Relaxing planarity for topological graphs

Size: px
Start display at page:

Download "Relaxing planarity for topological graphs"

Transcription

1 Rlaing planariy for opological graph Jáno Pach 1, Radoš Radoičić 2, and Géza Tóh 3 1 Ciy Collg, CUNY and Couran Iniu of Mahmaical Scinc, Nw York Univriy, Nw York, NY 10012, USA pach@cim.nyu.du 2 Dparmn of Mahmaic, Maachu Iniu of Tchnology, Cambridg, MA 02139, USA rado@mah.mi.du 3 Rényi Iniu of h Hungarian Acadmy of Scinc, H-1364 Budap, P.O.B. 127, Hungary gza@rnyi.hu Abrac. According o Eulr formula, vry planar graph wih n vric ha a mo O(n) dg. How much can w rla h condiion of planariy wihou violaing h concluion? Afr urvying om claical and rcn rul of hi kind, w prov ha vry graph of n vric, which can b drawn in h plan wihou hr pairwi croing dg, ha a mo O(n) dg. For raigh-lin drawing, hi amn ha bn ablihd by Agarwal al., uing a mor complicad argumn, bu for h gnral ca prviouly no bound br han O(n 3/2 ) wa known. 1 Inroducion A gomric graph i a graph drawn in h plan o ha i vric ar rprnd by poin in gnral poiion (i.., no hr ar collinar) and i dg by raigh-lin gmn conncing h corrponding poin. Topological graph ar dfind imilarly, cp ha now ach dg can b rprnd by any impl (non-lfinrcing) Jordan arc paing hrough no vric ohr han i ndpoin. Throughou hi papr, w aum ha if wo dg of a opological graph G har an inrior poin, hn a hi poin hy proprly cro. W alo aum, for impliciy, ha no hr dg cro a h am poin and ha any wo dg cro only a fini numbr of im. If any wo dg of G hav a mo on poin in common (including hir ndpoin), hn G i aid o b a impl opological graph. Clarly, vry gomric graph i impl. L V (G) and E(G) dno h vr and dg of G, rpcivly. W will mak no noaional diincion bwn h vric (dg) of h undrlying abrac graph, and h poin (arc) rprning hm in h plan. I follow from Eulr Polyhdral Formula ha vry impl planar graph wih n vric ha a mo 3n 6 dg. Equivalnly, vry opological graph wih n vric and mor han 3n 6 dg ha a pair of croing dg. Wha happn if, inad of a croing pair of dg, w wan o guaran h inc of om largr configuraion involving vral croing? Wha kind of unavoidabl ubrucur mu occur in vry gomric (or opological) graph G having n vric and mor han Cn dg, for an appropria larg conan C > 0? In h n four cion, w approach hi quion from four diffrn dircion, ach lading o diffrn anwr. In h la cion, w prov ha any opological graph wih n vric and no hr pairwi croing dg ha a mo O(n) dg. For impl opological graph, hi rul wa fir ablihd by Agarwal-Aronov-Pach-Pollack-Sharir [AAPPS97], uing a mor complicad argumn. Jáno Pach ha bn uppord by NSF Gran CCR , by PSC-CUNY Rarch Award , and by OTKA T Géza Tóh ha bn uppord by OTKA-T and by an award from h Nw York Univriy Rarch Challng Fund.

2 2 Jáno Pach, Radoš Radoičić, and Géza Tóh 2 Ordinary and opological minor A graph H i aid o b a minor of anohr graph G if H can b obaind from a ubgraph of G by a ri of dg conracion. If a ubgraph of G can b obaind from H by rplacing i dg wih indpndn pah bwn hir ndpoin, hn H i calld a opological minor of G. Clarly, a opological minor of G i alo i (ordinary) minor. If a graph G wih n vric ha no minor iomorphic o K 5 or o K 3,3, hn by Kuraowki horm i i planar and i numbr of dg canno cd 3n 6. I follow from an old rul of Wagnr ha h am concluion hold undr h wakr aumpion ha G ha no K 5 minor. A fw yar ago Madr [M98] provd h following famou conjcur of Dirac: Thorm 2.1. (Madr) Evry graph of n vric wih no opological K 5 minor ha a mo 3n 6 dg. If w only aum ha G ha no opological K r minor for om r > 5, w can ill conclud ha G i par, i.., i numbr of dg i a mo linar in n. Thorm 2.2. (Komló-Szmrédi [KSz96], Bollobá-Thomaon [BT98]) For any poiiv ingr r, vry graph of n vric wih no opological K r minor ha a mo cr 2 n dg. Morovr, Komló and Szmrédi howd ha h abov amn i ru wih any poiiv conan c > 1/4, providd ha r i larg nough. Apar from h valu of h conan, hi horm i harp, a i hown by h union of pairwi dijoin copi of a compl bipari graph of iz roughly r 2. W hav a br bound on h numbr of dg, undr h rongr aumpion ha G ha no K r minor. Thorm 2.3. (Koochka [K84], Thomaon [T84]) For any poiiv ingr r, vry graph of n vric wih no K r minor ha a mo cr log rn dg. Th b valu of h conan c for which h horm hold wa aympoically drmind in [T01]. Th horm i harp up o h conan. (Warning! Th lr c and C ud in vral amn will dno unrlad poiiv conan.) Rvring Thorm 2.3, w obain ha vry graph wih n vric and mor han cr log rn dg ha a K r minor. Thi immdialy impli ha if h chromaic numbr χ(g) of G i a la 2cr log r + 1, hn G ha a K r minor. According o Hadwigr nooriou conjcur, for h am concluion i i nough o aum ha χ(g) r. Thi i known o b ru for r 6 ( [RST93]). 3 Quai-planar graph A graph i planar if and only if i can b drawn a a opological graph wih no croing dg. Wha happn if w rla hi condiion and w allow r croing pr dg, for om fid r 0? Thorm 3.1. [PT97] L r b a naural numbr and l G b a impl opological graph of n vric, in which vry dg cro a mo r ohr. Thn, for any r 4, w hav E(G) (r + 3)(n 2). Th ca r = 0 i Eulr horm, which i harp. In h ca r = 1, udid in [PT97] and indpndnly by Gärnr, Thil, and Ziglr (pronal communicaion), h abov bound can b aaind for all n 12. Th rul i alo harp for r = 2, providd ha n 5 (mod 15) i ufficinly larg ( Figur 1).

3 Rlaing planariy for opological graph 3 Figur 1. Howvr, for r = 3, w hav rcnly provd ha E(G) 5.5(n 2), and hi bound i b poibl up o an addiiv conan [PRTT02]. For vry larg valu of r, a much br uppr bound can b dducd from h following horm of Ajai-Chváal-Nwborn-Szmrédi [ACNS82] and Lighon [L84]: any opological graph wih n vric and > 4n dg ha a la conan im 3 /n 2 croing. Corollary 3.2. [PRTT02] Any opological graph wih n vric, who ach dg cro a mo r ohr, ha a mo 4 rn dg. On can alo obain a linar uppr bound for h numbr of dg of a opological graph undr h wakr aumpion ha no dg can cro mor han r ohr dg incidn o h am vr. Thi can b furhr gnralizd, a follow. Thorm 3.3. [PPST02] L G b a opological graph wih n vric which conain no r + dg uch ha h fir r ar incidn o h am vr and ach of hm cro h ohr dg. Thn w hav E(G) C rn, whr C i a conan dpnding only on. In paricular, i follow ha if a opological graph conain no larg gridlik croing parn (wo larg of dg uch ha vry lmn of h fir cro all lmn of h cond), i numbr of dg i a mo linar in n. I i a challnging opn problm o dcid whhr h am arion rmain ru for all opological graph conaining no larg compl croing parn. For any poiiv ingr r, w call a opological graph r-quai-planar if i ha no r pairwi croing dg. A opological graph i -monoon if all of i dg ar -monoon curv, i.., vry vrical lin cro hm a mo onc. Clarly, vry gomric graph i -monoon, bcau i dg ar raigh-lin gmn (ha ar aumd o b non-vrical). If h vric of a gomric graph ar in conv poiion, hn i i aid o b a conv gomric graph r Figur 2. Conrucion howing ha Thorm 3.4 i harp (n = 13, r = 4) 6

