Geographic Routing with Constant Stretch in Large Scale Sensor Networks with Holes

Size: px
Start display at page:

Download "Geographic Routing with Constant Stretch in Large Scale Sensor Networks with Holes"

Transcription

1 IEEE 7h Inrnaional Confrnc on Wirl an Mobil Compuing, Nworking an Communicaion (WiMob) Gographic Rouing wih Conan Srch in Larg Scal Snor Nwork wih Hol Myounggyu Won, Rau Solru, Haiji Wu Dparmn of Compur Scinc an Enginring, Txa A&M Univriy {mgwon, olru, Abrac Gographic rouing i wll ui for larg cal nor nwork ploymn, bcau h pr no a i mainain i inpnn of h nwork iz. Howvr, u o h local minimum cau by hol/obacl, h pah rch of gographic rouing can grow a O(c ), whr c i h lngh of h opimal pah. Rcnly,, a gographic rouing proocol ba on h viibiliy graph, how ha a conan pah rch can b achiv. Thi, howvr, i poibl wih incra ovrha. To ar hi iu, w propo (Gomric Rouing uing Abrac Hol), a rouing proocol ha provably achiv a conan pah rch, wih lowr mag, pac an compuaional ovrha. W vlop a novl iribu convx hull conrucion (DCC) algorihm ha compacly crib hol. Thi compac rprnaion of a hol i lvrag by no o mak locally opimal rouing ciion. Our horical analyi prov h conan rch propry an avrag rch of. Through xniv imulaion an a harwar implmnaion, w monra h ffcivn of an i faibiliy for larg-cal nor nwork. In our nwork ing, ruc h nrgy conumpion by up o 3%, rouing abl iz by an orr of magniu, whn compar wih. I. INTRODUCTION Gographic rouing ha arac much anion from h WSN rarch communiy, bcau i i impl an calabl. In gographic rouing, a ourc no obain h locaion of a inaion no by uing a locaion rvic [], or hahfuncion in a aa cnric orag chm []. A pack i forwar o h nighbor who i clo o h inaion. Thi gry approach allow nar-opimal pah lngh in uniform an n nwork wihou hol/obacl. Howvr, a Kuhn al [3] prov, h pah lngh can grow a much a O(c ), whr c i h opimal pah lngh, whn h hol/obacl ar prn, bcau of h local minimum phnomnon. In orr o ovrcom h local minimum an ulimaly improv h pah qualiy, om gographic rouing proocol uing h non-local informaion hav bn propo [4][][6][7]. In h proocol, h hol ar inifi bforhan, an h iz an hap of h inifi hol ar propaga o om no o ha forwaring no can u h informaion o avoi h hol. Howvr, for a rourc-conrain WSN, h informaion abou h hol (h iz an hap of h hol) can only b ma known o a limi ub of no,.g., h no loca a h bounary of h hol (rfrr a bounary no), or om of hir nighbor, u o h larg volum of aa o crib h hol. Thu, a racion o h local minimum i only aciva whn a pack rach h no a h local minimum (i.., a uck no), or om nighboring no of h uck no. Thi la racion problm rul in a ubopimal rouing pah. Rcnly, Tan. al. [8] propo, a gographic proocol ha achiv a conan pah rch. In, h hol i rprn a a polygon, which i u o buil h viibiliy graph, a rucur ofn u in compuaional gomry o fin h hor pah, givn obacl. Howvr, uffr from non-ngligibl proocol-rla mag ovrha. Fir, in orr o buil h viibiliy graph, h locaion of all h VON no (h vric of h polygon) n o b floo o all h no in h nwork. Scon, h VON no mu iraivly xchang mag among hmlv unil a compl rouing abl i conruc. Th prformanc riora furhr whn h hol ha a complx hap, ruling in many VON no. In hi papr, w propo a gographic rouing proocol ha achiv a conan pah rch whil incurring l ovrha. In hi proocol, h hol ar compacly crib a a of xrm poin of h convx hull covring h bounary no of h hol. A rou o an from h no ini h convx hull i fficinly hanl for guaran pack livry. A novl iribu convx hull algorihm i inrouc o buil h convx hull of h hol wih low mag complxiy. A iribu xrm poin rucion algorihm furhr ruc h iz of h hol informaion. Conqunly, h locaion of only a fw xrm poin of h convx hull ar locally broaca o no wihin h hop from h hol. Ba on h mall aaba abou narby convx hull, a ourc no inifi h inrfring hol wihin h hop ha block h raigh pah o h inaion wih mall compuaional ovrha. A ourc no hn compu a of inrmia inaion ha gui a pack along h locally opimal pah. Whn a pack rach a no wih br hol informaion, h inrmia inaion ar upa, incrmnally improving h rouing pah. Th conribuion of hi papr ar a follow: W vlop a gographic rouing proocol ha gnra a pah wih conan rch in nwork wih hol. Th proocol ha low mag an compuaional complxiy. W vlop a iribu convx hull algorihm o fficinly ruc h iz of aa ha crib a hol. W prn a horough analyi o prov h corrcn an conan pah rch of our proocol. W prform xniv imulaion an a harwar implmnaion o confirm h ffcivn of our proocol, an i faibiliy for WSN //$6. IEEE 8

2 II. RELATED WORK Rouing proocol for larg cal WSN can b largly ivi ino gographic rouing an hirarchical rouing [9]. Rcnly, S4 [9], a hirarchical rouing proocol, wa hown o achiv h wor ca rch of 3 wih mall pr no a O( N), whr N i h oal numbr of no. Alhough S4 obain a irabl balanc bwn h pah rch an a iz, unlik gographic rouing proocol, h pr no a pn on h nwork iz N. In conra, gographic rouing ui paricularly wll o rourc conrain larg-cal WSN, inc i i al an fully iribu. Howvr, h pah rch of gographic rouing proocol can b a ba a O(c ), whr c i h opimal pah lngh, u o h local minimum cau by opological complx lik hol. Lil wa known abou achiving a conan rch for gographic rouing proocol. Svral gographic proocol hav bn propo o improv h pah qualiy by uing h non-local informaion. In [], a no u h TENT rul o if i i a uck no. If a no fin ilf o b h uck no, BOUNDHOLE algorihm i run o buil a rou aroun h hol by icovring a of h bounary no o gui a pack ou of h local minimum. Th bounary no ar mark an u a lanmark for a fuur pack o bypa h hol. Howvr, h la racion problm (a our i ma a h bounary no) gra h avrag pah lngh. In [7], fining an angl bwn wo ajacn nighbor o b grar han prfin hrhol, h no i lva o ha hi no i avoi by h gry forwaring proc. Howvr, a ciion on whhr a no i a a local minimum or no pn on h locaion of ourc an inaion. Thu, uch huriic approach rul in h frqun failur of h algorihm. To rmy hi problm, in [6], a nwork i ivi ino k rgion. Each no mainain a vcor of iz k, whr ach lmn inica whhr hi no i a local minimum for h i-h rgion or no. To rmin h valu of ach lmn, h local minimum angl b i fin, an if h rgion i covr mor han a crain prcnag by hi angl, h rgion i conir o b h local minimum rgion. Howvr, non of h proocol provi h wor ca pah lngh guaran. Svral rarchr propo o propaga h informaion abou h hol o om no in a limi rgion. In [4], a uck no an om of i nighbor form an unaf ara hap a a rcangl. Th ima hap of h hol i known o h no in hi unaf ara. Thi iribu informaion mol i u o avoi h local minimum. Alhough h pah rch i improv u o h propagaion of h hol informaion o om no, only a fw nighboring no of h uck no ar awar of h informaion, o h la racion problm pri. In [], h hol i rgulariz wih an llip, an h abrac informaion abou a hol i broaca o h no wihin h hop from h bounary of h llip. Howvr, h llip ofn fail o rprn variou kin of hol hap. Mor imporanly, h wor ca pah rch i no guaran. Rcnly, Tan. al. [8] inrouc, a gographic rouing proocol ha achiv a conan pah rch. Fig.. Bounary no p p 3 p pini Convx hull Inrfring hol p4 p An illuraion of noaion an rm. fin a nar opimal rouing pah by xploiing h viibiliy graph. A hol i rprn a a of VON no, an a virual ovrlay nwork coniing of h VON no gui a pack along h clo-o-hor pah ha bypa h hol. On noabl apc of compar wih S4 i ha i pr no a i O(N von ), whr N von (<< N) i h oal numbr of VON no, hrby liminaing h pnncy of h pr no a on h nwork iz. Howvr, hr ar vral chnical iu, ohr han h proocol-rla mag ovrha icu in Scion I, o b olv. Fir, bfor pack ranmiion ar, a ourc no ha o up a rouing pah, by xchanging h viibiliy wih a inaion no. Thi rouing up proc incur aiional ovrha an lay for ach ourc an inaion pair. Scon, h probing mag, u o buil h VON polygon, migh conain a larg amoun of aa, inc h mag i piggyback wih all h locaion of h bounary no ha h mag ha vii unil a nw VON no i foun. III. PRELIMINARIES In hi cion, w fin h noaion an rm u hroughou hi papr. Th noaion ar illura in Figur. W conir a n wirl nor nwork, coniing of N no V = {v,v,..., v N }, uniformly iribu in a wo imnional pac. W aum ha ach no know abou i locaion. Thr ar m hol in h nwork, no by H,H,..., H m. Each hol H i i urroun by a of bounary no, P i = {p,p,..., p n }, p j V. A hol i ihr a clo cycl (p = p n ), or a chain (p p n ) ha form a cycl wih h g() of a nwork. W fin on bounary no in ach P i a h iniiaor a h following: Dfiniion : An iniiaor, no by p ini, i a bounary no in P i wih h high y coorina. If hr ar mor han on bounary no wih h am high y coorina, on wih h low x coorina among hm bcom h iniiaor p ini. A hol H i i rprn a a of xrm poin, no by P i = {p,p,..., p n }, of h convx hull covring h of bounary no P i, whr h xrm poin p j i fin a h following (No ha w will u h rm no an poin inrchangably): Dfiniion : An xrm poin i h cornr poin of a convx hull. A pah bwn ourc an inaion i no by, an h lngh of h pah, a h numbr of hop, bwn 8

