rδ h paramric problm 34 -ha a uniqu oluion -hi oluion i rprn by h formula [4] y = δ γ γ + G ψ 8 G = P + G Th funcion δ γ γ wih rpc o γ an γ i linar i δ γ + qβγ + qβ = δ γ γ + qδ β β 9 Taking ino accoun 4 in 6 for Rδ w g h valiiy of h following inqualii y k ρ [ ] k = 3 whr ρ = p ε + p ε a a Sag 3Invrion formula A hi ag w g om invrion formula connc wih:

9 PROCEEDINGS OF IAM V7 N 8 δ γ γ i h oluion of homognou invrion formula quaion corrponing o 3 aifying inhomognou irrgular coniion 4 - G i h Grn funcion of h paramric problm 3 4 L L b an infini opn mooh lin in h omain R δ who rahr ian par coinci wih h coninuaion of h ray π arg = ± + δ In h 4 qul l R < R < R < an lim R = m m Lm b a par of L rmaining inrior o h circl of raiu R m ; an Cm b a par of a circl of raiu R m ; cnr a h origin of coorina of - plan rmaining in h omain R δ W hav Lmma L g b an analyic funcion wih rpc o Rδ S an g con for R δ whr Z i om ingr Thn for < < w hav h following formula of invrion o zro L g y = k = k whr y k i from 6 Hr an in h qul h ingral wih rpc o L i unroo in h n of principal valu Lmma 3 Unr conrain an 4 for any numbr γ γ an for any ingr Z w hav h following formula of invrion o zro δ γ γ = < < 3 L Lmma 4 Unr conrain an 4 if ψ i a pic-wi coninuou funcion in [] hn for any ingr Z invrion o zro i hol h following formula of G ψ = < < 3 L Accoring o [4] w hav h following Lmma 5 Unr conrain if ψ h gmn [] i Holr coninuou wih h ponn q < q hn for < < w hav h following invrion formula:

10 Elmaga A Gaymov: APPLICATION OF FINITE INTEGRAL TRANSFORMATION L a a ψ π δ ψ = = + = whr ~ ψ ψ P P = i from 78 Th following horm on invrion formula follow from lmma 4 an 5 Thorm Unr conrain an 4 if ψ on h gmn [] i Holr coninuou wih h ponn < q q hn for < < w hav h following invrion formula L a G a ψ π δ ψ = = + = 33 whr G i h Grn funcion of irrgular paramric problm 3 4 Sag 4 Th oluion of h mi problm Uing horm for δ R accoring o h formula 8 from h opraion problm w hav = ~ ~ ~ ϕ ϕ δ f v u [ ] + ] [ ~ T F f u G Thu w ablih h following Thorm 3 L conrain an 4 b fulfill Thn if irrgular mi problm 5-7 ha a claic oluion hn: -i i uniqu -hi oluion i rprn by analyic formula L u f δ π = + + ϕ ϕ δ f G > < < F G 34 3

11 PROCEEDINGS OF IAM V7 N 8 Rmark 6 From rivaion of formula 34 i follow ha unr conrain an 4 if h funcion u fin by formula 34 i no h oluion of problm 5-7 hn hi problm ha no claic oluion Rmark 7 Th poiiviy of h numbr δ δ > ami u o g h inqualiy ω CT for L T 35 whr < ω = in δ Inqualiy 35 ami o ak for > h opraion of iffrniaion wih rpc o an wih rpc o unr h ingral ign wih rpc o L Impoing fini rricion on h funcion F ϕ ϕ f [4] i i ay o ha h funcion u rmin by h formula 35 in fac i h claic oluion of irrgular mi problm 5-7 Mol problm To fin h oluion of h quaion u u = 36 > unr h bounary coniion u = ϕ > u CT p MT [ T ] a 37 = C T M T ar om conan in h iniial coniion u = Φ 38 whr ϕ Φ ar om coninuou funcion an Φ con for [ Thi mol problm i among h problm conir by ML Raulov [] Accoring o formula 35 p5 [] by Raulov h oluion of h problm i u = φ + G Φ 39 π L whr [ + = ] = ~ G ϕ ϕ 4 Now uing h fini ingral ranformaion mho a in mol problm for olving h problm w g h following prion 4

12 Elmaga A Gaymov: APPLICATION OF FINITE INTEGRAL TRANSFORMATION Φ u = φ + + G Φ 4 π L whr G i from 4 Thu h oluion of problm i rprn by iffrn formula 39 an 4 Comparing 39 an 4 w ha h con umman in brac 4 39 o no i furhr in 39 in h fir umman h ingral ϕ i rplac by no uccful In h problm w aum ϕ Thi rplacmn in our opinion i ϕ Φ 4 Thn from 39 w hav an from 4 w g u = π / p 43 u 44 On h ohr han by horm p 5 [] h oluion of h problm i uniqu on h ohr han for h oluion u of problm ML Raulov obain h prion 43 hough in fac h claic oluion of h problm i u from 44 Samn of h problm Fin hn claic oluion of h quaion u Z u f = v < < < < T 45 Z a + b + c aifying h ingro-iffrnial "bounary" coniion V i D D u { n= j= α i jn D j D n u i j n = + β jn D D u = + i j n + γ j n D D u = ϕi < < T i = 46 h iniial coniion = f < 47 an h fini coniion u < = 5

13 PROCEEDINGS OF IAM V7 N 8 whr u u = f < < = T u i h ough-for coninuou claic oluion; a b c f γ 48 v i h ϕ f ough-for coninuou conrol i i ar known funcion ; T T > α β ar known numbr jn jn L quaion 45 b parabolic in IG Provky n i l δ δ i om numbr R a δ [] whr i jn > m+ m+ m L a C [] b C [] c C [] i jn q γ C i = j = n = In coniion an 3 m m q 3 L [] ; ; rmark 4 L f C [] ϕ i C [ T ] i = From conrain i follow ha i i q ar om ingr f C [] [ T ] i π π + 4δ arg a 4δ [] whr π δ < δ < i om poiiv numbr 8 Dfiniion I i ai ha h funcion u u i a claic oluion of problm if a : h funcion u i coninuou for T a : h funcion u for < < T ha a coninuou rivaiv of h form u u ; a 3 : h funcion u for < < < < T ha coninuou rivaiv of h form u ; i a 4 : if α hn u C [ α] T whr α < α < i om numbr; u β hn C [ α] T ; i if 49 6

14 Elmaga A Gaymov: APPLICATION OF FINITE INTEGRAL TRANSFORMATION i if α hn u u C [ α ] T C [ α] [ T ; i if β hn u u C [ α ] T C [ α] [ T ; if γ i i no inically qual o zrohn u C [] T if γ i i no inically qual o zro hn u C [] T u C [] [ T ; a 5 : h funcion u aifi qualii in h orinary n Paramric problm For olving problm a fir w olv h following paramric problm Z y = ψ 5 Vi y = γi i = 5 ψ C [] γ ar om numbr -i a compl paramr whr i Hr an i h qul unl ohrwi ipula w aum π Rδ : R arg + δ 4 whr δ i from 49 R i a rahr larg poiiv numbr Dno by i = θ i h roo of h characriical quaion [ 9] covrponing o 5 i l arg a θ = θ = a p Accoring o [9] [4] unr conrain an a [] hr i h funcion [] = m g [] gi C i ha for h funcion 7