4 4 Jáno Pach, Radoš Radoičić, and Géza Tóh Thorm 3.4. [CP92] Th maimum numbr of dg of any r-quai-planar conv gomric graph wih n 2r dg i ( ) 2r 1 2(r 1)n. 2 Thorm 3.5. (Valr [V98]) Evry r-quai-planar -monoon opological graph wih n vric ha a mo C r n log n dg, for a uiabl conan C r dpnding on r. Thorm 3.6. [PSS96] For any r 4, vry r-quai-planar impl opological graph G wih n vric ha a mo C r n(log n) 2(r 3) dg, for a uiabl conan C r dpnding only on r. In Scion 6, w will poin ou ha Thorm 3.6 rmain ru vn if w drop h aumpion ha G i impl, i.., wo dg may cro mor han onc. For 3-quai-planar opological graph w hav a linar uppr bound. Thorm 3.7. [AAPPS97] Evry 3-quai-planar impl opological graph G wih n vric ha a mo Cn dg, for a uiabl conan C. In Scion 7, w giv a hor nw proof of h la horm, howing ha hr, oo, on can drop h aumpion ha no wo dg cro mor han onc (i.., ha G i impl). In hi ca, prviouly no bound br han O(n 3/2 ) wa known. Thorm 3.7 can alo b ndd in anohr dircion: i rmain ru for vry opological graph G wih no r + 2 dg uch ha ach of h fir r dg cro h la wo and h la wo dg cro ach ohr. Of cour, h conan C in h horm now dpnd on r [PRT02]. All horm in hi cion provid (uually linar) uppr bound on h numbr of dg of opological graph aifying crain condiion. In ach ca, on may ak whhr a rongr amn i ru. I i poibl ha h graph in quion can b dcompod ino a mall numbr planar graph? For inanc, h following rongr form of Thorm 3.7 may hold: Conjcur 3.8. Thr i a conan k uch ha h dg of vry 3-quai-planar opological graph G can b colord by k color o ha no wo dg of h am color cro ach ohr. McGuinn [Mc00] provd ha Conjcur 3.8 i ru for impl opological graph, providd ha hr i a clod Jordan curv croing vry dg of G prcily onc. Th amn i alo ru for r-quai-planar conv gomric graph, for any fid r ( [K88], [KK97]). 4 Gnralizd hrackl and hir rlaiv Two dg ar aid o b adjacn if hy har an ndpoin. W ay ha a graph drawn in h plan i a gnralizd hrackl if any wo dg m an odd numbr of im, couning hir common ndpoin, if hy hav any. Tha i, a graph i a gnralizd hrackl if and only if i ha no wo adjacn dg ha cro an odd numbr of im and no wo non-adjacn dg ha cro an vn numbr of im. In paricular, a gnralizd hrackl canno hav wo non-adjacn dg ha ar dijoin. Alhough a fir glanc hi propry may appar o b h ac oppoi of planariy, urpriingly, h wo noion ar no ha diffrn. In paricular, for bipari graph, hy ar quivaln. Thorm 4.1. [LPS97] A bipari graph can b drawn in h plan a a gnralizd hrackl if and only if i i planar. Uing h fac ha vry graph G ha a bipari ubgraph wih a la E(G) /2 dg, w obain ha if a graph G of n vric can b drawn a a gnralizd hrackl, hn E(G) = O(n).

5 Rlaing planariy for opological graph 5 Thorm 4.2. (Cairn-Nikolayvky [CN00]) Evry gnralizd hrackl wih n vric ha a mo 2n 2 dg. Thi bound i harp. Figur 3. A gnralizd hrackl wih n vric and 2n 2 dg A gomric graph G i a gnralizd hrackl if and only if i ha no wo dijoin dg. (Th dg ar uppod o b clod, o ha wo dijoin dg ar ncarily non-adjacn.) On can rla hi condiion by auming ha G ha no r pairwi dijoin dg, for om fid r 2. For r = 2, i wa provd by Hopf-Pannwiz [HP34] ha vry graph aifying hi propry ha a mo n dg, and ha hi bound i harp. For r = 3, h fir linar bound on h numbr of dg of uch graph wa ablihd by Alon-Erdő [AE89], which wa lar improvd o 3n by Goddard- Kachalki-Kliman [GKK96]. For gnral r, h fir linar bound wa ablihd in [PT94]. Th b currnly known ima i h following: Thorm 4.3. (Tóh [T00]) Evry gomric graph wih n vric and no r pairwi dijoin dg ha a mo 2 9 (r 1) 2 n dg. I i likly ha h dpndnc of hi bound on r can b furhr improvd o linar. If w wan o prov h analogu of Thorm 4.3 for opological graph, w hav o mak om addiional aumpion on h rucur of G, ohrwi i i poibl ha any wo dg of G cro ach ohr. Conjcur 4.4. (Conway Thrackl Conjcur) L G b a impl opological graph of n vric. If G ha no wo dijoin dg, hn E(G) n. For many rlad rul, conul [LPS97], [CN00], [W71]. Th n inring opn quion i o dcid whhr h maimum numbr of dg of a impl opological graph wih n vric and no hr pairwi dijoin dg i O(n). 5 Locally planar graph For any r 3, a opological graph G i calld r-locally planar if G ha no lfinrcing pah of lngh a mo r. Roughly paking, hi man ha h mbdding of h graph i planar in a nighborhood of radiu r/2 around any vr. In [PPTT02], w howd ha hr i 3-locally planar gomric graph wih n vric and wih a la conan im n log n dg. Somwha

6 6 Jáno Pach, Radoš Radoičić, and Géza Tóh urpriingly (o u), Tardo [T02] managd o nd hi rul o any fid r 3. H conrucd a qunc of r-locally planar gomric graph wih n vric and a uprlinar numbr of dg (approimaly n im h r/2 im irad logarihm of n). Morovr, h graph ar bipari and all of hir dg can b abbd by h am lin. Th following poiiv rul i probably vry far from bing harp. Thorm 5.1. [PPTT02] Th maimum numbr of dg of a 3-locally planar opological graph wih n vric i O(n 3/2 ). For gomric graph, much rongr rul ar known. Thorm 5.2. [PPTT02] Th maimum numbr of dg of a 3-locally planar -monoon opological graph wih n vric i O(n log n). Thi bound i aympoically harp. For 5-locally planar -monoon opological graph, w hav a lighly br uppr bound on h numbr of dg: O(n log n/ log log n). Thi bound can b furhr improvd undr h addiional aumpion ha all dg of h graph cro h y-ai. Thorm 5.3. [PPTT02] L G b an -monoon r-locally planar opological graph of n vric all of who dg cro h y-ai. Thn, w hav E(G) cn(log n) 1/ r/2 for a uiabl conan c. 6 Srnghning Thorm 3.6 In hi cion, w oulin h proof of Thorm 6.1. Evry r-quai-planar opological graph wih n vric ha a mo f r (n) := C r n(log n) 4(r 3) dg, whr r 2 and C r i a uiabl poiiv conan dpnding on r. L G b a graph wih vr V (G) and dg E(G). Th bicion widh b(g) of G i dfind a h minimum numbr of dg, who rmoval pli h graph ino wo roughly qual ubgraph. Mor prcily, b(g) i h minimum numbr of dg running bwn V 1 and V 2, ovr all pariion of h vr of G ino wo dijoin par V 1 V 2 uch ha V 1, V 2 V (G) /3. Th pair-croing numbr pair-cr(g) of a graph G i h minimum numbr of croing pair of dg in any drawing of G. W nd a rcn rul of Maoušk [M02], who analogu for ordinary croing numbr wa provd in [PSS96] and [SV94]. Lmma 6.2. (Maoušk) L G b a graph of n vric wih dgr d 1, d 2,..., d n. Thn w hav ) n b 2 (G) c(log n) (pair-cr(g) 2 +, whr c i a uiabl conan. W follow h ida of h original proof of Thorm 3.6. W ablih Thorm 6.1 by doubl inducion on r and n. By Thorm 7.1 (in h n cion), h amn i ru for r = 3 and for all n. I i alo ru for any r > 2 and n n r, providd ha C r i ufficinly larg in rm of n r, bcau hn h ad bound cd ( n 2). (Th ingr nr can b pcifid lar o a o aify crain impl chnical condiion.) i=1 d 2 i

