Mixing Real-Time and Non-Real-Time. CSCE 990: Real-Time Systems. Steve Goddard.

Size: px
Start display at page:

Download "Mixing Real-Time and Non-Real-Time. CSCE 990: Real-Time Systems. Steve Goddard."

Transcription

1 CSCE 990: Ral-Tim Sym Mixing Ral-Tim and Non-Ral-Tim hp:// 1 Ral-Tim Sym Mixd Job - 1 Mixing Ral-Tim and Non-Ral-Tim in Prioriy-Drivn Sym (Chapr 7 of Liu) W dicud mixing ral-im and non-ral-im (apriodic) job in cyclic chdul W now addr h am iu in prioriy-drivn ym. W fir conidr wo raighforward chduling algorihm for priodic and apriodic job. W hn loo a a cla of algorihm calld bandwidh-prrving rvr ha chdul apriodic job in a ral-im ym. Ral-Tim Sym Mixd Job - 2 2

2 Priodic and Apriodic Ta (A rviw of h rminology Liu u ) Priodic a: T i i pcifid by (φ i, p i, i, D i ).»p i i h minimum im bwn job rla. Apriodic a: non-ral-im» Rlad a arbirary im.» Ha no dadlin and i i unpcifid. W aum priodic and apriodic a ar indpndn of ach ohr. Corrc and Opimal Schdul in mixd job ym (mor rm ) A corrc chdul nvr rul in a dadlin bing mid by priodic a. A corrc chduling algorihm only produc corrc chdul. An opimal apriodic job chduling algorihm minimiz ihr» h rpon im of h apriodic job a h had of h quu or» h avrag rpon im of all apriodic job. Ral-Tim Sym Mixd Job - 3 Ral-Tim Sym Mixd Job

3 Schduling Mixd Job W aum hr ar para job quu for ral-im (priodic) and non-ral-im (apriodic) job. How do w minimiz rpon im for apriodic job wihou impacing priodic? Priodic Job Apriodic Job Procor Bacground Schduling Priodic job ar chduld uing any prioriy-drivn chduling algorihm. Apriodic ar chduld and xcud in h bacground:» Apriodic job ar xcud only whn hr i no priodic job rady o xcu.» Simpl o implmn and alway produc corrc chdul. Th low prioriy a xcu job from h apriodic job quu.» W can improv rpon im wihou jopardizing dadlin by uing a lac aling algorihm o dlay h xcuion of priodic job a long a poibl. Thi i h am hing w did wih cyclic xcuiv. Howvr, i i vry xpniv (in rm of ovrhad) o implmn lac-aling in prioriy-drivn ym. Ral-Tim Sym Mixd Job - 5 Ral-Tim Sym Mixd Job

4 Simpl Priodic Srvr (Liu call hi a Polling rvr or h Pollr) Priodic job ar chduld uing any prioriy-drivn chduling algorihm. Apriodic ar xcud by a pcial priodic rvr:» Th priodic rvr i a priod a T p =(p, ). i calld h xcuion budg of h rvr. Th raio u = /p i h iz of h rvr.» Supnd a oon a h apriodic quu i mpy or T p ha xcud for im uni (which vr com fir). Thi i calld xhauing i xcuion budg.» Onc upndd, i canno xcu again unil h ar of h nx priod. Tha i, h xcuion budg i rplnihd (r o im uni) a h ar of ach priod. Thu, h ar of ach priod i calld h rplnihmn im for h impl priodic rvr. Priodic Srvr wih RM Schduling Exampl Schdul: Two a, = (3,1), = (10,4), and a priodic rvr T p = (2.5,0.5). Aum an apriodic job J a arriv a = 0.1 wih and xcuion im of a = 0.8. Th priodic rvr canno xcu h job ha arriv a im 0.1 inc i wa upndd a im 0 bcau h apriodic job quu wa mpy. T p Ral-Tim Sym Mixd Job - 7 Ral-Tim Sym Mixd Job

5 Priodic Srvr wih RM Schduling (xampl coninud) Exampl Schdul: Two a, = (3,1), = (10,4), and a priodic rvr T p = (2.5,0.5). Aum an apriodic job J a arriv a = 0.1 wih and xcuion im of a = 0.8. Th priodic rvr xcu job J a unil i xhau i budg. Priodic Srvr wih RM Schduling (xampl concludd) Exampl Schdul: Two a, = (3,1), = (10,4), and a priodic rvr T p = (2.5,0.5). Aum an apriodic job J a arriv a = 0.1 wih and xcuion im of a = 0.8. Th rpon im of h apriodic job J a i 5.2. T p 0.1 T p Ral-Tim Sym Mixd Job - 9 Ral-Tim Sym Mixd Job

6 Improving h Priodic Srvr Th problm wih h priodic rvr i ha i xhau i xcuion budg whnvr h apriodic job quu i mpy.» If an apriodic job arriv ε im uni afr h ar of h priod, i mu wai unil h ar of h nx priod (p - ε im uni) bfor i can bgin xcuion. W would li o prrv h xcuion budg of h polling rvr and u i lar in h priod o horn h rpon im of apriodic job:» Bandwidh-Prrving Srvr do ju hi! Bandwidh-Prrving Srvr Fir om mor rm:» Th priodic rvr i bacloggd whnvr h apriodic job quu i nonmpy or h rvr i xcuing a job.» Th rvr i idl whnvr i i no bacloggd.» Th rvr i ligibl for xcuion whn i i bacloggd and ha an xcuion budg (grar han zro).» Whn h rvr xcu, i conum i xcuion budg a h ra of on im uni pr uni of xcuion.» Dpnding on h yp of priodic rvr, i may alo conum all or a porion of i xcuion budg whn i i idl: h impl priodic rvr conumd all of i xcuion budg whn h rvr wa idl. Ral-Tim Sym Mixd Job - 11 Ral-Tim Sym Mixd Job

7 Bandwidh-Prrving Srvr Bandwidh-prrving rvr diffr in hir rplnihmn im and how hy prrv hir xcuion budg whn idl. W aum h chdulr rac h conumpion of h rvr xcuion budg and upnd h rvr whn h budg i xhaud or h rvr bcom idl. Th chdulr rplnih h rvr xcuion budg a h appropria rplnihmn im, a pcifid by h yp of bandwidh-prrving priodic rvr. Th rvr i only ligibl for xcuion whn i i bacloggd and i xcuion budg i non-zro. Four Bandwidh-Prrving Srvr Dfrrabl Srvr (1987)» Old and impl of h bandwidh-prrving rvr.» Saic-prioriy algorihm by Lhoczy, Sha, and Sronidr.» Dadlin-drivn algorihm by Ghazali and Bar (1995). Sporadic Srvr (1989)» Saic-prioriy algorihm by Sprun, Sha, and Lhoczy.» Dadlin-drivn algorihm by Ghazali and Bar (1995). Toal Bandwidh Srvr (1994, 1995)» Dadlin-drivn algorihm by Spuri and Buazzo. Conan Uilizaion Srvr (1997)» Dadlin-drivn algorihm by Dng, Liu, and Sun. Ral-Tim Sym Mixd Job - 13 Ral-Tim Sym Mixd Job

8 Dfrrabl Srvr (DS) L h a T DS = (p, ) b a dfrrabl rvr. Conumpion Rul:» Th xcuion budg i conumd a h ra of on im uni pr uni of xcuion. Rplnihmn Rul:» Th xcuion budg i o a im inan p, for 0.» No: Unud xcuion budg canno b carrid ovr o h nx priod. Th chdulr ra h dfrrabl rvr a a priodic a ha may upnd ilf during xcuion (i.., whn h apriodic quu i mpy). Ral-Tim Sym Mixd Job - 15 DS wih RM Schduling Exampl Schdul: Sam wo a, = (3,1), = (10,4), and dfrrabl rvr T DS = (2.5,0.5). Aum an apriodic job J a arriv a im = 0.1 wih and xcuion im of a = 0.8 (again). 0.5 T DS Budg T DS Th DS can xcu h job ha arriv a im 0.1 inc i prrvd i budg whn h apriodic job quu wa mpy Ral-Tim Sym Mixd Job

9 DS wih RM Schduling (xampl concludd) Exampl Schdul: Sam wo a, = (3,1), = (10,4), and dfrrabl rvr T DS = (2.5,0.5). Aum an apriodic job J a arriv a im = 0.1 wih and xcuion im of a = 0.8 (again). Th rpon im of h apriodic job J a i 2.7 I wa 5.2 wih h impl priodic rvr. 0.5 T DS Budg DS wih RM Schduling Anohr Exampl: Two a, = (2,3.5,1.5), = (6.5,0.5), and a dfrrabl rvr T DS = (3,1). Aum an apriodic job J a arriv a im = 2.8 wih and xcuion im of a = 1.7. Th rpon im of h apriodic job J a i 3.7. T DS Budg T DS T DS Ral-Tim Sym Mixd Job - 17 Ral-Tim Sym Mixd Job

10 DS wih EDF Schduling Sam Ta S: Two a, = (2,3.5,1.5), = (6.5,0.5), and a dfrrabl rvr T DS = (3,1). Aum an apriodic job J a arriv a im = 2.8 wih and xcuion im of a = 1.7. Th rpon im of h apriodic job J a i ill 3.7. T DS Budg DS wih EDF and Bacground Schduling Sam Ta S: Two a, = (2,3.5,1.5), = (6.5,0.5), and T DS = (3,1) wih bacground chduling. Aum an apriodic job J a arriv a im = 2.8 wih and xcuion im of a = 1.7. T DS Budg Th DS xhau i budg a im T DS T DS Ral-Tim Sym Mixd Job - 19 Ral-Tim Sym Mixd Job

11 DS wih EDF and Bacground Schduling (xampl concludd) Sam Ta S: Two a, = (2,3.5,1.5), = (6.5,0.5), and T DS = (3,1) wih bacground chduling. Aum an apriodic job J a arriv a im = 2.8 wih and xcuion im of a = 1.7. Howvr, uing bacground chduling, h rpon im of h apriodic job J a i rducd o 2.4. T DS Budg T DS DS wih Bacground Schduling W can alo combin bacground chduling of h dfrrabl rvr wih RM.» For h dfrrabl rvr xampl a, h rpon im don chang. Why? Why complica hing by adding bacground chduling of h dfrrabl rvr? Why no ju giv h dfrrabl chdulr a largr xcuion budg? S h nx lid! Ral-Tim Sym Mixd Job - 21 Ral-Tim Sym Mixd Job

12 DS wih RM Schduling Rviid Modifid Exampl: Sam wo a, = (2,3.5,1.5), = (6.5,0.5), and dfrrabl rvr T DS = (3,1). Aum an apriodic job J a arriv a im 0 = 65 wih and xcuion im of a = 3. A largr xcuion budg for T DS would rul in miing a dadlin. Tim 0 = 65 i a criical inan for hi a. T DS Budg T DS 0 Schdulabiliy and DS Thr ar no nown ncary and ufficin chdulabiliy condiion for a ha conain a DS wih arbirary prioriy. W will why horly. Howvr, w can xnd TDA and Gnralizd TDA o yild ncary and ufficin chdulabiliy whn h DS i h high prioriy a in a priodic (ralworld poradic) a. ju ma i! Ral-Tim Sym Mixd Job - 23 W ar wih a criical inan lmma for ym wih a DS. Ral-Tim Sym Mixd Job