15 PROCEEDINGS OF IAM V7 N 8 yim p θi gi + gi + + g m im i hol E p im Z yim = θi [] i = m i any compl numbr C [ ] Eim i om funcion In [4] in omain R δ h funamnal oluion P of quaion 5 i conruc in h form P = P + P η h η 5 η h -i a ough -for krnl whr an uing funamnal oluion unr conrain an in [4] i i prov ha a homognou quaion corrponing o 5 ha h ym of funamnal paricular oluion y i i = ha oghr wih fir orr rivaiv ar rprn by h aympoic formula y = ym + Em = p y θ ym + Em = ; 53 whr E im ar om coninuou funcion wih rpc o [] an analyic wih rpc o Rδ an h following imaion hol: C Em p ε m C Em p ε y p m C ε y C p ε 54 Hr an in h qul by C an ε w no iffrn poiiv numbr concr valu of which ar no imporan inpnn of [] an Rδ Rmark In h claic papr [9 ] h mho u by hm compll hm o know aympoic of h ym of funamnal paricular oluion of a homognou quaion wih rpc o along h ircion of - plan an bcau of ha on h roo of characriical quaion hy impo h conrain: 8

16 Elmaga A Gaymov: APPLICATION OF FINITE INTEGRAL TRANSFORMATION A: h argumn θ i an argumn of hir iffrnc θ i ar inpnn of θ j For quaion 5 conrain A ruc o h aumpion B: a = αp whr P > α con for [] Unlik claic papr [9 ] in h prn papr an in [4] conrain A ar no impo on h roo of h characriical quaion an hrfor fulfilmn of conrain B i no uppo Epaning h rminan rminaor of h Grn funcion w hav = Q + E 55 whr 6 5 Q = α6 + α5 + + α6k 56 K 6 E = O K 5 K K i om ingr No ha h numbr K conain in 56 may b akn rahr larg i for on can obain ufficinly ac aympoic rprnaion if h numbr m from an q from 3 ar rahr larg Dfiniion I i ai ha bounary coniion 46or 5 wll-fin righ if a la on h numbr α6 α5 α6 K from 56 i non-zro If bounary coniion of h pcral problm ar rgular in Brikhoff - Tamarkin - Naimark - Raulov n hn hy ar wll-fin in h n of our finiion Bu h invr amn i no ru Show hi on h following ampl y" y = ψ 57 y y = y + y' + y' = 58 If w ak ym of funamnal paricular oluioun of a homognou quaion corrponing o 57 in h form y = p y = p hn h nominaion of h Grn funcion of problm will b = 6 Hnc i i n ha bounary coniion 58 for quaion 57 ar rgular in h n of Brikhoff Tamarkin Naimak Raulov I w ak h ym of funamnal paricular oluion of homognou quaion corrponing o 57 in h form 53 i y = p y = p hn h nominaor of h Grn funcion of problm will b 55 h Grn funcion ilf of h paramric problm i inpnn on h choic of h ym of funamnal paricular oluion whr Q = E = 6 9

17 PROCEEDINGS OF IAM V7 N 8 = O R S δ S i any naural numbrha inica wll-pou of bounary coniion 58 in h n of finiion L coniion 5 conain only h ingral i for ampl l Vi y Ki y = γ i i = 59 5 L K i C [] α K K K K Thn w hav Vi y Ki p = Ki Ki + ' + Ki p = Ki + O ; Vi y Ki p = Ki Ki ' Ki p = Ki + O ; hrfor from 56 w hav α Q = E = O Conqunly unr conrain 5 for paramric problm 5759 "bounary coniion" 59 ar fin by our finiion 6 L bounary coniion 46 an 5 b wll fin Furhr l among h non-zro numbr α 6 α5 α6k from 56 wih h gra in hr i α 6M Rmark 3 I i approria o ak in coniion h numbr m an in coniion 3 h numbr q o la a which for Q from 56 i hol Q = α6 6 M 6 M Uing 6 for rahr larg R from 55 w hav α 6 6M M 6 Inqualiy 6 how ha for Rδ Thrfor accoring o [9 ] an [4] i i hol following

18 Elmaga A Gaymov: APPLICATION OF FINITE INTEGRAL TRANSFORMATION Lmma L conrain an 6 b fulfill Thn for an ψ C[] paramric problm 5 5: i ha a uniqu oluion y ii hi oluion i an analyic funcion wih rpc o iii h oluion y i rprn by h formula y = G ψ + δ γ γ Uing 54 an 6 w g h imaion N G C [p ε + p ε ] γ + γ [p ε + N δ γ γ C + p ε ] [] Rδ Rδ 6 Rδ 63 [ whr N i om ingr numbr C i a conan inpnn of ] R δ an γ γ In [4] h following horm on invrion formula wa prov by h funamnal oluion P from 5 Thorm L conrain an b fulfill Thn for any aboluly coninuou funcion ψ on [] i hol h following invrion formula S ψ for S = < < 64 P ψ = π for S = δ + L whr L i an infini mooh lin in R δ who rahr ian par coinci wih coninuaion of h ray π arg = ± + δ morovr in 64 h ingral along h 4 lin L i unroo in h u of prinpal valu Taking ino accoun imaion 63 by h mho a in [4] w aily prov h following Thorm L conrain 3 an 6 b fulfill Thn for any funcion ψ C[] an arbirary numbr γ an γ i hol h following invrion formula S G ψ = < < 65 L

19 PROCEEDINGS OF IAM V7 N 8 S δ γ γ = < < 66 L whr S -i any ingr L -i from horm From Thorm an w obain h following Thorm 3L conrain 3 an 6 b fulfill Thn for any aboluly coninuou funcion ψ on []i hol h following invrion formula: S ψ for S = < < 67 G ψ = π for S = δ + L whr L i from horm In [4] h following horm on invrion formula i prov Thorm 4 If h funcion ϕ i coninuou for hn i hol h following invrion formula φ ϕ π = > 68 δ L φ p ϕ L i from horm 3Soluion of h mi problm L h ough-for coninuou conrol v b a priori known an problm hav h claic oluion u u Applying o h fini ingral ranformaion [4] w g Thorm 3 L conrain 3 4 an 6 b fulfill Thn if problm ha a uniqu oluion hi i a uniqu oluion an i rprn by formula u G v F = π p L + < < < T 69 ~ F = δ ψ ψ G p f + f [ ] Subiuing 69 in fini coniion 48 for rmining h unknown conrol w g Frholm con orr ingral quaion < < f p T G v F T = + 7 π L Bcau of rricion on h papr volum w on giv invigaion of h oluion of quaion 7

20 Elmaga A Gaymov: APPLICATION OF FINITE INTEGRAL TRANSFORMATION Solving quaion 7 w fin h unknown conrol an accoring o 67 w hav G v = < < 7 L Taking ino accoun 7 in 69 w g < < < T u p G v F = + 7 π L Improing rrain on rahr mooh n of h funcion conain in 3 an 4 an uing h inqualiy p Cp in δ L 73 u by h mho a in [4] i i aily hown ha h funcion rmin by formula 73 i h oluion of problm Rmark 3 In 7 whn ubiuing z = h obain imag of h L lin from h Laplac raigh lin an avanag of h iffr L from h Laplac raigh lin i ha accoring o inqualiy 73 in 7 h ingran facor for > L cra ponn ially an hi allow aily o juify convrgnc of h ingral in unboun lin L 4 Mol problm Problm amn Fin h oluion of h quaion u u = + v < < T wih h unknown conrol v aifying h bounary coniion u = u = < < T = = iniial coniion = f < u < = an fini coniion u = f < < C = T l l k k [] = { : ϕ C [] ϕ = ϕ = L k = l } ϕ for All conrain of horm 3 ar fulfill for problm an accoring o formula 69 w hav 4 Thorm 4 L f C [] f C [] Thn mi problm74-77 wih a conrol ha a uniqu claical oluion an hi oluion i rprn by formula 3