7 Rlaing planariy for opological graph 7 Aum ha w hav alrady provd Thorm 6.1 for om r 3 and all n. L n n r+1, and uppo ha h horm hold for r + 1 and for all opological graph having fwr han n vric. L G b an (r + 1)-quai-planar opological graph of n vric. For impliciy, w u h am lr G o dno h undrlying abrac graph. For any dg E(G), l G G dno h opological graph coniing of all dg of G ha cro. Clarly, G i r-quai-planar. Thu, by h inducion hypohi, w hav pair-cr(g) 1 2 E(G) E(G ) 1 2 E(G) f r(n). Uing h fac ha n i=1 d2 i 2 E(G) n hold for vry graph G wih dgr d 1, d 2,..., d n, Lmma 6.2 impli ha b(g) ( c(log n) 2 E(G) f r (n) ) 1/2. Conidr a pariion of V (G) ino wo par of iz n 1, n 2 2n/3 uch ha h numbr of dg running bwn hm i b(g). Obviouly, boh ubgraph inducd by h par ar (r + 1)-quaiplanar. Thu, w can apply h inducion hypohi o obain E(G) f r+1 (n 1 ) + f r+1 (n 2 ) + b(g). Comparing h la wo inqualii, h rul follow by om rouin calculaion. 7 Srnghning Thorm 3.7 Th aim of hi cion i o prov h following rongr vrion of Thorm 3.7. Thorm 7.1. Evry 3-quai-planar opological graph wih n vric ha a mo Cn dg, for a uiabl conan C. L G b a 3-quai-planar opological graph wih n vric. Rdraw G, if ncary, wihou craing 3 pairwi croing dg o ha h numbr of croing in h ruling opological graph G i a mall a poibl. Obviouly, no dg of G cro ilf, ohrwi w could rduc h numbr of croing by rmoving h loop. Suppo ha G ha wo diinc dg ha cro a la wic. A rgion nclod by wo pic of h paricipaing dg i calld a ln. Suppo hr i a ln l ha conain no vr of G. Conidr a minimal ln l l, by conainmn. Noic ha by wapping h wo id of l, w could rduc h numbr of croing wihou craing any nw pair of croing dg. In paricular, G rmain 3-quai-planar. Thrfor, w can conclud ha Claim 1. Each ln of G conain a vr. W may aum wihou lo of gnraliy ha h undrlying abrac graph of G i conncd, bcau ohrwi w can prov Thorm 7.1 by inducion on h numbr of vric. L 1, 2,..., n 1 E(G) b a qunc of dg uch ha 1, 2,..., i form a r T i G for vry 1 i n 1. In paricular, 1, 2,..., n 1 form a panning r of G. Fir, w conruc a qunc of croing-fr opological graph (r), T1, T 2,..., T n 1. L T 1 b dfind a a opological graph of wo vric, coniing of h ingl dg 1 (a wa drawn in G). Suppo ha T i ha alrady bn dfind for om i 1, and l v dno h ndpoin of i+1 ha do no blong o T i. Now add o T i h pic of i+1 bwn v and i fir croing wih T i. Mor prcily, follow h dg i+1 from v up o h poin v whr i hi T i for h fir im, and dno hi pic of i+1 by ẽ i+1. If v i a vr of T i, hn add v and ẽ i+1 o T i and l T i+1 b h ruling opological graph. If v i in h inrior of an dg of T i, hn inroduc a nw vr a v. I divid ino wo dg, and. Add boh of hm o T i, and dl. Alo add v and ẽ i+1, and l T i+1 b h ruling opological graph.

8 8 Jáno Pach, Radoš Radoičić, and Géza Tóh Afr n 2 p, w obain a opological r T := T n 1, which (1) i croing-fr, (2) ha fwr han 2n vric, (3) conain ach vr of G, and (4) ha h propry ha ach of i dg i ihr a full dg, or a pic of an dg of G T T Figur 4. Conrucing T from T L D dno h opn rgion obaind by rmoving from h plan vry poin blonging o T. Dfin a conv gomric graph H, a follow. Travling around h boundary of D in clockwi dircion, w ncounr wo kind of diffrn faur : vric and dg of T. Rprn ach uch faur by a diffrn vr i of H, in clockwi ordr in conv poiion. No ha h am faur will b rprnd by vral i : vry dg will b rprnd wic, bcau w vii boh of i id, and vry vr will b rprnd a many im a i dgr in T. I i no hard o ha h numbr of vric i V (H) do no cd 8n. N, w dfin h dg of H. L E b h of dg of G \ T. Evry dg E may cro T a vral poin. Th croing poin divid ino vral pic, calld gmn. L S dno h of all gmn of all dg E. Wih h cpion of i ndpoin, vry gmn S run in h rgion D. Th ndpoin of blong o wo faur along h boundary of D, rprnd by wo vric i and j of H. Connc i and j by a raigh-lin dg of H. Noic ha H ha no loop, bcau if i = j, hn, uing h fac ha T i conncd, on can aily conclud ha h ln nclod by and by h dg of T corrponding o i ha no vr of G in i inrior. Thi conradic Claim 1. Of cour, vral diffrn gmn may giv ri o h am dg i j E(H). Two uch gmn ar aid o b of h am yp. Obrv ha wo gmn of h am yp canno cro. Indd, a no dg inrc ilf, h wo croing gmn would blong o diinc dg 1, 2 E. Sinc any wo vric of G ar conncd by a mo on dg, a la on of i and j corrpond o an dg (and no o a vr) of T, which oghr wih 1 and 2 would form a pairwi inrcing ripl of dg, conradicing our aumpion ha G i 3-quai-planar. Claim 2. H i a 3-quai-planar conv gomric graph. To ablih hi claim, i i ufficin o obrv ha if wo dg of H cro ach ohr, hn h faur of T corrponding o hir ndpoin alrna in h clockwi ordr around h boundary of D. Thrfor, any hr pairwi croing dg of H would corrpond o hr pairwi croing gmn, which i a conradicion. A gmn i aid o b hildd if hr ar wo ohr gmn, 1 and 2, of h am yp, on on ach id of. Ohrwi, i calld pod. An dg E i aid o b pod if a la on of i gmn i pod. Ohrwi, i calld a hildd dg. In viw of Claim 2, w can apply Thorm 3.4 [CP92] o H. W obain ha E(H) 4 V (H) 10 < 32n, ha i, hr ar fwr han 32n diffrn yp of gmn. Thr ar a mo wo pod gmn of h am yp, o h oal numbr of pod gmn i mallr han 64n, and hi i alo an uppr bound on h numbr of pod dg in E. I rmain o bound h numbr of hildd dg in E.

9 Rlaing planariy for opological graph 9 Claim 3. Thr ar no hildd dg. Suppo, in ordr o obain a conradicion, ha hr i a hildd dg E. Orin arbirarily, and dno i gmn by 1, 2,..., m S, lid according o hi orinaion. For any 1 i m, l i S b h (uniqu) gmn of h am yp a i, running clo o i on i lf id. Sinc hr i no lf-inrcing dg and mpy ln in G, h gmn i and i+1 blong o h am dg f E, for vry i < m ( Fig. 5). Howvr, hi man ha boh ndpoin of and f coincid, which i impoibl. W can conclud ha E ha fwr han 64n lmn, all of which ar pod. Thu, aking ino accoun h n 1 dg of h panning r T, h oal numbr of dg of G i mallr han 65n. i i+1 i i+1 i i+1 i i+1 i i+1 i i+1 Figur 5. i and i+1 blong o h am dg Rfrnc [AAPPS97] P. K. Agarwal, B. Aronov, J. Pach, R. Pollack, and M. Sharir, Quai-planar graph hav a linar numbr of dg, Combinaorica 17 (1997), 1 9. [ACNS82] M. Ajai, V. Chváal, M. Nwborn, and E. Szmrédi, Croing-fr ubgraph, in: Thory and Pracic of Combinaoric, Norh-Holland Mah. Sud. 60, Norh-Holland, Amrdam-Nw York, 1982, [AE89] N. Alon and P. Erdő, Dijoin dg in gomric graph, Dicr Compu. Gom. 4 (1989), [BT98] Bollobá and A. Thomaon, Proof of a conjcur of Madr, Erdő and Hajnal on opological compl ubgraph, Europan J. Combin. 19 (1998), [BKV02] P. Braß, G. Károlyi, and P. Valr, A Turán-yp rmal hory for conv gomric graph, in: Dicr and Compuaional Gomry Th Goodman-Pollack Fchrif (B. Aronov al., d.), Springr Vrlag, Brlin, 2003, o appar. [CN00] G. Cairn and Y. Nikolayvky, Bound for gnralizd hrackl, Dicr Compu. Gom. 23 (2000), [CP92] V. Capoyla and J. Pach, A Turán-yp horm on chord of a conv polygon, Journal of Combinaorial Thory, Sri B 56 (1992), [GKK96] W. Goddard, M. Kachalki, and D. J. Kliman, Forcing dijoin gmn in h plan, Europan J. Combin. 17 (1996), [HP34] H. Hopf and E. Pannwiz, Aufgab Nr. 167, Jahrbrich dr duchn Mahmaikr-Vrinigung 43 (1934), 114. [KSz96] J. Komló and E. Szmrédi, Topological cliqu in graph II, Combin. Probab. Compu. 5 (1996), [K84] A. V. Koochka, Lowr bound of h Hadwigr numbr of graph by hir avrag dgr, Combinaorica 4 (1984), [K88] A. V. Koochka, Uppr bound on h chromaic numbr of graph (in Ruian), Trudy In. Ma. (Novoibirk), Modli i Mody Opim., 10 (1988), [KK97] A. V. Koochka and J. Kraochvíl, Covring and coloring polygon-circl graph, Dicr Mah. 163 (1997), [L84] F. T. Lighon, Nw lowr bound chniqu for VLSI, Mah. Sym Thory 17 (1984), [LPS97] L. Lováz, J. Pach, and M. Szgdy, On Conway hrackl conjcur, Dicr and Compuaional Gomry, 18 (1997), [M98] W. Madr, 3n 5 dg do forc a ubdiviion of K 5, Combinaorica 18 (1998), [M02] J. Maoušk, Lcur a DIMACS Workhop on Gomric Graph Thory, Nw Brunwick, Spmbr 2002.

