ON FINITE MORSE INDEX SOLUTIONS OF HIGHER ORDER FRACTIONAL LANE-EMDEN EQUATIONS

Size: px
Start display at page:

Download "ON FINITE MORSE INDEX SOLUTIONS OF HIGHER ORDER FRACTIONAL LANE-EMDEN EQUATIONS"

Transcription

1 ON FINITE MORSE INDEX SOLUTIONS OF HIGHER ORDER FRACTIONAL LANE-EMDEN EQUATIONS MOSTAFA FAZLY AND JUNCHENG WEI Abrac. W claify fini Mor indx oluion of h following nonlocal Lan-Emdn quaion u u u for < < via a novl monooniciy formula. For local ca and hi claificaion i providd by Farina in [] and Davila, Dupaign, Wang and Wi in [8], rpcivly. Morovr, for h nonlocal ca < < fini Mor indx oluion ar claifid by Davila, Dupaign and Wi in [7].. Inroducion and Main Rul W udy h claificaion of abl oluion of h following quaion. u u u whr i h fracional Laplacian opraor for < <. For variou paramr and p hi quaion ha bn of anion of many xpr in h fild of parial diffrnial quaion... Th local ca. For h ca of, a clbrad rul of Gida and Spruck in [] how ha h only nonngaiv oluion oluion of h Lan-Emdn quaion i u for < p < p S whr { if n, p S n n n if n >, ha i calld h Sobolv xponn. In addiion, for h criical ca p p S n i i hown by Caffarlli- Gida-Spruck [] ha hr i a uniqu up o ranlaion and rcaling poiiv oluion for h Lan-Emdn quaion. For fini Mo indx oluion no ncarily poiiv, uch claificaion i providd by Farina in [] and h criical xponn, calld Joph-Lundgrn [6] xponn, i givn by. p c n { if n, n n8 n nn if n, No ha p c n > p S n for n >. For h ca of, Wi and Xu [9] alo Lin [5] provd ha h only nonngaiv oluion of h fourh ordr Lan-Emdn quaion i u for < p < p S whr p S n i h Sobolv xponn, i.. { if n,.3 p S n n n if n >. Morovr, for h criical ca p p S n hy howd ha hr i a uniqu up o ranlaion and rcaling poiiv oluion for h fourh ordr Lan-Emdn quaion. For fini Mo indx oluion no ncarily poiiv, Davila, Dupaign, Wang and Wi in [8] gav a compl claificaion. Th Joph-Lundgrn xponn, compud by Gazzola and Grunau in [], i h following if n,. p c n n n n n 8n3 if n 3, n6 n n n 8n3 Th fir auhor i plad o acknowldg h uppor of a Univriy of Albra ar-up gran. Boh auhor ar uppord by Naural Scinc and Enginring Rarch Council of Canada NSERC gran. W hank Pacific Iniu for h Mahmaical Scinc PIMS for hopialiy.