21 PROCEEDINGS OF IAM V7 N 8 u = k = p k π in kπ f in kπ + k = k π p k π in kπ v in kπ < < < T 78 k π v in kπ = p k π T in kπ p k π T f in kπ f 79 k = v = in kπ v in kπ whr h ough-for conrol v i foun by formula 8 i Fourir cofficin [3] by formula 79 Th fini ingral ranformaion mho u hr wa ugg by u in [4] an wa uccfuly u in [5-8] an in ohr Rfrnc 8 Brikhoff GD On h aympoic characr of h oluion of crain linar iffrnial quaion conaining a paramr Tran AM Mah Soc Cauchu AL M'moir'ur l'applicaion u calcul riu a'la oluion problm phyiqu mahmaiqu Pari Fichnhol GM Cour of iffrnial inrgral calculu vol III Mocow"Nauka" p 4 Gaymov Elmaga Fini ingral ranformaion mho Baku "Elm" p 5 Gaymov EA Mi problm on conjugaion of parabolic ym of iffrn orr wih nonlocal bounary coniion Diff Uravn Gaymov EA Applicaion of fini ingral ranformaion mho o h oluion of mi problm wih ingral iffrnial coniion for on nonclaical quaion Diff Uravn Gaymov EA Suying mi problm in conjugaion of hyprbolic ym of iffrn orr Zhournal vychililnoy mamaiki i mamaichikoy fiziki Gaymov EA Guynova AO Gaanova UN Applicaion of h gnraliz mho of paraion of variabl o h oluion of h iplac 4

22 Elmaga A Gaymov: APPLICATION OF FINITE INTEGRAL TRANSFORMATION problm wih irrgular bounary coniion Zhournal vychililnoy mamaiki i mamaichikoy fiziki Naimark MA Linar iffrnial opraor M Nauka 969 Raulov ML Applicaion of h conour ingral mho M Nauka 975 Tamarkin Ya D On om gnral problm of hory of orinary linar iffrnial quaion on panion of arbirary funcion in ri Progra 97 Применение метода конечного интегрального проеобразования к решению смещанных задач для параболических уравнений с управлением ЭАГасымов gaymov-lmagha@ramblrru РЕЗЮМЕ Одним из методов решения смещанных задач является классический метод разделения переменных метод Фурье Когда граничных условия смещанной задачи нерегульярны то вообще говоря этот метод неприменимы В настоящей работе применяется метод конечного интегрального преобразования к решению смещанных задач для параболических уравнений с управлением и с нерегульярными граничными условиями Получено аналитическое представление решения рассматриваемой смещанной задачи Ключевые слова: классическое решение метод конечного иетегрального преобразования уравнения с управлением нерегульярное граничное условие 5

Instructors Solution for Assignment 3 Chapter 3: Time Domain Analysis of LTIC Systems

Instructors Solution for Assignment 3 Chapter 3: Time Domain Analysis of LTIC Systems Inrucor Soluion for Aignmn Chapr : Tim Domain Anali of LTIC Sm Problm i a 8 x x wih x u,, an Zro-inpu rpon of h m: Th characriic quaion of h LTIC m i i 8, which ha roo a ± j Th zro-inpu rpon i givn b zi

More information

2. The Laplace Transform

2. The Laplace Transform Th aac Tranorm Inroucion Th aac ranorm i a unamna an vry uu oo or uying many nginring robm To in h aac ranorm w conir a comx variab σ, whr σ i h ra ar an i h imaginary ar or ix vau o σ an w viw a a oin

More information

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018 DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS Aoc. Prof. Dr. Burak Kllci Spring 08 OUTLINE Th Laplac Tranform Rgion of convrgnc for Laplac ranform Invr Laplac ranform Gomric valuaion

More information

Chapter 5 The Laplace Transform. x(t) input y(t) output Dynamic System

Chapter 5 The Laplace Transform. x(t) input y(t) output Dynamic System EE 422G No: Chapr 5 Inrucor: Chung Chapr 5 Th Laplac Tranform 5- Inroducion () Sym analyi inpu oupu Dynamic Sym Linar Dynamic ym: A procor which proc h inpu ignal o produc h oupu dy ( n) ( n dy ( n) +

More information

Heat flow in composite rods an old problem reconsidered

Heat flow in composite rods an old problem reconsidered Ha flow in copoi ro an ol probl rconir. Kranjc a Dparn of Phyic an chnology Faculy of Eucaion Univriy of jubljana Karljva ploca 6 jubljana Slovnia an J. Prnlj Faculy of Civil an Goic Enginring Univriy

More information

Boyce/DiPrima 9 th ed, Ch 2.1: Linear Equations; Method of Integrating Factors

Boyce/DiPrima 9 th ed, Ch 2.1: Linear Equations; Method of Integrating Factors Boc/DiPrima 9 h d, Ch.: Linar Equaions; Mhod of Ingraing Facors Elmnar Diffrnial Equaions and Boundar Valu Problms, 9 h diion, b William E. Boc and Richard C. DiPrima, 009 b John Wil & Sons, Inc. A linar

More information

Elementary Differential Equations and Boundary Value Problems

Elementary Differential Equations and Boundary Value Problems Elmnar Diffrnial Equaions and Boundar Valu Problms Boc. & DiPrima 9 h Ediion Chapr : Firs Ordr Diffrnial Equaions 00600 คณ ตศาสตร ว ศวกรรม สาขาว ชาว ศวกรรมคอมพ วเตอร ป การศ กษา /55 ผศ.ดร.อร ญญา ผศ.ดร.สมศ

More information

Midterm exam 2, April 7, 2009 (solutions)

Midterm exam 2, April 7, 2009 (solutions) Univrsiy of Pnnsylvania Dparmn of Mahmaics Mah 26 Honors Calculus II Spring Smsr 29 Prof Grassi, TA Ashr Aul Midrm xam 2, April 7, 29 (soluions) 1 Wri a basis for h spac of pairs (u, v) of smooh funcions

More information

REPETITION before the exam PART 2, Transform Methods. Laplace transforms: τ dτ. L1. Derive the formulas : L2. Find the Laplace transform F(s) if.

REPETITION before the exam PART 2, Transform Methods. Laplace transforms: τ dτ. L1. Derive the formulas : L2. Find the Laplace transform F(s) if. Tranform Mhod and Calculu of Svral Variabl H7, p Lcurr: Armin Halilovic KTH, Campu Haning E-mail: armin@dkh, wwwdkh/armin REPETITION bfor h am PART, Tranform Mhod Laplac ranform: L Driv h formula : a L[

More information

Final Exam : Solutions

Final Exam : Solutions Comp : Algorihm and Daa Srucur Final Exam : Soluion. Rcuriv Algorihm. (a) To bgin ind h mdian o {x, x,... x n }. Sinc vry numbr xcp on in h inrval [0, n] appar xacly onc in h li, w hav ha h mdian mu b

More information

Transfer function and the Laplace transformation

Transfer function and the Laplace transformation Lab No PH-35 Porland Sa Univriy A. La Roa Tranfr funcion and h Laplac ranformaion. INTRODUTION. THE LAPLAE TRANSFORMATION L 3. TRANSFER FUNTIONS 4. ELETRIAL SYSTEMS Analyi of h hr baic paiv lmn R, and

More information

Copyright 2012 Pearson Education, Inc. Publishing as Prentice Hall.