3 an i no by. Givn a pah, h inrfring hol ar formally fin a h following: Dfiniion 3: Givn any wo poin p an q, L(pq) i a of poin on h lf han i of a vcor pq, an R(pq) rprn a of poin on h righ han i of pq. Dfiniion 4: Givn a pah, a hol rprn by a of xrm poin, P, i call h inrfring hol iff hr xi om p k P, k P uch ha p k L() an p k+ R(), orp k R() an p k+ L(). In paricular, wo no ar viibl o ach ohr iff hr i no inrfring hol bwn hm. IV. : GEOMETRIC ROUTING USING ABSTRACTED HOLES A. Proocol Ovrviw Our rouing proocol coni of mainly wo componn: h hol abracion an pack forwaring. Th hol abracion proc i ign o prouc h compac rprnaion of h hol. In hi proc, h hol i rprn a a of xrm poin of a convx hull covring h bounary no of h hol. Th hol abracion proc coni of hr pha. Fir, h bounary no urrouning h hol ar inifi uing ihr aiical [] or opological mho []. Th con pha i h conrucion of h convx hull: a of xrm poin for ach hol i foun by h ingl ravr of a probing pack along h bounary no in a fully iribu mannr. In h la pha, h abrac informaion abou ach hol i broaca o h no wihin h hop from h hol. Whn h hol abracion proc i finih, ach no know abou h locaion of h xrm poin of h hol wihin h hop. Thi informaion i u o mak a rouing ciion. Spcifically, ourc inifi h inrfring hol blocking h raigh pah o inaion, an run our forwaring algorihm o compu a ub of xrm poin among all h xrm poin ha blong o h inrfring hol. Thi ub of xrm poin ar h inrmia inaion u o gui a pack along h pah ha minimiz. A pack carri h locaion of inrmia inaion, an i forwar o ach inrmia inaion by impl gographic forwaring. Whn a pack rach an inrmia inaion, h rouing algorihm i rrun an h prviou inrmia inaion ar upa if ncary. Th ail of h proocol ar prn in h following cion. B. DCC: Diribu Convx Hull Conrucion W aop [] o fin h bounary no. If h bounary no form a clo cycl, p ini i lc uing an xiing lar lcion algorihm on a ring opology, which ha mag complxiy O(n log n), whr n i h numbr of h bounary no [3]. If h bounary no form a chain, on of h wo bounary no a ach n of h chain i lc a p ini. Spcifically, if no p fin ha i i h bounary no a h n of h chain by chcking h numbr of nighboring bounary no, no p n a mag conaining i x an y coorina o h bounary no q a h ohr n of h chain. If no q y coorina i grar han no p y coorina, Algorihm DCC (co for p ini ) : if hop coun = hn : P P {p ini } 3: n a probing pack in counr-clockwi. 4: l : if N pi =or p ini R(p P 6: rmina. 7: n if 8: n if Algorihm DCC (co for p i ) p ) hn : for ach p l P, l P o : if m, l + m P, p m L(p l p i ) hn 3: P P \{p l+,p l+,..., p P } 4: n if : n for p i+ ) hn 7: P P {p i } 8: // EPRA 9: if P > Thrhol hn 6: if p i R(p P : fin p i cr wih minimum i cr : p i p i cr : P P \ p i+ 3: n if 4: // En of EPRA : forwar a probing pack o p i+. 6: l 7: forwar a probing pack o p i+. 8: n if no q bcom p ini. If no q y coorina i h am a no p y coorina, x coorina ar compar, an if no q x coorina i mallr, hn no q lc ilf a p ini. Onc p ini i lc, p ini iniia h DCC algorihm. Algorihm crib h puo co for p ini. p ini a i locaion o h P a h fir xrm poin p, an piggyback h P on a probing pack. Thi pack i n o p ini lf nighboring bounary no, aring o ravr h bounary no of h hol in a counr-clockwi ircion. Upon rciving h pack, h bounary no xamin if i i h xrm poin of h convx hull by xcuing Algorihm. Figur illura h DCC algorihm for p i. For ach bounary no p i,ifp i R(p l p i+ ), for om l, l P, hn p i i h farh (w.r.. h ianc h probing pack ravl) viibl bounary no from p l o far, inc h nx no p i+ i no viibl from p l.sop i i a o h P, an h probing pack conaining h P i forwar o h nx bounary no (Lin 6-8). Howvr, if anohr bounary no p j,j >i+ ha i viibl from p l i foun, p i i l from h P, inc p i i no longr h farh viibl no from p l (Lin -). Th abov proc i rpa unil h probing pack ihr rurn o h iniiaor, or rach h n of h chain if 8

4 P l P P m 3 Pj Pi+ Pi P cr cr P P S m m P Th largr convx hull P S P m ' P cr P cr P 3 P 4 Fig.. An illuraion of : Sp-4; Sp. Fig.. An illuraion of DCC. Fig. 3. An illuraion of EPRA. h rul whn DCC algorihm i ingra wih EPRA. Y (mr) Fig Bounary poin Exrm poin X (mr) Y (mr) Bounary poin Exrm poin X (mr) Th igh of xrm poin; ruc xrm poin. h cycl i no clo (co for p ini : Lin -7). Bcau h DCC algorihm rquir a ingl ravral of h probing pack, combin wih h p ini lcion procur, h mag complxiy i O(n log n), a br boun han h currnly known on for a iribu convx hull algorihm on a ring opology [4]. Th DCC algorihm gnra a igh convx hull. Thi man ha for a mooh hol, h DCC algorihm migh gnra many xrm poin (i.., if h hol i a prfc circl, all h bounary no will b lc a h xrm poin). A larg numbr of xrm poin will gra h ym prformanc; hu, h numbr of xrm poin mu b conroll in ral im, uring h xcuion of h DCC algorihm. Thu, w vlop h Exrm Poin Rucion Algorihm (EPRA). EPRA limi h probing pack iz by a ur fin hrhol. I o no incur aiional communicaion ovrha, bcau i opra a par of h DCC algorihm. EPRA i mb in h DCC algorihm a hown in Algorihm (Lin 8-4). Figur 3 illura h algorihm. Spcifically, w fin p i cr a h poin a an inrcion bwn h wo lin p i p i an p i+ p i+, whr p = p P. Th Euclian ianc i cr = (p i cr, p i p i+ ), whr (p, uv) i a lin gmn conncing p an p projcion on lin uv, i compu for ach p i cr. Whn h probing pack rach h poin p i R( p i+ ), an h numbr of h xrm poin foun o far i grar han h prfin hrhol (Lin 9), corrponing p cr valu for h xrm poin foun o far ar compu, an p i cr wih h mall p P i cr i aign a a nw p i, an p i+ i rmov (Lin - ). Thi proc i rpa a h probing pack ravr h bounary no. Figur 4 how an xampl of h xrm poin gnra by DCC algorihm, an Figur 4 pic C. Forwaring Algorihm In hi cion, w prn h ail of our forwaring algorihm. Whn h hol abracion proc finih, h no wihin h hop from a hol know abou h locaion of h xrm poin of h convx hull covring h hol. Uing hi informaion, ourc mak a rouing ciion following h p crib blow: Sp: Sourc fir inifi h inrfring hol wihin h hop from i. If hr i no inrfring hol, ourc forwar h pack uing gographic forwaring. Sp: A largr convx hull i conruc from a of poin, ay P, coniing of h xrm poin of h inrfring hol, ourc, an inaion, a hown in Figur. Th largr convx hull can b conruc by applying an xiing cnraliz convx hull algorihm o h P [], bcau ourc ha all h locaion of h xrm poin for h inrfring hol. Th largr convx hull yil wo poibl pah, on along h uppr par of h hull, P, an h ohr on along h lowr par of h hull, P. Sp3: Sourc lc a horr pah bwn P an P. Sourc hn h xrm poin along h lc pah a h inrmia inaion. Thi p i pic in Figur wih h inrmia inaion, m,m, an m 3. Sp4: Sourc hn chck if hr xi any inrfring hol for m. If hr i no inrfring hol, h pack i forwar o m uing impl gographic forwaring. Ohrwi, Sp i xcu, whr nw inrmia inaion ar up for m. Upon rciving h pack, m bcom a nw ourc ; an h algorihm rrun o rflc h nw viion of m. Sp: Sp an Sp ar u o fin h wo poibl pah conncing an m. Figur how h poibl wo pah. An hn, if h lngh of on pah i longr han + m, h ohr on i lc. If boh ar horr han + m, h pah ha i clor o lin m i chon. Hr w xplain ha ha low compuaional ovrha. For Sp, ach of h xrm poin P i i cann o chck if any hol H i wihin h hop inrc wih h lin gmn. Th compuaional complxiy of Sp i hu O(N x ), whr N x i h oal numbr of xrm no in h nwork. Sp can b aily implmn uing an xiing cnraliz convx hull algorihm. W no ha h b prformanc of currnly known cnraliz convx hull algorihm i O(N x log N x ). Th wor ca happn whn 83