10 10 Jáno Pach, Radoš Radoičić, and Géza Tóh [Mc00] S. McGuinn, Colouring arcwi conncd in h plan I, Graph & Combin. 16 (2000), [P99] J. Pach, Gomric graph hory, in: Survy in Combinaoric, 1999 (J. D. Lamb and D. A. Prc, d.), London Mahmaical Sociy Lcur No 267, Cambridg Univriy Pr, Cambridg, 1999, [PPST02] J. Pach, R. Pinchai, M. Sharir, and G. Tóh, Topological graph wih no larg grid, o appar. [PPTT02] J. Pach, R. Pinchai, G. Tardo, and G. Tóh, Gomric graph wih no lf-inrcing pah of lngh hr, in: Graph Drawing (M. T. Goodrich, S. G. Kobourov, d.), Lcur No in Compur Scinc 2528, Springr-Vrlag, Brlin, 2002, [PRT02] J. Pach, R. Radoičić, and G. Tóh, On quai-planar graph, in prparaion. [PRTT02] J. Pach, R. Radoičić, G. Tardo, and G. Tóh, Graph drawn wih a mo 3 croing pr dg, o appar. [PSS96] J. Pach, F. Shahrokhi, and M. Szgdy, Applicaion of h croing numbr, Algorihmica 16 (1996), [PT97] J. Pach and G. Tóh, Graph drawn wih fw croing pr dg, Combinaorica 17 (1997), [PT94] J. Pach and J. Törőcik, Som gomric applicaion of Dilworh horm, Dicr Compu. Gom. 12 (1994), 1 7. [PR02] R. Pinchai and R. Radoičić, On h numbr of dg in gomric graph wih no lf-inrcing cycl of lngh 4, Proc. 19h Annual Sympoium on Compuaional Gomry, ubmid. [RST93] N. Robron, P. Symour, and R. Thoma, Hadwigr conjcur for K 6-fr graph, Combinaorica 13 (1993), [SV94] O. Sýkora and I. Vr o, On VLSI layou of h ar graph and rlad nwork, Ingraion, Th VLSI Journal 17 (1994), [T02] G. Tardo, On h numbr of dg in a gomric graph wih no hor lf-inrcing pah, in prparaion. [T84] A. Thomaon, An rmal funcion for conracion of graph, Mah. Proc. Cambridg Philo. Soc. 95 (1984), [T00] G. Tóh, No on gomric graph, J. Combin. Thory, Sr. A 89 (2000), [T01] A. Thomaon, Th rmal funcion for compl minor, J. Combin. Thory Sr. B 81 (2001), [V98] P. Valr, On gomric graph wih no k pairwi paralll dg, Dicr and Compuaional Gomry 19 (1998), [W71] D. R. Woodall, Thrackl and dadlock, in: Combinaorial Mahmaic and i Applicaion (Proc. Conf., Oford, 1969), Acadmic Pr, London, 1971,

Final Exam : Solutions

Final Exam : Solutions Comp : Algorihm and Daa Srucur Final Exam : Soluion. Rcuriv Algorihm. (a) To bgin ind h mdian o {x, x,... x n }. Sinc vry numbr xcp on in h inrval [0, n] appar xacly onc in h li, w hav ha h mdian mu b

More information

Ma/CS 6a Class 15: Flows and Bipartite Graphs

Ma/CS 6a Class 15: Flows and Bipartite Graphs //206 Ma/CS 6a Cla : Flow and Bipari Graph By Adam Shffr Rmindr: Flow Nwork A flow nwork i a digraph G = V, E, oghr wih a ourc vrx V, a ink vrx V, and a capaciy funcion c: E N. Capaciy Sourc 7 a b c d

More information

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018 DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS Aoc. Prof. Dr. Burak Kllci Spring 08 OUTLINE Th Laplac Tranform Rgion of convrgnc for Laplac ranform Invr Laplac ranform Gomric valuaion

More information

Chapter 5 The Laplace Transform. x(t) input y(t) output Dynamic System

Chapter 5 The Laplace Transform. x(t) input y(t) output Dynamic System EE 422G No: Chapr 5 Inrucor: Chung Chapr 5 Th Laplac Tranform 5- Inroducion () Sym analyi inpu oupu Dynamic Sym Linar Dynamic ym: A procor which proc h inpu ignal o produc h oupu dy ( n) ( n dy ( n) +

More information

Poisson process Markov process

Poisson process Markov process E2200 Quuing hory and lraffic 2nd lcur oion proc Markov proc Vikoria Fodor KTH Laboraory for Communicaion nwork, School of Elcrical Enginring 1 Cour oulin Sochaic proc bhind quuing hory L2-L3 oion proc

More information

CPSC 211 Data Structures & Implementations (c) Texas A&M University [ 259] B-Trees

CPSC 211 Data Structures & Implementations (c) Texas A&M University [ 259] B-Trees CPSC 211 Daa Srucurs & Implmnaions (c) Txas A&M Univrsiy [ 259] B-Trs Th AVL r and rd-black r allowd som variaion in h lnghs of h diffrn roo-o-laf pahs. An alrnaiv ida is o mak sur ha all roo-o-laf pahs

More information

1 Finite Automata and Regular Expressions

1 Finite Automata and Regular Expressions 1 Fini Auom nd Rgulr Exprion Moivion: Givn prn (rgulr xprion) for ring rching, w migh wn o convr i ino drminiic fini uomon or nondrminiic fini uomon o mk ring rching mor fficin; drminiic uomon only h o

More information

Elementary Differential Equations and Boundary Value Problems

Elementary Differential Equations and Boundary Value Problems Elmnar Diffrnial Equaions and Boundar Valu Problms Boc. & DiPrima 9 h Ediion Chapr : Firs Ordr Diffrnial Equaions 00600 คณ ตศาสตร ว ศวกรรม สาขาว ชาว ศวกรรมคอมพ วเตอร ป การศ กษา /55 ผศ.ดร.อร ญญา ผศ.ดร.สมศ

More information

Chapter 12 Introduction To The Laplace Transform

Chapter 12 Introduction To The Laplace Transform Chapr Inroducion To Th aplac Tranorm Diniion o h aplac Tranorm - Th Sp & Impul uncion aplac Tranorm o pciic uncion 5 Opraional Tranorm Applying h aplac Tranorm 7 Invr Tranorm o Raional uncion 8 Pol and

More information

On the Derivatives of Bessel and Modified Bessel Functions with Respect to the Order and the Argument

On the Derivatives of Bessel and Modified Bessel Functions with Respect to the Order and the Argument Inrnaional Rsarch Journal of Applid Basic Scincs 03 Aailabl onlin a wwwirjabscom ISSN 5-838X / Vol 4 (): 47-433 Scinc Eplorr Publicaions On h Driais of Bssl Modifid Bssl Funcions wih Rspc o h Ordr h Argumn

More information

Lecture 1: Numerical Integration The Trapezoidal and Simpson s Rule

Lecture 1: Numerical Integration The Trapezoidal and Simpson s Rule Lcur : Numrical ngraion Th Trapzoidal and Simpson s Rul A problm Th probabiliy of a normally disribud (man µ and sandard dviaion σ ) vn occurring bwn h valus a and b is B A P( a x b) d () π whr a µ b -

More information

LaPlace Transform in Circuit Analysis

LaPlace Transform in Circuit Analysis LaPlac Tranform in Circui Analyi Obciv: Calcula h Laplac ranform of common funcion uing h dfiniion and h Laplac ranform abl Laplac-ranform a circui, including componn wih non-zro iniial condiion. Analyz

More information

Let s look again at the first order linear differential equation we are attempting to solve, in its standard form:

Let s look again at the first order linear differential equation we are attempting to solve, in its standard form: Th Ingraing Facor Mhod In h prvious xampls of simpl firs ordr ODEs, w found h soluions by algbraically spara h dpndn variabl- and h indpndn variabl- rms, and wri h wo sids of a givn quaion as drivaivs,

More information

Transfer function and the Laplace transformation

Transfer function and the Laplace transformation Lab No PH-35 Porland Sa Univriy A. La Roa Tranfr funcion and h Laplac ranformaion. INTRODUTION. THE LAPLAE TRANSFORMATION L 3. TRANSFER FUNTIONS 4. ELETRIAL SYSTEMS Analyi of h hr baic paiv lmn R, and

More information

Network Design with Weighted Players

Network Design with Weighted Players Nwork Dign wih Wighd Playr Ho-Lin Chn Tim Roughgardn Jun 21, 27 Abrac W conidr a modl of gam-horic nwork dign iniially udid by Anhlvich al. [2], whr lfih playr lc pah in a nwork o minimiz hir co, which

More information

Midterm exam 2, April 7, 2009 (solutions)

Midterm exam 2, April 7, 2009 (solutions) Univrsiy of Pnnsylvania Dparmn of Mahmaics Mah 26 Honors Calculus II Spring Smsr 29 Prof Grassi, TA Ashr Aul Midrm xam 2, April 7, 29 (soluions) 1 Wri a basis for h spac of pairs (u, v) of smooh funcions

More information

14.02 Principles of Macroeconomics Fall 2005 Quiz 3 Solutions

14.02 Principles of Macroeconomics Fall 2005 Quiz 3 Solutions 4.0 rincipl of Macroconomic Fall 005 Quiz 3 Soluion Shor Quion (30/00 poin la a whhr h following amn ar TRUE or FALSE wih a hor xplanaion (3 or 4 lin. Each quion coun 5/00 poin.. An incra in ax oday alway