Copyright 2012 Pearson Education, Inc. Publishing as Prentice Hall. Chapr Rviw 0 6. ( a a ln a. This will qual a if an onl if ln a, or a. + k an (ln + c. Thrfor, a an valu of, whr h wo curvs inrsc, h wo angn lins will b prpnicular. 6. (a Sinc h lin passs hrough h origin

More information

LaPlace Transform in Circuit Analysis

LaPlace Transform in Circuit Analysis LaPlac Tranform in Circui Analyi Obciv: Calcula h Laplac ranform of common funcion uing h dfiniion and h Laplac ranform abl Laplac-ranform a circui, including componn wih non-zro iniial condiion. Analyz

More information

On the Derivatives of Bessel and Modified Bessel Functions with Respect to the Order and the Argument

On the Derivatives of Bessel and Modified Bessel Functions with Respect to the Order and the Argument Inrnaional Rsarch Journal of Applid Basic Scincs 03 Aailabl onlin a wwwirjabscom ISSN 5-838X / Vol 4 (): 47-433 Scinc Eplorr Publicaions On h Driais of Bssl Modifid Bssl Funcions wih Rspc o h Ordr h Argumn

More information

Lecture 1: Numerical Integration The Trapezoidal and Simpson s Rule

Lecture 1: Numerical Integration The Trapezoidal and Simpson s Rule Lcur : Numrical ngraion Th Trapzoidal and Simpson s Rul A problm Th probabiliy of a normally disribud (man µ and sandard dviaion σ ) vn occurring bwn h valus a and b is B A P( a x b) d () π whr a µ b -

More information

Double Slits in Space and Time

Double Slits in Space and Time Doubl Slis in Sac an Tim Gorg Jons As has bn ror rcnly in h mia, a am l by Grhar Paulus has monsra an inrsing chniqu for ionizing argon aoms by using ulra-shor lasr ulss. Each lasr uls is ffcivly on an

More information

Ma/CS 6a Class 15: Flows and Bipartite Graphs

Ma/CS 6a Class 15: Flows and Bipartite Graphs //206 Ma/CS 6a Cla : Flow and Bipari Graph By Adam Shffr Rmindr: Flow Nwork A flow nwork i a digraph G = V, E, oghr wih a ourc vrx V, a ink vrx V, and a capaciy funcion c: E N. Capaciy Sourc 7 a b c d

More information

EXERCISE - 01 CHECK YOUR GRASP

EXERCISE - 01 CHECK YOUR GRASP DIFFERENTIAL EQUATION EXERCISE - CHECK YOUR GRASP 7. m hn D() m m, D () m m. hn givn D () m m D D D + m m m m m m + m m m m + ( m ) (m ) (m ) (m + ) m,, Hnc numbr of valus of mn will b. n ( ) + c sinc

More information

Lecture 4: Laplace Transforms

Lecture 4: Laplace Transforms Lur 4: Lapla Transforms Lapla and rlad ransformaions an b usd o solv diffrnial quaion and o rdu priodi nois in signals and imags. Basially, hy onvr h drivaiv opraions ino mulipliaion, diffrnial quaions

More information

S.Y. B.Sc. (IT) : Sem. III. Applied Mathematics. Q.1 Attempt the following (any THREE) [15]

S.Y. B.Sc. (IT) : Sem. III. Applied Mathematics. Q.1 Attempt the following (any THREE) [15] S.Y. B.Sc. (IT) : Sm. III Applid Mahmaics Tim : ½ Hrs.] Prlim Qusion Papr Soluion [Marks : 75 Q. Amp h following (an THREE) 3 6 Q.(a) Rduc h mari o normal form and find is rank whr A 3 3 5 3 3 3 6 Ans.:

More information

Wave Equation (2 Week)

Wave Equation (2 Week) Rfrnc Wav quaion ( Wk 6.5 Tim-armonic filds 7. Ovrviw 7. Plan Wavs in Losslss Mdia 7.3 Plan Wavs in Loss Mdia 7.5 Flow of lcromagnic Powr and h Poning Vcor 7.6 Normal Incidnc of Plan Wavs a Plan Boundaris

More information

Chapter 12 Introduction To The Laplace Transform

Chapter 12 Introduction To The Laplace Transform Chapr Inroducion To Th aplac Tranorm Diniion o h aplac Tranorm - Th Sp & Impul uncion aplac Tranorm o pciic uncion 5 Opraional Tranorm Applying h aplac Tranorm 7 Invr Tranorm o Raional uncion 8 Pol and

More information

Let s look again at the first order linear differential equation we are attempting to solve, in its standard form:

Let s look again at the first order linear differential equation we are attempting to solve, in its standard form: Th Ingraing Facor Mhod In h prvious xampls of simpl firs ordr ODEs, w found h soluions by algbraically spara h dpndn variabl- and h indpndn variabl- rms, and wri h wo sids of a givn quaion as drivaivs,

More information

1 Finite Automata and Regular Expressions

1 Finite Automata and Regular Expressions 1 Fini Auom nd Rgulr Exprion Moivion: Givn prn (rgulr xprion) for ring rching, w migh wn o convr i ino drminiic fini uomon or nondrminiic fini uomon o mk ring rching mor fficin; drminiic uomon only h o

More information

fiziks Institute for NET/JRF, GATE, IIT JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES MATEMATICAL PHYSICS SOLUTIONS are

fiziks Institute for NET/JRF, GATE, IIT JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES MATEMATICAL PHYSICS SOLUTIONS are MTEMTICL PHYSICS SOLUTIONS GTE- Q. Considr an ani-symmric nsor P ij wih indics i and j running from o 5. Th numbr of indpndn componns of h nsor is 9 6 ns: Soluion: Th numbr of indpndn componns of h nsor

More information

An Indian Journal FULL PAPER. Trade Science Inc. A stage-structured model of a single-species with density-dependent and birth pulses ABSTRACT

An Indian Journal FULL PAPER. Trade Science Inc. A stage-structured model of a single-species with density-dependent and birth pulses ABSTRACT [Typ x] [Typ x] [Typ x] ISSN : 974-7435 Volum 1 Issu 24 BioTchnology 214 An Indian Journal FULL PAPE BTAIJ, 1(24), 214 [15197-1521] A sag-srucurd modl of a singl-spcis wih dnsiy-dpndn and birh pulss LI

More information

Spring 2006 Process Dynamics, Operations, and Control Lesson 2: Mathematics Review

Spring 2006 Process Dynamics, Operations, and Control Lesson 2: Mathematics Review Spring 6 Procss Dynamics, Opraions, and Conrol.45 Lsson : Mahmaics Rviw. conx and dircion Imagin a sysm ha varis in im; w migh plo is oupu vs. im. A plo migh imply an quaion, and h quaion is usually an

More information

where: u: input y: output x: state vector A, B, C, D are const matrices

where: u: input y: output x: state vector A, B, C, D are const matrices Sa pac modl: linar: y or in om : Sa q : f, u Oupu q : y h, u u Du F Gu y H Ju whr: u: inpu y: oupu : a vcor,,, D ar con maric Eampl " $ & ' " $ & 'u y " & * * * * [ ],, D H D I " $ " & $ ' " & $ ' " &

More information

2.1. Differential Equations and Solutions #3, 4, 17, 20, 24, 35

2.1. Differential Equations and Solutions #3, 4, 17, 20, 24, 35 MATH 5 PS # Summr 00.. Diffrnial Equaions and Soluions PS.# Show ha ()C #, 4, 7, 0, 4, 5 ( / ) is a gnral soluion of h diffrnial quaion. Us a compur or calculaor o skch h soluions for h givn valus of h

More information

A Condition for Stability in an SIR Age Structured Disease Model with Decreasing Survival Rate