2 Th ky ida of h proof of Davila, Dupaign, Wang and Wi in [8] i proving and applying a monooniciy formula. No ha a monooniciy formula for h cond ordr quaion i ablihd by F. Pacard in [7]. W alo rfr h inrd radr o Wi-Xu in [9] for claificaion of oluion of highr ordr conformally invarian quaion, i.. any poiiv ingr... Th nonlocal ca. Aum ha u C σ, σ > > and uy dy < y n o h fracional Laplacian of u.5 ux : p.v. ux uy dy x y n i wll-dfind for vry x. For h ca of < <, a counrpar of h claificaion rul of Gida-Spruck [] and Caffarlli- Gida-Spruck [] hold for h fracional Lan-Emdn quaion, h work of Li [] and Chn-Li-Ou [5]. In hi ca, h Sobolv xponn i h following.6 { p S n, if n, n n if n >. Vry rcnly, for h ca of < <, Davila, Dupaign and Wi [7] gav a compl claificaion of fini Mor indx oluion of. via proving and applying a monooniciy formula. A a mar of fac, hy provd ha for ihr < p < p S n, or p > p S n, and p Γ n Γ Γ n Γ > Γ n Γ n h only fini Mor indx oluion i zro. In hi work, w ar inrd in knowing whhr uch claificaion rul hold for fini Mor indx oluion of. whn < <. Thr ar diffrn way of dfining h fracional opraor whr < <, ju lik h ca of < <. Applying h Fourir ranform on can dfin h fracional Laplacian by uζ ζ ûζ or quivalnly dfin hi opraor inducivly by o, [8]. Rcnly, Yang in [] gav a characrizaion of h fracional Laplacian, whr i any poiiv, noningr numbr a h Dirichl-o-Numann map for a funcion u aifying a highr ordr llipic quaion in h uppr half pac wih on xra paial dimnion. Thi i a gnralizaion of h work of Caffarlli and Silvr in [] for h ca of < <. S alo Ca-Chang [3] and Chang-Gonzal []. Throughou hi no b : 3 and dfin h opraor for a funcion w W,, y b. b w : w b y w y y b divy b w Thorm.. [] L < <. For funcion u W,, y b aifying h quaion bu on h uppr half pac for x, y R whr y i h pcial dircion, and h boundary condiion u x, fx lim y yb y u x, along {y } whr fx i om funcion dfind on H w hav h rul ha fx C n, lim y y b y b u x, y

3 Morovr, ξ uξ ˆ dξ C n, y b b u x, y dxdy Applying h abov horm o oluion of. w conclud ha h xndd funcion u x, y whr x x,, x n and y R aifi b u in,.7 lim y y b y u in, lim y y b y b u C n, u u in Morovr, uξ dξ C n, ξ ˆ y b b u x, y dxdy Thn ux u x,. For < <, Chn al in [6] hav claifid all poiiv oluion of. for < p p S n,. Th main goal of hi papr i o claify all poiiv or ign-changing oluion of. which ar abl ouid a compac. To hi nd, w fir inroduc h corrponding Joph-Lungrn xponn. A i i hown by Hrb in [3] and alo [], for n > h following Hardy inqualiy hold ξ ˆφ dξ > Λ n, x φ dx for any φ Cc whr h opimal conan givn by n Γ Λ n, Γ n Dfiniion.. W ay ha a oluion u of. i abl ouid a compac if hr xi R > uch ha Rn φx φy.8 R x y n dxdy p u φ n for any φ C c \ B R. In h following lmma w provid an xplici ingular oluion for.. Lmma.. Suppo ha < < and p > p S n, hn.9 u x A x whr olv.. A Γ n Γ Γ Γ n Proof. From Lmma 3. in [9], w conclud ha whn < <, for any n < β < n. x n β γ β x n β whr nβ Γ Γ nβ. γ β Γ nβ Γ nβ From h fac ha o for < < w hav. x n β γ β x n β γ βη n η x n β whr η n β. Now uing h chang of variabl w g.3. x n β γ βη n η x n β γ βη n η x n p β 3

4 whr n β n p. From hi w conclud ha β β n. Thi impli.5 u x A x whr i a oluion of. for n A p.6 β γ βη n η Elmnary calculaion how ha.7 and.8 γ β Γ n Γ η n η Γ n Γ n p p From.7 and.8 and uing h propry aγa Γa w conclud h dird rul. Hr i our main rul. Thorm.. Suppo ha n and < < δ <. L u C δ L, y n dy b a oluion of. ha i abl ouid a compac. Thn ihr for < p < p S n, or for p > p S n, and.9 p Γ n Γ Γ n Γ > Γ n Γ n oluion u mu b zro. Morovr for h ca p p c n, oluion u ha fini nrgy ha i Rn u p ux uy R x y n < n If in addiion u ha fini nrgy hn u mu b zro. No ha whn and aumpion.9 i quivaln o < p < p c n whr p c n i givn by. and., rpcivly. Hr i h compuaion for h ca of. No ha whn h aumpion.9 i. p Γ n Γ Γ Γ n > Γ n Γ n. W now u propri of h gamma funcion, i.g. Γ a aγa for a >, o g n Γ n p n Γ p. p Γ. Γ p p p n n n.3 Γ Γ. Subiuing hi in. w g p n > p p n. Sraighforward calculaion how ha hi i quivaln o < p < p c n whr p c n i givn by.. Som rmark ar in ordr. Evn hough h proof of Thorm. follow from h gnral procdur ud in [8] and [7], hr ar a fw nw ingrdin in our proof. Fir in Scion w hav drivd h