13 Criical Inan in Fixd-Prioriy Sym wih a Dfrrabl Srvr Lmma 7-1: [Lhoczy, Sha, and Sronidr] In a fixd-prioriy ym in which h rlaiv dadlin of vry indpndn, prmpabl priodic a i no grar han i priod and hr i a dfrrabl rvr (p, ) wih h high prioriy among all a, a criical inan of vry priodic a T i occur a im 0 whn all of h following ar ru. 1. On of i job J i,c i rlad a A job in vry highr-prioriy a i rla a h am im. 3. Th budg of h rvr i a 0, on or mor apriodic job ar rlad a 0, and hy p h rvr bacloggd hrafr. 4. Th nx rplnihmn im of h rvr i 0. Dicuion of Lmma 7.1 Th Proof of Lmma 7.1 i a raighforward xnion of h proof w gav for Thorm 6.5. Convinc yourlf of hi! No: W ar no aying ha T DS,,, T i will all ncarily rla job a h am im, bu if hi do happn, w ar claiming ha h im of rla will b a criical inan for T i. W can u h criical inan 0, dfind by Lmma 7.1, o driv ncary and ufficin condiion for h chdulabiliy of a a whn h DS ha high prioriy. Fir, l a a loo a a procor dmand anomaly crad by h bandwidh prrving DS. Ral-Tim Sym Mixd Job - 25 Ral-Tim Sym Mixd Job

14 Dicuion of Lmma 7.1 (con.) All four condiion of Lmma 7.1 hold in h la xampl: T DS Budg T DS 0 ju ma i! 0 = Noic ha h procor dmand crad by h DS in an inrval from [65,68.5] i wic wha i would b if i wr an ordinary priodic a! Thi i bcau w prrv h bandwidh of h DS. TDA wih a DS Obrvaion: Ca (1) and (2) of Lmma 7.1 dfin a criical inan for any fixd-prioriy a. Whn ca (3) and (4) of Lmma 7.1 ar ru, h procor dmand crad by h DS in an inrval of lngh can b a mo ( ) p Thu, TDA and Gnralizd TDA wih blocing rm can b xndd o ym wih a DS ha xcu a h high prioriy. Th TDA funcion bcom: i 1 wi() = i bi p 1 p = for 0< min(d,p ) i i Ral-Tim Sym Mixd Job - 27 Ral-Tim Sym Mixd Job

15 DS wih High Fixd Prioriy Whn h DS i h high prioriy proc in a fixd-prioriy ym:» I may b abl o xcu an xra im uni mor han a normal priodic a in h faibl inrval of a T i, a xprd in Equaion ( ) and h modifid w i (). Thu, h TDA mhod, uing h modifid w i () provid a ncary and ufficin condiion for fixd-prioriy ym wih on DS xcuing a h high prioriy. DS wih Arbirary Fixd Prioriy Whn h DS i no h high prioriy proc:» I may no b abl o xcu h xra im uni xprd in Equaion ( ) and h modifid w i ().» Howvr, h im-dmand funcion of a a T i wih lowr prioriy han an arbirary-prioriy DS i boundd from abov by h modifid w i (). Thu, h TDA mhod provid a ufficin (bu no ncary) condiion for fixd-prioriy ym wih on arbirary-prioriy DS. Ral-Tim Sym Mixd Job - 29 Ral-Tim Sym Mixd Job

16 Mulipl Arbirary Fixd-Prioriy DS W may wan o diffrnia apriodic job by xcuing hm a diffrn priorii. To do hi, w u mulipl DS wih diffrn priorii and a paramr (p,,, ). Th TDA and Gnralizd TDA wih blocing rm can b furhr xndd o h ym. Spcifically, h im dmand funcion w i () of a priodic a T i wih a lowr prioriy han m DS bcom: m i 1 w () b, i = i i 1, 1 p, 1 p = = for 0< min(d,p ) i i Schdulabl Uilizaion wih a Fixd-Prioriy DS W now loo a uilizaion bad chduling for fixd-prioriy ym wih on DS. Thr ar no nown ncary and ufficin chdulabl uilizaion condiion for fixdprioriy ym wih a DS. Howvr, hr do xi a ufficin condiion for RM whn h DS ha h hor priod plu om ohr condiion... Ral-Tim Sym Mixd Job - 31 Ral-Tim Sym Mixd Job

17 RM Schdulabl Uilizaion wih a DS Thorm 7.2 Conidr a ym of n indpndn, prmpabl priodic a who priod aify h inqualii p < p 1 < p 2 < < p n < 2p and p n > p and who rlaiv dadlin ar qual o hir rpciv priod. Thi ym i chdulabl ra monoonically wih a dfrrabl rvr (p, ) if hir oal uilizaion i l han or qual o U RM/DS u 2 (n) = (n1) u 1 1/(n1) whr u i h uilizaion /p of h rvr. 1 Proof: Similar o Thm 6.11 and lf a an xrci! No ha hi i only a ufficin chdulabiliy. Ral-Tim Sym Mixd Job - 33 RM Schdulabl Uilizaion wih a DS and Arbirary Priod Obrv: If p i < p, hn a T i i unaffcd by h DS. If p i > p, hn i may b blocd an xra im uni in a faibl inrval. Thorm: Conidr a ym of n indpndn, prmpabl priodic a who rlaiv dadlin ar qual o hir rpciv priod. Ta T i wih p i > p i chdulabl ra monoonically wih a dfrrabl rvr (p, ) if bi Ui u URM (i 1) p i whr u i h uilizaion /p of h rvr, U i i h oal uilizaion of h a...t i, and b i i h blocing im ncounrd by a T i from lowr prioriy a. Ral-Tim Sym Mixd Job

18 Schdulabiliy of Dadlin-Drivn Sym wih a DS In fixd-prioriy ym, h DS bhav li a priodic a (p, ) xcp ha i could xcu an xra amoun of im (a mo im uni) in h faibl inrval of any lowr prioriy job. In a dadlin-drivn ym, h DS can xcu a mo im uni in h faibl inrval of any job (undr crain condiion). W prn a ufficin (bu no ncary) chdulabiliy condiion for h EDF algorihm. Fir, a bound on h procor dmand crad by a DS. Bounding h Dmand of a DS in an EDF Schduld Sym An inrval (a, b] i po-idl if ihr a = 0, or if no job wih a dadlin in h inrval (a1, b] xcu in h inrval (a 1, a].» Th implicaion of hi dfiniion i ha all job wih dadlin in (a1, b] ar idl during h inrval (a 1, a] in h n ha all job rlad bfor im a wih dadlin in (a1, b] hav compld xcuion bfor im a (i.., ihr h procor i idl in (a 1, a] or a job wih dadlin a im a or afr im b xcu in (a 1, a]). Th following lmma giv u a impl uppr bound for h procor dmand in a po-idl inrval of lngh L. Ral-Tim Sym Mixd Job - 35 Ral-Tim Sym Mixd Job

19 Maximum Dmand of a DS Lmma: Th maximum dmand w DS (L) of a DS= (p, ) during a po-idl inrval of lngh L in an EDF chduld ym of n indpndn, prmpabl priodic a i boundd uch ha w DS (L) u (L p ) whr u i h uilizaion /p of h rvr. Proof: L ( -1, ] b a po-idl inrval. Th maximum dmand for DS occur whn 1. A im -1, i budg i qual o and h rvr dadlin (and budg rplnihd im) i On or mor apriodic job arriv a -1 and h DS i bacloggd unil a la im. 3. Th rvr dadlin -1 i arlir han h dadlin of all h priodic job ha ar rady for xcuion in h inrval ( -1, -1 ]. Proof Coninud Maximum dmand crad by DS in a po-idl inrval undr EDF: -1 p Th DS do no xcu hr -1 inc i dadlin i afr. Obrv ha undr h condiion, h maximum dmand crad by DS in h po-idl inrval ( -1,] i a mo ( 1 ) = p p 1 Ral-Tim Sym Mixd Job - 37 Ral-Tim Sym Mixd Job

20 39 Ral-Tim Sym Mixd Job - 39 Proof Coninud Thu, DS p p ) ( w 1 1 u ) ( u p p p p = = )) ( (p u 1 = Sinc ( -1, ] i a po-idl inrval of lngh L = -1, w DS (L) u (L p ). ) p ( u 1 = 40 Ral-Tim Sym Mixd Job - 40 Schdulabiliy wih a DS Combining hi rul wih Thorm 6.2, w g h following horm from Ghazali and Bar: Thorm 7.3: A priodic a T i in a ym of n indpndn, prmpabl priodic a i chdulabl wih a DS= (p, ) according o h EDF algorihm if whr u i h uilizaion /p of h rvr. 1 D p 1 u ) p, min(d i n 1 = (7.5)

21 41 Ral-Tim Sym Mixd Job - 41 Proof of Thorm 7.3 Suppo Equaion (7.5) hold for a T i bu a dadlin i mid. L d b h arli poin in im a which a dadlin i mid and -1 b h ar of la po-idl inrval ha includ im d. Thu, a dadlin i mid in h po-idl inrval ( -1, d ]. From Thorm 6.2 and h prviou lmma, h dmand in hi inrval i a mo Bcau a dadlin i mid a d, dmand ovr ( -1, d ] xcd d -1. Thu, w hav ( ) i d n 1 i d i d p u ) p, min(d < = ( ) i d n 1 i d p u ),p min(d - = ( ) i d n 1 i d p u ) p, min(d = 42 Ral-Tim Sym Mixd Job - 42 Dividing boh id by ( d -1 ), w g Sinc D i ( d -1 ). Thi conradic our aumpion ha Equaion (7.5) hold. Proof Coninud ( ) i d i d n 1 p u ),p min(d 1 < = = = i d n 1 p 1 u ),p min(d = i n 1 D p 1 u ),p min(d

22 Mulipl DS W may wan o diffrnia apriodic job by xcuing hm a diffrn priorii. To do hi in a dadlin-drivn ym, w (again) u mulipl DS wih diffrn priorii and a paramr (p,,, ). Corollary: A priodic a T i in a ym of n indpndn, prmpabl priodic a i chdulabl wih m a DS= (p,,, ) according o h EDF algorihm if n = 1 min(d, p ) m u, = 1 p 1 whr u, i h uilizaion, /p, of rvr. Th proof i lf a an xrci., D i, 1 DS Punch Lin In boh fixd-prioriy and dadlin-drivn ym, w ha h DS bhav li a priodic a wih paramr (p, ) xcp i may xcu an addiional amoun of im in h faibl inrval of any lowr prioriy job. Thi i bcau, h bandwidh-prrving condiion rul in a chduling algorihm ha i non-wor-conrving wih rpc o a normal priodic a. Ral-Tim Sym Mixd Job - 43 Ral-Tim Sym Mixd Job

23 Sporadic Srvr Sporadic Srvr (SS) wr dignd o ovrcom h addiional blocing im a DS may impo on lowrprioriy job. All poradic rvr ar bandwidh prrving, bu h conumpion and rplnihmn rul nur ha a SS, pcifid a T S = (p, ) nvr cra mor dmand han a priodic ( ral-world poradic) a wih h am a paramr. Thu, chdulabiliy of a ym wih a SS i drmind xacly a a ym wihou a SS. Sporadic Srvr (SS) W will loo a wo SS for fixd-prioriy ym and on for dadlin-drivn ym. Thy diffr in complxiy (and hu ovrhad) du o diffrn conumpion and rplnihmn rul. W aum, a wih a DS, ha h chdulr monior h xcuion budg of h SS. Howvr, in all ca chdulabiliy condiion rmain unchangd from an quivaln ym wihou an SS. Ral-Tim Sym Mixd Job - 45 Ral-Tim Sym Mixd Job