More information

THE INVOLUTE-EVOLUTE OFFSETS OF RULED SURFACES *

THE INVOLUTE-EVOLUTE OFFSETS OF RULED SURFACES * Iranian Journal of Scinc & Tchnology, Tranacion A, Vol, No A Prind in h Ilamic Rpublic of Iran, 009 Shiraz Univriy THE INVOLUTE-EVOLUTE OFFSETS OF RULED SURFACES E KASAP, S YUCE AND N KURUOGLU Ondokuz

More information

Network Design with Weighted Players (SPAA 2006 Full Paper Submission)

Network Design with Weighted Players (SPAA 2006 Full Paper Submission) Nwork Dign wih Wighd Playr SPAA 26 Full Papr Submiion) Ho-Lin Chn Tim Roughgardn March 7, 26 Abrac W conidr a modl of gam-horic nwork dign iniially udid by Anhlvich al. [1], whr lfih playr lc pah in a

More information

Applied Statistics and Probability for Engineers, 6 th edition October 17, 2016

Applied Statistics and Probability for Engineers, 6 th edition October 17, 2016 Applid Saisics and robabiliy for Enginrs, 6 h diion Ocobr 7, 6 CHATER Scion - -. a d. 679.. b. d. 88 c d d d. 987 d. 98 f d.. Thn, = ln. =. g d.. Thn, = ln.9 =.. -7. a., by symmry. b.. d...6. 7.. c...

More information

Institute of Actuaries of India

Institute of Actuaries of India Insiu of Acuaris of India ubjc CT3 Probabiliy and Mahmaical aisics Novmbr Examinaions INDICATIVE OLUTION Pag of IAI CT3 Novmbr ol. a sampl man = 35 sampl sandard dviaion = 36.6 b for = uppr bound = 35+*36.6

More information

Discussion 06 Solutions

Discussion 06 Solutions STAT Discussion Soluions Spring 8. Th wigh of fish in La Paradis follows a normal disribuion wih man of 8. lbs and sandard dviaion of. lbs. a) Wha proporion of fish ar bwn 9 lbs and lbs? æ 9-8. - 8. P

More information

Boyce/DiPrima 9 th ed, Ch 2.1: Linear Equations; Method of Integrating Factors

Boyce/DiPrima 9 th ed, Ch 2.1: Linear Equations; Method of Integrating Factors Boc/DiPrima 9 h d, Ch.: Linar Equaions; Mhod of Ingraing Facors Elmnar Diffrnial Equaions and Boundar Valu Problms, 9 h diion, b William E. Boc and Richard C. DiPrima, 009 b John Wil & Sons, Inc. A linar

More information

2.1. Differential Equations and Solutions #3, 4, 17, 20, 24, 35

2.1. Differential Equations and Solutions #3, 4, 17, 20, 24, 35 MATH 5 PS # Summr 00.. Diffrnial Equaions and Soluions PS.# Show ha ()C #, 4, 7, 0, 4, 5 ( / ) is a gnral soluion of h diffrnial quaion. Us a compur or calculaor o skch h soluions for h givn valus of h

More information

Spring 2006 Process Dynamics, Operations, and Control Lesson 2: Mathematics Review

Spring 2006 Process Dynamics, Operations, and Control Lesson 2: Mathematics Review Spring 6 Procss Dynamics, Opraions, and Conrol.45 Lsson : Mahmaics Rviw. conx and dircion Imagin a sysm ha varis in im; w migh plo is oupu vs. im. A plo migh imply an quaion, and h quaion is usually an

More information

2. The Laplace Transform

2. The Laplace Transform Th aac Tranorm Inroucion Th aac ranorm i a unamna an vry uu oo or uying many nginring robm To in h aac ranorm w conir a comx variab σ, whr σ i h ra ar an i h imaginary ar or ix vau o σ an w viw a a oin

More information

CSE 245: Computer Aided Circuit Simulation and Verification

CSE 245: Computer Aided Circuit Simulation and Verification CSE 45: Compur Aidd Circui Simulaion and Vrificaion Fall 4, Sp 8 Lcur : Dynamic Linar Sysm Oulin Tim Domain Analysis Sa Equaions RLC Nwork Analysis by Taylor Expansion Impuls Rspons in im domain Frquncy

More information

UNIT #5 EXPONENTIAL AND LOGARITHMIC FUNCTIONS

UNIT #5 EXPONENTIAL AND LOGARITHMIC FUNCTIONS Answr Ky Nam: Da: UNIT # EXPONENTIAL AND LOGARITHMIC FUNCTIONS Par I Qusions. Th prssion is quivaln o () () 6 6 6. Th ponnial funcion y 6 could rwrin as y () y y 6 () y y (). Th prssion a is quivaln o

More information

Lecture 26: Leapers and Creepers

Lecture 26: Leapers and Creepers Lcur 6: Lapr and Crpr Scrib: Grain Jon (and Marin Z. Bazan) Dparmn of Economic, MIT May, 005 Inroducion Thi lcur conidr h analyi of h non-parabl CTRW in which h diribuion of p iz and im bwn p ar dpndn.

More information

Instructors Solution for Assignment 3 Chapter 3: Time Domain Analysis of LTIC Systems

Instructors Solution for Assignment 3 Chapter 3: Time Domain Analysis of LTIC Systems Inrucor Soluion for Aignmn Chapr : Tim Domain Anali of LTIC Sm Problm i a 8 x x wih x u,, an Zro-inpu rpon of h m: Th characriic quaion of h LTIC m i i 8, which ha roo a ± j Th zro-inpu rpon i givn b zi

More information

SOLUTIONS. 1. Consider two continuous random variables X and Y with joint p.d.f. f ( x, y ) = = = 15. Stepanov Dalpiaz

SOLUTIONS. 1. Consider two continuous random variables X and Y with joint p.d.f. f ( x, y ) = = = 15. Stepanov Dalpiaz STAT UIUC Pracic Problms #7 SOLUTIONS Spanov Dalpiaz Th following ar a numbr of pracic problms ha ma b hlpful for compling h homwor, and will lil b vr usful for suding for ams.. Considr wo coninuous random

More information

Problem Set If all directed edges in a network have distinct capacities, then there is a unique maximum flow.

Problem Set If all directed edges in a network have distinct capacities, then there is a unique maximum flow. CSE 202: Deign and Analyi of Algorihm Winer 2013 Problem Se 3 Inrucor: Kamalika Chaudhuri Due on: Tue. Feb 26, 2013 Inrucion For your proof, you may ue any lower bound, algorihm or daa rucure from he ex

More information

4.1 The Uniform Distribution Def n: A c.r.v. X has a continuous uniform distribution on [a, b] when its pdf is = 1 a x b

4.1 The Uniform Distribution Def n: A c.r.v. X has a continuous uniform distribution on [a, b] when its pdf is = 1 a x b 4. Th Uniform Disribuion Df n: A c.r.v. has a coninuous uniform disribuion on [a, b] whn is pdf is f x a x b b a Also, b + a b a µ E and V Ex4. Suppos, h lvl of unblivabiliy a any poin in a Transformrs

More information

Network Flow. Data Structures and Algorithms Andrei Bulatov

Network Flow. Data Structures and Algorithms Andrei Bulatov Nework Flow Daa Srucure and Algorihm Andrei Bulao Algorihm Nework Flow 24-2 Flow Nework Think of a graph a yem of pipe We ue hi yem o pump waer from he ource o ink Eery pipe/edge ha limied capaciy Flow

More information

Algorithmic Discrete Mathematics 6. Exercise Sheet

Algorithmic Discrete Mathematics 6. Exercise Sheet Algorihmic Dicree Mahemaic. Exercie Shee Deparmen of Mahemaic SS 0 PD Dr. Ulf Lorenz 7. and 8. Juni 0 Dipl.-Mah. David Meffer Verion of June, 0 Groupwork Exercie G (Heap-Sor) Ue Heap-Sor wih a min-heap

More information

Economics 302 (Sec. 001) Intermediate Macroeconomic Theory and Policy (Spring 2011) 3/28/2012. UW Madison

Economics 302 (Sec. 001) Intermediate Macroeconomic Theory and Policy (Spring 2011) 3/28/2012. UW Madison Economics 302 (Sc. 001) Inrmdia Macroconomic Thory and Policy (Spring 2011) 3/28/2012 Insrucor: Prof. Mnzi Chinn Insrucor: Prof. Mnzi Chinn UW Madison 16 1 Consumpion Th Vry Forsighd dconsumr A vry forsighd

More information

On spanning trees and cycles of multicolored point sets with few intersections

On spanning trees and cycles of multicolored point sets with few intersections On spanning trs and cycls of multicolord point sts with fw intrsctions M. Kano, C. Mrino, and J. Urrutia April, 00 Abstract Lt P 1,..., P k b a collction of disjoint point sts in R in gnral position. W

More information

Mixing Real-Time and Non-Real-Time. CSCE 990: Real-Time Systems. Steve Goddard.

