Chapter 9 The Laplace Transform

Size: px
Start display at page:

Download "Chapter 9 The Laplace Transform"

Transcription

1 Chapr 9 Th Laplac Tranform 熊红凯特聘教授 hp://min.ju.du.cn 电子工程系上海交通大学 7

2 Topic 9. DEFINATION OF THE LAPLACE TRANSFORM 9. THE REGION OF CONVERGENCE FOR LAPLACE THANSFORMS 9. PROPERTIES OF THE LAPLACE TRANSFORM 9.4 THE INVERSE LAPLACE TRANSFORM 9.5 UNILATERAL LAPLACE TRANSFORM 9.6 ANALYSIS OF LTI SYSTEMS USING LAPLACE TRANSFORM

3 Topic 9. DEFINATION OF THE LAPLACE TRANSFORM 9. THE REGION OF CONVERGENCE FOR LAPLACE THANSFORMS 9. PROPERTIES OF THE LAPLACE TRANSFORM 9.4 THE INVERSE LAPLACE TRANSFORM 9.5 UNILATERAL LAPLACE TRANSFORM 9.6 ANALYSIS OF LTI SYSTEMS USING LAPLACE TRANSFORM

4 CT Fourir ranform nabl u o do a lo of hing,.g. Analyz frquncy rpon of LTI ym Sampling Modulaion Why do w nd y anohr ranform? On viw of Laplac Tranform i a an nion of h Fourir ranform o allow analyi of broadr cla of ignal and ym In paricular, Fourir ranform canno handl larg and imporan cla of ignal and unabl ym, i.. whn

5 Fourir Tranform of jω jω d Convrgnc condiion of h Fourir ranform : d < d < If h condiion ar no aifid,an anuaion facor numbr i Inroducd o ha σ σ i ral σ d <

6 ω σ ω σ ω σ σ j d d j j d if hn σ jω Th Fourir Tranform of σ -Laplac Tranform

7 ω ω σ π ω ω σ π ω σ ω σ d j d j j j 4 j j d j σ σ π Th Invr Fourir Tranform j d d ω Conidr Thn -Invr Laplac Tranform

8 Topic 9. DEFINATION OF THE LAPLACE TRANSFORM 9. THE REGION OF CONVERGENCE FOR LAPLACE THANSFORMS 9. PROPERTIES OF THE LAPLACE TRANSFORM 9.4 THE INVERSE LAPLACE TRANSFORM 9.5 UNILATERAL LAPLACE TRANSFORM 9.6 ANALYSIS OF LTI SYSTEMS USING LAPLACE TRANSFORM

9 Rgion of Convrgnc ROC -Th rang of valu of for which h ingral d convrg i.. find σ R.. d

10 Eampl: Eampl: α u α > if R α > α α α α d hn u, R[ ] α α u α > caual ignal α > α ani-caual ignal Th of h ignal i drmind by i prion and h rang of valu of h of h prion - h convrgnc domain ROC. α u, R[ ] α < α

11 Som ignal do no hav Laplac Tranform hav no ROC i dfind only in ROC; w do no allow impul in LT

12 Graphical Viualizaion of ROC I m [] S-plan α R [] α Rgion of Convrgnc Ai of Convrgnc α u, R[ ] > α α α u, R[ ] < α α

13 u u ] [, < < R Two-idd ignal Eampl: - -

14 Raional Laplac ranform. i raional funcion N --N,D polynomial in D. Zro om,.. N or, pol om,.. D or,. For raional Laplac ranform,h numbr of zro poin and ha of pol poin ar qual

15 Pol-zro plo of Im{ } jω -p -p z R{} σ Rgion of Convrgnc Ai of Convrgnc pol-zro plo of

16 Propry : Th ROC of coni of rip paralll o h jω-ai in h -plan. 的 ROC 在 平面上由平行于 jω 轴的带状区域组成 No: σ Sinc hi condiion only dpnd on h ral par of d <

17 Prory : If h Laplac ranform of i raional, hn i ROC i boundd by pol or nd o infiniy. In addiion, no pol of ar conaind in h ROC. 若 是有理的, 则其 ROC 被极点所界定或延伸到无限远, 且 ROC 内不包含任何极点. Eampl: Wih pol -, -, hr ar hr poibl ROC:

18 Propry : If i of fini duraion and i aboluly ingrabl, hn h ROC i h nir -plan. 若 是有限持续时间信号, 且绝对可积, 则其 ROC 是整个 平面 Eampl: T T

19 Propry 4: if i righ idd, and if h lin R{}σ i in h ROC, hn all valu of which R{}>σ will alo b in h ROC. 若 为右边信号, 则其收敛域将位于某个收敛轴 R{}σ 的右边 if i righ idd, and h Laplac Tranform of i raional, hn h ROC i h rgion in h -plan o h righ of h righmo pol. 若 是右边信号, 且 是有理的, 则其 ROC 位于最右边极点的右边 righ idd ignal:,wih<t Eampl: u u - T - -

20 Propry 5: if i lf idd, and if h lin R{}σ i in h ROC, hn all valu of which R{}<σ will alo b in h ROC. 若 为左边信号, 则其收敛域将位于某个收敛轴 R{}σ 的左边 if i lf idd, and h Laplac Tranform of i raional, hn h ROC i h rgion in h -plan o h lf of h lf mo pol. 若 是左边信号, 且 是有理的, 则其 ROC 位于最左边极点的左边 Lf idd ignal:,wih >T Eampl: u u T - -

21 Propry 6: if i wo idd, and if h lin R{}σ i in h ROC, hn ROC will coni of a rip in h -plan ha includ h lin R{}>σ. 若 为双边信号, 且 R{}σ 位于 ROC 内, 则其收敛域是包括收敛轴 R{}σ 的带状区域 Two idd ignal: Eampl: u u - -

22 Laplac Tranform v Fourir Tranform Whn jω loca in ROC, jω whn jω loca ouid of ROC, jω don ' i. jω

23 Eampl: δ, All u, R[ ] >

24 Topic 9. DEFINATION OF THE LAPLACE TRANSFORM 9. THE REGION OF CONVERGENCE FOR LAPLACE THANSFORMS 9. PROPERTIES OF THE LAPLACE TRANSFORM 9.4 THE INVERSE LAPLACE TRANSFORM 9.5 UNILATERAL LAPLACE TRANSFORM 9.6 ANALYSIS OF LTI SYSTEMS USING LAPLACE TRANSFORM

25 Many paralll propri of h CTFT, bu for Laplac ranform w nd o drmin implicaion for h ROC Linariy ROC a la h inrcion of ROC of and ROC can b biggr du o pol-zro cancllaion R R a b a b Eampl: ω in ω u R[ ] > ω co ω u R[ ] > ω

26 Eampl: ] [ ] [ > > R R ] [ > R No: h ROC can b biggr du o pol-zro cancllaion a -

27 Tim Shif R R Eampl: Aum: α u α α u?

28 Eampl: Aum: u Compu: u? u?

29 Shifing in h -Domain R Eampl: α ω α α ω α ω α ω ω α α > R > R ] [, co ] [, in u u ] [ R R

30 Conjugaion R R if i ral valud * *

31 Diffrniaion in h Tim-Domain R d d conaining R

32 Diffrniaion in h S-Domain R d d R or: d d

33 Eampl: u d d u! d d u!! n n n n n u n u α α α α α > R ] [,! u n n n

34 Ingraion in h Tim Domain R τ dτ R R[ ] >

35 Eampl: ' '' τ τ τ τ τ τ τ τ 4τ τ '' τ j jτ τδ 4 τδ τδ τ τ 4τ τ /

36 Inrgaraion in h S-Domain R λ dλ If whn, and lim α Eampl: u α u α α u - dλ ln λ λ α i α

37 Convoluion Propry R R H Y h y z z R R Eampl:

38 Th Iniial and Final-Valu Thorm mu b propr fracion 真分式!.<,., conain no impul or high ordr ingularii Iniial valu Thorm: lim lim Final-valu horm: lim lim