24 Simpl SS in a Fixd-Prioriy Sym Fir om (nw) rm:» L T b a of n indpndn, prmpabl priodic a.» Th (arbirary) prioriy of h rvr T S in T i π.» T H i h ub of a ha hav highr prioriy han T S.» T (T H ) i idl whn no job in T (T H ) i ligibl for xcuion. T (T H ) i buy whn i i no idl.» L BEGIN b h inan in im whn T H raniion from idl o buy, and END b h inan in im whn i bcom idl again (or infiniy if T H i ill buy). Th inrval (BEGIN, END] i a buy inrval.» r i h la rplnihmn im of T S.» r i h nx chduld rplnihmn im of T S.» i h ffciv rplnihmn im of T S.» f i h fir inan afr r a which T S bgin o xcu. Simpl SS in a Fixd-Prioriy Sym Conumpion Rul: a any im afr r, T S conum i budg a h ra of on im uni pr uni of xcuion unil h budg i xhaud whn ihr C1 T S i xcuing, or C2 T S ha xcud inc r and END <. (END < T H i currnly idl.) Rplnihmn Rul: r i o h currn im whnvr h xcuion budg i rplnihd wih im uni by h chdulr. R1 Iniially, r = = 0 and r = p (auming h ym ar a im 0). R2 A im f, if END = f, = max( r, BEGIN). If END < f, = f. Th nx chduld rplnihmn im i r = p. R3 Th nx rplnihmn occur a r xcp (a) If r < f, hn h budg i rplnihd a oon a i i xhaud. (b) If T i idl bfor r and hn bgin a nw buy inrval a b, hn h budg i rplnihd a min( r, b ). Ral-Tim Sym Mixd Job - 47 Ral-Tim Sym Mixd Job

25 Simpl SS wih RM Schduling Exampl Schdul: = (3,0.5), = (4,1), T 3 = (19,4.5), and T S = (5,1.5). Aum apriodic job J a1 arriv a 1 = 3 wih a1 = 1, J a2 arriv a 2 = 7 wih a2 = 2, and J a3 arriv a 3 = 15.5 wih a3 = 2. T S Budg Simpl SS wih RM Schduling (xampl coninud) Exampl Schdul: = (3,0.5), = (4,1), T 3 = (19,4.5), and T S = (5,1.5). Aum apriodic job J a1 arriv a 1 = 3 wih a1 = 1, J a2 arriv a 2 = 7 wih a2 = 2, and J a3 arriv a 3 = 15.5 wih a3 = 2. T S Budg J a1 J a2 J a1 J a2 T S T S r r = p T 3 r = r = p T 3 Ral-Tim Sym Mixd Job - 49 Ral-Tim Sym Mixd Job

26 Simpl SS wih RM Schduling (xampl coninud) Exampl Schdul: = (3,0.5), = (4,1), T 3 = (19,4.5), and T S = (5,1.5). Aum apriodic job J a1 arriv a 1 = 3 wih a1 = 1, J a2 arriv a 2 = 7 wih a2 = 2, and J a3 arriv a 3 = 15.5 wih a3 = 2. T S Budg Simpl SS wih RM Schduling (xampl coninud) Exampl Schdul: = (3,0.5), = (4,1), T 3 = (19,4.5), and T S = (5,1.5). Aum apriodic job J a1 arriv a 1 = 3 wih a1 = 1, J a2 arriv a 2 = 7 wih a2 = 2, and J a3 arriv a 3 = 15.5 wih a3 = 2. T S Budg R3b J a1 J a2 J a1 J a2 J a3 T S T S r = r = p T 3 r = r = p T 3 Ral-Tim Sym Mixd Job - 51 Ral-Tim Sym Mixd Job

27 Simpl SS wih RM Schduling (xampl concludd) Exampl Schdul: = (3,0.5), = (4,1), T 3 = (19,4.5), and T S = (5,1.5). Aum apriodic job J a1 arriv a 1 = 3 wih a1 = 1, J a2 arriv a 2 = 7 wih a2 = 2, and J a3 arriv a 3 = 15.5 wih a3 = 2. T S Budg T S J a1 J a2 R3b r = T 3 J a3 R3b r = p Corrcn of Simpl SS Th Simpl SS bhav xacly a a ral-world poradic a xcp whn Rul R3b i applid. Rul R3b a advanag of h chdulabiliy for a fixd-prioriy priodic ( ral-world poradic) a T.» W now ha if h ym T raniion from an idl a o a buy inrval, all job will ma hir dadlin--vn if hy ar all rlad a h am inan (a h ar of h nw buy inrval).» Thu Rul R3b rplnih h Simpl SS a hi inan inc i will no affc chdulabiliy! Ral-Tim Sym Mixd Job - 53 Ral-Tim Sym Mixd Job

28 Enhancmn o h Simpl SS W can improv rpon im of apriodic job by combining h Bacground Srvr wih h Simpl SS o cra a Sporadic/Bacground Srvr (SBS). Conumpion Rul ar h am a for h Simpl SS xcp whn h a ym T i idl.» A long a T i idl, h xcuion budg ay a. Rplnihmn Rul ar h am a for h Simpl SS xcp Rul R3b.» Th SBS budg i rplnihd a h bginning of ach idl inrval of T. r i a h nd of h idl inrval. Ohr Enhancmn o h Simpl SS W can alo improv rpon im of apriodic job by rplnihing h rvr xcuion budg in mall chun during i priod rahr han wih a ingl rplnihmn of im uni a h nd.» Thi add o h complxiy of h conumpion and rplnihmn rul, of cour. Sprun, Sha, and Lhoczy propod uch a rvr:» Th SpSL poradic rvr prrv unconumd chun of budg whnvr poibl and rplnih h conumd chun a oon a poibl.» Thu, i mula vral priodic a wih paramr (p,, ) uch ha Σ, =. Ral-Tim Sym Mixd Job - 55 Ral-Tim Sym Mixd Job

29 SpSL in a Fixd-Prioriy Sym Braing of Excuion Budg ino Chun: B1 Iniially, h budg = and r = 0. Thr i only on chun of budg. B2 Whnvr h rvr i upndd, h currn budg, if no xhaud, i bron up ino wo chun. Th fir chun i h porion ha wa conumd during h la rvr buy inrval, 1. I nx rplnihmn im, r1, i h am a h original chun : r. Th rplnihmn amoun will b 1. Th cond chun i h rmaining budg, 2. I la rplnihmn im i naivly o r2 =, which will b r if hi budg i ud bfor r1. Ohrwi, h wo chun will b combind ino on budg a im r1. Conumpion Rul: C1 Th rvr conum budg (whn hr i mor han on budg chun) in h ordr of hir la rplnihmn im. Tha i, h budg wih mall r i conumd fir. C2 Th rvr conum i budg only whn i xcu. Rplnihmn Rul: Th nx rplnihmn im of ach chun of budg i according o rul R2 and R3 of h impl SS. Th budg chun ar combind whnvr hy ar rplnihd a h am im (.g. R3b). Ral-Tim Sym Mixd Job - 57 SpSL Rul R2 and R3 Rplnihmn rul R2 and R3 from h Simpl SS: R2 A im f, if END = f, = max( r, BEGIN). If END < f, = f. Th nx chduld rplnihmn im i r = p. R3 Th nx rplnihmn occur a r xcp (a) If r < f, hn h budg i rplnihd a oon a i i xhaud. (b) If T i idl bfor r and hn bgin a nw buy inrval a b, hn h budg i rplnihd a min( r, b ). Noic ha whn R3b appli, all budg chun will b combind ino a ingl budg again. Ral-Tim Sym Mixd Job

30 SpSL wih RM Schduling Sam Ta S: = (3,0.5), = (4,1), T 3 = (19,4.5), and T SpSL = (5,1.5). Aum apriodic job J a1 arriv a 1 = 3 wih a1 = 1, J a2 arriv a 2 = 7 wih a2 = 2, and J a3 arriv a 3 = 15.5 wih a3 = 2. Plu job J a4 arriv a 4 = 6.5 wih a4 = 0.5 T SpSL Budg SpSL wih RM Schduling (xampl coninud) Sam Ta S: = (3,0.5), = (4,1), T 3 = (19,4.5), and T SpSL = (5,1.5). Aum apriodic job J a1 arriv a 1 = 3 wih a1 = 1, J a2 arriv a 2 = 7 wih a2 = 2, and J a3 arriv a 3 = 15.5 wih a3 = 2. Plu job J a4 arriv a 4 = 6.5 wih a4 = 0.5 T SpSL Budg J a1 J a1 J a4 T SpSL r T SpSL 2 r1 r2 r T 3 r 1 T 3 Ral-Tim Sym Mixd Job - 59 Ral-Tim Sym Mixd Job

31 Sam Ta S: = (3,0.5), = (4,1), T 3 = (19,4.5), and T SpSL = (5,1.5). Aum apriodic job J a1 arriv a 1 = 3 wih a1 = 1, J a2 arriv a 2 = 7 wih a2 = 2, and J a3 arriv a 3 = 15.5 wih a3 = 2. Plu job J a4 arriv a 4 = 6.5 wih a4 = 0.5 T SpSL Budg SpSL wih RM Schduling (xampl coninud) Sam Ta S: = (3,0.5), = (4,1), T 3 = (19,4.5), and T SpSL = (5,1.5). Aum apriodic job J a1 arriv a 1 = 3 wih a1 = 1, J a2 arriv a 2 = 7 wih a2 = 2, and J a3 arriv a 3 = 15.5 wih a3 = 2. Plu job J a4 arriv a 4 = 6.5 wih a4 = 0.5 T SpSL Budg SpSL wih RM Schduling (xampl coninud) J a1 J a4 J a2 J a1 J a4 J a2 T SpSL 2 r1 = 1 r2 r1 T SpSL r1 = 1 r2 = 2 r1 r2 T 3 T 3 Ral-Tim Sym Mixd Job - 61 Ral-Tim Sym Mixd Job

32 Sam Ta S: = (3,0.5), = (4,1), T 3 = (19,4.5), and T SpSL = (5,1.5). Aum apriodic job J a1 arriv a 1 = 3 wih a1 = 1, J a2 arriv a 2 = 7 wih a2 = 2, and J a3 arriv a 3 = 15.5 wih a3 = 2. Plu job J a4 arriv a 4 = 6.5 wih a4 = 0.5 T SpSL Budg SpSL wih RM Schduling (xampl coninud) SpSL wih RM Schduling (xampl coninud) Sam Ta S: = (3,0.5), = (4,1), T 3 = (19,4.5), and T SpSL = (5,1.5). Aum apriodic job J a1 arriv a 1 = 3 wih a1 = 1, J a2 arriv a 2 = 7 wih a2 = 2, and J a3 arriv a 3 = 15.5 wih a3 = 2. Plu job J a4 arriv a 4 = 6.5 wih a4 = 0.5 R3b T SpSL Budg J a1 J a4 J a2 J a1 J a4 J a2 T SpSL No: Liu r2 = 2 r1 = 1 r2 r1 Exampl i miing hit 3 xcuion! T SpSL No: Liu r = r Exampl i miing hit 3 xcuion! Ral-Tim Sym Mixd Job - 63 Ral-Tim Sym Mixd Job

33 SpSL wih RM Schduling (xampl coninud) Sam Ta S: = (3,0.5), = (4,1), T 3 = (19,4.5), and T SpSL = (5,1.5). Aum apriodic job J a1 arriv a 1 = 3 wih a1 = 1, J a2 arriv a 2 = 7 wih a2 = 2, and J a3 arriv a 3 = 15.5 wih a3 = 2. Plu job J a4 arriv a 4 = 6.5 wih a4 = 0.5 R3b T SpSL Budg SpSL wih RM Schduling (xampl concludd) Sam Ta S: = (3,0.5), = (4,1), T 3 = (19,4.5), and T SpSL = (5,1.5). Aum apriodic job J a1 arriv a 1 = 3 wih a1 = 1, J a2 arriv a 2 = 7 wih a2 = 2, and J a3 arriv a 3 = 15.5 wih a3 = 2. Plu job J a4 arriv a 4 = 6.5 wih a4 = 0.5 R3b R3b R3b T SpSL Budg J a1 J a4 J a2 J a3 J a1 J a4 J a2 J a3 T SpSL r = r T SpSL r = r T 3 T 3 Ral-Tim Sym Mixd Job - 65 Ral-Tim Sym Mixd Job