A Condition for Stability in an SIR Age Structured Disease Model with Decreasing Survival Rate A Condiion for abiliy in an I Ag rucurd Disas Modl wih Dcrasing urvival a A.K. upriana, Edy owono Dparmn of Mahmaics, Univrsias Padjadjaran, km Bandung-umng 45363, Indonsia fax: 6--7794696, mail: asupria@yahoo.com.au;

More information

CPSC 211 Data Structures & Implementations (c) Texas A&M University [ 259] B-Trees

CPSC 211 Data Structures & Implementations (c) Texas A&M University [ 259] B-Trees CPSC 211 Daa Srucurs & Implmnaions (c) Txas A&M Univrsiy [ 259] B-Trs Th AVL r and rd-black r allowd som variaion in h lnghs of h diffrn roo-o-laf pahs. An alrnaiv ida is o mak sur ha all roo-o-laf pahs

More information

Chap.3 Laplace Transform

Chap.3 Laplace Transform Chap. aplac Tranorm Tranorm: An opraion ha ranorm a uncion ino anohr uncion i Dirniaion ranorm: ii x: d dx x x Ingraion ranorm: x: x dx x c Now, conidr a dind ingral k, d,ha ranorm ino a uncion o variabl

More information

UNIT #5 EXPONENTIAL AND LOGARITHMIC FUNCTIONS

UNIT #5 EXPONENTIAL AND LOGARITHMIC FUNCTIONS Answr Ky Nam: Da: UNIT # EXPONENTIAL AND LOGARITHMIC FUNCTIONS Par I Qusions. Th prssion is quivaln o () () 6 6 6. Th ponnial funcion y 6 could rwrin as y () y y 6 () y y (). Th prssion a is quivaln o

More information

whereby we can express the phase by any one of the formulas cos ( 3 whereby we can express the phase by any one of the formulas

whereby we can express the phase by any one of the formulas cos ( 3 whereby we can express the phase by any one of the formulas Third In-Class Exam Soluions Mah 6, Profssor David Lvrmor Tusday, 5 April 07 [0] Th vrical displacmn of an unforcd mass on a spring is givn by h 5 3 cos 3 sin a [] Is his sysm undampd, undr dampd, criically

More information

CSE 245: Computer Aided Circuit Simulation and Verification

CSE 245: Computer Aided Circuit Simulation and Verification CSE 45: Compur Aidd Circui Simulaion and Vrificaion Fall 4, Sp 8 Lcur : Dynamic Linar Sysm Oulin Tim Domain Analysis Sa Equaions RLC Nwork Analysis by Taylor Expansion Impuls Rspons in im domain Frquncy

More information

Lecture 26: Leapers and Creepers

Lecture 26: Leapers and Creepers Lcur 6: Lapr and Crpr Scrib: Grain Jon (and Marin Z. Bazan) Dparmn of Economic, MIT May, 005 Inroducion Thi lcur conidr h analyi of h non-parabl CTRW in which h diribuion of p iz and im bwn p ar dpndn.

More information

The Natural Logarithmic Function: Differentiation. The Natural Logarithmic Function

The Natural Logarithmic Function: Differentiation. The Natural Logarithmic Function 60_00.q //0 :0 PM Pag CHAPTER Logarihmic, Eponnial, an Ohr Transcnnal Funcions Scion. Th Naural Logarihmic Funcion: Diffrniaion Dvlop an us propris of h naural logarihmic funcion. Unrsan h finiion of h

More information

14.02 Principles of Macroeconomics Fall 2005 Quiz 3 Solutions

14.02 Principles of Macroeconomics Fall 2005 Quiz 3 Solutions 4.0 rincipl of Macroconomic Fall 005 Quiz 3 Soluion Shor Quion (30/00 poin la a whhr h following amn ar TRUE or FALSE wih a hor xplanaion (3 or 4 lin. Each quion coun 5/00 poin.. An incra in ax oday alway

More information

FIRST-ORDER SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS I: Introduction and Linear Systems

FIRST-ORDER SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS I: Introduction and Linear Systems FIRST-ORDER SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS I: Inroducion and Linar Sysms David Lvrmor Dparmn of Mahmaics Univrsiy of Maryland 9 Dcmbr 0 Bcaus h prsnaion of his marial in lcur will diffr from

More information

H is equal to the surface current J S

H is equal to the surface current J S Chapr 6 Rflcion and Transmission of Wavs 6.1 Boundary Condiions A h boundary of wo diffrn mdium, lcromagnic fild hav o saisfy physical condiion, which is drmind by Maxwll s quaion. This is h boundary condiion

More information

Math 266, Practice Midterm Exam 2

Math 266, Practice Midterm Exam 2 Mh 66, Prcic Midrm Exm Nm: Ground Rul. Clculor i NOT llowd.. Show your work for vry problm unl ohrwi d (pril crdi r vilbl). 3. You my u on 4-by-6 indx crd, boh id. 4. Th bl of Lplc rnform i vilbl h l pg.

More information

2. Transfer function. Kanazawa University Microelectronics Research Lab. Akio Kitagawa

2. Transfer function. Kanazawa University Microelectronics Research Lab. Akio Kitagawa . ransfr funion Kanazawa Univrsiy Mirolronis Rsarh Lab. Akio Kiagawa . Wavforms in mix-signal iruis Configuraion of mix-signal sysm x Digial o Analog Analog o Digial Anialiasing Digial moohing Filr Prossor

More information

Network Design with Weighted Players (SPAA 2006 Full Paper Submission)

Network Design with Weighted Players (SPAA 2006 Full Paper Submission) Nwork Dign wih Wighd Playr SPAA 26 Full Papr Submiion) Ho-Lin Chn Tim Roughgardn March 7, 26 Abrac W conidr a modl of gam-horic nwork dign iniially udid by Anhlvich al. [1], whr lfih playr lc pah in a

More information

PS#4 due today (in class or before 3pm, Rm ) cannot ignore the spatial dimensions

PS#4 due today (in class or before 3pm, Rm ) cannot ignore the spatial dimensions Topic I: Sysms Cll Biology Spaial oscillaion in. coli PS# u oay in class or bfor pm Rm. 68-7 similar o gnic oscillaors s bu now w canno ignor h spaial imnsions biological funcion: rmin h cnr of h cll o

More information

Poisson process Markov process

Poisson process Markov process E2200 Quuing hory and lraffic 2nd lcur oion proc Markov proc Vikoria Fodor KTH Laboraory for Communicaion nwork, School of Elcrical Enginring 1 Cour oulin Sochaic proc bhind quuing hory L2-L3 oion proc

More information

On General Solutions of First-Order Nonlinear Matrix and Scalar Ordinary Differential Equations

On General Solutions of First-Order Nonlinear Matrix and Scalar Ordinary Differential Equations saartvlos mcnirbata rovnuli akadmiis moamb 3 #2 29 BULLTN OF TH ORN NTONL DMY OF SNS vol 3 no 2 29 Mahmaics On nral Soluions of Firs-Ordr Nonlinar Mari and Scalar Ordinary Diffrnial uaions uram L Kharaishvili

More information

On the Speed of Heat Wave. Mihály Makai

On the Speed of Heat Wave. Mihály Makai On h Spd of Ha Wa Mihály Maai maai@ra.bm.hu Conns Formulaion of h problm: infini spd? Local hrmal qulibrium (LTE hypohsis Balanc quaion Phnomnological balanc Spd of ha wa Applicaion in plasma ranspor 1.