39 Th Taylor panion of a u n! n n! u n n n [ ] n n n / lim

40 Erci: Drmin h Laplac Tranform of h following ingal u u

41 Eampl:ingl id priodic ignal, < < T n nt and d T n T nt d T T nt T d d T [ nt ] T - T d nt T n

42 p Eampl:on id ampling ignal p p If n δ nt hn p n n n nt δ nt nt δ nt nt δ nt d d n nt nt

43 Topic 9. DEFINATION OF THE LAPLACE TRANSFORM 9. THE REGION OF CONVERGENCE FOR LAPLACE THANSFORMS 9. PROPERTIES OF THE LAPLACE TRANSFORM 9.4 THE INVERSE LAPLACE TRANSFORM 9.5 UNILATERAL LAPLACE TRANSFORM 9.6 ANALYSIS OF LTI SYSTEMS USING LAPLACE TRANSFORM

44 ω ω σ π ω ω σ π ω σ ω σ d j d j j j j j d j σ σ π j d d ω Conidr Thn -Invr Laplac Tranform Th Invr Fourir Tranform No: w hould choo any valu of σ in h RoC o ma h ingraion convrgd

45 Th invr Laplac ranform quaion a ha can b rprnd a a wighd ingral of compl ponnial Th formal valuaion of h ingral for a gnral rquir h u of conour ingraion 围线积分 in compl plan For h cla of raional ranform, h invr Laplac ranform can b drmind by uing h chniqu of parial-fracion panion.

46 n n m m n n n n m m m m p p p b z z z a n m b b b a a a B A < P whr m z z n p p ar h zro of ar h pol of ricly propr raional funcion 真分式 polynomial P Impul funcion and i diffrnial 冲激函数及其各阶导数

47 Rcall α α α > R ] [,! u n n n α ω α α ω α ω α ω ω α α > R > R ] [, co ] [, in u u

48 n b n n n A p p p p p p Suppo : n pol ar all diinc n 个极点都是单极点 < R > R i p i i p i i i p u p u p i i

49 How o drmin h conan i. To quaing cofficin of qual powr of 对应项系数平衡相等. p i, n i i p i

50 Eampl:

51 oluion: oluion:

52 ] R[ < and R 5 6 u u R 5 6 u u 5 6 u u δ δ For h varid ROC: 5 6

53 : i h -h ordr pol p D E p p p D p A i i p n i n i i p u n p i > R ] [,!

54 Tha i:! p whr d d i p i i i p p p d d d d How o drmin h conan i

55 Eampl: d d d d d d

56 And hu If R > u u u u u u

57 ha compl pol pair α ω ω α α α ω ω α ω α α > R > R ] [, co ] [, in u u

58 Eampl: If ] R[ > in ' u δ δ

59 Eampl: 4 L hn 4 No: by ploiing h propri of h Laplac ranform

60 whr

61 To quaing h cofficin of qual powr of Thu, 4 4 co u u

62 Eampl: ] R[ > whr nt T n No:

63 δ δ ] [ n n n n n n n n δ δ δ

64 Informaiv Invr Laplac Tranform by man of Conour Ingraion

65 If z m i h -h ordr pol of n z z m z m z n m z z n z z z z dz d z z } [ {! ] [ R hn

66

67 Topic 9. DEFINATION OF THE LAPLACE TRANSFORM 9. THE REGION OF CONVERGENCE FOR LAPLACE THANSFORMS 9. PROPERTIES OF THE LAPLACE TRANSFORM 9.4 THE INVERSE LAPLACE TRANSFORM 9.5 UNILATERAL LAPLACE TRANSFORM 9.6 ANALYSIS OF LTI SYSTEMS USING LAPLACE TRANSFORM

68 Dfinaion No: d d > πj ROC i alway on h righ id of h righmo pol Th unilaral Laplac ranformaion only conidr h ignal a >, bu ndn b, a < If i caual ignal< 时,,h unilaral Laplac ranform i h am a Laplac ranform.

69 α α > R ] [, u α Laplac ranform: α α α α α α > R ] [, d d Eampl: Unilaral Laplac ranform:

70 Propri Convoluion For all < Diffrniaion in h im domain d d

71 n n n n n m m m n n n Solving Linar Conan Cofficin Diffrnial Equaion wih Nonzro Iniial Condiion Convring diffrnial quaion ino algbraic quaion Dircly olv h compl rpon, and a h am im find h zro-inpu rpon and zro a rpon. Applicaion

72 For an LTI ym rprnd by LCCDE N a d y M d b d d N Wih iniial condiion: {, ',, } y y Th inpu aifi: whn <, y hn

73 N b p p p b y a Y a ] [ ] [ ] [ B M Y A A B A M Y M p p p y Y a ] [ A M B ZIR Rpon for zro inpu ZSR Rpon for zro a, iniially a r

74 Eampl: y y y 6 wih u y, y To drmin y, y, y zi z 6 Y y y Y y Y i.. Y [ y y y ] 6 y y' y 6 Y

75 , y y y Y zi zi y u Y z z u y y y z zi Subiuing, and in

76 Topic 9. DEFINATION OF THE LAPLACE TRANSFORM 9. THE REGION OF CONVERGENCE FOR LAPLACE THANSFORMS 9. PROPERTIES OF THE LAPLACE TRANSFORM 9.4 THE INVERSE LAPLACE TRANSFORM 9.5 UNILATERAL LAPLACE TRANSFORM 9.6 ANALYSIS OF LTI SYSTEMS USING LAPLACE TRANSFORM

77 Sym funcion of LTI ym.dfiniion h y y h y Y H h d Sym Funcion Y H / H Y

78 . H can fully dcrib a ym. Phyical maning A baic ignal, Saifi: A fairly broad cla of ignal can b rprnd by a "linar combinaion of Th rpon of h ym o i impl and h rpon of any ignal can b prd by h "linar combinaion" of h rpon of

79 Conidr inpu : H d h d h d h h y * τ τ τ τ τ τ τ τ < <, α α α H y ; i calld ignfuncion H i calld ignvalu

80 Conidr any inpu: a H a h a h y ] * [ * H giv h chang of h ampliud and pha of any compl frquncy componn hrough LTI ym. H h y d j π d H j π

81 Sym Funcion v Diffrnial Equaion Eampl: 6 d d y d d y d d Taing LP of boh id 6 6 Y Y H Y Y No:W only obain h algbraic prion of H wihou ROC by h diffrnial quaion. Bcau h diffrnial quaion ilf can no fully characriz h LTI ym, ohr conrain mu b addd, uch a caualiy, abiliy, and o on. Known diffrnial quaion, ing ym funcion

82 Eampl: u - Compu H and diffrnial quaion. ] R[ ] R[ > > Y d d y y d d y d d Y H For LTI ym ] [ u y Th zro-a rpon of i

83 Eampl: For an LTI ym wih h am iniial condiion, Wih h inpu δ, h full ym rpon y u Wih h inpu u, h full ym rpon y u To drmin h ym impul rpon h and i diffrnial quaion. No: Full rpon zro-inpu rpon zro-a rpon

84 H u h d d y y d d y d d H Y z And Thn Y Y u y z zi Y Y u y z zi Bing

85 Eampl: For an LTI ym wih zro iniial condiion, i.. iniial r 4 u y δ a u. whn,. For all,, y To drmin: a Cofficin a and h diffrnial quaion of h ym. b Th ym rpon o h inpu 4 u