34 Enhancing h SpSL Srvr W can furhr improv rpon im of apriodic job by combining h SpSL wih h Bacground Srvr o cra a SpSL/Bacground Srvr.» Try o wri prcily h conumpion and rplnihmn rul for hi rvr! W can alo nhanc h SpSL by uing a chniqu calld Prioriy Exchang.» Whn h rvr ha no wor, i rad im wih an xcuing lowr prioriy a.» S Liu for dail. Simpl SS in Dadlin-Drivn Sym L T S =(p, ) b a impl poradic rvr (SS) in a a ym T chduld wih EDF. Th rvr i rady for xcuion only whn i i bacloggd and i dadlin d i.» Thu, h rvr i upndd whnvr i dadlin i undfind or whn h rvr i idl. Conumpion Rul: T S conum i budg a h ra of on im uni pr uni of xcuion unil h budg i xhaud whn ihr C1 T S i xcuing, or C2 d i dfind, h rvr i idl, and hr i no job wih a dadlin bfor d rady for xcuion. Ral-Tim Sym Mixd Job - 67 Ral-Tim Sym Mixd Job

35 Simpl SS in Dadlin-Drivn Sym Rplnihmn Rul: r i o h currn im whnvr h xcuion budg i rplnihd wih im uni by h chdulr. R1 Iniially, r = 0, and d ar undfind. R2 Whnvr i dfind, d = p, and r = p. Whn i undfind, i drmind (dfind) a follow: (a) A im whn an apriodic job arriv an h rvr i idl, h valu of i drmind bad on h hiory of h ym bfor a follow: i. If only job wih dadlin arlir han r p hav xcud hroughou h inrval ( r, ), = r. ii. If a job wih a dadlin afr r p ha xcud in h inrval ( r,), =. (b) A rplnihmn im r, i. If h rvr i bacloggd, = r. ii. If h rvr i idl, and d bcom undfind. R3 Th nx rplnihmn occur a r xcp (a) If r < (from R2a), h budg i rplnihd a oon a i i xhaud. (b) Th budg i rplnihd a h nd of ach idl inrval of T. Ral-Tim Sym Mixd Job - 69 Simpl SS wih EDF Schduling Sam Ta S: = (3,0.5), = (4,1), T 3 = (19,4.5), and T S = (5,1.5). Aum apriodic job J a1 arriv a 1 = 3 wih a1 = 1, J a2 arriv a 2 = 7 wih a2 = 2, and J a3 arriv a 3 = 15.5 wih a3 = 2. T S Budg J a1 arriv a = 3 T S = r r d = p T 3 Ral-Tim Sym Mixd Job

36 T 3 T 3 Simpl SS wih EDF Schduling Sam Ta S: = (3,0.5), = (4,1), T 3 = (19,4.5), and T S = (5,1.5). Aum apriodic job J a1 arriv a 1 = 3 wih a1 = 1, J a2 arriv a 2 = 7 wih a2 = 2, and J a3 arriv a 3 = 15.5 wih a3 = 2. T S Budg T S = r r d = p Simpl SS wih EDF Schduling Sam Ta S: = (3,0.5), = (4,1), T 3 = (19,4.5), and T S = (5,1.5). Aum apriodic job J a1 arriv a 1 = 3 wih a1 = 1, J a2 arriv a 2 = 7 wih a2 = 2, and J a3 arriv a 3 = 15.5 wih a3 = 2. T S Budg J a2 arriv a = 7 r d = p T S r Ral-Tim Sym Mixd Job - 71 Ral-Tim Sym Mixd Job

37 T 3 T 3 Simpl SS wih EDF Schduling Sam Ta S: = (3,0.5), = (4,1), T 3 = (19,4.5), and T S = (5,1.5). Aum apriodic job J a1 arriv a 1 = 3 wih a1 = 1, J a2 arriv a 2 = 7 wih a2 = 2, and J a3 arriv a 3 = 15.5 wih a3 = 2. T S Budg r d = p T S r Simpl SS wih EDF Schduling Sam Ta S: = (3,0.5), = (4,1), T 3 = (19,4.5), and T S = (5,1.5). Aum apriodic job J a1 arriv a 1 = 3 wih a1 = 1, J a2 arriv a 2 = 7 wih a2 = 2, and J a3 arriv a 3 = 15.5 wih a3 = 2. R3b T S Budg J a3 arriv a = 15.5 r d = p T S r Ral-Tim Sym Mixd Job - 73 Ral-Tim Sym Mixd Job

38 Simpl SS wih EDF Schduling Sam Ta S: = (3,0.5), = (4,1), T 3 = (19,4.5), and T S = (5,1.5). Aum apriodic job J a1 arriv a 1 = 3 wih a1 = 1, J a2 arriv a 2 = 7 wih a2 = 2, and J a3 arriv a 3 = 15.5 wih a3 = 2. R3b R3b R3b T S Budg r d T S r T 3 Enhancing h Simpl SS Undr EDF W can improv rpon im of apriodic job by combining h Bacground Srvr wih h Simpl SS o cra a Sporadic/Bacground Srvr (SBS) ha xcu undr EDF.» Try o wri prcily h conumpion and rplnihmn rul for hi rvr! W can alo nhanc h Simpl SS by rplnihing h budg in chun a h SpSL rvr did.» Such a rvr wa propod by Ghazali and Bar.» I rul ar dfind in Prob 7.13 of Liu x. Ral-Tim Sym Mixd Job - 75 Ral-Tim Sym Mixd Job

39 Apriodic Job Srvr for Dadlin-Drivn Sym Th Toal Bandwidh Srvr (TBS) wa crad by Spuri and Buazzo (RTSS 94) o chdul» apriodic a who arrival im wa unnown bu» who wor-ca xcuion im (wc) wa nown.» A rivial admiion conrol algorihm ud wih h TBS can alo chdul poradic job (apriodic job who wc and dadlin i nown). Th conan uilizaion rvr wa crad by Dng, Liu, and Sun (Euromicro Worhop 97) o chdul» apriodic a who arrival im wa unnown bu» who wc and dadlin wa nown.» Howvr, hy alo wand o chdul apriodic job wih no dadlin and who wc wa unnown.» Thi rvr i almo h am a h TBS. Apriodic Job Srvr for Dadlin-Drivn Sym Liu prnaion of h conan uilizaion rvr and h TBS i poorly moivad and narly uninlligibl. You hould rad h papr, hy ma mor n han h marial in h boo. W will fir covr h TBS and hn h conan uilizaion rvr inc i may b air o undrand h valu of h conan uilizaion rvr whn hy ar prnd in hi ordr. Ral-Tim Sym Mixd Job - 77 Ral-Tim Sym Mixd Job

40 Toal Bandwidh Srvr (TBS) On way o rduc h rpon im of apriodic job who wc i nown in a dadlin-drivn ym i o» alloca a fixd (maximum) prcnag, U S, of h procor o h rv apriodic job, and» ma ur h apriodic load nvr xcd hi maximum uilizaion valu.» Whn an apriodic job com in, aign i a dadlin uch ha h dmand crad by all of h apriodic job in any faibl inrval nvr xcd h maximum uilizaion allocad o apriodic job. Thi approach i h main ida bhind h TBS. No: W u U S o dno h rvr iz (a Spuri and Buazzo do) rahr han a Liu do. u ~ TBS in Dadlin-Drivn Sym L TB b a TBS of iz U S in a a ym T chduld wih EDF. Thu, h rvr i allocad U S prcn of h oal procor bandwidh. Th rvr i rady for xcuion only whn i i bacloggd.» In ohr word: h rvr i only upndd whn i i idl. Conumpion Rul: Whn xcuing, TB conum i budg a h ra of on im uni pr uni of xcuion unil h budg i xhaud. Rplnihmn Rul: R1 Iniially, h xcuion budg = 0 and h rvr dadlin d = 0. R2 A im whn apriodic job J i wih xcuion im i arriv and h rvr i idl, d = max(d, ) i /U S and = i. If h rvr i bacloggd, no nohing. R3 Whn h rvr compl h currnly xcuing apriodic job, J i, (a) If h rvr i bacloggd, upda h rvr dadlin and budg: d = d i1 /U S and = i1. (b) If h rvr i idl, do nohing. Ral-Tim Sym Mixd Job - 79 Ral-Tim Sym Mixd Job

41 T 3 T 3 J a1 arriv a = 3 TB TBS wih EDF Schduling Sam Ta S: = (3,0.5), = (4,1), T 3 = (19,4.5), bu U S = Aum apriodic job J a1 arriv a 1 = 3 wih a1 = 1, J a2 arriv a 2 = 6.9 wih a2 = 2, and J a3 arriv a 3 = 14 wih a3 = TB Budg = 1 d = max(0,3) 1/0.25 = 7 J a2 arriv a = 6.9 TB TBS wih EDF Schduling Sam Ta S: = (3,0.5), = (4,1), T 3 = (19,4.5), bu U S = Aum apriodic job J a1 arriv a 1 = 3 wih a1 = 1, J a2 arriv a 2 = 6.9 wih a2 = 2, and J a3 arriv a 3 = 14 wih a3 = TB Budg = 2 d = max(7,6.9) 2/0.25 = 15 Ral-Tim Sym Mixd Job - 81 Ral-Tim Sym Mixd Job

42 T 3 T 3 J a3 arriv a = 14 TB TBS wih EDF Schduling Sam Ta S: = (3,0.5), = (4,1), T 3 = (19,4.5), bu U S = Aum apriodic job J a1 arriv a 1 = 3 wih a1 = 1, J a2 arriv a 2 = 6.9 wih a2 = 2, and J a3 arriv a 3 = 14 wih a3 = TB Budg = 2 d = max(15,14)8=23 TB TBS wih EDF Schduling Sam Ta S: = (3,0.5), = (4,1), T 3 = (19,4.5), bu U S = Aum apriodic job J a1 arriv a 1 = 3 wih a1 = 1, J a2 arriv a 2 = 6.9 wih a2 = 2, and J a3 arriv a 3 = 14 wih a3 = TB Budg Ral-Tim Sym Mixd Job - 83 Ral-Tim Sym Mixd Job

43 TBS Procor Dmand Obrv ha h oal bandwidh of h rvr i allocad o on apriodic job a a im. Morovr, if J i xcuion im i l han i pcifid wc, i, and job J i1 arriv bfor h dadlin for job J i, h TBS ffcivly prform bacground xcuion by rplnihing h rvr budg a oon a job J i i don. Howvr, h dadlin valu d = max(d,) i1 /U S for job J i1 i i no arlir han i1 /U S im uni from h dadlin of job J i. Thu, h dmand crad by any n job in an inrval ( 1, 2 ] i a mo n n i i = US = nus ( 2 1) ( US) i 1 i i 1 = = i U S Schdulabiliy wih a TBS Combining hi obrvaion wih Thorm 6.1, w g h following horm from Spuri and Buazzo: Thorm: A ym T of n indpndn, prmpabl, priodic a wih rlaiv dadlin qual o hir priod i chdulabl wih a TBS if and only if UT US 1 n whr U T = i h procor uilizaion of h = 1 p priodic a and U S i h procor uilizaion of h TBS. Ral-Tim Sym Mixd Job - 85 Ral-Tim Sym Mixd Job

44 Schdulabiliy wih a TBS Combining hi rul wih Thorm 6.2, w g h following horm: Thorm: A ym T of n indpndn, prmpabl, priodic a i chdulabl wih a TBS if n = 1 US 1 min(d, p ) whr U S i h procor uilizaion of h TBS. Sporadic job and h TBS Rcall ha a poradic job i li an apriodic job xcp i ha a hard dadlin.» Aum ach poradic job J i ha a rla im r i, wc i, and a rlaiv dadlin D i : J i = (r i, i, D i ) Th TBS aign dadlin uch ha h (abolu) dadlin d i aignd any job J i i d i = max(r i,d i-1 ) i /U S whr d 0 =1. Thu h TBS can guaran h dadlin of all accpd poradic job if i only accp job J i1 if r i1 D i1 d i1 and rjc i ohrwi. Ral-Tim Sym Mixd Job - 87 Ral-Tim Sym Mixd Job