5 m'' ' m m H 3 H H v ' ' m H B A v ' ' m H R c u (c) w v a b Fig. 6. An illuraion of rcuriv run of our rouing algorihm. Fig. 7. Symbol for corrcn proof; bouning rgion rprning poibl locaion for inrmia inaion; (c) final bouning rgion R; all h hol inrfr wih h pah, bu uch an xrm ca rarly happn, making h avrag complxiy of much lowr han O(N x log N x ). Howvr, a hown in Figur 6, in Sp4 an Sp, h algorihm migh b iraivly rpa if hr i an inrfring hol, H, for pah m, hn anohr inrfring hol, H 3, for pah m, an o on. In h following cion, howvr, w will how ha h numbr of iraion i boun by a conan C. Conqunly, h oal compuaion complxiy of for ach no i O(N x log N x ). D. Spcial Ca In igning w n o conir pcial iuaion, whr ourc or inaion (or boh) i loca in a convx hull. To hanl h cnario, h cycl of bounary no i u o gui a pack o ihr lav h convx hull, or rach h inaion in h convx hull, wihou rlying on any graph planarizaion chniqu. Thr ar hr ca o b conir: Ca, Sourc i in a convx hull: ourc compu h hor pah ba on our rouing proocol, an i n h pack o h fir inrmia inaion. If ourc ha a clar pah o h fir inrmia no, h pack i rou o h fir inrmia inaion by uing gry rouing. Howvr, if h pack i block by a hol, hn h pack woul rach on of h bounary no. Th pack hn ar a counr clockwi ravral along h bounary no unil gry rouing o h fir inrmia no can b rum. Ca, Dinaion i in a convx hull: Thi ca i imilarly hanl a h Ca. Th pack follow a of h inrmia inaion prviouly rmin by our rouing proocol. Afr paing h la inrmia inaion, h pack i grily forwar o inaion. If h la inrmia inaion ha a clar pah o inaion, hn rouing can proc. Ohrwi, h pack woul rach on of h bounary no. Thn, h pack ar ravring h of bounary no in a counr clockwi ircion unil gry forwaring o inaion can b rum. Ca 3, Boh n rc an n ar in convx hull: Thi ca can b imply hanl a a combinaion of h Ca an Ca. V. PROTOCOL ANALYSIS A. Corrcn of Convx Hull Conrucion W fir prov h corrcn of h DCC algorihm. Spcifically, w will how ha givn a hol, our algorihm fin all h xrm poin of h igh convx hull covring h hol. Lmma : p ini i an xrm poin. Proof: If h bounary no form a chain, h claim rivially hol. So, w conir only h ca whr h bounary no form a cycl. Aum, by conraicion, ha p ini i no an xrm poin. By finiion, h y-coorina of p ini i largr han any xrm poin. Thu, p ini i no covr by h convx hull, which i a conraicion. No ha if hr i an xrm poin wih h am y-coorina a ha of p ini, h x coorina of all h xrm poin ar grar han p ini. Thu, p ini i no again covr by h convx hull, a conraicion. A crib arlir, DCC algorihm arch for h farh viibl no from h la icovr xrm poin. Th following lmma how ha uch farh viibl no i h nx xrm poin. Lmma : Givn an xrm poin p i, h farh viibl bounary no from p i, ay p i+, i h nx xrm poin. Proof: Aum by conraicion ha p i+ i no h nx xrm poin, i.., hr xi an xrm poin (p i+ ) ha i clor o p i han p i+.if(p i+ ) L(p i p i+ ), a hol i rhap a a concav hull. If (p i+ ) R(p i p i+ ),orif(p i+ ) i on h lin p i p i+, hn p i+ i no viibl from p i. Lmma 3: p ini i h farh viibl bounary no of p n whn P = {p,p,..., p n }. Proof: Sinc h y-coorina of p ini i h high among all bounary no, an h x-coorina of p ini i h low among all bounary no, any bounary no on p ini lf han i ar no viibl from p n. Thu, p ini i a viibl no ha i h farh from p n. Thorm : Givn a hol H i, DCC fin all xrm poin, ay P i = {p,p,..., p n }, of h igh convx hull covring h bounary no of H i. Proof: By Lmma, p = p ini, an ubqun xrm poin ar rmin by Lmma. Laly, by Lmma 3, p i h farh viibl no from p n. Thu, conncing all p i, i n, a p p n - p, w g a convx hull. Now w prov ha hr i no mor xrm poin. Aum in conraicion ha hr i on mor xrm poin in P. Wihou lo of gnraliy, aum ha a poin p i bwn wo xrm poin, p i an p i+ for om i, i P.By i h farh viibl no of p i. Conir h ca whr p L(p i p i+ ). In hi ca, h ruling polygon bcom concav. If p R(p i p i+ ) or p i on h lin p i p i+, Lmma, p i+ 84

6 hn, p i+ i no longr viibl from p i. B. Corrcn an Conan Srch of In hi cion w prov h corrcn of, an how ha a pah gnra by ha a conan rch. Conir pah m, whr m i h inrmia inaion on h uppr hull P, an H i h inrfring hol for a pic in Figur 7. W fir xplain om ymbol an hir gomric propri, an inrouc our main proof. L α b h angl bwn h wo lin gmn m an. Th rang of α i <α<π, bcau if α>π, hn m woul hav bn in R(), bing a poin for a pah P. i h Euclian ianc o a hol along a lin gmn. i mallr han r max h, whr r max i h maximum raio rang, an h i h numbr of hop o which h locaion of H i broaca. If >r max h, a no woul no hav icovr h hol H. δ rprn h maximum high of an inrfring hol for m. No ha h high of inrfring hol for m, δ,i mallr han δ, bcau if no, will choo a pah m. δ can b xpr a in α, whr α π. A lin gmn m i h hor among all poibl conncion bwn h wo poin an m ha chang pning on h hap of h hol. m can b a long a + m. Thorm : i corrc. Proof: In orr o prov guaran pack livry, i uffic o how ha a pack i uccfully rou from o h nx inrmia inaion, ay m, inc ach im a pack arriv a h nx inrmia inaion m, m bcom, an run h am algorihm from h Sp. Thrfor, onc w prov a uccful livry for m wihou any loop or arbirarily long pah, a guaran livry can b prov by inucion. Th maximum high of an inrfring hol for m mu b mallr han δ, bcau ohrwi uch a hol woul hav bn c a an inrfring hol for (No δ δ). Thrfor, w obain h uppr boun for h poibl poiion of nw inrmia inaion, which i pic a a o lin A in Figur 7. Nx aum ha a poin v i h nw inrmia poin ha blong o h inrfring hol for m. On obrvaion i ha v + vm mu b mallr han + m, bcau if v + vm >+ m, hn woul hav lc a pah m. Thrfor, uch a poin v mu b boun by an llip B having an m a foci an paing hrough a poin. Coniring h bounari w compu an h rang of an angl bwn m an v ( o π), h poibl locaion for any nw inrmia poin ar boun by rgion R a hown in Figur 7(c). Thi rgion canno b arbirarily larg, inc δ i a mo which pn on h conan paramr h. Thorm 3: ha conan rch. Proof: Wihou lo of gnraliy, w rprn our nwork a a Uni Dik Graph (UDG). Mor prcily, w aop h k boun gr uni ik graph whr h gr of ach no i boun by k [6]. Howvr, k boun gr uni ik graph can b conruc from a gnral uni ik graph [3]. A hown in Thorm, for any pair of inrmia poin u an v, incluing an, poibl locaion for nw inrmia inaion u o an inrfring hol for a pah uv ar boun by om rgion R. By Kuhn [3], h oal numbr of no N R in rgion R i givn by: N R (k +) 8 π (A(R)+p(R)+π), whr A(R) i h ara of R, an p(r) i h primr of R. A(R) coni of a rcangl abc in uppr par of R, an a riangl uv in lowr par of R. Th ara of h rcangl i ( + m ) in α ( + uv ) in α, an h ara of h riangl i uv in α. Th primr of R i 6 +in α + uv. Thu, h oal numbr of no in R i givn by: N R (k+) 8 π {(3 in α+) uv + in α (+)+6+π} (k +) 8 π {(3 +) uv π} ( <α<π). By h aumpion of n an uniform iribuion of no an h propry of gry forwaring, a pack i forwar ouwar from a poin a ach p of h algorihm unl i hi h bouning rgion R. Thi impli ha ach no in rgion R i vii a mo onc. Thu, h oal numbr of hop H R in R i boun by: H R N R. Now conir all (u, v) pair bwn, an aum ha h i h maximum hop coun of h nwork. Th oal numbr of hop from o, H i givn by: H (u,v) ((k +) 8 π {(3 +) [(k +) 8 π {(3 +) uv π}] (u,v) uv π}., whr (u,v) uv i h hor pah in h Viibiliy Graph [7]. By [8], h hor pah bwn an in h Viibiliy Graph i boun by om conan facor of Euclian ianc bwn an a h following: (u,v) uv in( π ɛ ). Thrfor, w g: H ((k +) 8 π {(3 +) in( π ɛ ) π}, whr r max h. C. Avrag Srch of W hav hown ha h wor ca pah rch of i conan. Now w horically analyz h avrag pah rch of whn h ym paramr h i givn a an inpu. In hi analyi, w conir a quar rgion in which no ar uniformly an nly ploy (i.., a pah bwn wo no can b hough of a a lin gmn conncing h wo). W aum ha ach no ha circular communicaion rang wih raiu, an h hol ar abrac a convx hull. W fir conir h ca wih a ingl hol in h nwork. A hown in Figur 8, boh h rang of inpu h an h ara of riangl ABC, which rprn h viaion from 8

7 / C - h >> Opimal pah Fig. 8. Pah by B h A hol / C - h >> R B h ingl-hol ca; h muli-hol ca. h opimal pah, ar maximiz whn: i) ourc i loca in h mil of on i of h quar; ii) inaion fac from h mipoin of h oppoi i of h quar; an iii) h hol wih wih i loca along h i having. Th following lmma prov h avrag pah rch of for h ingl hol ca. Lmma 4: Th avrag rch λ of for h ingl hol ca i + +. Proof: Th pah lngh of opimal pah i 4 + +, an h pah lngh of i ( h) h +. Thu, h pah rch i f(h) = ( h)+ 4 +h +, an h avrag pah rch λ for inpu h i givn a h following: h= λ = f(h) + +, inc ( +) << an h= 4 +h Now w inviga h avrag rch for h muli-hol ca. A ky obrvaion i ha h muli-hol ca can b conir a a ri of h ingl-hol ca for ach inrfring hol for u o h following raon. A nw rouing ciion i ma whn h pack rach ach inrmia inaion of h hol, an if hr ar mor han wo inrfring hol wihin h hop, hy ar conir a a ingl convx hull covring all h hol. Conir Figur 8. Whn a pack rach a no a B, h no B know abou h hol an h pack i our o h inrmia inaion a A. On iffrnc from h ingl-hol ca i ha hr migh b anohr hol ha inrfr wih h pah from B o A. Howvr, a provn in Thorm, h viaion of h pah BA i boun by h rgion R. Thu, h avrag rch of pah BA, λ bcom: λ = h= ( h)+ 4 +h h h A hol +.. Uing hi propry, w obain h following rul. Thorm 4: Th avrag pah rch of i +. Proof: Givn ourc an inaion, a of inrfring hol, H,..., H n, ar inifi. Th pah rch from o h inrmia inaion of H, ay H i a mo.. Thu, h pah lngh of H i., auming ha opimal pah lngh i. Now w conir h pah H an a hol H a a ingl-hol ca. Similarly, w obain h pah lngh of H H i., whr i h opimal pah lngh of H H.If w rpa hi proc for all inrfring hol, h oal avrag pah rch for i.( + + n )+ n + + n.. VI. SIMULATION RESULTS W xn h original implmnaion of [8] an conuc imulaion o valua h prformanc of our proocol. W ranomly ploy 3, no in a,,m rgion. Th locaion an hap of h hol in a nwork wr prfin, an h no ini h hol ar no conir. Th communicaion rang of h no wa 3m, an h avrag no niy wa 9 pr raio rang. W compar our proocol wih, mor pcifically - R. i alo compar wih h claic an wily u gographic rouing proocol, GPSR, an h cnraliz hor pah rouing. Spcifically,, ourc an inaion pair wr ranomly lc among h no ha ar no in convx hull. Th following mric wr u: avrag hop rch (pah rch i fin a h oal hop coun ivi by h hop coun of h hor pah rouing), maximum hop rch, proocol-rla mag ovrha, an proocol rla mmory ovrha. W vari h following paramr: h, h numbr of hop wihin which no rciv h hol informaion, an b, h inrval of broacaing. A. Hop Srch Two nwork cnario wr conir for hi xprimn: on wih h wo hol wih high concaviy hown in Figur 9, an h ohr on wih many hol wih low concaviy a pic in Figur 9. For hi xprimn, w h o a ufficinly larg numbr. (W will how how h affc h prformanc in h nx ubcion.) For boh cnario, ouprform GPSR. Epcially for h hol wih high concaviy, how ramaic improvmn in hop rch. An obrvaion i ha migh gnra a pah wih arbirarily high pah rch. Thi happn bcau h Dircion Rul 3 in [8] migh rul in a ba pah. Figur 9(c) how an xampl of uch ba pah. A wrong rouing ciion i ma a no p loca a h arrow-mark poiion. Figur pic h chmaic iagram of hi xampl. W borrow om noaion from [8]: u i a ourc; v i a inaion; P CCW an P CW ar h nighboring VON no in a counr clockwi an clockwi ircion rpcivly. Bcau pv inrc wih P CCW P CW, Dircion Rul 3 i appli, an a pack i rou in a clockwi ircion, bcau p i on h righ i of uv. A a rul, h pack i rou back along h long bounary of h lowr zig-zag hol unil i rach no q uch ha qq nx inrc wih pv. Figur how h napho of h hop rch for 3 / pair. Whil achiv a ably low pah rch, 86