86 a 4, a Y a a Y H So H-, Subiuing i in, on obain a7/4 and H y H y

87 ba iniial r H Y H u u y K K K K H Y δ

88 Sym Funcion v Caualiy and Sabiliy Caualiy. Dfiniion - for any ym. <,h for LTI ym. Sym wih raional ym funcion H,caualiy Th ROC of H i on h righ id of h righmo pol For a ym wih a raional ym funcion, caualiy of h ym i quivaln h ROC bing h righ-half plan o h righ of h righmo pol. No: If H i no raional, h abov quivalnc i no ncarily ru.. Th caualiy of h LTI ym Th ROC of h ym funcion H i locad o h righ of h righmo pol and conain

89 Sabiliy. Dfiniion for any ym h d <. --- for LTI ym. Th abiliy of LTI ym Th ROC of h ym funcion H includ h jω ai An LTI ym i abl if and only if h ROC of h ym funcion Hinclud h nir jωai

90 Caualiy & Sabiliy A caual ym wih raional ym funcion H i abl if and only if all h pol of H li in h lf-half of h -plan

91 Eampl: 6 H,i caualiy, abiliy, and calcula h 5 5 H If ROC i R[]> caual, unabl ym 5 5 u h If ROC i -<R[]< Non-caual, abl ym 5 5 u u h If ROC i R[]<- Non-caual, unabl ym 5 5 u h Thr ar poibl RoC, i.. diffrn ym

92 Chcing if All Pol Ar In h Lf-Half Plan N H D Pol ar h roo of D n a n- n- aa Mhod #: Mhod #: Calcula all h roo and! Rouh-Hurwiz Wihou having o olv for roo. Fir - ordr Scond - ordr Third - ordr Polynomial a a a a a a Condiion o ha all roo ar in h LHP a > a and a >, a > >, a >, a > a < a a

93 Eampl: Suppo w hav h following informaion abou an LTI ym: Th ym i caual, Th ym funcion i raional and hav only wo pol a -,4 If, hn y 4 Th valu of impul rpon a i 4, i.. h 4 To drmin h ym funcion of h ym H Soluion: From h fir fac, w now ha h ROC of h ym i drawn in h righ figur. Th ym i caual and unabl

94 A H i raional, w hav h ym funcion of h following form 8 4 p p H From fac, H H y H H mu hav a zro a, i.. p q Finally, from fac 4 and iniial-valu horm, w obain ha 4 8 lim lim q H h W conclud ha

95 A, If h numraor ha highr dgr han h dnominaor, h limi will divrg If h numraor ha lowr dgr han h dnominaor, h A non-zro limi i only whn hy hav h am dgr! q h lim 4 8 i.. 4 Thu: H 4 8

96 Sym Funcion v Bloc Diagram Rprnaion Th baic lmn of h bloc diagram: Addr, conan cofficin muliplir and ingraor. Known ym funcion, for ym diagram Eampl: Y H a ay Y [ a Y ] y a

97 Eampl: b H b a a l z y z b z a ', z z b y a No: Th inpu of h ingraor i h diffrnial of h oupu ignal

98 Eampl: H Y Y Y Y [ Y Y ] No: cond-ordr ym mu hav wo ingral bloc y y y Dirc form

99 Eampl: H y Cacad form

100 Eampl: H y Paralll form

101 Eampl: H l z hn y z z ', y z z z Dirc form Eci: Draw i cacad and paralll form

102 . Known ym bloc diagram, ing ym funcion 4 6 y z z z Y 6 Z 4 Z Y Z 4 6 and Z Z Z Y Y Y i Y 4 6 Y 4 6 hn H

103 BASIC PROBLEMS: 9., 9., 9., 9., 9.7 PROBLEMS!

104 Q & A Many Than

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018 DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS Aoc. Prof. Dr. Burak Kllci Spring 08 OUTLINE Th Laplac Tranform Rgion of convrgnc for Laplac ranform Invr Laplac ranform Gomric valuaion

More information

Chapter 5 The Laplace Transform. x(t) input y(t) output Dynamic System

Chapter 5 The Laplace Transform. x(t) input y(t) output Dynamic System EE 422G No: Chapr 5 Inrucor: Chung Chapr 5 Th Laplac Tranform 5- Inroducion () Sym analyi inpu oupu Dynamic Sym Linar Dynamic ym: A procor which proc h inpu ignal o produc h oupu dy ( n) ( n dy ( n) +

More information

Instructors Solution for Assignment 3 Chapter 3: Time Domain Analysis of LTIC Systems

Instructors Solution for Assignment 3 Chapter 3: Time Domain Analysis of LTIC Systems Inrucor Soluion for Aignmn Chapr : Tim Domain Anali of LTIC Sm Problm i a 8 x x wih x u,, an Zro-inpu rpon of h m: Th characriic quaion of h LTIC m i i 8, which ha roo a ± j Th zro-inpu rpon i givn b zi

More information

REPETITION before the exam PART 2, Transform Methods. Laplace transforms: τ dτ. L1. Derive the formulas : L2. Find the Laplace transform F(s) if.

REPETITION before the exam PART 2, Transform Methods. Laplace transforms: τ dτ. L1. Derive the formulas : L2. Find the Laplace transform F(s) if. Tranform Mhod and Calculu of Svral Variabl H7, p Lcurr: Armin Halilovic KTH, Campu Haning E-mail: armin@dkh, wwwdkh/armin REPETITION bfor h am PART, Tranform Mhod Laplac ranform: L Driv h formula : a L[

More information

Transfer function and the Laplace transformation

Transfer function and the Laplace transformation Lab No PH-35 Porland Sa Univriy A. La Roa Tranfr funcion and h Laplac ranformaion. INTRODUTION. THE LAPLAE TRANSFORMATION L 3. TRANSFER FUNTIONS 4. ELETRIAL SYSTEMS Analyi of h hr baic paiv lmn R, and

More information

LaPlace Transform in Circuit Analysis

LaPlace Transform in Circuit Analysis LaPlac Tranform in Circui Analyi Obciv: Calcula h Laplac ranform of common funcion uing h dfiniion and h Laplac ranform abl Laplac-ranform a circui, including componn wih non-zro iniial condiion. Analyz

More information

Elementary Differential Equations and Boundary Value Problems

Elementary Differential Equations and Boundary Value Problems Elmnar Diffrnial Equaions and Boundar Valu Problms Boc. & DiPrima 9 h Ediion Chapr : Firs Ordr Diffrnial Equaions 00600 คณ ตศาสตร ว ศวกรรม สาขาว ชาว ศวกรรมคอมพ วเตอร ป การศ กษา /55 ผศ.ดร.อร ญญา ผศ.ดร.สมศ

More information

Chapter 12 Introduction To The Laplace Transform

Chapter 12 Introduction To The Laplace Transform Chapr Inroducion To Th aplac Tranorm Diniion o h aplac Tranorm - Th Sp & Impul uncion aplac Tranorm o pciic uncion 5 Opraional Tranorm Applying h aplac Tranorm 7 Invr Tranorm o Raional uncion 8 Pol and

More information

Why Laplace transforms?