45 Priodic, Apriodic, and Sporadic Job In om ym, w may wan o uppor all hr yp of job: priodic, apriodic, and poradic. Th TBS can do hi by accping all apriodic job and only accping a poradic job if i dadlin can b m. Bu hr i no valu in compling poradic job bfor hir dadlin, which h TBS will do. Thu Dng, Liu, and Sun crad h conan uilizaion rvr (CUS).» W can chdul poradic job wih h CUS and apriodic job wih h TBS in h am ym. CUS in Dadlin-Drivn Sym L CU b a CUS of iz U S in a a ym T chduld wih EDF. A wih h TBS, h rvr i rady for xcuion only whn i i bacloggd.» Thu, h rvr i only upndd whn h rvr i idl. Conumpion Rul: Whn xcuing, CU conum i budg a h ra of on im uni pr uni of xcuion unil h budg i xhaud. Rplnihmn Rul: R1 Iniially, h xcuion budg = 0 and h rvr dadlin d = 0. R2 A im whn apriodic job J i wih xcuion im i arriv and h rvr i idl, (a) If < d, do nohing; (b) If d, d = i /U S and = i. R3 A h dadlin d of h rvr, (a) If h rvr i bacloggd, upda h rvr dadlin and budg: d = d i1 /U S and = i1. (b) If h rvr i idl, do nohing. Ral-Tim Sym Mixd Job - 89 Ral-Tim Sym Mixd Job

46 T 3 T 3 J a1 arriv a = 3 CU CUS wih EDF Schduling Sam Ta S: = (3,0.5), = (4,1), T 3 = (19,4.5), and U S = Aum apriodic job J a1 arriv a 1 = 3 wih a1 = 1, J a2 arriv a 2 = 6.9 wih a2 = 2, and J a3 arriv a 3 = 14 wih a3 = CU Budg = 1 d = 3 1/0.25 = 7 J a2 arriv a = 6.9 CU CUS wih EDF Schduling Sam Ta S: = (3,0.5), = (4,1), T 3 = (19,4.5), and U S = Aum apriodic job J a1 arriv a 1 = 3 wih a1 = 1, J a2 arriv a 2 = 6.9 wih a2 = 2, and J a3 arriv a 3 = 14 wih a3 = CU Budg = 6.9 < d = 7 do nohing! Ral-Tim Sym Mixd Job - 91 Ral-Tim Sym Mixd Job

47 T 3 T 3 J a2 arriv a = 6.9 CU CUS wih EDF Schduling Sam Ta S: = (3,0.5), = (4,1), T 3 = (19,4.5), and U S = Aum apriodic job J a1 arriv a 1 = 3 wih a1 = 1, J a2 arriv a 2 = 6.9 wih a2 = 2, and J a3 arriv a 3 = 14 wih a3 = CU Budg = 2 d = 7 2/0.25 = 15 J a3 arriv a = 14 CU CUS wih EDF Schduling Sam Ta S: = (3,0.5), = (4,1), T 3 = (19,4.5), and U S = Aum apriodic job J a1 arriv a 1 = 3 wih a1 = 1, J a2 arriv a 2 = 6.9 wih a2 = 2, and J a3 arriv a 3 = 14 wih a3 = CU Budg = 14 < d = 15 do nohing! Ral-Tim Sym Mixd Job - 93 Ral-Tim Sym Mixd Job

48 T 3 T 3 J a3 arriv a = 14 CU CUS wih EDF Schduling Sam Ta S: = (3,0.5), = (4,1), T 3 = (19,4.5), and U S = Aum apriodic job J a1 arriv a 1 = 3 wih a1 = 1, J a2 arriv a 2 = 6.9 wih a2 = 2, and J a3 arriv a 3 = 14 wih a3 = CU Budg = 2 d = 158 = 23 CU CUS wih EDF Schduling Sam Ta S: = (3,0.5), = (4,1), T 3 = (19,4.5), and U S = Aum apriodic job J a1 arriv a 1 = 3 wih a1 = 1, J a2 arriv a 2 = 6.9 wih a2 = 2, and J a3 arriv a 3 = 14 wih a3 = CU Budg Ral-Tim Sym Mixd Job - 95 Ral-Tim Sym Mixd Job

49 Commn on h CUS Dadlin and rplnih amoun ar h am in boh rvr. Th main diffrnc bwn h CUS and h TBS i ha h CUS nvr rplnih h rvr budg arly. Thu, h TBS acually yild br avrag rpon im for apriodic job (and i wa crad bfor h CUS ) Morovr, i would appar ha h TBS may b abl o accp mor poradic job han h CUS. Th valu of h CUS i no clar, and Liu do a rribl job arguing for i! Ral-Tim Sym Mixd Job - 97 TBS and CUS Summary Boh rvr can b modifid o uppor h ca whn h wc of apriodic job i unown:» fix h xcuion budg a om valu and aum h rvr ha a priod of /U S. Boh rvr can b modifid o rclaim unud rourc whn h acual xcuion im i l han h wc ha w aumd:» rduc h currn dadlin of h rvr by ( -)/U S uni bfor rplnihing h budg. W can hav mulipl TBS/CUS rvr a long a h oal procor uilizaion/dniy i no grar han 1. Ral-Tim Sym Mixd Job

Final Exam : Solutions

Final Exam : Solutions Comp : Algorihm and Daa Srucur Final Exam : Soluion. Rcuriv Algorihm. (a) To bgin ind h mdian o {x, x,... x n }. Sinc vry numbr xcp on in h inrval [0, n] appar xacly onc in h li, w hav ha h mdian mu b

More information

Poisson process Markov process

Poisson process Markov process E2200 Quuing hory and lraffic 2nd lcur oion proc Markov proc Vikoria Fodor KTH Laboraory for Communicaion nwork, School of Elcrical Enginring 1 Cour oulin Sochaic proc bhind quuing hory L2-L3 oion proc

More information

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018 DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS Aoc. Prof. Dr. Burak Kllci Spring 08 OUTLINE Th Laplac Tranform Rgion of convrgnc for Laplac ranform Invr Laplac ranform Gomric valuaion

More information

Ma/CS 6a Class 15: Flows and Bipartite Graphs

Ma/CS 6a Class 15: Flows and Bipartite Graphs //206 Ma/CS 6a Cla : Flow and Bipari Graph By Adam Shffr Rmindr: Flow Nwork A flow nwork i a digraph G = V, E, oghr wih a ourc vrx V, a ink vrx V, and a capaciy funcion c: E N. Capaciy Sourc 7 a b c d

More information

Aperiodic and Sporadic Jobs. Scheduling Aperiodic and Sporadic Jobs

Aperiodic and Sporadic Jobs. Scheduling Aperiodic and Sporadic Jobs CPSC-663: Ral-Tm Sym Arodc and Soradc Job Schdulng Arodc and Soradc Job Dfnon Comaron o radonal chdulng of aynchronou vn Pollng Srvr Dfrrabl Srvr Soradc Srvr Gnralzd Procor Sharng Conan Ulzaon Srvr Toal

More information

Chapter 5 The Laplace Transform. x(t) input y(t) output Dynamic System

Chapter 5 The Laplace Transform. x(t) input y(t) output Dynamic System EE 422G No: Chapr 5 Inrucor: Chung Chapr 5 Th Laplac Tranform 5- Inroducion () Sym analyi inpu oupu Dynamic Sym Linar Dynamic ym: A procor which proc h inpu ignal o produc h oupu dy ( n) ( n dy ( n) +

More information

Institute of Actuaries of India

Institute of Actuaries of India Insiu of Acuaris of India ubjc CT3 Probabiliy and Mahmaical aisics Novmbr Examinaions INDICATIVE OLUTION Pag of IAI CT3 Novmbr ol. a sampl man = 35 sampl sandard dviaion = 36.6 b for = uppr bound = 35+*36.6

More information

Chapter 12 Introduction To The Laplace Transform

Chapter 12 Introduction To The Laplace Transform Chapr Inroducion To Th aplac Tranorm Diniion o h aplac Tranorm - Th Sp & Impul uncion aplac Tranorm o pciic uncion 5 Opraional Tranorm Applying h aplac Tranorm 7 Invr Tranorm o Raional uncion 8 Pol and

More information

Transfer function and the Laplace transformation

Transfer function and the Laplace transformation Lab No PH-35 Porland Sa Univriy A. La Roa Tranfr funcion and h Laplac ranformaion. INTRODUTION. THE LAPLAE TRANSFORMATION L 3. TRANSFER FUNTIONS 4. ELETRIAL SYSTEMS Analyi of h hr baic paiv lmn R, and

More information

LaPlace Transform in Circuit Analysis

LaPlace Transform in Circuit Analysis LaPlac Tranform in Circui Analyi Obciv: Calcula h Laplac ranform of common funcion uing h dfiniion and h Laplac ranform abl Laplac-ranform a circui, including componn wih non-zro iniial condiion. Analyz

More information

CPSC 211 Data Structures & Implementations (c) Texas A&M University [ 259] B-Trees

CPSC 211 Data Structures & Implementations (c) Texas A&M University [ 259] B-Trees CPSC 211 Daa Srucurs & Implmnaions (c) Txas A&M Univrsiy [ 259] B-Trs Th AVL r and rd-black r allowd som variaion in h lnghs of h diffrn roo-o-laf pahs. An alrnaiv ida is o mak sur ha all roo-o-laf pahs

More information

Spring 2006 Process Dynamics, Operations, and Control Lesson 2: Mathematics Review

Spring 2006 Process Dynamics, Operations, and Control Lesson 2: Mathematics Review Spring 6 Procss Dynamics, Opraions, and Conrol.45 Lsson : Mahmaics Rviw. conx and dircion Imagin a sysm ha varis in im; w migh plo is oupu vs. im. A plo migh imply an quaion, and h quaion is usually an

More information

14.02 Principles of Macroeconomics Fall 2005 Quiz 3 Solutions

14.02 Principles of Macroeconomics Fall 2005 Quiz 3 Solutions 4.0 rincipl of Macroconomic Fall 005 Quiz 3 Soluion Shor Quion (30/00 poin la a whhr h following amn ar TRUE or FALSE wih a hor xplanaion (3 or 4 lin. Each quion coun 5/00 poin.. An incra in ax oday alway

More information

Let s look again at the first order linear differential equation we are attempting to solve, in its standard form:

Let s look again at the first order linear differential equation we are attempting to solve, in its standard form: Th Ingraing Facor Mhod In h prvious xampls of simpl firs ordr ODEs, w found h soluions by algbraically spara h dpndn variabl- and h indpndn variabl- rms, and wri h wo sids of a givn quaion as drivaivs,

More information

4.1 The Uniform Distribution Def n: A c.r.v. X has a continuous uniform distribution on [a, b] when its pdf is = 1 a x b

4.1 The Uniform Distribution Def n: A c.r.v. X has a continuous uniform distribution on [a, b] when its pdf is = 1 a x b 4. Th Uniform Disribuion Df n: A c.r.v. has a coninuous uniform disribuion on [a, b] whn is pdf is f x a x b b a Also, b + a b a µ E and V Ex4. Suppos, h lvl of unblivabiliy a any poin in a Transformrs

More information

AR(1) Process. The first-order autoregressive process, AR(1) is. where e t is WN(0, σ 2 )

AR(1) Process. The first-order autoregressive process, AR(1) is. where e t is WN(0, σ 2 ) AR() Procss Th firs-ordr auorgrssiv procss, AR() is whr is WN(0, σ ) Condiional Man and Varianc of AR() Condiional man: Condiional varianc: ) ( ) ( Ω Ω E E ) var( ) ) ( var( ) var( σ Ω Ω Ω Ω E Auocovarianc

More information

Microscopic Flow Characteristics Time Headway - Distribution

Microscopic Flow Characteristics Time Headway - Distribution CE57: Traffic Flow Thory Spring 20 Wk 2 Modling Hadway Disribuion Microscopic Flow Characrisics Tim Hadway - Disribuion Tim Hadway Dfiniion Tim Hadway vrsus Gap Ahmd Abdl-Rahim Civil Enginring Dparmn,