More information

6.8 Laplace Transform: General Formulas

6.8 Laplace Transform: General Formulas 48 HAP. 6 Laplace Tranform 6.8 Laplace Tranform: General Formula Formula Name, ommen Sec. F() l{ f ()} e f () d f () l {F()} Definiion of Tranform Invere Tranform 6. l{af () bg()} al{f ()} bl{g()} Lineariy

More information

Introduction to SLE Lecture Notes

Introduction to SLE Lecture Notes Inroducion o SLE Lecure Noe May 13, 16 - The goal of hi ecion i o find a ufficien condiion of λ for he hull K o be generaed by a imple cure. I urn ou if λ 1 < 4 hen K i generaed by a imple curve. We will

More information

Applied Statistics and Probability for Engineers, 6 th edition October 17, 2016

Applied Statistics and Probability for Engineers, 6 th edition October 17, 2016 Applid Saisics and robabiliy for Enginrs, 6 h diion Ocobr 7, 6 CHATER Scion - -. a d. 679.. b. d. 88 c d d d. 987 d. 98 f d.. Thn, = ln. =. g d.. Thn, = ln.9 =.. -7. a., by symmry. b.. d...6. 7.. c...

More information

Institute of Actuaries of India

Institute of Actuaries of India Insiu of Acuaris of India ubjc CT3 Probabiliy and Mahmaical aisics Novmbr Examinaions INDICATIVE OLUTION Pag of IAI CT3 Novmbr ol. a sampl man = 35 sampl sandard dviaion = 36.6 b for = uppr bound = 35+*36.6

More information

CIVL 8/ D Boundary Value Problems - Quadrilateral Elements (Q4) 1/8

CIVL 8/ D Boundary Value Problems - Quadrilateral Elements (Q4) 1/8 CIVL 8/7111 -D Boundar Vau Prom - Quadriara Emn (Q) 1/8 ISOPARAMERIC ELEMENS h inar rianguar mn and h iinar rcanguar mn hav vra imporan diadvanag. 1. Boh mn ar una o accura rprn curvd oundari, and. h provid

More information

Jonathan Turner Exam 2-12/4/03

Jonathan Turner Exam 2-12/4/03 CS 41 Algorim an Program Prolm Exam Soluion S Soluion Jonaan Turnr Exam -1/4/0 10/8/0 1. (10 poin) T igur low ow an implmnaion o ynami r aa ruur wi vral virual r. Sow orrponing o aual r (owing vrx o).

More information

Network Design with Weighted Players

Network Design with Weighted Players Nwork Dign wih Wighd Playr Ho-Lin Chn Tim Roughgardn Jun 21, 27 Abrac W conidr a modl of gam-horic nwork dign iniially udid by Anhlvich al. [2], whr lfih playr lc pah in a nwork o minimiz hir co, which

More information

First order differential equation Linear equation; Method of integrating factors

First order differential equation Linear equation; Method of integrating factors First orr iffrntial quation Linar quation; Mtho of intgrating factors Exampl 1: Rwrit th lft han si as th rivativ of th prouct of y an som function by prouct rul irctly. Solving th first orr iffrntial

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by D. Klain Vrsion 207.0.05 Corrctions and commnts ar wlcom. Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix A A k I + A + k!

More information

Math 3301 Homework Set 6 Solutions 10 Points. = +. The guess for the particular P ( ) ( ) ( ) ( ) ( ) ( ) ( ) cos 2 t : 4D= 2

Math 3301 Homework Set 6 Solutions 10 Points. = +. The guess for the particular P ( ) ( ) ( ) ( ) ( ) ( ) ( ) cos 2 t : 4D= 2 Mah 0 Homwork S 6 Soluions 0 oins. ( ps) I ll lav i o you o vrify ha y os sin = +. Th guss for h pariular soluion and is drivaivs is blow. Noi ha w ndd o add s ono h las wo rms sin hos ar xaly h omplimnary

More information

Chapter 3: Fourier Representation of Signals and LTI Systems. Chih-Wei Liu

Chapter 3: Fourier Representation of Signals and LTI Systems. Chih-Wei Liu Chapr 3: Fourir Rprsnaion of Signals and LTI Sysms Chih-Wi Liu Oulin Inroducion Complx Sinusoids and Frquncy Rspons Fourir Rprsnaions for Four Classs of Signals Discr-im Priodic Signals Fourir Sris Coninuous-im

More information

Boyce/DiPrima 9 th ed, Ch 7.8: Repeated Eigenvalues

Boyce/DiPrima 9 th ed, Ch 7.8: Repeated Eigenvalues Boy/DiPrima 9 h d Ch 7.8: Rpad Eignvalus Elmnary Diffrnial Equaions and Boundary Valu Problms 9 h diion by William E. Boy and Rihard C. DiPrima 9 by John Wily & Sons In. W onsidr again a homognous sysm

More information

Voltage v(z) ~ E(z)D. We can actually get to this wave behavior by using circuit theory, w/o going into details of the EM fields!

Voltage v(z) ~ E(z)D. We can actually get to this wave behavior by using circuit theory, w/o going into details of the EM fields! Considr a pair of wirs idal wirs ngh >, say, infinily long olag along a cabl can vary! D olag v( E(D W can acually g o his wav bhavior by using circui hory, w/o going ino dails of h EM filds! Thr

More information

General Article Application of differential equation in L-R and C-R circuit analysis by classical method. Abstract

General Article Application of differential equation in L-R and C-R circuit analysis by classical method. Abstract Applicaion of Diffrnial... Gnral Aricl Applicaion of diffrnial uaion in - and C- circui analysis by classical mhod. ajndra Prasad gmi curr, Dparmn of Mahmaics, P.N. Campus, Pokhara Email: rajndraprasadrgmi@yahoo.com

More information

Consider a system of 2 simultaneous first order linear equations

Consider a system of 2 simultaneous first order linear equations Soluon of sysms of frs ordr lnar quaons onsdr a sysm of smulanous frs ordr lnar quaons a b c d I has h alrna mar-vcor rprsnaon a b c d Or, n shorhand A, f A s alrady known from con W know ha h abov sysm

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by Dan Klain Vrsion 28928 Corrctions and commnts ar wlcom Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix () A A k I + A + k!

More information

On Ψ-Conditional Asymptotic Stability of First Order Non-Linear Matrix Lyapunov Systems

On Ψ-Conditional Asymptotic Stability of First Order Non-Linear Matrix Lyapunov Systems In. J. Nonlinar Anal. Appl. 4 (213) No. 1, 7-2 ISSN: 28-6822 (lcronic) hp://www.ijnaa.smnan.ac.ir On Ψ-Condiional Asympoic Sabiliy of Firs Ordr Non-Linar Marix Lyapunov Sysms G. Sursh Kumar a, B. V. Appa

More information

Chapter 2 The Derivative Business Calculus 99

Chapter 2 The Derivative Business Calculus 99 Chapr Th Drivaiv Businss Calculus 99 Scion 5: Drivaivs of Formulas In his scion, w ll g h rivaiv ruls ha will l us fin formulas for rivaivs whn our funcion coms o us as a formula. This is a vry algbraic

More information

THE INVOLUTE-EVOLUTE OFFSETS OF RULED SURFACES *

THE INVOLUTE-EVOLUTE OFFSETS OF RULED SURFACES * Iranian Journal of Scinc & Tchnology, Tranacion A, Vol, No A Prind in h Ilamic Rpublic of Iran, 009 Shiraz Univriy THE INVOLUTE-EVOLUTE OFFSETS OF RULED SURFACES E KASAP, S YUCE AND N KURUOGLU Ondokuz