Mixing Real-Time and Non-Real-Time. CSCE 990: Real-Time Systems. Steve Goddard. CSCE 990: Ral-Tim Sym Mixing Ral-Tim and Non-Ral-Tim goddard@c.unl.du hp://www.c.unl.du/~goddard/cour/raltimsym 1 Ral-Tim Sym Mixd Job - 1 Mixing Ral-Tim and Non-Ral-Tim in Prioriy-Drivn Sym (Chapr 7 of

More information

Introduction to SLE Lecture Notes

Introduction to SLE Lecture Notes Inroducion o SLE Lecure Noe May 13, 16 - The goal of hi ecion i o find a ufficien condiion of λ for he hull K o be generaed by a imple cure. I urn ou if λ 1 < 4 hen K i generaed by a imple curve. We will

More information

1 Motivation and Basic Definitions

1 Motivation and Basic Definitions CSCE : Deign and Analyi of Algorihm Noe on Max Flow Fall 20 (Baed on he preenaion in Chaper 26 of Inroducion o Algorihm, 3rd Ed. by Cormen, Leieron, Rive and Sein.) Moivaion and Baic Definiion Conider

More information

Microscopic Flow Characteristics Time Headway - Distribution

Microscopic Flow Characteristics Time Headway - Distribution CE57: Traffic Flow Thory Spring 20 Wk 2 Modling Hadway Disribuion Microscopic Flow Characrisics Tim Hadway - Disribuion Tim Hadway Dfiniion Tim Hadway vrsus Gap Ahmd Abdl-Rahim Civil Enginring Dparmn,

More information

Voltage v(z) ~ E(z)D. We can actually get to this wave behavior by using circuit theory, w/o going into details of the EM fields!

Voltage v(z) ~ E(z)D. We can actually get to this wave behavior by using circuit theory, w/o going into details of the EM fields! Considr a pair of wirs idal wirs ngh >, say, infinily long olag along a cabl can vary! D olag v( E(D W can acually g o his wav bhavior by using circui hory, w/o going ino dails of h EM filds! Thr

More information

Algorithms and Data Structures 2011/12 Week 9 Solutions (Tues 15th - Fri 18th Nov)

Algorithms and Data Structures 2011/12 Week 9 Solutions (Tues 15th - Fri 18th Nov) Algorihm and Daa Srucure 2011/ Week Soluion (Tue 15h - Fri 18h No) 1. Queion: e are gien 11/16 / 15/20 8/13 0/ 1/ / 11/1 / / To queion: (a) Find a pair of ube X, Y V uch ha f(x, Y) = f(v X, Y). (b) Find

More information

Partial Fraction Expansion

Partial Fraction Expansion Paial Facion Expanion Whn ying o find h inv Laplac anfom o inv z anfom i i hlpfl o b abl o bak a complicad aio of wo polynomial ino fom ha a on h Laplac Tanfom o z anfom abl. W will illa h ing Laplac anfom.

More information

cycle that does not cross any edges (including its own), then it has at least

cycle that does not cross any edges (including its own), then it has at least W prov th following thorm: Thorm If a K n is drawn in th plan in such a way that it has a hamiltonian cycl that dos not cross any dgs (including its own, thn it has at last n ( 4 48 π + O(n crossings Th

More information

Copyright 2012 Pearson Education, Inc. Publishing as Prentice Hall.

Copyright 2012 Pearson Education, Inc. Publishing as Prentice Hall. Chapr Rviw 0 6. ( a a ln a. This will qual a if an onl if ln a, or a. + k an (ln + c. Thrfor, a an valu of, whr h wo curvs inrsc, h wo angn lins will b prpnicular. 6. (a Sinc h lin passs hrough h origin

More information

3(8 ) (8 x x ) 3x x (8 )

3(8 ) (8 x x ) 3x x (8 ) Scion - CHATER -. a d.. b. d.86 c d 8 d d.9997 f g 6. d. d. Thn, = ln. =. =.. d Thn, = ln.9 =.7 8 -. a d.6 6 6 6 6 8 8 8 b 9 d 6 6 6 8 c d.8 6 6 6 6 8 8 7 7 d 6 d.6 6 6 6 6 6 6 8 u u u u du.9 6 6 6 6 6

More information

Flow networks. Flow Networks. A flow on a network. Flow networks. The maximum-flow problem. Introduction to Algorithms, Lecture 22 December 5, 2001

Flow networks. Flow Networks. A flow on a network. Flow networks. The maximum-flow problem. Introduction to Algorithms, Lecture 22 December 5, 2001 CS 545 Flow Nework lon Efra Slide courey of Charle Leieron wih mall change by Carola Wenk Flow nework Definiion. flow nework i a direced graph G = (V, E) wih wo diinguihed verice: a ource and a ink. Each

More information

Randomized Perfect Bipartite Matching

Randomized Perfect Bipartite Matching Inenive Algorihm Lecure 24 Randomized Perfec Biparie Maching Lecurer: Daniel A. Spielman April 9, 208 24. Inroducion We explain a randomized algorihm by Ahih Goel, Michael Kapralov and Sanjeev Khanna for

More information

Basic Polyhedral theory

Basic Polyhedral theory Basic Polyhdral thory Th st P = { A b} is calld a polyhdron. Lmma 1. Eithr th systm A = b, b 0, 0 has a solution or thr is a vctorπ such that π A 0, πb < 0 Thr cass, if solution in top row dos not ist

More information

[ ] 1+ lim G( s) 1+ s + s G s s G s Kacc SYSTEM PERFORMANCE. Since. Lecture 10: Steady-state Errors. Steady-state Errors. Then

[ ] 1+ lim G( s) 1+ s + s G s s G s Kacc SYSTEM PERFORMANCE. Since. Lecture 10: Steady-state Errors. Steady-state Errors. Then SYSTEM PERFORMANCE Lctur 0: Stady-tat Error Stady-tat Error Lctur 0: Stady-tat Error Dr.alyana Vluvolu Stady-tat rror can b found by applying th final valu thorm and i givn by lim ( t) lim E ( ) t 0 providd

More information

Admin MAX FLOW APPLICATIONS. Flow graph/networks. Flow constraints 4/30/13. CS lunch today Grading. in-flow = out-flow for every vertex (except s, t)

Admin MAX FLOW APPLICATIONS. Flow graph/networks. Flow constraints 4/30/13. CS lunch today Grading. in-flow = out-flow for every vertex (except s, t) /0/ dmin lunch oday rading MX LOW PPLIION 0, pring avid Kauchak low graph/nework low nework direced, weighed graph (V, ) poiive edge weigh indicaing he capaciy (generally, aume ineger) conain a ingle ource

More information

CIVL 8/ D Boundary Value Problems - Quadrilateral Elements (Q4) 1/8

CIVL 8/ D Boundary Value Problems - Quadrilateral Elements (Q4) 1/8 CIVL 8/7111 -D Boundar Vau Prom - Quadriara Emn (Q) 1/8 ISOPARAMERIC ELEMENS h inar rianguar mn and h iinar rcanguar mn hav vra imporan diadvanag. 1. Boh mn ar una o accura rprn curvd oundari, and. h provid

More information

General Article Application of differential equation in L-R and C-R circuit analysis by classical method. Abstract

General Article Application of differential equation in L-R and C-R circuit analysis by classical method. Abstract Applicaion of Diffrnial... Gnral Aricl Applicaion of diffrnial uaion in - and C- circui analysis by classical mhod. ajndra Prasad gmi curr, Dparmn of Mahmaics, P.N. Campus, Pokhara Email: rajndraprasadrgmi@yahoo.com

More information

PWM-Scheme and Current ripple of Switching Power Amplifiers

PWM-Scheme and Current ripple of Switching Power Amplifiers axon oor PWM-Sch and Currn rippl of Swiching Powr Aplifir Abrac In hi work currn rippl caud by wiching powr aplifir i analyd for h convnional PWM (pulwidh odulaion) ch and hr-lvl PWM-ch. Siplifid odl for

More information

Wave Equation (2 Week)

Wave Equation (2 Week) Rfrnc Wav quaion ( Wk 6.5 Tim-armonic filds 7. Ovrviw 7. Plan Wavs in Losslss Mdia 7.3 Plan Wavs in Loss Mdia 7.5 Flow of lcromagnic Powr and h Poning Vcor 7.6 Normal Incidnc of Plan Wavs a Plan Boundaris

More information

Section 6.1. Question: 2. Let H be a subgroup of a group G. Then H operates on G by left multiplication. Describe the orbits for this operation.