8 9 GPSR 9 GPSR 9 VON Y (mr) Y (mr) Y (mr) X (mr) X (mr) X (mr) (c) Fig. 9. Scnario : wo hol wih high concaviy; Scnario : many hol wih low concaviy;(c) an xampl of ba pah gnra by ; v CCW P p CW P u Fig.. Exampl of wrong rouing ciion in. Hop rch Hop rch Exprimn counr Fig.. Snapho of hop rch for iniial 3 - pair. uffr from inrminly ariing ba pah hown a h pik in h lowr graph pi i ignificanly lowr pah rch. Th ba pah affc h avrag prformanc of a hown in Figur. In hi figur, h how h avrag pah rch clo o in boh cnario, a w h h o a ufficinly larg numbr, ouprforming GPSR an. Howvr, w no ha incraing h h valu woul la o an incra in h rouing abl iz. Figur how h maximum rch of iffrn proocol for iffrn cnario. Th prformanc gain of i much highr in h maximum hop rch. B. Impac of h Th ym paramr h rmin how far h informaion on h hol i broaca. Smallr h woul cra h mag ovrha. Howvr, h avrag hop rch woul bcom highr for mallr h valu. Thi i bcau, wih mallr h, mor no ar unawar of h locaion of hol. Thu, h ciion o mak a our aroun a hol i mor likly o b lay, ruling in highr avrag hop rch. Figur 3 pic h rul for Scnario, which confirm our xpcaion. A h incra, avrag hop rch cra a xpc. For vry mall h valu lik or, avrag rch of i wor han, bu from h =4, ar o ouprform. C. Mag Ovrha Similar o h xprimnal ing of [8], w aop h upa inrval b, i.., h xrm poin ar broaca vry b con. W aum ha h bacon inrval i con. W maur h oal numbr of mag n pr con, Avrag hop rch Fig.. GPSR Scnario Scnario Maximum hop rch 3 3 GPSR Scnario Scnario Avrag hop rch. Maximum hop rch. no by M, for, wih h =, an wih h = MAX (MAX i > 6 for Scnario ). Th rul ar pic in Figur 3. Fir, i i obviou ha largr upa inrval b ruc M. Th graph alo how ha mor mag ar n for han ha for rgarl of b or h. Thi i bcau rquir aiional mag ohr han flooing h locaion of VON no o run h ianc vcor algorihm; VON no xchang mag wih ach ohr along mulipl hop o mainain rouing abl. A no in Scion VI-B, mallr h prmi mallr mag ovrha. D. Mmory Ovrha In, ach VON no mainain a rouing abl wih h rouing nri for all ohr VON no. Thu, aiional mmory rquirmn for VON no i O(N von ), whr N von i h numbr of VON no. Furhrmor, ach non-von no ha o mainain h viibiliy. In orr o compu h viibiliy, ach non-von no ha o know all h locaion of h VON no; hu h pac complxiy for non- VON no i O(V von ). Compar wih, h mmory ovrha for i horically O(V x ), bcau ach no ha o mainain h locaion of all h xrm poin whn h = MAX. Howvr, V x i ypically mallr han V x u o mor compac rprnaion of a hol. Aiionally, mmory ovrha for i ajuabl by changing h. Tabl I compar h mmory ovrha of an, for h wo cnario. Th iz of rquir mmory for wa mallr han in boh cnario. In paricular, prform br in cnario whr hr ar l hol, bu wih high concaviy. W alo obrv ha mallr h ruc h mmory ovrha. On raon i ha for mallr h, no mainain h a from mallr numbr of hol. 87

9 Avrag hop rch h Numbr of proocol mg pr c (h=) (h=max) b Avrag hop rch Locaion Error (%) Pack rop ra (%) Locaion rror (%) Fig. 3. Impac of h. Mag ovrha. Fig. 4. Effc of locaion rror: avrag pah rch; pack rop ra. TABLE I THE NUMBER OF ROUTING TABLE ENTRIES Cnral rvr (h =) (h = MAX) Scnario 6 74 Scnario (.6) (.4) (, ) (3,4) (4,6) (49,39) (9,) (7,6) (7,4) (, 3) (9,99) E. Impac of Locaion Error In hi cion, w inviga how h locaion rror affc our proocol. W aum ha h x an y coorina of any no can vary a mo ±3m, which i h communicaion rang. W maur h avrag pah rch an pack rop ra for iffrn locaion rror ra, pcifically from % o % of h maximum viaion. Figur 4 pic our fir rul. A hown, h avrag pah rch incra a h locaion rror incra. Nx, Figur 4 how h impac of locaion rror on h pack rop ra. W obrv ha h pack rop ra i narly unil locaion rror i abou 3%, hn ar o rapily incra. VII. SYSTEM IMPLEMENTATION W implmn h DCC an EPRA algorihm on Epic mo running TinyOS... Exprimn wr prform in an inoor b coniing of mo. Each mo i quipp wih a CC4 IEEE 8..4 wirl rancivr an MSP43 procor. Th nir nc implmnaion wa, lin. No locaion ar pr-programm, an a hol i arificially cra by urning off om of h no. Figur pic h rul, whr (x, y) rprn h locaion of ach no. A hown, h bounary no ar inifi an pic a h chain of o lin. Our DCC algorihm icovr h xrm poin ha ar rprn a quar. VIII. CONCLUSIONS AND FUTURE WORK In hi papr, w prn, a gographic rouing proocol ha achiv conan rch wih low ovrha. A hol i compacly rprn by lvraging our iribu convx hull conrucion algorihm. Our xrm poin rucion algorihm furhr ruc h aa iz. Thi aa rprning hol nabl ach ourc no ak an arly our aroun a hol, achiving a conan rch. A fuur work, w will ign a mor fficin algorihm o rou a pack o a no ini a convx hull. W alo plan o vlop a concp of iffrn lvl of convx hull, call iolin, o achiv an vn iribuion of nrgy conumpion. Slcing h propr hrhol for EPRA algorihm alo rmain a our fuur work. Fig.. (.8) (, ) (3,8) (33, 7) (4,) (49,9) (47,) (9,) (7,8) (7,) Sym implmnaion an -b valuaion. REFERENCES [] J. Li, J. Jannoi, D. S. J. D Couo, D. R. Kargr, an R. Morri, A calabl locaion rvic for gographic a hoc rouing, in Proc. of ACM MOBICOM,. [] S. Ranaamy, B. Karp, L. Yin, F. Yu, D. Erin, R. Govinan, an S. Shnkr, Gh: a gographic hah abl for aa-cnric orag, in Proc. of ACM WSNA,. [3] F. Kuhn, R. Wanhofr, Y. Zhang, an A. Zollingr, Gomric a-hoc rouing: of hory an pracic, in Proc. of ACM PODC, 3. [4] Z. Jiang, J. Ma, an W. Lou, An informaion mol for gographic gry forwaring in wirl a-hoc nor nwork, in Proc. of IEEE INFOCOM, 8. [] Q. Fang, J. Gao, an L. J. Guiba, Locaing an bypaing hol in nor nwork, in Proc. of IEEE INFOCOM, 4. [6] C. Liu an J. Wu, Dinaion-rgion-ba local minimum awar gomric rouing, in Proc. of IEEE MASS, 7. [7] N. Ara an Y. Shavi, Minimizing rcovry a in gographic a hoc rouing, IEEE Tranacion on Mobil Compuing, vol. 8, 9. [8] G. Tan, M. Brir, an A.-M. Krmarrc, Viibiliy-graph-ba hor-pah gographic rouing in nor nwork, in Proc. of IEEE INFOCOM, 9. [9] Y. Mao, F. Wang, L. Qiu, S. Lam, an J. Smih, S4: Small a an mall rch compac rouing proocol for larg aic wirl nwork, Nworking, IEEE/ACM Tranacion on, pp , jun. [] P. Li, G. Wang, J. Wu, an H.-C. Yang, Hol rhaping rouing in largcal mobil a-hoc nwork, in Proc. of IEEE GLOBECOM, 9. [] S. P. Fk, A. Kröllr, D. Pfirr, S. Fichr, an C. Buchmann, Nighborhoo-ba opology rcogniion in nor nwork, Proc. of ALGOSENSORS, vol. 3, pp. 3 36, 4. [] Y. Wang an J. Gao, Bounary rcogniion in nor nwork by opological mho, in Proc. of ACM MOBICOM, 6. [3] H. Aiya an J. Wlch, Diribu Compuing: Funamnal, Simulaion an Avanc Topic. John Wily & Son, 4. [4] S. Rajbaum an J. Urruia, Som problm iribu compuaional gomry, in Inrnaional Colloquium on Srucural Informaion an Communicaion Complxiy (SIROCCO), 999. [] T. H. Cormn, C. E. Liron, R. L. Riv, an C. Sin, Inroucion o Algorihm. Th MIT Pr,. [6] Y. Wang an X.-Y. Li, Localiz conrucion of boun gr an planar pannr for wirl a hoc nwork, in Proc. of DIALM-POMC, 3. [7] K. Clarkon, Approximaion algorihm for hor pah moion planning, in Proc. of ACM STOC,