More information

Laplace Transforms recap for ccts

Laplace Transforms recap for ccts Lalac Tranform rca for cc Wha h big ida?. Loo a iniial condiion ron of cc du o caacior volag and inducor currn a im Mh or nodal analyi wih -domain imdanc rianc or admianc conducanc Soluion of ODE drivn

More information

SOLUTIONS. 1. Consider two continuous random variables X and Y with joint p.d.f. f ( x, y ) = = = 15. Stepanov Dalpiaz

SOLUTIONS. 1. Consider two continuous random variables X and Y with joint p.d.f. f ( x, y ) = = = 15. Stepanov Dalpiaz STAT UIUC Pracic Problms #7 SOLUTIONS Spanov Dalpiaz Th following ar a numbr of pracic problms ha ma b hlpful for compling h homwor, and will lil b vr usful for suding for ams.. Considr wo coninuous random

More information

Delay Dependent Exponential Stability and. Guaranteed Cost of Time-Varying Delay. Singular Systems

Delay Dependent Exponential Stability and. Guaranteed Cost of Time-Varying Delay. Singular Systems Ali amaical Scincs, ol. 6,, no. 4, 5655-5666 Dlay Dnn onnial Sabiliy an Guaran Cos of im-arying Dlay Singular Sysms Norin Caibi, l Houssain issir an Ablaziz Hmam LSSI. Darmn of Pysics, Faculy of Scincs,

More information

The second condition says that a node α of the tree has exactly n children if the arity of its label is n.

The second condition says that a node α of the tree has exactly n children if the arity of its label is n. CS 6110 S14 Hanout 2 Proof of Conflunc 27 January 2014 In this supplmntary lctur w prov that th λ-calculus is conflunt. This is rsult is u to lonzo Church (1903 1995) an J. arkly Rossr (1907 1989) an is

More information

ON FINITE MORSE INDEX SOLUTIONS OF HIGHER ORDER FRACTIONAL LANE-EMDEN EQUATIONS

ON FINITE MORSE INDEX SOLUTIONS OF HIGHER ORDER FRACTIONAL LANE-EMDEN EQUATIONS ON FINITE MORSE INDEX SOLUTIONS OF HIGHER ORDER FRACTIONAL LANE-EMDEN EQUATIONS MOSTAFA FAZLY AND JUNCHENG WEI Abrac. W claify fini Mor indx oluion of h following nonlocal Lan-Emdn quaion u u u for <

More information

18.03SC Unit 3 Practice Exam and Solutions

18.03SC Unit 3 Practice Exam and Solutions Sudy Guide on Sep, Dela, Convoluion, Laplace You can hink of he ep funcion u() a any nice mooh funcion which i for < a and for > a, where a i a poiive number which i much maller han any ime cale we care

More information

Chapter 9 - The Laplace Transform

Chapter 9 - The Laplace Transform Chaper 9 - The Laplace Tranform Selece Soluion. Skech he pole-zero plo an region of convergence (if i exi) for hee ignal. ω [] () 8 (a) x e u = 8 ROC σ ( ) 3 (b) x e co π u ω [] ( ) () (c) x e u e u ROC

More information

AR(1) Process. The first-order autoregressive process, AR(1) is. where e t is WN(0, σ 2 )

AR(1) Process. The first-order autoregressive process, AR(1) is. where e t is WN(0, σ 2 ) AR() Procss Th firs-ordr auorgrssiv procss, AR() is whr is WN(0, σ ) Condiional Man and Varianc of AR() Condiional man: Condiional varianc: ) ( ) ( Ω Ω E E ) var( ) ) ( var( ) var( σ Ω Ω Ω Ω E Auocovarianc

More information

A UNIFIED APPROACH TO SINGULAR PROBLEMS ARISING IN THE MEMBRANE THEORY*

A UNIFIED APPROACH TO SINGULAR PROBLEMS ARISING IN THE MEMBRANE THEORY* 55(2) APPLICATIONS OF MATHEMATICS No., 47 75 A UNIFIED APPROACH TO SINGULAR PROBLEMS ARISING IN THE MEMBRANE THEORY* Irna Rachůnková, Olomouc, Grno Pulvrr, Win, Ewa B. Winmüllr, Win (Rcivd January 4, 28,

More information

Chapter 10. The singular integral Introducing S(n) and J(n)

Chapter 10. The singular integral Introducing S(n) and J(n) Chaptr Th singular intgral Our aim in this chaptr is to rplac th functions S (n) and J (n) by mor convnint xprssions; ths will b calld th singular sris S(n) and th singular intgral J(n). This will b don

More information

2.22 Process Gains, Time Lags, Reaction Curves

2.22 Process Gains, Time Lags, Reaction Curves . Proc Gain, Tim Lag, Racion Curv P. S. SCHERMANN (995) W. GARCÍA-GABÍN (5) INTRODUCTION An unraning of a proc can b obain by vloping a horical proc mol uing nrgy balanc, ma balanc, an chmical an phyical

More information

The Financial Economics of Universal Life: An Actuarial Application of Stochastic Calculus. Abstract

The Financial Economics of Universal Life: An Actuarial Application of Stochastic Calculus. Abstract Th inancial Economic of Univral if: An Acuarial Applicaion of Sochaic Calculu. John Manir MMC Enrpri ik CE Plac, 161 ay Sr, PO ox 501 Torono, ON, M5J S5 Canaa Phon: 416 868-80 ax: 416 868-700 Email:john.manir@ca.mmrcr.com

More information

DE Dr. M. Sakalli

DE Dr. M. Sakalli DE-0 Dr. M. Sakalli DE 55 M. Sakalli a n n 0 a Lh.: an Linar g Equaions Hr if g 0 homognous non-homognous ohrwis driving b a forc. You know h quaions blow alrad. A linar firs ordr ODE has h gnral form

More information

Nikesh Bajaj. Fourier Analysis and Synthesis Tool. Guess.? Question??? History. Fourier Series. Fourier. Nikesh Bajaj

Nikesh Bajaj. Fourier Analysis and Synthesis Tool. Guess.? Question??? History. Fourier Series. Fourier. Nikesh Bajaj Guss.? ourir Analysis an Synhsis Tool Qusion??? niksh.473@lpu.co.in Digial Signal Procssing School of Elcronics an Communicaion Lovly Profssional Univrsiy Wha o you man by Transform? Wha is /Transform?

More information

, the. L and the L. x x. max. i n. It is easy to show that these two norms satisfy the following relation: x x n x = (17.3) max

, the. L and the L. x x. max. i n. It is easy to show that these two norms satisfy the following relation: x x n x = (17.3) max ecure 8 7. Sabiliy Analyi For an n dimenional vecor R n, he and he vecor norm are defined a: = T = i n i (7.) I i eay o how ha hee wo norm aify he following relaion: n (7.) If a vecor i ime-dependen, hen

More information

Revisiting what you have learned in Advanced Mathematical Analysis

Revisiting what you have learned in Advanced Mathematical Analysis Fourir sris Rvisiing wh you hv lrnd in Advncd Mhmicl Anlysis L f x b priodic funcion of priod nd is ingrbl ovr priod. f x cn b rprsnd by rigonomric sris, f x n cos nx bn sin nx n cos x b sin x cosx b whr

More information

Boyce/DiPrima/Meade 11 th ed, Ch 6.1: Definition of Laplace Transform

Boyce/DiPrima/Meade 11 th ed, Ch 6.1: Definition of Laplace Transform Boy/DiPrima/Mad h d, Ch 6.: Diniion o apla Tranorm Elmnary Dirnial Equaion and Boundary Valu Problm, h diion, by William E. Boy, Rihard C. DiPrima, and Doug Mad 7 by John Wily & Son, In. Many praial nginring

More information

Problem Set If all directed edges in a network have distinct capacities, then there is a unique maximum flow.