Why Laplace transforms? MAE4 Linar ircui Why Lalac ranform? Firordr R cc v v v KVL S R inananou for ach Subiu lmn rlaion v S Ordinary diffrnial quaion in rm of caacior volag Lalac ranform Solv Invr LT V u, v Ri, i A R V A _ v

More information

Laplace Transforms recap for ccts

Laplace Transforms recap for ccts Lalac Tranform rca for cc Wha h big ida?. Loo a iniial condiion ron of cc du o caacior volag and inducor currn a im Mh or nodal analyi wih -domain imdanc rianc or admianc conducanc Soluion of ODE drivn

More information

Chap.3 Laplace Transform

Chap.3 Laplace Transform Chap. aplac Tranorm Tranorm: An opraion ha ranorm a uncion ino anohr uncion i Dirniaion ranorm: ii x: d dx x x Ingraion ranorm: x: x dx x c Now, conidr a dind ingral k, d,ha ranorm ino a uncion o variabl

More information

Chapter 2 the z-transform. 2.1 definition 2.2 properties of ROC 2.3 the inverse z-transform 2.4 z-transform properties

Chapter 2 the z-transform. 2.1 definition 2.2 properties of ROC 2.3 the inverse z-transform 2.4 z-transform properties Chapter 2 the -Transform 2.1 definition 2.2 properties of ROC 2.3 the inverse -transform 2.4 -transform properties 2.1 definition One motivation for introducing -transform is that the Fourier transform

More information

Chapter 3: Fourier Representation of Signals and LTI Systems. Chih-Wei Liu

Chapter 3: Fourier Representation of Signals and LTI Systems. Chih-Wei Liu Chapr 3: Fourir Rprsnaion of Signals and LTI Sysms Chih-Wi Liu Oulin Inroducion Complx Sinusoids and Frquncy Rspons Fourir Rprsnaions for Four Classs of Signals Discr-im Priodic Signals Fourir Sris Coninuous-im

More information

Boyce/DiPrima 9 th ed, Ch 2.1: Linear Equations; Method of Integrating Factors

Boyce/DiPrima 9 th ed, Ch 2.1: Linear Equations; Method of Integrating Factors Boc/DiPrima 9 h d, Ch.: Linar Equaions; Mhod of Ingraing Facors Elmnar Diffrnial Equaions and Boundar Valu Problms, 9 h diion, b William E. Boc and Richard C. DiPrima, 009 b John Wil & Sons, Inc. A linar

More information

CSE 245: Computer Aided Circuit Simulation and Verification

CSE 245: Computer Aided Circuit Simulation and Verification CSE 45: Compur Aidd Circui Simulaion and Vrificaion Fall 4, Sp 8 Lcur : Dynamic Linar Sysm Oulin Tim Domain Analysis Sa Equaions RLC Nwork Analysis by Taylor Expansion Impuls Rspons in im domain Frquncy

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 31 Signal & Syem Prof. Mark Fowler Noe Se #27 C-T Syem: Laplace Tranform Power Tool for yem analyi Reading Aignmen: Secion 6.1 6.3 of Kamen and Heck 1/18 Coure Flow Diagram The arrow here how concepual

More information

Final Exam : Solutions

Final Exam : Solutions Comp : Algorihm and Daa Srucur Final Exam : Soluion. Rcuriv Algorihm. (a) To bgin ind h mdian o {x, x,... x n }. Sinc vry numbr xcp on in h inrval [0, n] appar xacly onc in h li, w hav ha h mdian mu b

More information

Lecture 1: Numerical Integration The Trapezoidal and Simpson s Rule

Lecture 1: Numerical Integration The Trapezoidal and Simpson s Rule Lcur : Numrical ngraion Th Trapzoidal and Simpson s Rul A problm Th probabiliy of a normally disribud (man µ and sandard dviaion σ ) vn occurring bwn h valus a and b is B A P( a x b) d () π whr a µ b -

More information

where: u: input y: output x: state vector A, B, C, D are const matrices

where: u: input y: output x: state vector A, B, C, D are const matrices Sa pac modl: linar: y or in om : Sa q : f, u Oupu q : y h, u u Du F Gu y H Ju whr: u: inpu y: oupu : a vcor,,, D ar con maric Eampl " $ & ' " $ & 'u y " & * * * * [ ],, D H D I " $ " & $ ' " & $ ' " &

More information

Boyce/DiPrima 9 th ed, Ch 7.8: Repeated Eigenvalues

Boyce/DiPrima 9 th ed, Ch 7.8: Repeated Eigenvalues Boy/DiPrima 9 h d Ch 7.8: Rpad Eignvalus Elmnary Diffrnial Equaions and Boundary Valu Problms 9 h diion by William E. Boy and Rihard C. DiPrima 9 by John Wily & Sons In. W onsidr again a homognous sysm

More information

18.03SC Unit 3 Practice Exam and Solutions

18.03SC Unit 3 Practice Exam and Solutions Sudy Guide on Sep, Dela, Convoluion, Laplace You can hink of he ep funcion u() a any nice mooh funcion which i for < a and for > a, where a i a poiive number which i much maller han any ime cale we care

More information

On the Derivatives of Bessel and Modified Bessel Functions with Respect to the Order and the Argument

On the Derivatives of Bessel and Modified Bessel Functions with Respect to the Order and the Argument Inrnaional Rsarch Journal of Applid Basic Scincs 03 Aailabl onlin a wwwirjabscom ISSN 5-838X / Vol 4 (): 47-433 Scinc Eplorr Publicaions On h Driais of Bssl Modifid Bssl Funcions wih Rspc o h Ordr h Argumn

More information

Wave Equation (2 Week)

Wave Equation (2 Week) Rfrnc Wav quaion ( Wk 6.5 Tim-armonic filds 7. Ovrviw 7. Plan Wavs in Losslss Mdia 7.3 Plan Wavs in Loss Mdia 7.5 Flow of lcromagnic Powr and h Poning Vcor 7.6 Normal Incidnc of Plan Wavs a Plan Boundaris

More information

Midterm exam 2, April 7, 2009 (solutions)

Midterm exam 2, April 7, 2009 (solutions) Univrsiy of Pnnsylvania Dparmn of Mahmaics Mah 26 Honors Calculus II Spring Smsr 29 Prof Grassi, TA Ashr Aul Midrm xam 2, April 7, 29 (soluions) 1 Wri a basis for h spac of pairs (u, v) of smooh funcions

More information

Let s look again at the first order linear differential equation we are attempting to solve, in its standard form:

Let s look again at the first order linear differential equation we are attempting to solve, in its standard form: Th Ingraing Facor Mhod In h prvious xampls of simpl firs ordr ODEs, w found h soluions by algbraically spara h dpndn variabl- and h indpndn variabl- rms, and wri h wo sids of a givn quaion as drivaivs,

More information

To become more mathematically correct, Circuit equations are Algebraic Differential equations. from KVL, KCL from the constitutive relationship

To become more mathematically correct, Circuit equations are Algebraic Differential equations. from KVL, KCL from the constitutive relationship Laplace Tranform (Lin & DeCarlo: Ch 3) ENSC30 Elecric Circui II The Laplace ranform i an inegral ranformaion. I ranform: f ( ) F( ) ime variable complex variable From Euler > Lagrange > Laplace. Hence,

More information

S.Y. B.Sc. (IT) : Sem. III. Applied Mathematics. Q.1 Attempt the following (any THREE) [15]

S.Y. B.Sc. (IT) : Sem. III. Applied Mathematics. Q.1 Attempt the following (any THREE) [15] S.Y. B.Sc. (IT) : Sm. III Applid Mahmaics Tim : ½ Hrs.] Prlim Qusion Papr Soluion [Marks : 75 Q. Amp h following (an THREE) 3 6 Q.(a) Rduc h mari o normal form and find is rank whr A 3 3 5 3 3 3 6 Ans.:

More information

Sample Final Exam (finals03) Covering Chapters 1-9 of Fundamentals of Signals & Systems

Sample Final Exam (finals03) Covering Chapters 1-9 of Fundamentals of Signals & Systems Sample Final Exam Covering Chaper 9 (final04) Sample Final Exam (final03) Covering Chaper 9 of Fundamenal of Signal & Syem Problem (0 mar) Conider he caual opamp circui iniially a re depiced below. I LI