Section 6.1. Question: 2. Let H be a subgroup of a group G. Then H operates on G by left multiplication. Describe the orbits for this operation. MAT 444 H Barclo Spring 004 Homwork 6 Solutions Sction 6 Lt H b a subgroup of a group G Thn H oprats on G by lft multiplication Dscrib th orbits for this opration Th orbits of G ar th right costs of H

More information

Introduction to Arithmetic Geometry Fall 2013 Lecture #20 11/14/2013

Introduction to Arithmetic Geometry Fall 2013 Lecture #20 11/14/2013 18.782 Introduction to Arithmtic Gomtry Fall 2013 Lctur #20 11/14/2013 20.1 Dgr thorm for morphisms of curvs Lt us rstat th thorm givn at th nd of th last lctur, which w will now prov. Thorm 20.1. Lt φ:

More information

(1) Then we could wave our hands over this and it would become:

(1) Then we could wave our hands over this and it would become: MAT* K285 Spring 28 Anthony Bnoit 4/17/28 Wk 12: Laplac Tranform Rading: Kohlr & Johnon, Chaptr 5 to p. 35 HW: 5.1: 3, 7, 1*, 19 5.2: 1, 5*, 13*, 19, 45* 5.3: 1, 11*, 19 * Pla writ-up th problm natly and

More information

Week 3: Connected Subgraphs

Week 3: Connected Subgraphs Wk 3: Connctd Subgraphs Sptmbr 19, 2016 1 Connctd Graphs Path, Distanc: A path from a vrtx x to a vrtx y in a graph G is rfrrd to an xy-path. Lt X, Y V (G). An (X, Y )-path is an xy-path with x X and y

More information

REPETITION before the exam PART 2, Transform Methods. Laplace transforms: τ dτ. L1. Derive the formulas : L2. Find the Laplace transform F(s) if.

REPETITION before the exam PART 2, Transform Methods. Laplace transforms: τ dτ. L1. Derive the formulas : L2. Find the Laplace transform F(s) if. Tranform Mhod and Calculu of Svral Variabl H7, p Lcurr: Armin Halilovic KTH, Campu Haning E-mail: armin@dkh, wwwdkh/armin REPETITION bfor h am PART, Tranform Mhod Laplac ranform: L Driv h formula : a L[

More information

Boyce/DiPrima 9 th ed, Ch 7.8: Repeated Eigenvalues

Boyce/DiPrima 9 th ed, Ch 7.8: Repeated Eigenvalues Boy/DiPrima 9 h d Ch 7.8: Rpad Eignvalus Elmnary Diffrnial Equaions and Boundary Valu Problms 9 h diion by William E. Boy and Rihard C. DiPrima 9 by John Wily & Sons In. W onsidr again a homognous sysm

More information

C From Faraday's Law, the induced voltage is, C The effect of electromagnetic induction in the coil itself is called selfinduction.

C From Faraday's Law, the induced voltage is, C The effect of electromagnetic induction in the coil itself is called selfinduction. Inducors and Inducanc C For inducors, v() is proporional o h ra of chang of i(). Inducanc (con d) C Th proporionaliy consan is h inducanc, L, wih unis of Hnris. 1 Hnry = 1 Wb / A or 1 V sc / A. C L dpnds

More information

18 Extensions of Maximum Flow

18 Extensions of Maximum Flow Who are you?" aid Lunkwill, riing angrily from hi ea. Wha do you wan?" I am Majikhie!" announced he older one. And I demand ha I am Vroomfondel!" houed he younger one. Majikhie urned on Vroomfondel. I

More information

Geographic Routing with Constant Stretch in Large Scale Sensor Networks with Holes

Geographic Routing with Constant Stretch in Large Scale Sensor Networks with Holes IEEE 7h Inrnaional Confrnc on Wirl an Mobil Compuing, Nworking an Communicaion (WiMob) Gographic Rouing wih Conan Srch in Larg Scal Snor Nwork wih Hol Myounggyu Won, Rau Solru, Haiji Wu Dparmn of Compur

More information

Chap.3 Laplace Transform

Chap.3 Laplace Transform Chap. aplac Tranorm Tranorm: An opraion ha ranorm a uncion ino anohr uncion i Dirniaion ranorm: ii x: d dx x x Ingraion ranorm: x: x dx x c Now, conidr a dind ingral k, d,ha ranorm ino a uncion o variabl

More information

Deift/Zhou Steepest descent, Part I

Deift/Zhou Steepest descent, Part I Lctur 9 Dift/Zhou Stpst dscnt, Part I W now focus on th cas of orthogonal polynomials for th wight w(x) = NV (x), V (x) = t x2 2 + x4 4. Sinc th wight dpnds on th paramtr N N w will writ π n,n, a n,n,

More information

S.Y. B.Sc. (IT) : Sem. III. Applied Mathematics. Q.1 Attempt the following (any THREE) [15]

S.Y. B.Sc. (IT) : Sem. III. Applied Mathematics. Q.1 Attempt the following (any THREE) [15] S.Y. B.Sc. (IT) : Sm. III Applid Mahmaics Tim : ½ Hrs.] Prlim Qusion Papr Soluion [Marks : 75 Q. Amp h following (an THREE) 3 6 Q.(a) Rduc h mari o normal form and find is rank whr A 3 3 5 3 3 3 6 Ans.:

More information

4/12/12. Applications of the Maxflow Problem 7.5 Bipartite Matching. Bipartite Matching. Bipartite Matching. Bipartite matching: the flow network

4/12/12. Applications of the Maxflow Problem 7.5 Bipartite Matching. Bipartite Matching. Bipartite Matching. Bipartite matching: the flow network // Applicaion of he Maxflow Problem. Biparie Maching Biparie Maching Biparie maching. Inpu: undireced, biparie graph = (, E). M E i a maching if each node appear in a mo one edge in M. Max maching: find

More information

Square of Hamilton cycle in a random graph

Square of Hamilton cycle in a random graph Squar of Hamilton cycl in a random graph Andrzj Dudk Alan Friz Jun 28, 2016 Abstract W show that p = n is a sharp thrshold for th random graph G n,p to contain th squar of a Hamilton cycl. This improvs

More information

An Indian Journal FULL PAPER. Trade Science Inc. A stage-structured model of a single-species with density-dependent and birth pulses ABSTRACT

An Indian Journal FULL PAPER. Trade Science Inc. A stage-structured model of a single-species with density-dependent and birth pulses ABSTRACT [Typ x] [Typ x] [Typ x] ISSN : 974-7435 Volum 1 Issu 24 BioTchnology 214 An Indian Journal FULL PAPE BTAIJ, 1(24), 214 [15197-1521] A sag-srucurd modl of a singl-spcis wih dnsiy-dpndn and birh pulss LI

More information

Phys463.nb Conductivity. Another equivalent definition of the Fermi velocity is

Phys463.nb Conductivity. Another equivalent definition of the Fermi velocity is 39 Anohr quival dfiniion of h Fri vlociy is pf vf (6.4) If h rgy is a quadraic funcion of k H k L, hs wo dfiniions ar idical. If is NOT a quadraic funcion of k (which could happ as will b discussd in h

More information

where: u: input y: output x: state vector A, B, C, D are const matrices

where: u: input y: output x: state vector A, B, C, D are const matrices Sa pac modl: linar: y or in om : Sa q : f, u Oupu q : y h, u u Du F Gu y H Ju whr: u: inpu y: oupu : a vcor,,, D ar con maric Eampl " $ & ' " $ & 'u y " & * * * * [ ],, D H D I " $ " & $ ' " & $ ' " &

More information

Math 266, Practice Midterm Exam 2

Math 266, Practice Midterm Exam 2 Mh 66, Prcic Midrm Exm Nm: Ground Rul. Clculor i NOT llowd.. Show your work for vry problm unl ohrwi d (pril crdi r vilbl). 3. You my u on 4-by-6 indx crd, boh id. 4. Th bl of Lplc rnform i vilbl h l pg.

More information

Network Flows: Introduction & Maximum Flow

Network Flows: Introduction & Maximum Flow CSC 373 - lgorihm Deign, nalyi, and Complexiy Summer 2016 Lalla Mouaadid Nework Flow: Inroducion & Maximum Flow We now urn our aenion o anoher powerful algorihmic echnique: Local Search. In a local earch

More information

5.2 GRAPHICAL VELOCITY ANALYSIS Polygon Method

5.2 GRAPHICAL VELOCITY ANALYSIS Polygon Method ME 352 GRHICL VELCITY NLYSIS 52 GRHICL VELCITY NLYSIS olygon Mehod Velociy analyi form he hear of kinemaic and dynamic of mechanical yem Velociy analyi i uually performed following a poiion analyi; ie,

More information

CSC 364S Notes University of Toronto, Spring, The networks we will consider are directed graphs, where each edge has associated with it

CSC 364S Notes University of Toronto, Spring, The networks we will consider are directed graphs, where each edge has associated with it CSC 36S Noe Univeriy of Torono, Spring, 2003 Flow Algorihm The nework we will conider are direced graph, where each edge ha aociaed wih i a nonnegaive capaciy. The inuiion i ha if edge (u; v) ha capaciy

More information

A Condition for Stability in an SIR Age Structured Disease Model with Decreasing Survival Rate

A Condition for Stability in an SIR Age Structured Disease Model with Decreasing Survival Rate A Condiion for abiliy in an I Ag rucurd Disas Modl wih Dcrasing urvival a A.K. upriana, Edy owono Dparmn of Mahmaics, Univrsias Padjadjaran, km Bandung-umng 45363, Indonsia fax: 6--7794696, mail: asupria@yahoo.com.au;