Final Exam : Solutions

Final Exam : Solutions Comp : Algorihm and Daa Srucur Final Exam : Soluion. Rcuriv Algorihm. (a) To bgin ind h mdian o {x, x,... x n }. Sinc vry numbr xcp on in h inrval [0, n] appar xacly onc in h li, w hav ha h mdian mu b

More information

Ma/CS 6a Class 15: Flows and Bipartite Graphs

Ma/CS 6a Class 15: Flows and Bipartite Graphs //206 Ma/CS 6a Cla : Flow and Bipari Graph By Adam Shffr Rmindr: Flow Nwork A flow nwork i a digraph G = V, E, oghr wih a ourc vrx V, a ink vrx V, and a capaciy funcion c: E N. Capaciy Sourc 7 a b c d

More information

Instructors Solution for Assignment 3 Chapter 3: Time Domain Analysis of LTIC Systems

Instructors Solution for Assignment 3 Chapter 3: Time Domain Analysis of LTIC Systems Inrucor Soluion for Aignmn Chapr : Tim Domain Anali of LTIC Sm Problm i a 8 x x wih x u,, an Zro-inpu rpon of h m: Th characriic quaion of h LTIC m i i 8, which ha roo a ± j Th zro-inpu rpon i givn b zi

More information

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018 DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS Aoc. Prof. Dr. Burak Kllci Spring 08 OUTLINE Th Laplac Tranform Rgion of convrgnc for Laplac ranform Invr Laplac ranform Gomric valuaion

More information

Poisson process Markov process

Poisson process Markov process E2200 Quuing hory and lraffic 2nd lcur oion proc Markov proc Vikoria Fodor KTH Laboraory for Communicaion nwork, School of Elcrical Enginring 1 Cour oulin Sochaic proc bhind quuing hory L2-L3 oion proc

More information

2. The Laplace Transform

2. The Laplace Transform Th aac Tranorm Inroucion Th aac ranorm i a unamna an vry uu oo or uying many nginring robm To in h aac ranorm w conir a comx variab σ, whr σ i h ra ar an i h imaginary ar or ix vau o σ an w viw a a oin

More information

CPSC 211 Data Structures & Implementations (c) Texas A&M University [ 259] B-Trees

CPSC 211 Data Structures & Implementations (c) Texas A&M University [ 259] B-Trees CPSC 211 Daa Srucurs & Implmnaions (c) Txas A&M Univrsiy [ 259] B-Trs Th AVL r and rd-black r allowd som variaion in h lnghs of h diffrn roo-o-laf pahs. An alrnaiv ida is o mak sur ha all roo-o-laf pahs

More information

Chapter 12 Introduction To The Laplace Transform

Chapter 12 Introduction To The Laplace Transform Chapr Inroducion To Th aplac Tranorm Diniion o h aplac Tranorm - Th Sp & Impul uncion aplac Tranorm o pciic uncion 5 Opraional Tranorm Applying h aplac Tranorm 7 Invr Tranorm o Raional uncion 8 Pol and

More information

Jonathan Turner Exam 2-12/4/03

Jonathan Turner Exam 2-12/4/03 CS 41 Algorim an Program Prolm Exam Soluion S Soluion Jonaan Turnr Exam -1/4/0 10/8/0 1. (10 poin) T igur low ow an implmnaion o ynami r aa ruur wi vral virual r. Sow orrponing o aual r (owing vrx o).

More information

Chapter 5 The Laplace Transform. x(t) input y(t) output Dynamic System

Chapter 5 The Laplace Transform. x(t) input y(t) output Dynamic System EE 422G No: Chapr 5 Inrucor: Chung Chapr 5 Th Laplac Tranform 5- Inroducion () Sym analyi inpu oupu Dynamic Sym Linar Dynamic ym: A procor which proc h inpu ignal o produc h oupu dy ( n) ( n dy ( n) +

More information

Transfer function and the Laplace transformation

Transfer function and the Laplace transformation Lab No PH-35 Porland Sa Univriy A. La Roa Tranfr funcion and h Laplac ranformaion. INTRODUTION. THE LAPLAE TRANSFORMATION L 3. TRANSFER FUNTIONS 4. ELETRIAL SYSTEMS Analyi of h hr baic paiv lmn R, and

More information

Double Slits in Space and Time

Double Slits in Space and Time Doubl Slis in Sac an Tim Gorg Jons As has bn ror rcnly in h mia, a am l by Grhar Paulus has monsra an inrsing chniqu for ionizing argon aoms by using ulra-shor lasr ulss. Each lasr uls is ffcivly on an

More information

14.02 Principles of Macroeconomics Fall 2005 Quiz 3 Solutions

14.02 Principles of Macroeconomics Fall 2005 Quiz 3 Solutions 4.0 rincipl of Macroconomic Fall 005 Quiz 3 Soluion Shor Quion (30/00 poin la a whhr h following amn ar TRUE or FALSE wih a hor xplanaion (3 or 4 lin. Each quion coun 5/00 poin.. An incra in ax oday alway

More information

4.1 The Uniform Distribution Def n: A c.r.v. X has a continuous uniform distribution on [a, b] when its pdf is = 1 a x b

4.1 The Uniform Distribution Def n: A c.r.v. X has a continuous uniform distribution on [a, b] when its pdf is = 1 a x b 4. Th Uniform Disribuion Df n: A c.r.v. has a coninuous uniform disribuion on [a, b] whn is pdf is f x a x b b a Also, b + a b a µ E and V Ex4. Suppos, h lvl of unblivabiliy a any poin in a Transformrs

More information

Boyce/DiPrima 9 th ed, Ch 2.1: Linear Equations; Method of Integrating Factors

Boyce/DiPrima 9 th ed, Ch 2.1: Linear Equations; Method of Integrating Factors Boc/DiPrima 9 h d, Ch.: Linar Equaions; Mhod of Ingraing Facors Elmnar Diffrnial Equaions and Boundar Valu Problms, 9 h diion, b William E. Boc and Richard C. DiPrima, 009 b John Wil & Sons, Inc. A linar

More information

Copyright 2012 Pearson Education, Inc. Publishing as Prentice Hall.

Copyright 2012 Pearson Education, Inc. Publishing as Prentice Hall. Chapr Rviw 0 6. ( a a ln a. This will qual a if an onl if ln a, or a. + k an (ln + c. Thrfor, a an valu of, whr h wo curvs inrsc, h wo angn lins will b prpnicular. 6. (a Sinc h lin passs hrough h origin

More information

Elementary Differential Equations and Boundary Value Problems

Elementary Differential Equations and Boundary Value Problems Elmnar Diffrnial Equaions and Boundar Valu Problms Boc. & DiPrima 9 h Ediion Chapr : Firs Ordr Diffrnial Equaions 00600 คณ ตศาสตร ว ศวกรรม สาขาว ชาว ศวกรรมคอมพ วเตอร ป การศ กษา /55 ผศ.ดร.อร ญญา ผศ.ดร.สมศ

More information

1 Finite Automata and Regular Expressions

1 Finite Automata and Regular Expressions 1 Fini Auom nd Rgulr Exprion Moivion: Givn prn (rgulr xprion) for ring rching, w migh wn o convr i ino drminiic fini uomon or nondrminiic fini uomon o mk ring rching mor fficin; drminiic uomon only h o

More information

Spring 2006 Process Dynamics, Operations, and Control Lesson 2: Mathematics Review

Spring 2006 Process Dynamics, Operations, and Control Lesson 2: Mathematics Review Spring 6 Procss Dynamics, Opraions, and Conrol.45 Lsson : Mahmaics Rviw. conx and dircion Imagin a sysm ha varis in im; w migh plo is oupu vs. im. A plo migh imply an quaion, and h quaion is usually an

More information

Lecture 1: Numerical Integration The Trapezoidal and Simpson s Rule

Lecture 1: Numerical Integration The Trapezoidal and Simpson s Rule Lcur : Numrical ngraion Th Trapzoidal and Simpson s Rul A problm Th probabiliy of a normally disribud (man µ and sandard dviaion σ ) vn occurring bwn h valus a and b is B A P( a x b) d () π whr a µ b -

More information

LaPlace Transform in Circuit Analysis

LaPlace Transform in Circuit Analysis LaPlac Tranform in Circui Analyi Obciv: Calcula h Laplac ranform of common funcion uing h dfiniion and h Laplac ranform abl Laplac-ranform a circui, including componn wih non-zro iniial condiion. Analyz

More information

Midterm exam 2, April 7, 2009 (solutions)

Midterm exam 2, April 7, 2009 (solutions) Univrsiy of Pnnsylvania Dparmn of Mahmaics Mah 26 Honors Calculus II Spring Smsr 29 Prof Grassi, TA Ashr Aul Midrm xam 2, April 7, 29 (soluions) 1 Wri a basis for h spac of pairs (u, v) of smooh funcions

More information

2.1. Differential Equations and Solutions #3, 4, 17, 20, 24, 35

2.1. Differential Equations and Solutions #3, 4, 17, 20, 24, 35 MATH 5 PS # Summr 00.. Diffrnial Equaions and Soluions PS.# Show ha ()C #, 4, 7, 0, 4, 5 ( / ) is a gnral soluion of h diffrnial quaion. Us a compur or calculaor o skch h soluions for h givn valus of h

More information

Mixing Real-Time and Non-Real-Time. CSCE 990: Real-Time Systems. Steve Goddard.

Mixing Real-Time and Non-Real-Time. CSCE 990: Real-Time Systems. Steve Goddard. CSCE 990: Ral-Tim Sym Mixing Ral-Tim and Non-Ral-Tim goddard@c.unl.du hp://www.c.unl.du/~goddard/cour/raltimsym 1 Ral-Tim Sym Mixd Job - 1 Mixing Ral-Tim and Non-Ral-Tim in Prioriy-Drivn Sym (Chapr 7 of

More information

Heat flow in composite rods an old problem reconsidered

Heat flow in composite rods an old problem reconsidered Ha flow in copoi ro an ol probl rconir. Kranjc a Dparn of Phyic an chnology Faculy of Eucaion Univriy of jubljana Karljva ploca 6 jubljana Slovnia an J. Prnlj Faculy of Civil an Goic Enginring Univriy

More information

Statistics Assessing Normality Gary W. Oehlert School of Statistics 313B Ford Hall

Statistics Assessing Normality Gary W. Oehlert School of Statistics 313B Ford Hall Siic 504 0. Aing Normliy Gry W. Ohlr School of Siic 33B For Hll 6-65-557 gry@.umn.u Mny procur um normliy. Som procur fll pr if h rn norml, whr ohr cn k lo of bu n kp going. In ihr c, i nic o know how

More information

Lecture 26: Leapers and Creepers

Lecture 26: Leapers and Creepers Lcur 6: Lapr and Crpr Scrib: Grain Jon (and Marin Z. Bazan) Dparmn of Economic, MIT May, 005 Inroducion Thi lcur conidr h analyi of h non-parabl CTRW in which h diribuion of p iz and im bwn p ar dpndn.