More information

THE LAPLACE TRANSFORM

THE LAPLACE TRANSFORM THE LAPLACE TRANSFORM LEARNING GOALS Diniion Th ranorm map a ncion o im ino a ncion o a complx variabl Two imporan inglariy ncion Th ni p and h ni impl Tranorm pair Baic abl wih commonly d ranorm Propri

More information

, the. L and the L. x x. max. i n. It is easy to show that these two norms satisfy the following relation: x x n x = (17.3) max

, the. L and the L. x x. max. i n. It is easy to show that these two norms satisfy the following relation: x x n x = (17.3) max ecure 8 7. Sabiliy Analyi For an n dimenional vecor R n, he and he vecor norm are defined a: = T = i n i (7.) I i eay o how ha hee wo norm aify he following relaion: n (7.) If a vecor i ime-dependen, hen

More information

Lecture 4: Laplace Transforms

Lecture 4: Laplace Transforms Lur 4: Lapla Transforms Lapla and rlad ransformaions an b usd o solv diffrnial quaion and o rdu priodi nois in signals and imags. Basially, hy onvr h drivaiv opraions ino mulipliaion, diffrnial quaions

More information

Chapter 9 - The Laplace Transform

Chapter 9 - The Laplace Transform Chaper 9 - The Laplace Tranform Selece Soluion. Skech he pole-zero plo an region of convergence (if i exi) for hee ignal. ω [] () 8 (a) x e u = 8 ROC σ ( ) 3 (b) x e co π u ω [] ( ) () (c) x e u e u ROC

More information

H is equal to the surface current J S

H is equal to the surface current J S Chapr 6 Rflcion and Transmission of Wavs 6.1 Boundary Condiions A h boundary of wo diffrn mdium, lcromagnic fild hav o saisfy physical condiion, which is drmind by Maxwll s quaion. This is h boundary condiion

More information

2.1. Differential Equations and Solutions #3, 4, 17, 20, 24, 35

2.1. Differential Equations and Solutions #3, 4, 17, 20, 24, 35 MATH 5 PS # Summr 00.. Diffrnial Equaions and Soluions PS.# Show ha ()C #, 4, 7, 0, 4, 5 ( / ) is a gnral soluion of h diffrnial quaion. Us a compur or calculaor o skch h soluions for h givn valus of h

More information

fiziks Institute for NET/JRF, GATE, IIT JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES MATEMATICAL PHYSICS SOLUTIONS are

fiziks Institute for NET/JRF, GATE, IIT JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES MATEMATICAL PHYSICS SOLUTIONS are MTEMTICL PHYSICS SOLUTIONS GTE- Q. Considr an ani-symmric nsor P ij wih indics i and j running from o 5. Th numbr of indpndn componns of h nsor is 9 6 ns: Soluion: Th numbr of indpndn componns of h nsor

More information

EXERCISE - 01 CHECK YOUR GRASP

EXERCISE - 01 CHECK YOUR GRASP DIFFERENTIAL EQUATION EXERCISE - CHECK YOUR GRASP 7. m hn D() m m, D () m m. hn givn D () m m D D D + m m m m m m + m m m m + ( m ) (m ) (m ) (m + ) m,, Hnc numbr of valus of mn will b. n ( ) + c sinc

More information

Chapter 6. Laplace Transforms

Chapter 6. Laplace Transforms 6- Chaper 6. Laplace Tranform 6.4 Shor Impule. Dirac Dela Funcion. Parial Fracion 6.5 Convoluion. Inegral Equaion 6.6 Differeniaion and Inegraion of Tranform 6.7 Syem of ODE 6.4 Shor Impule. Dirac Dela

More information

EE 350 Signals and Systems Spring 2005 Sample Exam #2 - Solutions

EE 350 Signals and Systems Spring 2005 Sample Exam #2 - Solutions EE 35 Signals an Sysms Spring 5 Sampl Exam # - Soluions. For h following signal x( cos( sin(3 - cos(5 - T, /T x( j j 3 j 3 j j 5 j 5 j a -, a a -, a a - ½, a 3 /j-j -j/, a -3 -/jj j/, a 5 -½, a -5 -½,

More information

ECE Connections: What do Roots of Unity have to do with OP-AMPs? Louis Scharf, Colorado State University PART 1: Why Complex?

ECE Connections: What do Roots of Unity have to do with OP-AMPs? Louis Scharf, Colorado State University PART 1: Why Complex? ECE Conncion: Wha do Roo of Uni hav o do wih OP-AMP? Loui Scharf, Colorado Sa Univri PART : Wh Compl?. Curioi, M favori curioi i : π π ( ) 0.07... π π ECE Conncion: Colorado Sa Univri Ocobr 007 . Quion,

More information

6.8 Laplace Transform: General Formulas

6.8 Laplace Transform: General Formulas 48 HAP. 6 Laplace Tranform 6.8 Laplace Tranform: General Formula Formula Name, ommen Sec. F() l{ f ()} e f () d f () l {F()} Definiion of Tranform Invere Tranform 6. l{af () bg()} al{f ()} bl{g()} Lineariy

More information

Laplace Transform. Inverse Laplace Transform. e st f(t)dt. (2)

Laplace Transform. Inverse Laplace Transform. e st f(t)dt. (2) Laplace Tranform Maoud Malek The Laplace ranform i an inegral ranform named in honor of mahemaician and aronomer Pierre-Simon Laplace, who ued he ranform in hi work on probabiliy heory. I i a powerful

More information

CONTROL SYSTEMS. Chapter 10 : State Space Response

CONTROL SYSTEMS. Chapter 10 : State Space Response CONTROL SYSTEMS Chaper : Sae Space Repone GATE Objecive & Numerical Type Soluion Queion 5 [GATE EE 99 IIT-Bombay : Mark] Conider a econd order yem whoe ae pace repreenaion i of he form A Bu. If () (),

More information

Poisson process Markov process

Poisson process Markov process E2200 Quuing hory and lraffic 2nd lcur oion proc Markov proc Vikoria Fodor KTH Laboraory for Communicaion nwork, School of Elcrical Enginring 1 Cour oulin Sochaic proc bhind quuing hory L2-L3 oion proc

More information

DISCRETE TIME FOURIER TRANSFORM (DTFT)

DISCRETE TIME FOURIER TRANSFORM (DTFT) DISCRETE TIME FOURIER TRANSFORM (DTFT) Th dicrt-tim Fourir Tranform x x n xn n n Th Invr dicrt-tim Fourir Tranform (IDTFT) x n Not: ( ) i a complx valud continuou function = π f [rad/c] f i th digital

More information

Veer Surendra Sai University of Technology, Burla. S u b j e c t : S i g n a l s a n d S y s t e m s - I S u b j e c t c o d e : B E E

Veer Surendra Sai University of Technology, Burla. S u b j e c t : S i g n a l s a n d S y s t e m s - I S u b j e c t c o d e : B E E Vr Surndra Sai Univriy of Tchnology, Burla Dparmn o f E l c r i c a l & E l c r o n i c E n g g S u b j c : S i g n a l a n d S y m - I S u b j c c o d : B E E - 6 0 5 B r a n c h m r : E E E 5 h m SYLLABUS

More information

CONTROL SYSTEMS. Chapter 3 Mathematical Modelling of Physical Systems-Laplace Transforms. Prof.Dr. Fatih Mehmet Botsalı

CONTROL SYSTEMS. Chapter 3 Mathematical Modelling of Physical Systems-Laplace Transforms. Prof.Dr. Fatih Mehmet Botsalı CONTROL SYSTEMS Chaper Mahemaical Modelling of Phyical Syem-Laplace Tranform Prof.Dr. Faih Mehme Boalı Definiion Tranform -- a mahemaical converion from one way of hinking o anoher o make a problem eaier