More information

XV Exponential and Logarithmic Functions

XV Exponential and Logarithmic Functions MATHEMATICS 0-0-RE Dirnial Calculus Marin Huard Winr 08 XV Eponnial and Logarihmic Funcions. Skch h graph o h givn uncions and sa h domain and rang. d) ) ) log. Whn Sarah was born, hr parns placd $000

More information

CS4445/9544 Analysis of Algorithms II Solution for Assignment 1

CS4445/9544 Analysis of Algorithms II Solution for Assignment 1 Conider he following flow nework CS444/944 Analyi of Algorihm II Soluion for Aignmen (0 mark) In he following nework a minimum cu ha capaciy 0 Eiher prove ha hi aemen i rue, or how ha i i fale Uing he

More information

What is maximum Likelihood? History Features of ML method Tools used Advantages Disadvantages Evolutionary models

What is maximum Likelihood? History Features of ML method Tools used Advantages Disadvantages Evolutionary models Wha i maximum Likelihood? Hiory Feaure of ML mehod Tool ued Advanage Diadvanage Evoluionary model Maximum likelihood mehod creae all he poible ree conaining he e of organim conidered, and hen ue he aiic

More information

The Residual Graph. 12 Augmenting Path Algorithms. Augmenting Path Algorithm. Augmenting Path Algorithm

The Residual Graph. 12 Augmenting Path Algorithms. Augmenting Path Algorithm. Augmenting Path Algorithm Augmening Pah Algorihm Greedy-algorihm: ar wih f (e) = everywhere find an - pah wih f (e) < c(e) on every edge augmen flow along he pah repea a long a poible The Reidual Graph From he graph G = (V, E,

More information

1973 AP Calculus BC: Section I

1973 AP Calculus BC: Section I 97 AP Calculus BC: Scio I 9 Mius No Calculaor No: I his amiaio, l dos h aural logarihm of (ha is, logarihm o h bas ).. If f ( ) =, h f ( ) = ( ). ( ) + d = 7 6. If f( ) = +, h h s of valus for which f

More information

CHAPTER CHAPTER14. Expectations: The Basic Tools. Prepared by: Fernando Quijano and Yvonn Quijano

CHAPTER CHAPTER14. Expectations: The Basic Tools. Prepared by: Fernando Quijano and Yvonn Quijano Expcaions: Th Basic Prpard by: Frnando Quijano and Yvonn Quijano CHAPTER CHAPTER14 2006 Prnic Hall Businss Publishing Macroconomics, 4/ Olivir Blanchard 14-1 Today s Lcur Chapr 14:Expcaions: Th Basic Th

More information

Circuit Transients time

Circuit Transients time Circui Tranin A Solp 3/29/0, 9/29/04. Inroducion Tranin: A ranin i a raniion from on a o anohr. If h volag and currn in a circui do no chang wih im, w call ha a "ady a". In fac, a long a h volag and currn

More information

On the Speed of Heat Wave. Mihály Makai

On the Speed of Heat Wave. Mihály Makai On h Spd of Ha Wa Mihály Maai maai@ra.bm.hu Conns Formulaion of h problm: infini spd? Local hrmal qulibrium (LTE hypohsis Balanc quaion Phnomnological balanc Spd of ha wa Applicaion in plasma ranspor 1.

More information

EXERCISE - 01 CHECK YOUR GRASP

EXERCISE - 01 CHECK YOUR GRASP DIFFERENTIAL EQUATION EXERCISE - CHECK YOUR GRASP 7. m hn D() m m, D () m m. hn givn D () m m D D D + m m m m m m + m m m m + ( m ) (m ) (m ) (m + ) m,, Hnc numbr of valus of mn will b. n ( ) + c sinc

More information

6.8 Laplace Transform: General Formulas

6.8 Laplace Transform: General Formulas 48 HAP. 6 Laplace Tranform 6.8 Laplace Tranform: General Formula Formula Name, ommen Sec. F() l{ f ()} e f () d f () l {F()} Definiion of Tranform Invere Tranform 6. l{af () bg()} al{f ()} bl{g()} Lineariy

More information

Heat flow in composite rods an old problem reconsidered

Heat flow in composite rods an old problem reconsidered Ha flow in copoi ro an ol probl rconir. Kranjc a Dparn of Phyic an chnology Faculy of Eucaion Univriy of jubljana Karljva ploca 6 jubljana Slovnia an J. Prnlj Faculy of Civil an Goic Enginring Univriy

More information

SOME PARAMETERS ON EQUITABLE COLORING OF PRISM AND CIRCULANT GRAPH.

SOME PARAMETERS ON EQUITABLE COLORING OF PRISM AND CIRCULANT GRAPH. SOME PARAMETERS ON EQUITABLE COLORING OF PRISM AND CIRCULANT GRAPH. K VASUDEVAN, K. SWATHY AND K. MANIKANDAN 1 Dpartmnt of Mathmatics, Prsidncy Collg, Chnnai-05, India. E-Mail:vasu k dvan@yahoo.com. 2,

More information

The Residual Graph. 11 Augmenting Path Algorithms. Augmenting Path Algorithm. Augmenting Path Algorithm

The Residual Graph. 11 Augmenting Path Algorithms. Augmenting Path Algorithm. Augmenting Path Algorithm Augmening Pah Algorihm Greedy-algorihm: ar wih f (e) = everywhere find an - pah wih f (e) < c(e) on every edge augmen flow along he pah repea a long a poible The Reidual Graph From he graph G = (V, E,

More information

Network Congestion Games

Network Congestion Games Ntwork Congstion Gams Assistant Profssor Tas A&M Univrsity Collg Station, TX TX Dallas Collg Station Austin Houston Bst rout dpnds on othrs Ntwork Congstion Gams Travl tim incrass with congstion Highway

More information

Logistic equation of Human population growth (generalization to the case of reactive environment).

Logistic equation of Human population growth (generalization to the case of reactive environment). Logisic quaion of Human populaion growh gnralizaion o h cas of raciv nvironmn. Srg V. Ershkov Insiu for Tim aur Exploraions M.V. Lomonosov's Moscow Sa Univrsi Lninski gor - Moscow 999 ussia -mail: srgj-rshkov@andx.ru

More information

First Lecture of Machine Learning. Hung-yi Lee

First Lecture of Machine Learning. Hung-yi Lee Firs Lcur of Machin Larning Hung-yi L Larning o say ys/no Binary Classificaion Larning o say ys/no Sam filring Is an -mail sam or no? Rcommndaion sysms rcommnd h roduc o h cusomr or no? Malwar dcion Is

More information

Shortest Path With Negative Weights

Shortest Path With Negative Weights Shor Pah Wih Ngaiv Wigh 1 9 18-1 19 11 1-8 1 Conn Conn. Dird hor pah wih ngaiv wigh. Ngaiv yl dion. appliaion: urrny xhang arbirag Tramp amr problm. appliaion: opimal piplining of VLSI hip Shor Pah wih

More information

Graphs III - Network Flow

Graphs III - Network Flow Graph III - Nework Flow Flow nework eup graph G=(V,E) edge capaciy w(u,v) 0 - if edge doe no exi, hen w(u,v)=0 pecial verice: ource verex ; ink verex - no edge ino and no edge ou of Aume every verex v

More information

arxiv: v1 [cs.cg] 21 Mar 2013

arxiv: v1 [cs.cg] 21 Mar 2013 On he rech facor of he Thea-4 graph Lui Barba Proenji Boe Jean-Lou De Carufel André van Renen Sander Verdoncho arxiv:1303.5473v1 [c.cg] 21 Mar 2013 Abrac In hi paper we how ha he θ-graph wih 4 cone ha

More information

, the. L and the L. x x. max. i n. It is easy to show that these two norms satisfy the following relation: x x n x = (17.3) max

, the. L and the L. x x. max. i n. It is easy to show that these two norms satisfy the following relation: x x n x = (17.3) max ecure 8 7. Sabiliy Analyi For an n dimenional vecor R n, he and he vecor norm are defined a: = T = i n i (7.) I i eay o how ha hee wo norm aify he following relaion: n (7.) If a vecor i ime-dependen, hen

More information

The Equitable Dominating Graph

The Equitable Dominating Graph Intrnational Journal of Enginring Rsarch and Tchnology. ISSN 0974-3154 Volum 8, Numbr 1 (015), pp. 35-4 Intrnational Rsarch Publication Hous http://www.irphous.com Th Equitabl Dominating Graph P.N. Vinay

More information

2. VECTORS. R Vectors are denoted by bold-face characters such as R, V, etc. The magnitude of a vector, such as R, is denoted as R, R, V

2. VECTORS. R Vectors are denoted by bold-face characters such as R, V, etc. The magnitude of a vector, such as R, is denoted as R, R, V ME 352 VETS 2. VETS Vecor algebra form he mahemaical foundaion for kinemaic and dnamic. Geomer of moion i a he hear of boh he kinemaic and dnamic of mechanical em. Vecor anali i he imehonored ool for decribing

More information