More information

Lecture 1: Numerical Integration The Trapezoidal and Simpson s Rule

Lecture 1: Numerical Integration The Trapezoidal and Simpson s Rule Lcur : Numrical ngraion Th Trapzoidal and Simpson s Rul A problm Th probabiliy of a normally disribud (man µ and sandard dviaion σ ) vn occurring bwn h valus a and b is B A P( a x b) d () π whr a µ b -

More information

Economics 302 (Sec. 001) Intermediate Macroeconomic Theory and Policy (Spring 2011) 3/28/2012. UW Madison

Economics 302 (Sec. 001) Intermediate Macroeconomic Theory and Policy (Spring 2011) 3/28/2012. UW Madison Economics 302 (Sc. 001) Inrmdia Macroconomic Thory and Policy (Spring 2011) 3/28/2012 Insrucor: Prof. Mnzi Chinn Insrucor: Prof. Mnzi Chinn UW Madison 16 1 Consumpion Th Vry Forsighd dconsumr A vry forsighd

More information

Elementary Differential Equations and Boundary Value Problems

Elementary Differential Equations and Boundary Value Problems Elmnar Diffrnial Equaions and Boundar Valu Problms Boc. & DiPrima 9 h Ediion Chapr : Firs Ordr Diffrnial Equaions 00600 คณ ตศาสตร ว ศวกรรม สาขาว ชาว ศวกรรมคอมพ วเตอร ป การศ กษา /55 ผศ.ดร.อร ญญา ผศ.ดร.สมศ

More information

(1) Then we could wave our hands over this and it would become:

(1) Then we could wave our hands over this and it would become: MAT* K285 Spring 28 Anthony Bnoit 4/17/28 Wk 12: Laplac Tranform Rading: Kohlr & Johnon, Chaptr 5 to p. 35 HW: 5.1: 3, 7, 1*, 19 5.2: 1, 5*, 13*, 19, 45* 5.3: 1, 11*, 19 * Pla writ-up th problm natly and

More information

Fixed-Relative-Deadline Scheduling of Hard Real-Time Tasks with Self-Suspensions

Fixed-Relative-Deadline Scheduling of Hard Real-Time Tasks with Self-Suspensions Fixd-Rlaiv-Dadlin Schduling of Hard Ral-Tim Tasks wih Slf-Suspnsions Jian-Jia Chn Dparmn of Informaics TU Dormund Univrsiy, Grmany jia.chn@u-dormund.d Absrac In many ral-im sysms, asks may xprinc slf-suspnsion

More information

SOLUTIONS. 1. Consider two continuous random variables X and Y with joint p.d.f. f ( x, y ) = = = 15. Stepanov Dalpiaz

SOLUTIONS. 1. Consider two continuous random variables X and Y with joint p.d.f. f ( x, y ) = = = 15. Stepanov Dalpiaz STAT UIUC Pracic Problms #7 SOLUTIONS Spanov Dalpiaz Th following ar a numbr of pracic problms ha ma b hlpful for compling h homwor, and will lil b vr usful for suding for ams.. Considr wo coninuous random

More information

[ ] 1+ lim G( s) 1+ s + s G s s G s Kacc SYSTEM PERFORMANCE. Since. Lecture 10: Steady-state Errors. Steady-state Errors. Then

[ ] 1+ lim G( s) 1+ s + s G s s G s Kacc SYSTEM PERFORMANCE. Since. Lecture 10: Steady-state Errors. Steady-state Errors. Then SYSTEM PERFORMANCE Lctur 0: Stady-tat Error Stady-tat Error Lctur 0: Stady-tat Error Dr.alyana Vluvolu Stady-tat rror can b found by applying th final valu thorm and i givn by lim ( t) lim E ( ) t 0 providd

More information

where: u: input y: output x: state vector A, B, C, D are const matrices

where: u: input y: output x: state vector A, B, C, D are const matrices Sa pac modl: linar: y or in om : Sa q : f, u Oupu q : y h, u u Du F Gu y H Ju whr: u: inpu y: oupu : a vcor,,, D ar con maric Eampl " $ & ' " $ & 'u y " & * * * * [ ],, D H D I " $ " & $ ' " & $ ' " &

More information

Midterm exam 2, April 7, 2009 (solutions)

Midterm exam 2, April 7, 2009 (solutions) Univrsiy of Pnnsylvania Dparmn of Mahmaics Mah 26 Honors Calculus II Spring Smsr 29 Prof Grassi, TA Ashr Aul Midrm xam 2, April 7, 29 (soluions) 1 Wri a basis for h spac of pairs (u, v) of smooh funcions

More information

Boyce/DiPrima 9 th ed, Ch 2.1: Linear Equations; Method of Integrating Factors

Boyce/DiPrima 9 th ed, Ch 2.1: Linear Equations; Method of Integrating Factors Boc/DiPrima 9 h d, Ch.: Linar Equaions; Mhod of Ingraing Facors Elmnar Diffrnial Equaions and Boundar Valu Problms, 9 h diion, b William E. Boc and Richard C. DiPrima, 009 b John Wil & Sons, Inc. A linar

More information

Applied Statistics and Probability for Engineers, 6 th edition October 17, 2016

Applied Statistics and Probability for Engineers, 6 th edition October 17, 2016 Applid Saisics and robabiliy for Enginrs, 6 h diion Ocobr 7, 6 CHATER Scion - -. a d. 679.. b. d. 88 c d d d. 987 d. 98 f d.. Thn, = ln. =. g d.. Thn, = ln.9 =.. -7. a., by symmry. b.. d...6. 7.. c...

More information

The transition:transversion rate ratio vs. the T-ratio.

The transition:transversion rate ratio vs. the T-ratio. PhyloMah Lcur 8 by Dan Vandrpool March, 00 opics of Discussion ransiion:ransvrsion ra raio Kappa vs. ransiion:ransvrsion raio raio alculaing h xpcd numbr of subsiuions using marix algbra Why h nral im

More information

5. An object moving along an x-coordinate axis with its scale measured in meters has a velocity of 6t

5. An object moving along an x-coordinate axis with its scale measured in meters has a velocity of 6t AP CALCULUS FINAL UNIT WORKSHEETS ACCELERATION, VELOCTIY AND POSITION In problms -, drmin h posiion funcion, (), from h givn informaion.. v (), () = 5. v ()5, () = b g. a (), v() =, () = -. a (), v() =

More information

REPETITION before the exam PART 2, Transform Methods. Laplace transforms: τ dτ. L1. Derive the formulas : L2. Find the Laplace transform F(s) if.

REPETITION before the exam PART 2, Transform Methods. Laplace transforms: τ dτ. L1. Derive the formulas : L2. Find the Laplace transform F(s) if. Tranform Mhod and Calculu of Svral Variabl H7, p Lcurr: Armin Halilovic KTH, Campu Haning E-mail: armin@dkh, wwwdkh/armin REPETITION bfor h am PART, Tranform Mhod Laplac ranform: L Driv h formula : a L[

More information

1 Finite Automata and Regular Expressions

1 Finite Automata and Regular Expressions 1 Fini Auom nd Rgulr Exprion Moivion: Givn prn (rgulr xprion) for ring rching, w migh wn o convr i ino drminiic fini uomon or nondrminiic fini uomon o mk ring rching mor fficin; drminiic uomon only h o

More information

Voltage v(z) ~ E(z)D. We can actually get to this wave behavior by using circuit theory, w/o going into details of the EM fields!

Voltage v(z) ~ E(z)D. We can actually get to this wave behavior by using circuit theory, w/o going into details of the EM fields! Considr a pair of wirs idal wirs ngh >, say, infinily long olag along a cabl can vary! D olag v( E(D W can acually g o his wav bhavior by using circui hory, w/o going ino dails of h EM filds! Thr

More information

14.02 Principles of Macroeconomics Problem Set 5 Fall 2005

14.02 Principles of Macroeconomics Problem Set 5 Fall 2005 40 Principls of Macroconomics Problm S 5 Fall 005 Posd: Wdnsday, Novmbr 6, 005 Du: Wdnsday, Novmbr 3, 005 Plas wri your nam AND your TA s nam on your problm s Thanks! Exrcis I Tru/Fals? Explain Dpnding

More information

Lecture 26: Leapers and Creepers

Lecture 26: Leapers and Creepers Lcur 6: Lapr and Crpr Scrib: Grain Jon (and Marin Z. Bazan) Dparmn of Economic, MIT May, 005 Inroducion Thi lcur conidr h analyi of h non-parabl CTRW in which h diribuion of p iz and im bwn p ar dpndn.

More information

CSE 245: Computer Aided Circuit Simulation and Verification

CSE 245: Computer Aided Circuit Simulation and Verification CSE 45: Compur Aidd Circui Simulaion and Vrificaion Fall 4, Sp 8 Lcur : Dynamic Linar Sysm Oulin Tim Domain Analysis Sa Equaions RLC Nwork Analysis by Taylor Expansion Impuls Rspons in im domain Frquncy

More information

2. The Laplace Transform

2. The Laplace Transform Th aac Tranorm Inroucion Th aac ranorm i a unamna an vry uu oo or uying many nginring robm To in h aac ranorm w conir a comx variab σ, whr σ i h ra ar an i h imaginary ar or ix vau o σ an w viw a a oin

More information

2.1. Differential Equations and Solutions #3, 4, 17, 20, 24, 35

2.1. Differential Equations and Solutions #3, 4, 17, 20, 24, 35 MATH 5 PS # Summr 00.. Diffrnial Equaions and Soluions PS.# Show ha ()C #, 4, 7, 0, 4, 5 ( / ) is a gnral soluion of h diffrnial quaion. Us a compur or calculaor o skch h soluions for h givn valus of h

More information

Wave Equation (2 Week)

Wave Equation (2 Week) Rfrnc Wav quaion ( Wk 6.5 Tim-armonic filds 7. Ovrviw 7. Plan Wavs in Losslss Mdia 7.3 Plan Wavs in Loss Mdia 7.5 Flow of lcromagnic Powr and h Poning Vcor 7.6 Normal Incidnc of Plan Wavs a Plan Boundaris

More information

UNIT #5 EXPONENTIAL AND LOGARITHMIC FUNCTIONS

UNIT #5 EXPONENTIAL AND LOGARITHMIC FUNCTIONS Answr Ky Nam: Da: UNIT # EXPONENTIAL AND LOGARITHMIC FUNCTIONS Par I Qusions. Th prssion is quivaln o () () 6 6 6. Th ponnial funcion y 6 could rwrin as y () y y 6 () y y (). Th prssion a is quivaln o

More information

Phys463.nb Conductivity. Another equivalent definition of the Fermi velocity is

Phys463.nb Conductivity. Another equivalent definition of the Fermi velocity is 39 Anohr quival dfiniion of h Fri vlociy is pf vf (6.4) If h rgy is a quadraic funcion of k H k L, hs wo dfiniions ar idical. If is NOT a quadraic funcion of k (which could happ as will b discussd in h

More information

Circuit Transients time

Circuit Transients time Circui Tranin A Solp 3/29/0, 9/29/04. Inroducion Tranin: A ranin i a raniion from on a o anohr. If h volag and currn in a circui do no chang wih im, w call ha a "ady a". In fac, a long a h volag and currn

More information

Routing in Delay Tolerant Networks

Routing in Delay Tolerant Networks Rouing in Dlay Tolran Nworks Primary Rfrnc: S. Jain K. Fall and R. Para Rouing in a Dlay Tolran Nwork SIGCOMM 04 Aug. 30-Sp. 3 2004 Porland Orgon USA Sudn lcur by: Soshan Bali (748214) mail : sbali@ic.ku.du

More information

H is equal to the surface current J S

H is equal to the surface current J S Chapr 6 Rflcion and Transmission of Wavs 6.1 Boundary Condiions A h boundary of wo diffrn mdium, lcromagnic fild hav o saisfy physical condiion, which is drmind by Maxwll s quaion. This is h boundary condiion

More information

Mundell-Fleming I: Setup

Mundell-Fleming I: Setup Mundll-Flming I: Sup In ISLM, w had: E ( ) T I( i π G T C Y ) To his, w now add n xpors, which is a funcion of h xchang ra: ε E P* P ( T ) I( i π ) G T NX ( ) C Y Whr NX is assumd (Marshall Lrnr condiion)

More information

The Science of Monetary Policy

The Science of Monetary Policy Th Scinc of Monary Policy. Inroducion o Topics of Sminar. Rviw: IS-LM, AD-AS wih an applicaion o currn monary policy in Japan 3. Monary Policy Sragy: Inrs Ra Ruls and Inflaion Targing (Svnsson EER) 4.