More information

whereby we can express the phase by any one of the formulas cos ( 3 whereby we can express the phase by any one of the formulas

whereby we can express the phase by any one of the formulas cos ( 3 whereby we can express the phase by any one of the formulas Third In-Class Exam Soluions Mah 6, Profssor David Lvrmor Tusday, 5 April 07 [0] Th vrical displacmn of an unforcd mass on a spring is givn by h 5 3 cos 3 sin a [] Is his sysm undampd, undr dampd, criically

More information

2. The Laplace Transform

2. The Laplace Transform Th aac Tranorm Inroucion Th aac ranorm i a unamna an vry uu oo or uying many nginring robm To in h aac ranorm w conir a comx variab σ, whr σ i h ra ar an i h imaginary ar or ix vau o σ an w viw a a oin

More information

Spring 2006 Process Dynamics, Operations, and Control Lesson 2: Mathematics Review

Spring 2006 Process Dynamics, Operations, and Control Lesson 2: Mathematics Review Spring 6 Procss Dynamics, Opraions, and Conrol.45 Lsson : Mahmaics Rviw. conx and dircion Imagin a sysm ha varis in im; w migh plo is oupu vs. im. A plo migh imply an quaion, and h quaion is usually an

More information

2. Transfer function. Kanazawa University Microelectronics Research Lab. Akio Kitagawa

2. Transfer function. Kanazawa University Microelectronics Research Lab. Akio Kitagawa . ransfr funion Kanazawa Univrsiy Mirolronis Rsarh Lab. Akio Kiagawa . Wavforms in mix-signal iruis Configuraion of mix-signal sysm x Digial o Analog Analog o Digial Anialiasing Digial moohing Filr Prossor

More information

Laplace Transform and its Relation to Fourier Transform

Laplace Transform and its Relation to Fourier Transform Chaper 6 Laplace Transform and is Relaion o Fourier Transform (A Brief Summary) Gis of he Maer 2 Domains of Represenaion Represenaion of signals and sysems Time Domain Coninuous Discree Time Time () [n]

More information

Ma/CS 6a Class 15: Flows and Bipartite Graphs

Ma/CS 6a Class 15: Flows and Bipartite Graphs //206 Ma/CS 6a Cla : Flow and Bipari Graph By Adam Shffr Rmindr: Flow Nwork A flow nwork i a digraph G = V, E, oghr wih a ourc vrx V, a ink vrx V, and a capaciy funcion c: E N. Capaciy Sourc 7 a b c d

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 30 Signal & Syem Prof. ark Fowler oe Se #34 C-T Tranfer Funcion and Frequency Repone /4 Finding he Tranfer Funcion from Differenial Eq. Recall: we found a DT yem Tranfer Funcion Hz y aking he ZT of

More information

Revisiting what you have learned in Advanced Mathematical Analysis

Revisiting what you have learned in Advanced Mathematical Analysis Fourir sris Rvisiing wh you hv lrnd in Advncd Mhmicl Anlysis L f x b priodic funcion of priod nd is ingrbl ovr priod. f x cn b rprsnd by rigonomric sris, f x n cos nx bn sin nx n cos x b sin x cosx b whr

More information

Charging of capacitor through inductor and resistor

Charging of capacitor through inductor and resistor cur 4&: R circui harging of capacior hrough inducor and rsisor us considr a capacior of capacianc is conncd o a D sourc of.m.f. E hrough a rsisr of rsisanc R, an inducor of inducanc and a y K in sris.

More information

Continuous Time. Time-Domain System Analysis. Impulse Response. Impulse Response. Impulse Response. Impulse Response. ( t) + b 0.

Continuous Time. Time-Domain System Analysis. Impulse Response. Impulse Response. Impulse Response. Impulse Response. ( t) + b 0. Time-Domain Sysem Analysis Coninuous Time. J. Robers - All Righs Reserved. Edied by Dr. Rober Akl 1. J. Robers - All Righs Reserved. Edied by Dr. Rober Akl 2 Le a sysem be described by a 2 y ( ) + a 1

More information

UNIT #5 EXPONENTIAL AND LOGARITHMIC FUNCTIONS

UNIT #5 EXPONENTIAL AND LOGARITHMIC FUNCTIONS Answr Ky Nam: Da: UNIT # EXPONENTIAL AND LOGARITHMIC FUNCTIONS Par I Qusions. Th prssion is quivaln o () () 6 6 6. Th ponnial funcion y 6 could rwrin as y () y y 6 () y y (). Th prssion a is quivaln o

More information

Partial Fraction Expansion

Partial Fraction Expansion Paial Facion Expanion Whn ying o find h inv Laplac anfom o inv z anfom i i hlpfl o b abl o bak a complicad aio of wo polynomial ino fom ha a on h Laplac Tanfom o z anfom abl. W will illa h ing Laplac anfom.

More information

0 0 = 1 0 = 0 1 = = 1 1 = 0 0 = 1

0 0 = 1 0 = 0 1 = = 1 1 = 0 0 = 1 0 0 = 1 0 = 0 1 = 0 1 1 = 1 1 = 0 0 = 1 : = {0, 1} : 3 (,, ) = + (,, ) = + + (, ) = + (,,, ) = ( + )( + ) + ( + )( + ) + = + = = + + = + = ( + ) + = + ( + ) () = () ( + ) = + + = ( + )( + ) + = = + 0

More information

Galileo Galilei ( ) Title page of Galileo's Dialogue concerning the two chief world systems, published in Florence in February 1632.

Galileo Galilei ( ) Title page of Galileo's Dialogue concerning the two chief world systems, published in Florence in February 1632. Special Relativity Galileo Galilei (1564-1642) Title page of Galileo's Dialogue concerning the two chief world systems, published in Florence in February 1632. 2 Galilean Transformation z z!!! r ' = r

More information

Copyright 2012 Pearson Education, Inc. Publishing as Prentice Hall.

Copyright 2012 Pearson Education, Inc. Publishing as Prentice Hall. Chapr Rviw 0 6. ( a a ln a. This will qual a if an onl if ln a, or a. + k an (ln + c. Thrfor, a an valu of, whr h wo curvs inrsc, h wo angn lins will b prpnicular. 6. (a Sinc h lin passs hrough h origin

More information

14.02 Principles of Macroeconomics Fall 2005 Quiz 3 Solutions

14.02 Principles of Macroeconomics Fall 2005 Quiz 3 Solutions 4.0 rincipl of Macroconomic Fall 005 Quiz 3 Soluion Shor Quion (30/00 poin la a whhr h following amn ar TRUE or FALSE wih a hor xplanaion (3 or 4 lin. Each quion coun 5/00 poin.. An incra in ax oday alway

More information

AN INTRODUCTION TO FOURIER ANALYSIS PROF. VEDAT TAVSANOĞLU

AN INTRODUCTION TO FOURIER ANALYSIS PROF. VEDAT TAVSANOĞLU A IRODUCIO O FOURIER AALYSIS PROF. VEDA AVSAOĞLU 994 A IRODUCIO O FOURIER AALYSIS ABLE OF COES. HE FOURIER SERIES ---------------------------------------------------------------------3.. Priodic Funcions-----------------------------------------------------------------------3..

More information

Nikesh Bajaj. Fourier Analysis and Synthesis Tool. Guess.? Question??? History. Fourier Series. Fourier. Nikesh Bajaj

Nikesh Bajaj. Fourier Analysis and Synthesis Tool. Guess.? Question??? History. Fourier Series. Fourier. Nikesh Bajaj Guss.? ourir Analysis an Synhsis Tool Qusion??? niksh.473@lpu.co.in Digial Signal Procssing School of Elcronics an Communicaion Lovly Profssional Univrsiy Wha o you man by Transform? Wha is /Transform?