More information

EXERCISE - 01 CHECK YOUR GRASP

EXERCISE - 01 CHECK YOUR GRASP DIFFERENTIAL EQUATION EXERCISE - CHECK YOUR GRASP 7. m hn D() m m, D () m m. hn givn D () m m D D D + m m m m m m + m m m m + ( m ) (m ) (m ) (m + ) m,, Hnc numbr of valus of mn will b. n ( ) + c sinc

More information

Shortest Path With Negative Weights

Shortest Path With Negative Weights Shor Pah Wih Ngaiv Wigh 1 9 18-1 19 11 1-8 1 Conn Conn. Dird hor pah wih ngaiv wigh. Ngaiv yl dion. appliaion: urrny xhang arbirag Tramp amr problm. appliaion: opimal piplining of VLSI hip Shor Pah wih

More information

Jonathan Turner Exam 2-10/28/03

Jonathan Turner Exam 2-10/28/03 CS Algorihm n Progrm Prolm Exm Soluion S Soluion Jonhn Turnr Exm //. ( poin) In h Fioni hp ruur, u wn vrx u n i prn v u ing u v i v h lry lo hil in i l m hil o om ohr vrx. Suppo w hng hi, o h ing u i prorm

More information

Problem Set If all directed edges in a network have distinct capacities, then there is a unique maximum flow.

Problem Set If all directed edges in a network have distinct capacities, then there is a unique maximum flow. CSE 202: Deign and Analyi of Algorihm Winer 2013 Problem Se 3 Inrucor: Kamalika Chaudhuri Due on: Tue. Feb 26, 2013 Inrucion For your proof, you may ue any lower bound, algorihm or daa rucure from he ex

More information

Institute of Actuaries of India

Institute of Actuaries of India Insiu of Acuaris of India ubjc CT3 Probabiliy and Mahmaical aisics Novmbr Examinaions INDICATIVE OLUTION Pag of IAI CT3 Novmbr ol. a sampl man = 35 sampl sandard dviaion = 36.6 b for = uppr bound = 35+*36.6

More information

Economics 302 (Sec. 001) Intermediate Macroeconomic Theory and Policy (Spring 2011) 3/28/2012. UW Madison

Economics 302 (Sec. 001) Intermediate Macroeconomic Theory and Policy (Spring 2011) 3/28/2012. UW Madison Economics 302 (Sc. 001) Inrmdia Macroconomic Thory and Policy (Spring 2011) 3/28/2012 Insrucor: Prof. Mnzi Chinn Insrucor: Prof. Mnzi Chinn UW Madison 16 1 Consumpion Th Vry Forsighd dconsumr A vry forsighd

More information

5. An object moving along an x-coordinate axis with its scale measured in meters has a velocity of 6t

5. An object moving along an x-coordinate axis with its scale measured in meters has a velocity of 6t AP CALCULUS FINAL UNIT WORKSHEETS ACCELERATION, VELOCTIY AND POSITION In problms -, drmin h posiion funcion, (), from h givn informaion.. v (), () = 5. v ()5, () = b g. a (), v() =, () = -. a (), v() =

More information

Routing in Delay Tolerant Networks

Routing in Delay Tolerant Networks Rouing in Dlay Tolran Nworks Primary Rfrnc: S. Jain K. Fall and R. Para Rouing in a Dlay Tolran Nwork SIGCOMM 04 Aug. 30-Sp. 3 2004 Porland Orgon USA Sudn lcur by: Soshan Bali (748214) mail : sbali@ic.ku.du

More information

The Residual Graph. 12 Augmenting Path Algorithms. Augmenting Path Algorithm. Augmenting Path Algorithm

The Residual Graph. 12 Augmenting Path Algorithms. Augmenting Path Algorithm. Augmenting Path Algorithm Augmening Pah Algorihm Greedy-algorihm: ar wih f (e) = everywhere find an - pah wih f (e) < c(e) on every edge augmen flow along he pah repea a long a poible The Reidual Graph From he graph G = (V, E,

More information

Microscopic Flow Characteristics Time Headway - Distribution

Microscopic Flow Characteristics Time Headway - Distribution CE57: Traffic Flow Thory Spring 20 Wk 2 Modling Hadway Disribuion Microscopic Flow Characrisics Tim Hadway - Disribuion Tim Hadway Dfiniion Tim Hadway vrsus Gap Ahmd Abdl-Rahim Civil Enginring Dparmn,

More information

Let s look again at the first order linear differential equation we are attempting to solve, in its standard form:

Let s look again at the first order linear differential equation we are attempting to solve, in its standard form: Th Ingraing Facor Mhod In h prvious xampls of simpl firs ordr ODEs, w found h soluions by algbraically spara h dpndn variabl- and h indpndn variabl- rms, and wri h wo sids of a givn quaion as drivaivs,

More information

UNIT #5 EXPONENTIAL AND LOGARITHMIC FUNCTIONS

UNIT #5 EXPONENTIAL AND LOGARITHMIC FUNCTIONS Answr Ky Nam: Da: UNIT # EXPONENTIAL AND LOGARITHMIC FUNCTIONS Par I Qusions. Th prssion is quivaln o () () 6 6 6. Th ponnial funcion y 6 could rwrin as y () y y 6 () y y (). Th prssion a is quivaln o

More information

The Residual Graph. 11 Augmenting Path Algorithms. Augmenting Path Algorithm. Augmenting Path Algorithm

The Residual Graph. 11 Augmenting Path Algorithms. Augmenting Path Algorithm. Augmenting Path Algorithm Augmening Pah Algorihm Greedy-algorihm: ar wih f (e) = everywhere find an - pah wih f (e) < c(e) on every edge augmen flow along he pah repea a long a poible The Reidual Graph From he graph G = (V, E,

More information

Multiple Short Term Infusion Homework # 5 PHA 5127

Multiple Short Term Infusion Homework # 5 PHA 5127 Multipl Short rm Infusion Homwork # 5 PHA 527 A rug is aministr as a short trm infusion. h avrag pharmacokintic paramtrs for this rug ar: k 0.40 hr - V 28 L his rug follows a on-compartmnt boy mol. A 300

More information

2.22 Process Gains, Time Lags, Reaction Curves

2.22 Process Gains, Time Lags, Reaction Curves . Proc Gain, Tim Lag, Racion Curv P. S. SCHERMANN (995) W. GARCÍA-GABÍN (5) INTRODUCTION An unraning of a proc can b obain by vloping a horical proc mol uing nrgy balanc, ma balanc, an chmical an phyical

More information

1. Inverse Matrix 4[(3 7) (02)] 1[(0 7) (3 2)] Recall that the inverse of A is equal to:

1. Inverse Matrix 4[(3 7) (02)] 1[(0 7) (3 2)] Recall that the inverse of A is equal to: Rfrncs Brnank, B. and I. Mihov (1998). Masuring monary policy, Quarrly Journal of Economics CXIII, 315-34. Blanchard, O. R. Proi (00). An mpirical characrizaion of h dynamic ffcs of changs in govrnmn spnding

More information

CSE 245: Computer Aided Circuit Simulation and Verification

CSE 245: Computer Aided Circuit Simulation and Verification CSE 45: Compur Aidd Circui Simulaion and Vrificaion Fall 4, Sp 8 Lcur : Dynamic Linar Sysm Oulin Tim Domain Analysis Sa Equaions RLC Nwork Analysis by Taylor Expansion Impuls Rspons in im domain Frquncy

More information

4.3 Design of Sections for Flexure (Part II)

4.3 Design of Sections for Flexure (Part II) Prsrssd Concr Srucurs Dr. Amlan K Sngupa and Prof. Dvdas Mnon 4. Dsign of Scions for Flxur (Par II) This scion covrs h following opics Final Dsign for Typ Mmrs Th sps for Typ 1 mmrs ar xplaind in Scion

More information

CS4445/9544 Analysis of Algorithms II Solution for Assignment 1

CS4445/9544 Analysis of Algorithms II Solution for Assignment 1 Conider he following flow nework CS444/944 Analyi of Algorihm II Soluion for Aignmen (0 mark) In he following nework a minimum cu ha capaciy 0 Eiher prove ha hi aemen i rue, or how ha i i fale Uing he

More information

AR(1) Process. The first-order autoregressive process, AR(1) is. where e t is WN(0, σ 2 )

AR(1) Process. The first-order autoregressive process, AR(1) is. where e t is WN(0, σ 2 ) AR() Procss Th firs-ordr auorgrssiv procss, AR() is whr is WN(0, σ ) Condiional Man and Varianc of AR() Condiional man: Condiional varianc: ) ( ) ( Ω Ω E E ) var( ) ) ( var( ) var( σ Ω Ω Ω Ω E Auocovarianc

More information

GOAL: A Parsimonious Geographic Routing Protocol for Large Scale Sensor Networks

GOAL: A Parsimonious Geographic Routing Protocol for Large Scale Sensor Networks TRANSACTIONS ON PARALLEL AND DISTRIBUTED COMPUTING, VOL. X, NO. X, SEPTEMBER 2 : A Parsimonious Geographic Rouing Proocol for Large Scale Sensor Neworks Myounggyu Won, Wei Zhang and Radu Soleru Absrac

More information

Network Design with Weighted Players

Network Design with Weighted Players Nwork Dign wih Wighd Playr Ho-Lin Chn Tim Roughgardn Jun 21, 27 Abrac W conidr a modl of gam-horic nwork dign iniially udid by Anhlvich al. [2], whr lfih playr lc pah in a nwork o minimiz hir co, which

More information

Fundamental Limits on Data Acquisition: Trade-offs between Sample Complexity and Query Difficulty

Fundamental Limits on Data Acquisition: Trade-offs between Sample Complexity and Query Difficulty Funamntal Limit on Data Acquiition: Tra-off btwn Sampl Complxity an Qury Difficulty Hy Won Chung, Ji Oon L, an Alfr O. Hro arxiv:72.0057v2 [c.it] 2 Jan 208 Abtract W conir qury-ba ata acquiition an th

More information

THE INVOLUTE-EVOLUTE OFFSETS OF RULED SURFACES *

THE INVOLUTE-EVOLUTE OFFSETS OF RULED SURFACES * Iranian Journal of Scinc & Tchnology, Tranacion A, Vol, No A Prind in h Ilamic Rpublic of Iran, 009 Shiraz Univriy THE INVOLUTE-EVOLUTE OFFSETS OF RULED SURFACES E KASAP, S YUCE AND N KURUOGLU Ondokuz

More information

Applied Statistics and Probability for Engineers, 6 th edition October 17, 2016

Applied Statistics and Probability for Engineers, 6 th edition October 17, 2016 Applid Saisics and robabiliy for Enginrs, 6 h diion Ocobr 7, 6 CHATER Scion - -. a d. 679.. b. d. 88 c d d d. 987 d. 98 f d.. Thn, = ln. =. g d.. Thn, = ln.9 =.. -7. a., by symmry. b.. d...6. 7.. c...