Problem Set If all directed edges in a network have distinct capacities, then there is a unique maximum flow. CSE 202: Deign and Analyi of Algorihm Winer 2013 Problem Se 3 Inrucor: Kamalika Chaudhuri Due on: Tue. Feb 26, 2013 Inrucion For your proof, you may ue any lower bound, algorihm or daa rucure from he ex

More information

a dt a dt a dt dt If 1, then the poles in the transfer function are complex conjugates. Let s look at f t H t f s / s. So, for a 2 nd order system:

a dt a dt a dt dt If 1, then the poles in the transfer function are complex conjugates. Let s look at f t H t f s / s. So, for a 2 nd order system: Undrdamd Sysms Undrdamd Sysms nd Ordr Sysms Ouu modld wih a nd ordr ODE: d y dy a a1 a0 y b f If a 0 0, hn: whr: a d y a1 dy b d y dy y f y f a a a 0 0 0 is h naural riod of oscillaion. is h daming facor.

More information

THE LAPLACE TRANSFORM

THE LAPLACE TRANSFORM THE LAPLACE TRANSFORM LEARNING GOALS Diniion Th ranorm map a ncion o im ino a ncion o a complx variabl Two imporan inglariy ncion Th ni p and h ni impl Tranorm pair Baic abl wih commonly d ranorm Propri

More information

Chapter 9 The Laplace Transform

Chapter 9 The Laplace Transform Chapr 9 Th Laplac Tranform 熊红凯特聘教授 hp://min.ju.du.cn 电子工程系上海交通大学 7 Topic 9. DEFINATION OF THE LAPLACE TRANSFORM 9. THE REGION OF CONVERGENCE FOR LAPLACE THANSFORMS 9. PROPERTIES OF THE LAPLACE TRANSFORM

More information

SECTION where P (cos θ, sin θ) and Q(cos θ, sin θ) are polynomials in cos θ and sin θ, provided Q is never equal to zero.

SECTION where P (cos θ, sin θ) and Q(cos θ, sin θ) are polynomials in cos θ and sin θ, provided Q is never equal to zero. SETION 6. 57 6. Evaluation of Dfinit Intgrals Exampl 6.6 W hav usd dfinit intgrals to valuat contour intgrals. It may com as a surpris to larn that contour intgrals and rsidus can b usd to valuat crtain

More information

Relaxing planarity for topological graphs

Relaxing planarity for topological graphs Rlaing planariy for opological graph Jáno Pach 1, Radoš Radoičić 2, and Géza Tóh 3 1 Ciy Collg, CUNY and Couran Iniu of Mahmaical Scinc, Nw York Univriy, Nw York, NY 10012, USA pach@cim.nyu.du 2 Dparmn

More information

AQUIFER DRAWDOWN AND VARIABLE-STAGE STREAM DEPLETION INDUCED BY A NEARBY PUMPING WELL

AQUIFER DRAWDOWN AND VARIABLE-STAGE STREAM DEPLETION INDUCED BY A NEARBY PUMPING WELL Pocing of h 1 h Innaional Confnc on Enionmnal cinc an chnolog Rho Gc 3-5 pmb 15 AUIFER DRAWDOWN AND VARIABE-AGE REAM DEPEION INDUCED BY A NEARBY PUMPING WE BAAOUHA H.M. aa Enionmn & Eng Rach Iniu EERI

More information

PFC Predictive Functional Control

PFC Predictive Functional Control PFC Prdiciv Funcional Conrol Prof. Car d Prada D. of Sm Enginring and Auomaic Conrol Univri of Valladolid, Sain rada@auom.uva. Oulin A iml a oibl Moivaion PFC main ida An inroducor xaml Moivaion Prdiciv

More information

Relation between Fourier Series and Transform

Relation between Fourier Series and Transform EE 37-3 8 Ch. II: Inro. o Sinls Lcur 5 Dr. Wih Abu-Al-Su Rlion bwn ourir Sris n Trnsform Th ourir Trnsform T is riv from h finiion of h ourir Sris S. Consir, for xmpl, h prioic complx sinl To wih prio

More information

Hardy-Littlewood Conjecture and Exceptional real Zero. JinHua Fei. ChangLing Company of Electronic Technology Baoji Shannxi P.R.

Hardy-Littlewood Conjecture and Exceptional real Zero. JinHua Fei. ChangLing Company of Electronic Technology Baoji Shannxi P.R. Hardy-Littlwood Conjctur and Excptional ral Zro JinHua Fi ChangLing Company of Elctronic Tchnology Baoji Shannxi P.R.China E-mail: fijinhuayoujian@msn.com Abstract. In this papr, w assum that Hardy-Littlwood

More information

EE 350 Signals and Systems Spring 2005 Sample Exam #2 - Solutions

EE 350 Signals and Systems Spring 2005 Sample Exam #2 - Solutions EE 35 Signals an Sysms Spring 5 Sampl Exam # - Soluions. For h following signal x( cos( sin(3 - cos(5 - T, /T x( j j 3 j 3 j j 5 j 5 j a -, a a -, a a - ½, a 3 /j-j -j/, a -3 -/jj j/, a 5 -½, a -5 -½,

More information

Problem Set 6 Solutions

Problem Set 6 Solutions 6.04/18.06J Mathmatics for Computr Scinc March 15, 005 Srini Dvadas and Eric Lhman Problm St 6 Solutions Du: Monday, March 8 at 9 PM in Room 3-044 Problm 1. Sammy th Shark is a financial srvic providr

More information

Self-Adjointness and Its Relationship to Quantum Mechanics. Ronald I. Frank 2016

Self-Adjointness and Its Relationship to Quantum Mechanics. Ronald I. Frank 2016 Ronald I. Frank 06 Adjoint https://n.wikipdia.org/wiki/adjoint In gnral thr is an oprator and a procss that dfin its adjoint *. It is thn slf-adjoint if *. Innr product spac https://n.wikipdia.org/wiki/innr_product_spac

More information

Syntactic Complexity of Suffix-Free Languages. Marek Szykuła

Syntactic Complexity of Suffix-Free Languages. Marek Szykuła Inroducion Upper Bound on Synacic Complexiy of Suffix-Free Language Univeriy of Wrocław, Poland Join work wih Januz Brzozowki Univeriy of Waerloo, Canada DCFS, 25.06.2015 Abrac Inroducion Sae and ynacic

More information

The core in the matching model with quota restriction *

The core in the matching model with quota restriction * h cor in h maching mol wih uoa rsricion * Absrac: In his papr w suy h cor in h maching mol wih uoa rsricion whr an insiuion has o hir a s of pairs of complmnary workrs an has a uoa ha is h maximum numbr

More information

Partial Fraction Expansion

Partial Fraction Expansion Paial Facion Expanion Whn ying o find h inv Laplac anfom o inv z anfom i i hlpfl o b abl o bak a complicad aio of wo polynomial ino fom ha a on h Laplac Tanfom o z anfom abl. W will illa h ing Laplac anfom.

More information

Generalized Orlicz Spaces and Wasserstein Distances for Convex-Concave Scale Functions

Generalized Orlicz Spaces and Wasserstein Distances for Convex-Concave Scale Functions Generalized Orlicz Space and Waerein Diance for Convex-Concave Scale Funcion Karl-Theodor Surm Abrac Given a ricly increaing, coninuou funcion ϑ : R + R +, baed on he co funcional ϑ (d(x, y dq(x, y, we

More information