More information

d) There is a Web page that includes links to both Web page A and Web page B.

d) There is a Web page that includes links to both Web page A and Web page B. P403-406 5. Determine whether the relation R on the set of all eb pages is reflexive( 自反 ), symmetric( 对 称 ), antisymmetric( 反对称 ), and/or transitive( 传递 ), where (a, b) R if and only if a) Everyone who

More information

Math 266, Practice Midterm Exam 2

Math 266, Practice Midterm Exam 2 Mh 66, Prcic Midrm Exm Nm: Ground Rul. Clculor i NOT llowd.. Show your work for vry problm unl ohrwi d (pril crdi r vilbl). 3. You my u on 4-by-6 indx crd, boh id. 4. Th bl of Lplc rnform i vilbl h l pg.

More information

10. The Discrete-Time Fourier Transform (DTFT)

10. The Discrete-Time Fourier Transform (DTFT) Th Discrt-Tim Fourir Transform (DTFT Dfinition of th discrt-tim Fourir transform Th Fourir rprsntation of signals plays an important rol in both continuous and discrt signal procssing In this sction w

More information

Laplace Transform. National Chiao Tung University Chun-Jen Tsai 10/19/2011

Laplace Transform. National Chiao Tung University Chun-Jen Tsai 10/19/2011 plc Trnorm Nionl Chio Tung Univriy Chun-Jn Ti /9/ Trnorm o Funcion Som opror rnorm uncion ino nohr uncion: d Dirniion: x x, or Dx x dx x Indini Ingrion: x dx c Dini Ingrion: x dx 9 A uncion my hv nicr

More information

FIRST-ORDER SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS I: Introduction and Linear Systems

FIRST-ORDER SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS I: Introduction and Linear Systems FIRST-ORDER SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS I: Inroducion and Linar Sysms David Lvrmor Dparmn of Mahmaics Univrsiy of Maryland 9 Dcmbr 0 Bcaus h prsnaion of his marial in lcur will diffr from

More information

Voltage v(z) ~ E(z)D. We can actually get to this wave behavior by using circuit theory, w/o going into details of the EM fields!

Voltage v(z) ~ E(z)D. We can actually get to this wave behavior by using circuit theory, w/o going into details of the EM fields! Considr a pair of wirs idal wirs ngh >, say, infinily long olag along a cabl can vary! D olag v( E(D W can acually g o his wav bhavior by using circui hory, w/o going ino dails of h EM filds! Thr

More information

13.1 Circuit Elements in the s Domain Circuit Analysis in the s Domain The Transfer Function and Natural Response 13.

13.1 Circuit Elements in the s Domain Circuit Analysis in the s Domain The Transfer Function and Natural Response 13. Chaper 3 The Laplace Tranform in Circui Analyi 3. Circui Elemen in he Domain 3.-3 Circui Analyi in he Domain 3.4-5 The Tranfer Funcion and Naural Repone 3.6 The Tranfer Funcion and he Convoluion Inegral

More information

Lecture 26: Leapers and Creepers

Lecture 26: Leapers and Creepers Lcur 6: Lapr and Crpr Scrib: Grain Jon (and Marin Z. Bazan) Dparmn of Economic, MIT May, 005 Inroducion Thi lcur conidr h analyi of h non-parabl CTRW in which h diribuion of p iz and im bwn p ar dpndn.

More information

Applied Statistics and Probability for Engineers, 6 th edition October 17, 2016

Applied Statistics and Probability for Engineers, 6 th edition October 17, 2016 Applid Saisics and robabiliy for Enginrs, 6 h diion Ocobr 7, 6 CHATER Scion - -. a d. 679.. b. d. 88 c d d d. 987 d. 98 f d.. Thn, = ln. =. g d.. Thn, = ln.9 =.. -7. a., by symmry. b.. d...6. 7.. c...

More information

Chapter 7: Inverse-Response Systems

Chapter 7: Inverse-Response Systems Chaper 7: Invere-Repone Syem Normal Syem Invere-Repone Syem Baic Sar ou in he wrong direcion End up in he original eady-ae gain value Two or more yem wih differen magniude and cale in parallel Main yem

More information

DE Dr. M. Sakalli

DE Dr. M. Sakalli DE-0 Dr. M. Sakalli DE 55 M. Sakalli a n n 0 a Lh.: an Linar g Equaions Hr if g 0 homognous non-homognous ohrwis driving b a forc. You know h quaions blow alrad. A linar firs ordr ODE has h gnral form

More information

Chapter 6. Laplace Transforms

Chapter 6. Laplace Transforms Chaper 6. Laplace Tranform Kreyzig by YHLee;45; 6- An ODE i reduced o an algebraic problem by operaional calculu. The equaion i olved by algebraic manipulaion. The reul i ranformed back for he oluion of

More information

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web:     Ph: Serial : 0. ND_NW_EE_Signal & Sysems_4068 Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkaa Pana Web: E-mail: info@madeeasy.in Ph: 0-4546 CLASS TEST 08-9 ELECTRICAL ENGINEERING

More information

5. An object moving along an x-coordinate axis with its scale measured in meters has a velocity of 6t

5. An object moving along an x-coordinate axis with its scale measured in meters has a velocity of 6t AP CALCULUS FINAL UNIT WORKSHEETS ACCELERATION, VELOCTIY AND POSITION In problms -, drmin h posiion funcion, (), from h givn informaion.. v (), () = 5. v ()5, () = b g. a (), v() =, () = -. a (), v() =

More information

AR(1) Process. The first-order autoregressive process, AR(1) is. where e t is WN(0, σ 2 )

AR(1) Process. The first-order autoregressive process, AR(1) is. where e t is WN(0, σ 2 ) AR() Procss Th firs-ordr auorgrssiv procss, AR() is whr is WN(0, σ ) Condiional Man and Varianc of AR() Condiional man: Condiional varianc: ) ( ) ( Ω Ω E E ) var( ) ) ( var( ) var( σ Ω Ω Ω Ω E Auocovarianc

More information

Signals and Systems Profs. Byron Yu and Pulkit Grover Fall Midterm 1 Solutions

Signals and Systems Profs. Byron Yu and Pulkit Grover Fall Midterm 1 Solutions 8-90 Signals and Sysems Profs. Byron Yu and Pulki Grover Fall 07 Miderm Soluions Name: Andrew ID: Problem Score Max 0 8 4 6 5 0 6 0 7 8 9 0 6 Toal 00 Miderm Soluions. (0 poins) Deermine wheher he following

More information

Key Topic. Body Composition Analysis (BCA) on lab animals with NMR 采用核磁共振分析实验鼠的体内组分. TD-NMR and Body Composition Analysis for Lab Animals

Key Topic. Body Composition Analysis (BCA) on lab animals with NMR 采用核磁共振分析实验鼠的体内组分. TD-NMR and Body Composition Analysis for Lab Animals TD-NMR and Body Composition Analysis for Lab Animals 时域磁共振及实验鼠体内组分的测量 Z. Harry Xie ( 谢宗海 谢宗海 ), PhD Bruker Optics, Inc. Key Topic Body Composition Analysis (BCA) on lab animals with NMR 采用核磁共振分析实验鼠的体内组分

More information

CHAPTER 3 SIGNALS & SYSTEMS. z -transform in the z -plane will be (A) 1 (B) 1 (D) (C) . The unilateral Laplace transform of tf() (A) s (B) + + (D) (C)

CHAPTER 3 SIGNALS & SYSTEMS. z -transform in the z -plane will be (A) 1 (B) 1 (D) (C) . The unilateral Laplace transform of tf() (A) s (B) + + (D) (C) CHAPER SIGNALS & SYSEMS YEAR ONE MARK n n MCQ. If xn [ ] (/) (/) un [ ], hen he region of convergence (ROC) of i z ranform in he z plane will be (A) < z < (B) < z < (C) < z < (D) < z MCQ. he unilaeral