More information

Instructors Solution for Assignment 3 Chapter 3: Time Domain Analysis of LTIC Systems

Instructors Solution for Assignment 3 Chapter 3: Time Domain Analysis of LTIC Systems Inrucor Soluion for Aignmn Chapr : Tim Domain Anali of LTIC Sm Problm i a 8 x x wih x u,, an Zro-inpu rpon of h m: Th characriic quaion of h LTIC m i i 8, which ha roo a ± j Th zro-inpu rpon i givn b zi

More information

Lecture 4: Parsing. Administrivia

Lecture 4: Parsing. Administrivia Adminitrivia Lctur 4: Paring If you do not hav a group, pla pot a rqut on Piazzza ( th Form projct tam... itm. B ur to updat your pot if you find on. W will aign orphan to group randomly in a fw day. Programming

More information

EXERCISE - 01 CHECK YOUR GRASP

EXERCISE - 01 CHECK YOUR GRASP DIFFERENTIAL EQUATION EXERCISE - CHECK YOUR GRASP 7. m hn D() m m, D () m m. hn givn D () m m D D D + m m m m m m + m m m m + ( m ) (m ) (m ) (m + ) m,, Hnc numbr of valus of mn will b. n ( ) + c sinc

More information

Source code. where each α ij is a terminal or nonterminal symbol. We say that. α 1 α m 1 Bα m+1 α n α 1 α m 1 β 1 β p α m+1 α n

Source code. where each α ij is a terminal or nonterminal symbol. We say that. α 1 α m 1 Bα m+1 α n α 1 α m 1 β 1 β p α m+1 α n Adminitrivia Lctur : Paring If you do not hav a group, pla pot a rqut on Piazzza ( th Form projct tam... itm. B ur to updat your pot if you find on. W will aign orphan to group randomly in a fw day. Programming

More information

Discussion 06 Solutions

Discussion 06 Solutions STAT Discussion Soluions Spring 8. Th wigh of fish in La Paradis follows a normal disribuion wih man of 8. lbs and sandard dviaion of. lbs. a) Wha proporion of fish ar bwn 9 lbs and lbs? æ 9-8. - 8. P

More information

Boyce/DiPrima 9 th ed, Ch 7.8: Repeated Eigenvalues

Boyce/DiPrima 9 th ed, Ch 7.8: Repeated Eigenvalues Boy/DiPrima 9 h d Ch 7.8: Rpad Eignvalus Elmnary Diffrnial Equaions and Boundary Valu Problms 9 h diion by William E. Boy and Rihard C. DiPrima 9 by John Wily & Sons In. W onsidr again a homognous sysm

More information

Shortest Path With Negative Weights

Shortest Path With Negative Weights Shor Pah Wih Ngaiv Wigh 1 9 18-1 19 11 1-8 1 Conn Conn. Dird hor pah wih ngaiv wigh. Ngaiv yl dion. appliaion: urrny xhang arbirag Tramp amr problm. appliaion: opimal piplining of VLSI hip Shor Pah wih

More information

Chap.3 Laplace Transform

Chap.3 Laplace Transform Chap. aplac Tranorm Tranorm: An opraion ha ranorm a uncion ino anohr uncion i Dirniaion ranorm: ii x: d dx x x Ingraion ranorm: x: x dx x c Now, conidr a dind ingral k, d,ha ranorm ino a uncion o variabl

More information

a dt a dt a dt dt If 1, then the poles in the transfer function are complex conjugates. Let s look at f t H t f s / s. So, for a 2 nd order system:

a dt a dt a dt dt If 1, then the poles in the transfer function are complex conjugates. Let s look at f t H t f s / s. So, for a 2 nd order system: Undrdamd Sysms Undrdamd Sysms nd Ordr Sysms Ouu modld wih a nd ordr ODE: d y dy a a1 a0 y b f If a 0 0, hn: whr: a d y a1 dy b d y dy y f y f a a a 0 0 0 is h naural riod of oscillaion. is h daming facor.

More information

Partial Fraction Expansion

Partial Fraction Expansion Paial Facion Expanion Whn ying o find h inv Laplac anfom o inv z anfom i i hlpfl o b abl o bak a complicad aio of wo polynomial ino fom ha a on h Laplac Tanfom o z anfom abl. W will illa h ing Laplac anfom.

More information

On the Derivatives of Bessel and Modified Bessel Functions with Respect to the Order and the Argument

On the Derivatives of Bessel and Modified Bessel Functions with Respect to the Order and the Argument Inrnaional Rsarch Journal of Applid Basic Scincs 03 Aailabl onlin a wwwirjabscom ISSN 5-838X / Vol 4 (): 47-433 Scinc Eplorr Publicaions On h Driais of Bssl Modifid Bssl Funcions wih Rspc o h Ordr h Argumn

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by D. Klain Vrsion 207.0.05 Corrctions and commnts ar wlcom. Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix A A k I + A + k!

More information

THE SHORT-RUN AGGREGATE SUPPLY CURVE WITH A POSITIVE SLOPE. Based on EXPECTATIONS: Lecture. t t t t

THE SHORT-RUN AGGREGATE SUPPLY CURVE WITH A POSITIVE SLOPE. Based on EXPECTATIONS: Lecture. t t t t THE SHORT-RUN AGGREGATE SUL CURVE WITH A OSITIVE SLOE. Basd on EXECTATIONS: Lcur., 0. In Mankiw:, 0 Ths quaions sa ha oupu dvias from is naural ra whn h pric lvl dvias from h xpcd pric lvl. Th paramr a

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by Dan Klain Vrsion 28928 Corrctions and commnts ar wlcom Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix () A A k I + A + k!

More information

Copyright 2012 Pearson Education, Inc. Publishing as Prentice Hall.

Copyright 2012 Pearson Education, Inc. Publishing as Prentice Hall. Chapr Rviw 0 6. ( a a ln a. This will qual a if an onl if ln a, or a. + k an (ln + c. Thrfor, a an valu of, whr h wo curvs inrsc, h wo angn lins will b prpnicular. 6. (a Sinc h lin passs hrough h origin

More information

Network Design with Weighted Players (SPAA 2006 Full Paper Submission)

Network Design with Weighted Players (SPAA 2006 Full Paper Submission) Nwork Dign wih Wighd Playr SPAA 26 Full Papr Submiion) Ho-Lin Chn Tim Roughgardn March 7, 26 Abrac W conidr a modl of gam-horic nwork dign iniially udid by Anhlvich al. [1], whr lfih playr lc pah in a

More information

Graphs III - Network Flow

Graphs III - Network Flow Graph III - Nework Flow Flow nework eup graph G=(V,E) edge capaciy w(u,v) 0 - if edge doe no exi, hen w(u,v)=0 pecial verice: ource verex ; ink verex - no edge ino and no edge ou of Aume every verex v

More information

S.Y. B.Sc. (IT) : Sem. III. Applied Mathematics. Q.1 Attempt the following (any THREE) [15]

S.Y. B.Sc. (IT) : Sem. III. Applied Mathematics. Q.1 Attempt the following (any THREE) [15] S.Y. B.Sc. (IT) : Sm. III Applid Mahmaics Tim : ½ Hrs.] Prlim Qusion Papr Soluion [Marks : 75 Q. Amp h following (an THREE) 3 6 Q.(a) Rduc h mari o normal form and find is rank whr A 3 3 5 3 3 3 6 Ans.:

More information

Chapter 10. The singular integral Introducing S(n) and J(n)

Chapter 10. The singular integral Introducing S(n) and J(n) Chaptr Th singular intgral Our aim in this chaptr is to rplac th functions S (n) and J (n) by mor convnint xprssions; ths will b calld th singular sris S(n) and th singular intgral J(n). This will b don

More information

Jonathan Turner Exam 2-10/28/03

Jonathan Turner Exam 2-10/28/03 CS Algorihm n Progrm Prolm Exm Soluion S Soluion Jonhn Turnr Exm //. ( poin) In h Fioni hp ruur, u wn vrx u n i prn v u ing u v i v h lry lo hil in i l m hil o om ohr vrx. Suppo w hng hi, o h ing u i prorm

More information

Lecture 2: Current in RC circuit D.K.Pandey

Lecture 2: Current in RC circuit D.K.Pandey Lcur 2: urrn in circui harging of apacior hrough Rsisr L us considr a capacior of capacianc is conncd o a D sourc of.m.f. E hrough a rsisr of rsisanc R and a ky K in sris. Whn h ky K is swichd on, h charging

More information

Chapter 3: Fourier Representation of Signals and LTI Systems. Chih-Wei Liu

Chapter 3: Fourier Representation of Signals and LTI Systems. Chih-Wei Liu Chapr 3: Fourir Rprsnaion of Signals and LTI Sysms Chih-Wi Liu Oulin Inroducion Complx Sinusoids and Frquncy Rspons Fourir Rprsnaions for Four Classs of Signals Discr-im Priodic Signals Fourir Sris Coninuous-im

More information

ECEN620: Network Theory Broadband Circuit Design Fall 2014

ECEN620: Network Theory Broadband Circuit Design Fall 2014 ECE60: work Thory Broadbad Circui Dig Fall 04 Lcur 6: PLL Trai Bhavior Sam Palrmo Aalog & Mixd-Sigal Cr Txa A&M Uivriy Aoucm, Agda, & Rfrc HW i du oday by 5PM PLL Trackig Rpo Pha Dcor Modl PLL Hold Rag

More information

Decline Curves. Exponential decline (constant fractional decline) Harmonic decline, and Hyperbolic decline.

Decline Curves. Exponential decline (constant fractional decline) Harmonic decline, and Hyperbolic decline. Dlin Curvs Dlin Curvs ha lo flow ra vs. im ar h mos ommon ools for forasing roduion and monioring wll rforman in h fild. Ths urvs uikly show by grahi mans whih wlls or filds ar roduing as xd or undr roduing.