More information

S.Y. B.Sc. (IT) : Sem. III. Applied Mathematics. Q.1 Attempt the following (any THREE) [15]

S.Y. B.Sc. (IT) : Sem. III. Applied Mathematics. Q.1 Attempt the following (any THREE) [15] S.Y. B.Sc. (IT) : Sm. III Applid Mahmaics Tim : ½ Hrs.] Prlim Qusion Papr Soluion [Marks : 75 Q. Amp h following (an THREE) 3 6 Q.(a) Rduc h mari o normal form and find is rank whr A 3 3 5 3 3 3 6 Ans.:

More information

Network Flows: Introduction & Maximum Flow

Network Flows: Introduction & Maximum Flow CSC 373 - lgorihm Deign, nalyi, and Complexiy Summer 2016 Lalla Mouaadid Nework Flow: Inroducion & Maximum Flow We now urn our aenion o anoher powerful algorihmic echnique: Local Search. In a local earch

More information

AQUIFER DRAWDOWN AND VARIABLE-STAGE STREAM DEPLETION INDUCED BY A NEARBY PUMPING WELL

AQUIFER DRAWDOWN AND VARIABLE-STAGE STREAM DEPLETION INDUCED BY A NEARBY PUMPING WELL Pocing of h 1 h Innaional Confnc on Enionmnal cinc an chnolog Rho Gc 3-5 pmb 15 AUIFER DRAWDOWN AND VARIABE-AGE REAM DEPEION INDUCED BY A NEARBY PUMPING WE BAAOUHA H.M. aa Enionmn & Eng Rach Iniu EERI

More information

Randomized Perfect Bipartite Matching

Randomized Perfect Bipartite Matching Inenive Algorihm Lecure 24 Randomized Perfec Biparie Maching Lecurer: Daniel A. Spielman April 9, 208 24. Inroducion We explain a randomized algorihm by Ahih Goel, Michael Kapralov and Sanjeev Khanna for

More information

Network Design with Weighted Players (SPAA 2006 Full Paper Submission)

Network Design with Weighted Players (SPAA 2006 Full Paper Submission) Nwork Dign wih Wighd Playr SPAA 26 Full Papr Submiion) Ho-Lin Chn Tim Roughgardn March 7, 26 Abrac W conidr a modl of gam-horic nwork dign iniially udid by Anhlvich al. [1], whr lfih playr lc pah in a

More information

Midterm Examination (100 pts)

Midterm Examination (100 pts) Econ 509 Spring 2012 S.L. Parn Midrm Examinaion (100 ps) Par I. 30 poins 1. Dfin h Law of Diminishing Rurns (5 ps.) Incrasing on inpu, call i inpu x, holding all ohr inpus fixd, on vnuall runs ino h siuaion

More information

Network Flow. Data Structures and Algorithms Andrei Bulatov

Network Flow. Data Structures and Algorithms Andrei Bulatov Nework Flow Daa Srucure and Algorihm Andrei Bulao Algorihm Nework Flow 24-2 Flow Nework Think of a graph a yem of pipe We ue hi yem o pump waer from he ource o ink Eery pipe/edge ha limied capaciy Flow

More information

where: u: input y: output x: state vector A, B, C, D are const matrices

where: u: input y: output x: state vector A, B, C, D are const matrices Sa pac modl: linar: y or in om : Sa q : f, u Oupu q : y h, u u Du F Gu y H Ju whr: u: inpu y: oupu : a vcor,,, D ar con maric Eampl " $ & ' " $ & 'u y " & * * * * [ ],, D H D I " $ " & $ ' " & $ ' " &

More information

On the Speed of Heat Wave. Mihály Makai

On the Speed of Heat Wave. Mihály Makai On h Spd of Ha Wa Mihály Maai maai@ra.bm.hu Conns Formulaion of h problm: infini spd? Local hrmal qulibrium (LTE hypohsis Balanc quaion Phnomnological balanc Spd of ha wa Applicaion in plasma ranspor 1.

More information

Chap.3 Laplace Transform

Chap.3 Laplace Transform Chap. aplac Tranorm Tranorm: An opraion ha ranorm a uncion ino anohr uncion i Dirniaion ranorm: ii x: d dx x x Ingraion ranorm: x: x dx x c Now, conidr a dind ingral k, d,ha ranorm ino a uncion o variabl

More information

Admin MAX FLOW APPLICATIONS. Flow graph/networks. Flow constraints 4/30/13. CS lunch today Grading. in-flow = out-flow for every vertex (except s, t)

Admin MAX FLOW APPLICATIONS. Flow graph/networks. Flow constraints 4/30/13. CS lunch today Grading. in-flow = out-flow for every vertex (except s, t) /0/ dmin lunch oday rading MX LOW PPLIION 0, pring avid Kauchak low graph/nework low nework direced, weighed graph (V, ) poiive edge weigh indicaing he capaciy (generally, aume ineger) conain a ingle ource

More information

Conventional Hot-Wire Anemometer

Conventional Hot-Wire Anemometer Convnonal Ho-Wr Anmomr cro Ho Wr Avanag much mallr prob z mm o µm br paal roluon array o h nor hghr rquncy rpon lowr co prormanc/co abrcaon roc I µm lghly op p layr 8µm havly boron op ch op layr abrcaon

More information

CHAPTER CHAPTER14. Expectations: The Basic Tools. Prepared by: Fernando Quijano and Yvonn Quijano

CHAPTER CHAPTER14. Expectations: The Basic Tools. Prepared by: Fernando Quijano and Yvonn Quijano Expcaions: Th Basic Prpard by: Frnando Quijano and Yvonn Quijano CHAPTER CHAPTER14 2006 Prnic Hall Businss Publishing Macroconomics, 4/ Olivir Blanchard 14-1 Today s Lcur Chapr 14:Expcaions: Th Basic Th

More information

SOLUTIONS. 1. Consider two continuous random variables X and Y with joint p.d.f. f ( x, y ) = = = 15. Stepanov Dalpiaz

SOLUTIONS. 1. Consider two continuous random variables X and Y with joint p.d.f. f ( x, y ) = = = 15. Stepanov Dalpiaz STAT UIUC Pracic Problms #7 SOLUTIONS Spanov Dalpiaz Th following ar a numbr of pracic problms ha ma b hlpful for compling h homwor, and will lil b vr usful for suding for ams.. Considr wo coninuous random

More information

Wave Equation (2 Week)

Wave Equation (2 Week) Rfrnc Wav quaion ( Wk 6.5 Tim-armonic filds 7. Ovrviw 7. Plan Wavs in Losslss Mdia 7.3 Plan Wavs in Loss Mdia 7.5 Flow of lcromagnic Powr and h Poning Vcor 7.6 Normal Incidnc of Plan Wavs a Plan Boundaris

More information

1 Motivation and Basic Definitions

1 Motivation and Basic Definitions CSCE : Deign and Analyi of Algorihm Noe on Max Flow Fall 20 (Baed on he preenaion in Chaper 26 of Inroducion o Algorihm, 3rd Ed. by Cormen, Leieron, Rive and Sein.) Moivaion and Baic Definiion Conider

More information

An Indian Journal FULL PAPER. Trade Science Inc. A stage-structured model of a single-species with density-dependent and birth pulses ABSTRACT

An Indian Journal FULL PAPER. Trade Science Inc. A stage-structured model of a single-species with density-dependent and birth pulses ABSTRACT [Typ x] [Typ x] [Typ x] ISSN : 974-7435 Volum 1 Issu 24 BioTchnology 214 An Indian Journal FULL PAPE BTAIJ, 1(24), 214 [15197-1521] A sag-srucurd modl of a singl-spcis wih dnsiy-dpndn and birh pulss LI

More information

Safety for all. Level: older kids. pupil s name: Pupil s first name: I discover the Highway Code. I ride my bike. I anticipate the risks

Safety for all. Level: older kids. pupil s name: Pupil s first name: I discover the Highway Code. I ride my bike. I anticipate the risks afy for all vl: oldr kid pupil nam: Pupil fir nam: cla: Conn 1. 2. 3. 4. 5. I dicovr h ighway Cod I rid my bik I anicipa h rik I u public ranpor I adap o h wahr llo and wlcom in h program: Th road and

More information

Introduction to Congestion Games

Introduction to Congestion Games Algorihmic Game Theory, Summer 2017 Inroducion o Congeion Game Lecure 1 (5 page) Inrucor: Thoma Keelheim In hi lecure, we ge o know congeion game, which will be our running example for many concep in game

More information

Soviet Rail Network, 1955

Soviet Rail Network, 1955 Sovie Rail Nework, 1 Reference: On he hiory of he ranporaion and maximum flow problem. Alexander Schrijver in Mah Programming, 1: 3,. Maximum Flow and Minimum Cu Max flow and min cu. Two very rich algorihmic

More information

Flow networks. Flow Networks. A flow on a network. Flow networks. The maximum-flow problem. Introduction to Algorithms, Lecture 22 December 5, 2001

Flow networks. Flow Networks. A flow on a network. Flow networks. The maximum-flow problem. Introduction to Algorithms, Lecture 22 December 5, 2001 CS 545 Flow Nework lon Efra Slide courey of Charle Leieron wih mall change by Carola Wenk Flow nework Definiion. flow nework i a direced graph G = (V, E) wih wo diinguihed verice: a ource and a ink. Each

More information

5.2 GRAPHICAL VELOCITY ANALYSIS Polygon Method

5.2 GRAPHICAL VELOCITY ANALYSIS Polygon Method ME 352 GRHICL VELCITY NLYSIS 52 GRHICL VELCITY NLYSIS olygon Mehod Velociy analyi form he hear of kinemaic and dynamic of mechanical yem Velociy analyi i uually performed following a poiion analyi; ie,

More information

Physics 160 Lecture 3. R. Johnson April 6, 2015

Physics 160 Lecture 3. R. Johnson April 6, 2015 Physics 6 Lcur 3 R. Johnson April 6, 5 RC Circui (Low-Pass Filr This is h sam RC circui w lookd a arlir h im doma, bu hr w ar rsd h frquncy rspons. So w pu a s wav sad of a sp funcion. whr R C RC Complx