More information

I) Title: Rational Expectations and Adaptive Learning. II) Contents: Introduction to Adaptive Learning

I) Title: Rational Expectations and Adaptive Learning. II) Contents: Introduction to Adaptive Learning I) Til: Raional Expcaions and Adapiv Larning II) Conns: Inroducion o Adapiv Larning III) Documnaion: - Basdvan, Olivir. (2003). Larning procss and raional xpcaions: an analysis using a small macroconomic

More information

Lecture 2. Random variables: discrete and continuous

Lecture 2. Random variables: discrete and continuous Lecture 2 Random variables: discrete and continuous Random variables: discrete Probability theory is concerned with situations in which the outcomes occur randomly. Generically, such situations are called

More information

General Article Application of differential equation in L-R and C-R circuit analysis by classical method. Abstract

General Article Application of differential equation in L-R and C-R circuit analysis by classical method. Abstract Applicaion of Diffrnial... Gnral Aricl Applicaion of diffrnial uaion in - and C- circui analysis by classical mhod. ajndra Prasad gmi curr, Dparmn of Mahmaics, P.N. Campus, Pokhara Email: rajndraprasadrgmi@yahoo.com

More information

Boyce/DiPrima/Meade 11 th ed, Ch 6.1: Definition of Laplace Transform

Boyce/DiPrima/Meade 11 th ed, Ch 6.1: Definition of Laplace Transform Boy/DiPrima/Mad h d, Ch 6.: Diniion o apla Tranorm Elmnary Dirnial Equaion and Boundary Valu Problm, h diion, by William E. Boy, Rihard C. DiPrima, and Doug Mad 7 by John Wily & Son, In. Many praial nginring

More information

An Indian Journal FULL PAPER. Trade Science Inc. A stage-structured model of a single-species with density-dependent and birth pulses ABSTRACT

An Indian Journal FULL PAPER. Trade Science Inc. A stage-structured model of a single-species with density-dependent and birth pulses ABSTRACT [Typ x] [Typ x] [Typ x] ISSN : 974-7435 Volum 1 Issu 24 BioTchnology 214 An Indian Journal FULL PAPE BTAIJ, 1(24), 214 [15197-1521] A sag-srucurd modl of a singl-spcis wih dnsiy-dpndn and birh pulss LI

More information

s-domain Circuit Analysis

s-domain Circuit Analysis Domain ircui Analyi Operae direcly in he domain wih capacior, inducor and reior Key feaure lineariy i preerved c decribed by ODE and heir I Order equal number of plu number of Elemenbyelemen and ource

More information

2012 AP Calculus BC 模拟试卷

2012 AP Calculus BC 模拟试卷 0 AP Calculus BC 模拟试卷 北京新东方罗勇 luoyong@df.cn 0-3- 说明 : 请严格按照实际考试时间进行模拟, 考试时间共 95 分钟 Multiple-Choice section A 部分 : 无计算器 B 部分 : 有计算器 Free-response section A 部分 : 有计算器 B 部分 : 无计算器 总计 45 题 /05 分钟 8 题,55 分钟

More information

INTRODUCTION TO AUTOMATIC CONTROLS INDEX LAPLACE TRANSFORMS

INTRODUCTION TO AUTOMATIC CONTROLS INDEX LAPLACE TRANSFORMS adjoint...6 block diagram...4 clod loop ytm... 5, 0 E()...6 (t)...6 rror tady tat tracking...6 tracking...6...6 gloary... 0 impul function...3 input...5 invr Laplac tranform, INTRODUCTION TO AUTOMATIC

More information

(1) Then we could wave our hands over this and it would become:

(1) Then we could wave our hands over this and it would become: MAT* K285 Spring 28 Anthony Bnoit 4/17/28 Wk 12: Laplac Tranform Rading: Kohlr & Johnon, Chaptr 5 to p. 35 HW: 5.1: 3, 7, 1*, 19 5.2: 1, 5*, 13*, 19, 45* 5.3: 1, 11*, 19 * Pla writ-up th problm natly and

More information

Instrumentation & Process Control

Instrumentation & Process Control Chemical Engineering (GTE & PSU) Poal Correpondence GTE & Public Secor Inrumenaion & Proce Conrol To Buy Poal Correpondence Package call a -999657855 Poal Coure ( GTE & PSU) 5 ENGINEERS INSTITUTE OF INDI.

More information

d 1 = c 1 b 2 - b 1 c 2 d 2 = c 1 b 3 - b 1 c 3

d 1 = c 1 b 2 - b 1 c 2 d 2 = c 1 b 3 - b 1 c 3 and d = c b - b c c d = c b - b c c This process is coninued unil he nh row has been compleed. The complee array of coefficiens is riangular. Noe ha in developing he array an enire row may be divided or

More information

MEM 355 Performance Enhancement of Dynamical Systems A First Control Problem - Cruise Control

MEM 355 Performance Enhancement of Dynamical Systems A First Control Problem - Cruise Control MEM 355 Prformanc Enhancmn of Dynamical Sysms A Firs Conrol Problm - Cruis Conrol Harry G. Kwany Darmn of Mchanical Enginring & Mchanics Drxl Univrsiy Cruis Conrol ( ) mv = F mg sinθ cv v +.2v= u 9.8θ

More information

EE Control Systems LECTURE 2

EE Control Systems LECTURE 2 Copyrigh F.L. Lewi 999 All righ reerved EE 434 - Conrol Syem LECTURE REVIEW OF LAPLACE TRANSFORM LAPLACE TRANSFORM The Laplace ranform i very ueful in analyi and deign for yem ha are linear and ime-invarian

More information

EE 529 Remote Sensing Techniques. Review

EE 529 Remote Sensing Techniques. Review 59 Rmo Snsing Tchniqus Rviw Oulin Annna array Annna paramrs RCS Polariaion Signals CFT DFT Array Annna Shor Dipol l λ r, R[ r ω ] r H φ ηk Ilsin 4πr η µ - Prmiiviy ε - Prmabiliy

More information

The Laplace Transform

The Laplace Transform The Laplace Tranform Prof. Siripong Potiuk Pierre Simon De Laplace 749-827 French Atronomer and Mathematician Laplace Tranform An extenion of the CT Fourier tranform to allow analyi of broader cla of CT

More information

( ) ( ) if t = t. It must satisfy the identity. So, bulkiness of the unit impulse (hyper)function is equal to 1. The defining characteristic is

( ) ( ) if t = t. It must satisfy the identity. So, bulkiness of the unit impulse (hyper)function is equal to 1. The defining characteristic is UNIT IMPULSE RESPONSE, UNIT STEP RESPONSE, STABILITY. Uni impulse funcion (Dirac dela funcion, dela funcion) rigorously defined is no sricly a funcion, bu disribuion (or measure), precise reamen requires

More information

Institute of Actuaries of India

Institute of Actuaries of India Insiu of Acuaris of India ubjc CT3 Probabiliy and Mahmaical aisics Novmbr Examinaions INDICATIVE OLUTION Pag of IAI CT3 Novmbr ol. a sampl man = 35 sampl sandard dviaion = 36.6 b for = uppr bound = 35+*36.6

More information

Review Lecture 5. The source-free R-C/R-L circuit Step response of an RC/RL circuit. The time constant = RC The final capacitor voltage v( )

Review Lecture 5. The source-free R-C/R-L circuit Step response of an RC/RL circuit. The time constant = RC The final capacitor voltage v( ) Rviw Lcur 5 Firs-ordr circui Th sourc-fr R-C/R-L circui Sp rspons of an RC/RL circui v( ) v( ) [ v( 0) v( )] 0 Th i consan = RC Th final capacior volag v() Th iniial capacior volag v( 0 ) Volag/currn-division

More information