More information

Laplace Transform. National Chiao Tung University Chun-Jen Tsai 10/19/2011

Laplace Transform. National Chiao Tung University Chun-Jen Tsai 10/19/2011 plc Trnorm Nionl Chio Tung Univriy Chun-Jn Ti /9/ Trnorm o Funcion Som opror rnorm uncion ino nohr uncion: d Dirniion: x x, or Dx x dx x Indini Ingrion: x dx c Dini Ingrion: x dx 9 A uncion my hv nicr

More information

Randomized Perfect Bipartite Matching

Randomized Perfect Bipartite Matching Inenive Algorihm Lecure 24 Randomized Perfec Biparie Maching Lecurer: Daniel A. Spielman April 9, 208 24. Inroducion We explain a randomized algorihm by Ahih Goel, Michael Kapralov and Sanjeev Khanna for

More information

1. Inverse Matrix 4[(3 7) (02)] 1[(0 7) (3 2)] Recall that the inverse of A is equal to:

1. Inverse Matrix 4[(3 7) (02)] 1[(0 7) (3 2)] Recall that the inverse of A is equal to: Rfrncs Brnank, B. and I. Mihov (1998). Masuring monary policy, Quarrly Journal of Economics CXIII, 315-34. Blanchard, O. R. Proi (00). An mpirical characrizaion of h dynamic ffcs of changs in govrnmn spnding

More information

Network Design with Weighted Players

Network Design with Weighted Players Nwork Dign wih Wighd Playr Ho-Lin Chn Tim Roughgardn Jun 21, 27 Abrac W conidr a modl of gam-horic nwork dign iniially udid by Anhlvich al. [2], whr lfih playr lc pah in a nwork o minimiz hir co, which

More information

Algorithmic Discrete Mathematics 6. Exercise Sheet

Algorithmic Discrete Mathematics 6. Exercise Sheet Algorihmic Dicree Mahemaic. Exercie Shee Deparmen of Mahemaic SS 0 PD Dr. Ulf Lorenz 7. and 8. Juni 0 Dipl.-Mah. David Meffer Verion of June, 0 Groupwork Exercie G (Heap-Sor) Ue Heap-Sor wih a min-heap

More information

Midterm Examination (100 pts)

Midterm Examination (100 pts) Econ 509 Spring 2012 S.L. Parn Midrm Examinaion (100 ps) Par I. 30 poins 1. Dfin h Law of Diminishing Rurns (5 ps.) Incrasing on inpu, call i inpu x, holding all ohr inpus fixd, on vnuall runs ino h siuaion

More information

The Residual Graph. 12 Augmenting Path Algorithms. Augmenting Path Algorithm. Augmenting Path Algorithm

The Residual Graph. 12 Augmenting Path Algorithms. Augmenting Path Algorithm. Augmenting Path Algorithm Augmening Pah Algorihm Greedy-algorihm: ar wih f (e) = everywhere find an - pah wih f (e) < c(e) on every edge augmen flow along he pah repea a long a poible The Reidual Graph From he graph G = (V, E,

More information

Themes. Flexible exchange rates with inflation targeting. Expectations formation under flexible exchange rates

Themes. Flexible exchange rates with inflation targeting. Expectations formation under flexible exchange rates CHAPTER 25 THE OPEN ECONOMY WITH FLEXIBLE EXCHANGE RATES Thms Flxibl xchang ras wih inlaion arging Expcaions ormaion undr lxibl xchang ras Th AS-AD modl wih lxibl xchang ras Macroconomic adjusmn undr lxibl

More information

Response of LTI Systems to Complex Exponentials

Response of LTI Systems to Complex Exponentials 3 Fourir sris coiuous-im Rspos of LI Sysms o Complx Expoials Ouli Cosidr a LI sysm wih h ui impuls rspos Suppos h ipu sigal is a complx xpoial s x s is a complx umbr, xz zis a complx umbr h or h h w will

More information

Economics 302 (Sec. 001) Intermediate Macroeconomic Theory and Policy (Spring 2011) 4/25/2011. UW Madison

Economics 302 (Sec. 001) Intermediate Macroeconomic Theory and Policy (Spring 2011) 4/25/2011. UW Madison conomics 302 (Sc. 001) Inrmdia Macroconomic Thory and Policy (Spring 2011) 4/25/2011 Insrucor: Prof. Mnzi Chinn Insrucor: Prof. Mnzi Chinn UW Madison 21 1 Th Mdium Run ε = P * P Thr ar wo ways in which

More information

Problem Set If all directed edges in a network have distinct capacities, then there is a unique maximum flow.

Problem Set If all directed edges in a network have distinct capacities, then there is a unique maximum flow. CSE 202: Deign and Analyi of Algorihm Winer 2013 Problem Se 3 Inrucor: Kamalika Chaudhuri Due on: Tue. Feb 26, 2013 Inrucion For your proof, you may ue any lower bound, algorihm or daa rucure from he ex

More information

An Indian Journal FULL PAPER. Trade Science Inc. A stage-structured model of a single-species with density-dependent and birth pulses ABSTRACT

An Indian Journal FULL PAPER. Trade Science Inc. A stage-structured model of a single-species with density-dependent and birth pulses ABSTRACT [Typ x] [Typ x] [Typ x] ISSN : 974-7435 Volum 1 Issu 24 BioTchnology 214 An Indian Journal FULL PAPE BTAIJ, 1(24), 214 [15197-1521] A sag-srucurd modl of a singl-spcis wih dnsiy-dpndn and birh pulss LI

More information

Consider a system of 2 simultaneous first order linear equations

Consider a system of 2 simultaneous first order linear equations Soluon of sysms of frs ordr lnar quaons onsdr a sysm of smulanous frs ordr lnar quaons a b c d I has h alrna mar-vcor rprsnaon a b c d Or, n shorhand A, f A s alrady known from con W know ha h abov sysm

More information

EE 434 Lecture 22. Bipolar Device Models

EE 434 Lecture 22. Bipolar Device Models EE 434 Lcur 22 Bipolar Dvic Modls Quiz 14 Th collcor currn of a BJT was masurd o b 20mA and h bas currn masurd o b 0.1mA. Wha is h fficincy of injcion of lcrons coming from h mir o h collcor? 1 And h numbr

More information

I) Title: Rational Expectations and Adaptive Learning. II) Contents: Introduction to Adaptive Learning

I) Title: Rational Expectations and Adaptive Learning. II) Contents: Introduction to Adaptive Learning I) Til: Raional Expcaions and Adapiv Larning II) Conns: Inroducion o Adapiv Larning III) Documnaion: - Basdvan, Olivir. (2003). Larning procss and raional xpcaions: an analysis using a small macroconomic

More information

3(8 ) (8 x x ) 3x x (8 )

3(8 ) (8 x x ) 3x x (8 ) Scion - CHATER -. a d.. b. d.86 c d 8 d d.9997 f g 6. d. d. Thn, = ln. =. =.. d Thn, = ln.9 =.7 8 -. a d.6 6 6 6 6 8 8 8 b 9 d 6 6 6 8 c d.8 6 6 6 6 8 8 7 7 d 6 d.6 6 6 6 6 6 6 8 u u u u du.9 6 6 6 6 6

More information

Charging of capacitor through inductor and resistor

Charging of capacitor through inductor and resistor cur 4&: R circui harging of capacior hrough inducor and rsisor us considr a capacior of capacianc is conncd o a D sourc of.m.f. E hrough a rsisr of rsisanc R, an inducor of inducanc and a y K in sris.

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com C3 Eponnials and logarihms - Eponnial quaions. Rabbis wr inroducd ono an island. Th numbr of rabbis, P, yars afr hy wr inroducd is modlld by h quaion P = 3 0, 0 (a) Wri down h numbr of rabbis ha wr inroducd

More information

Why Laplace transforms?

Why Laplace transforms? MAE4 Linar ircui Why Lalac ranform? Firordr R cc v v v KVL S R inananou for ach Subiu lmn rlaion v S Ordinary diffrnial quaion in rm of caacior volag Lalac ranform Solv Invr LT V u, v Ri, i A R V A _ v

More information

MEM 355 Performance Enhancement of Dynamical Systems A First Control Problem - Cruise Control

MEM 355 Performance Enhancement of Dynamical Systems A First Control Problem - Cruise Control MEM 355 Prformanc Enhancmn of Dynamical Sysms A Firs Conrol Problm - Cruis Conrol Harry G. Kwany Darmn of Mchanical Enginring & Mchanics Drxl Univrsiy Cruis Conrol ( ) mv = F mg sinθ cv v +.2v= u 9.8θ

More information

ANSWERS TO EVEN NUMBERED EXERCISES IN CHAPTER 11

ANSWERS TO EVEN NUMBERED EXERCISES IN CHAPTER 11 8 Jun ANSWERS TO EVEN NUMBERED EXERCISES IN CHAPTER SECTION : INCENTIVE COMPATABILITY Exrcis - Educaional Signaling A yp consulan has a marginal produc of m( ) = whr Θ = {,, 3} Typs ar uniformly disribud

More information

The Residual Graph. 11 Augmenting Path Algorithms. Augmenting Path Algorithm. Augmenting Path Algorithm

The Residual Graph. 11 Augmenting Path Algorithms. Augmenting Path Algorithm. Augmenting Path Algorithm Augmening Pah Algorihm Greedy-algorihm: ar wih f (e) = everywhere find an - pah wih f (e) < c(e) on every edge augmen flow along he pah repea a long a poible The Reidual Graph From he graph G = (V, E,

More information

On the Speed of Heat Wave. Mihály Makai

On the Speed of Heat Wave. Mihály Makai On h Spd of Ha Wa Mihály Maai maai@ra.bm.hu Conns Formulaion of h problm: infini spd? Local hrmal qulibrium (LTE hypohsis Balanc quaion Phnomnological balanc Spd of ha wa Applicaion in plasma ranspor 1.

More information

Advanced Queueing Theory. M/G/1 Queueing Systems

Advanced Queueing Theory. M/G/1 Queueing Systems Advand Quung Thory Ths slds ar rad by Dr. Yh Huang of Gorg Mason Unvrsy. Sudns rgsrd n Dr. Huang's ourss a GMU an ma a sngl mahn-radabl opy and prn a sngl opy of ah sld for hr own rfrn, so long as ah sld

More information

Advanced Engineering Mathematics, K.A. Stroud, Dexter J. Booth Engineering Mathematics, H.K. Dass Higher Engineering Mathematics, Dr. B.S.

Advanced Engineering Mathematics, K.A. Stroud, Dexter J. Booth Engineering Mathematics, H.K. Dass Higher Engineering Mathematics, Dr. B.S. Rfrc: (i) (ii) (iii) Advcd Egirig Mhmic, K.A. Sroud, Dxr J. Booh Egirig Mhmic, H.K. D Highr Egirig Mhmic, Dr. B.S. Grwl Th mhod of m Thi coi of h followig xm wih h giv coribuio o h ol. () Mid-rm xm : 3%

More information

Lecture 4: Laplace Transforms

Lecture 4: Laplace Transforms Lur 4: Lapla Transforms Lapla and rlad ransformaions an b usd o solv diffrnial quaion and o rdu priodi nois in signals and imags. Basially, hy onvr h drivaiv opraions ino mulipliaion, diffrnial quaions

More information

EEO 401 Digital Signal Processing Prof. Mark Fowler

EEO 401 Digital Signal Processing Prof. Mark Fowler EEO 401 Digital Signal Procssing Prof. Mark Fowlr Dtails of th ot St #19 Rading Assignmnt: Sct. 7.1.2, 7.1.3, & 7.2 of Proakis & Manolakis Dfinition of th So Givn signal data points x[n] for n = 0,, -1

More information

General Article Application of differential equation in L-R and C-R circuit analysis by classical method. Abstract

General Article Application of differential equation in L-R and C-R circuit analysis by classical method. Abstract Applicaion of Diffrnial... Gnral Aricl Applicaion of diffrnial uaion in - and C- circui analysis by classical mhod. ajndra Prasad gmi curr, Dparmn of Mahmaics, P.N. Campus, Pokhara Email: rajndraprasadrgmi@yahoo.com

More information

CHAPTER CHAPTER14. Expectations: The Basic Tools. Prepared by: Fernando Quijano and Yvonn Quijano

CHAPTER CHAPTER14. Expectations: The Basic Tools. Prepared by: Fernando Quijano and Yvonn Quijano Expcaions: Th Basic Prpard by: Frnando Quijano and Yvonn Quijano CHAPTER CHAPTER14 2006 Prnic Hall Businss Publishing Macroconomics, 4/ Olivir Blanchard 14-1 Today s Lcur Chapr 14:Expcaions: Th Basic Th

More information

INTRODUCTION TO AUTOMATIC CONTROLS INDEX LAPLACE TRANSFORMS

INTRODUCTION TO AUTOMATIC CONTROLS INDEX LAPLACE TRANSFORMS adjoint...6 block diagram...4 clod loop ytm... 5, 0 E()...6 (t)...6 rror tady tat tracking...6 tracking...6...6 gloary... 0 impul function...3 input...5 invr Laplac tranform, INTRODUCTION TO AUTOMATIC

More information