More information

Circuit Transients time

Circuit Transients time Circui Tranin A Solp 3/29/0, 9/29/04. Inroducion Tranin: A ranin i a raniion from on a o anohr. If h volag and currn in a circui do no chang wih im, w call ha a "ady a". In fac, a long a h volag and currn

More information

Intersection Testing Chapter 16. Department of Computer Engineering Chalmers University of Technology

Intersection Testing Chapter 16. Department of Computer Engineering Chalmers University of Technology Inrion Ting Chapr 6 Dparmn of Compur Enginring Chalmr Uniriy of Thnology Wha for? l A ool n for h graphi popl all h im l Vry imporan omponn: N o mak hm fa! l Fining if an whr a ray hi an obj Piking Ray

More information

3(8 ) (8 x x ) 3x x (8 )

3(8 ) (8 x x ) 3x x (8 ) Scion - CHATER -. a d.. b. d.86 c d 8 d d.9997 f g 6. d. d. Thn, = ln. =. =.. d Thn, = ln.9 =.7 8 -. a d.6 6 6 6 6 8 8 8 b 9 d 6 6 6 8 c d.8 6 6 6 6 8 8 7 7 d 6 d.6 6 6 6 6 6 6 8 u u u u du.9 6 6 6 6 6

More information

Phys463.nb Conductivity. Another equivalent definition of the Fermi velocity is

Phys463.nb Conductivity. Another equivalent definition of the Fermi velocity is 39 Anohr quival dfiniion of h Fri vlociy is pf vf (6.4) If h rgy is a quadraic funcion of k H k L, hs wo dfiniions ar idical. If is NOT a quadraic funcion of k (which could happ as will b discussd in h

More information

Chapter 2 The Derivative Business Calculus 99

Chapter 2 The Derivative Business Calculus 99 Chapr Th Drivaiv Businss Calculus 99 Scion 5: Drivaivs of Formulas In his scion, w ll g h rivaiv ruls ha will l us fin formulas for rivaivs whn our funcion coms o us as a formula. This is a vry algbraic

More information

Relaxing planarity for topological graphs

Relaxing planarity for topological graphs Rlaing planariy for opological graph Jáno Pach 1, Radoš Radoičić 2, and Géza Tóh 3 1 Ciy Collg, CUNY and Couran Iniu of Mahmaical Scinc, Nw York Univriy, Nw York, NY 10012, USA pach@cim.nyu.du 2 Dparmn

More information

Engineering Circuit Analysis 8th Edition Chapter Nine Exercise Solutions

Engineering Circuit Analysis 8th Edition Chapter Nine Exercise Solutions Engnrng rcu naly 8h Eon hapr Nn Exrc Soluon. = KΩ, = µf, an uch ha h crcu rpon oramp. a For Sourc-fr paralll crcu: For oramp or b H 9V, V / hoo = H.7.8 ra / 5..7..9 9V 9..9..9 5.75,.5 5.75.5..9 . = nh,

More information

MARK SCHEME for the October/November 2014 series 9231 MATHEMATICS. 9231/12 Paper 1, maximum raw mark 100

MARK SCHEME for the October/November 2014 series 9231 MATHEMATICS. 9231/12 Paper 1, maximum raw mark 100 CAMBRIDGE INTERNATIONAL EXAMINATIONS Cambrig Inrnaional Aanc Ll MARK SCHEME for h Ocobr/Nombr sris 9 MATHEMATICS 9/ Papr, maimum raw mar This mar schm is publish as an ai o achrs an canias, o inica h rquirmns

More information

Graphs III - Network Flow

Graphs III - Network Flow Graph III - Nework Flow Flow nework eup graph G=(V,E) edge capaciy w(u,v) 0 - if edge doe no exi, hen w(u,v)=0 pecial verice: ource verex ; ink verex - no edge ino and no edge ou of Aume every verex v

More information

PS#4 due today (in class or before 3pm, Rm ) cannot ignore the spatial dimensions

PS#4 due today (in class or before 3pm, Rm ) cannot ignore the spatial dimensions Topic I: Sysms Cll Biology Spaial oscillaion in. coli PS# u oay in class or bfor pm Rm. 68-7 similar o gnic oscillaors s bu now w canno ignor h spaial imnsions biological funcion: rmin h cnr of h cll o

More information

(1) Then we could wave our hands over this and it would become:

(1) Then we could wave our hands over this and it would become: MAT* K285 Spring 28 Anthony Bnoit 4/17/28 Wk 12: Laplac Tranform Rading: Kohlr & Johnon, Chaptr 5 to p. 35 HW: 5.1: 3, 7, 1*, 19 5.2: 1, 5*, 13*, 19, 45* 5.3: 1, 11*, 19 * Pla writ-up th problm natly and

More information

Section. Problem Representation. Substation. Protection Device. protection equipments. Substation. Client. EPDS divided in blocks connected by

Section. Problem Representation. Substation. Protection Device. protection equipments. Substation. Client. EPDS divided in blocks connected by HIERARCHICAL MULTIPLE CRITERIA OPTIMIZATION OF MAINTENANCE ACTIVITIES ON POWER DISTRIBUTION NETWORKS Problm Rprsaion EPDS comprising: Subsaions, primary nworks, scondary, nworks; Fdrs (cabls, lins, pols,

More information

The second condition says that a node α of the tree has exactly n children if the arity of its label is n.

The second condition says that a node α of the tree has exactly n children if the arity of its label is n. CS 6110 S14 Hanout 2 Proof of Conflunc 27 January 2014 In this supplmntary lctur w prov that th λ-calculus is conflunt. This is rsult is u to lonzo Church (1903 1995) an J. arkly Rossr (1907 1989) an is

More information

Voltage v(z) ~ E(z)D. We can actually get to this wave behavior by using circuit theory, w/o going into details of the EM fields!

Voltage v(z) ~ E(z)D. We can actually get to this wave behavior by using circuit theory, w/o going into details of the EM fields! Considr a pair of wirs idal wirs ngh >, say, infinily long olag along a cabl can vary! D olag v( E(D W can acually g o his wav bhavior by using circui hory, w/o going ino dails of h EM filds! Thr

More information

Discussion 06 Solutions

Discussion 06 Solutions STAT Discussion Soluions Spring 8. Th wigh of fish in La Paradis follows a normal disribuion wih man of 8. lbs and sandard dviaion of. lbs. a) Wha proporion of fish ar bwn 9 lbs and lbs? æ 9-8. - 8. P

More information

MSLC Math 151 WI09 Exam 2 Review Solutions

MSLC Math 151 WI09 Exam 2 Review Solutions Eam Rviw Solutions. Comput th following rivativs using th iffrntiation ruls: a.) cot cot cot csc cot cos 5 cos 5 cos 5 cos 5 sin 5 5 b.) c.) sin( ) sin( ) y sin( ) ln( y) ln( ) ln( y) sin( ) ln( ) y y

More information

Mathematics 1110H Calculus I: Limits, derivatives, and Integrals Trent University, Summer 2018 Solutions to the Actual Final Examination

Mathematics 1110H Calculus I: Limits, derivatives, and Integrals Trent University, Summer 2018 Solutions to the Actual Final Examination Mathmatics H Calculus I: Limits, rivativs, an Intgrals Trnt Univrsity, Summr 8 Solutions to th Actual Final Eamination Tim-spac: 9:-: in FPHL 7. Brought to you by Stfan B lan k. Instructions: Do parts

More information

Partial Fraction Expansion

Partial Fraction Expansion Paial Facion Expanion Whn ying o find h inv Laplac anfom o inv z anfom i i hlpfl o b abl o bak a complicad aio of wo polynomial ino fom ha a on h Laplac Tanfom o z anfom abl. W will illa h ing Laplac anfom.

More information

cycle that does not cross any edges (including its own), then it has at least

cycle that does not cross any edges (including its own), then it has at least W prov th following thorm: Thorm If a K n is drawn in th plan in such a way that it has a hamiltonian cycl that dos not cross any dgs (including its own, thn it has at last n ( 4 48 π + O(n crossings Th

More information

22/ Breakdown of the Born-Oppenheimer approximation. Selection rules for rotational-vibrational transitions. P, R branches.

22/ Breakdown of the Born-Oppenheimer approximation. Selection rules for rotational-vibrational transitions. P, R branches. Subjct Chmistry Papr No and Titl Modul No and Titl Modul Tag 8/ Physical Spctroscopy / Brakdown of th Born-Oppnhimr approximation. Slction ruls for rotational-vibrational transitions. P, R branchs. CHE_P8_M

More information

PWM-Scheme and Current ripple of Switching Power Amplifiers

PWM-Scheme and Current ripple of Switching Power Amplifiers axon oor PWM-Sch and Currn rippl of Swiching Powr Aplifir Abrac In hi work currn rippl caud by wiching powr aplifir i analyd for h convnional PWM (pulwidh odulaion) ch and hr-lvl PWM-ch. Siplifid odl for

More information

Economics 302 (Sec. 001) Intermediate Macroeconomic Theory and Policy (Spring 2011) 4/25/2011. UW Madison

Economics 302 (Sec. 001) Intermediate Macroeconomic Theory and Policy (Spring 2011) 4/25/2011. UW Madison conomics 302 (Sc. 001) Inrmdia Macroconomic Thory and Policy (Spring 2011) 4/25/2011 Insrucor: Prof. Mnzi Chinn Insrucor: Prof. Mnzi Chinn UW Madison 21 1 Th Mdium Run ε = P * P Thr ar wo ways in which

More information

Introduction to SLE Lecture Notes

Introduction to SLE Lecture Notes Inroducion o SLE Lecure Noe May 13, 16 - The goal of hi ecion i o find a ufficien condiion of λ for he hull K o be generaed by a imple cure. I urn ou if λ 1 < 4 hen K i generaed by a imple curve. We will

More information

Lecture 4: Laplace Transforms

Lecture 4: Laplace Transforms Lur 4: Lapla Transforms Lapla and rlad ransformaions an b usd o solv diffrnial quaion and o rdu priodi nois in signals and imags. Basially, hy onvr h drivaiv opraions ino mulipliaion, diffrnial quaions

More information

Lecture 4: Parsing. Administrivia

Lecture 4: Parsing. Administrivia Adminitrivia Lctur 4: Paring If you do not hav a group, pla pot a rqut on Piazzza ( th Form projct tam... itm. B ur to updat your pot if you find on. W will aign orphan to group randomly in a fw day. Programming

More information