5 monooniciy formula involving highr ordr fracional opraor. Scond in Scion 3 w hav dvlopd a nw and dirc mhod o prov h non-xinc of abl homognou oluion. Thi mhod avoid muliplicaion or ingraion by par and work for any fracional opraor. Th monooniciy formula w drivd in Scion implicily ud h Pohozav yp idniy. For highr ordr facional opraor h Pohozav idniy ha bn drivd rcnly by Ro-Oon and Srra [8]. d r3 dr [ d dr. Monooniciy Formula Th ky chniqu of our proof i a monooniciy formula ha i dvlopd in hi cion. Dfin p Er, x, u : r n Brx y3 b u C n, u p p Brx p 3 n r n y 3 u p p Brx [ ] p d n r n y 3 u p p dr Brx [ ] r 3n p r n y 3 Brx Brx y 3 p r n y 3 Brx p r u u ] u u u u Thorm.. Aum ha n > p p b. Thn, E, x, u i a nondcraing funcion of >. Furhrmor,. de, x, u whr Cn,, p i indpndn from. Cn,, p n B x Proof: Suppo ha x and h ball B ar cnrd a zro. S, p. Ēu, : n B yb b u Cn, dxdy p y 3 p r u u B Dfin v : b u, u X : u X, and v X : v X whr X x, y. Thrfor, b u X v X and b v in,.3 lim y y b y u in, lim y y b y v C n, u p in In addiion, diffrniaing wih rpc o w hav u p du. b dv. No ha Ēu, Ēu, yb v dxdy C n, u p p B B Taking driva of h nrgy wih rpc o, w hav dēu, y b v dv dxdy C n, u p du.5 B B 5

6 Uing.3 w nd up wih.6 dēu, B y b v From. and by ingraion by par w hav No ha B y b v dv b u du yb B dv dxdy lim y b y v du y B y b b u du b B B b u du div b u y b du B y b bu B du y b b u B y b ν du y b ν b u B du y b ν b u B du y b ν b u B du Thrfor, B y b v dv B b u y b ν du y b ν b u B du Boundary of B coni of B and B. Thrfor, B y b v dv du v lim y b y y B du y b v r B lim y b y v du y y b r v du whr r X, X x, y and r X r i h corrponding radial drivaiv. No ha h fir du ingral in h righ-hand id vanih inc y on. From.6 w obain.7 dēu, B y b du v r r v du Now no ha from h dfiniion of u and v and by diffrniaing in w g h following for X.8.9 du X dv X Thrfor, diffrniaing wih rpc o w g d u X p u X r r u X p v X r r v X p du X p 6 du X r r du X

7 So, for all X B... r u X du X du X r d u X r v X dv X p u X p du X p p v X p Subiuing. and. in.7 w g.3 dēu, B y b v B y b d u v d u p du y b dv p du 3v dv du p du v p Taking drivaiv of.8 in r w g r u u du u p So, from. for all X B w hav. u du d u p u p p p d u p du du p p p p u du p u No ha v b u y b divy b u and on B, w hav divy b u u rr n bu r θ b div S nθ b S nu whr θ y r. From h abov,. and. w g v d u du n b p u p 7 p p n b θ b div S nθ b S nu

8 From hi and.3 w g whr α : n b dēu,. dēu, B θ b θ b d u B B θ b 3 θ b du B d u θ b du B B 3θ b θ b d B and β : p n b θ b B B d θb d 3 u d u du β d u d αdu d u βu αdu βu d u div S nθ b S nu du θb div S nθ b S nu du αdu βu θ b div S nθ b S nu du. Simplifying h ingral w g du α β 3 d du β d u du div S nθb S nu 3 div S nθ b S nu du d divs nθ b S nu du No ha from h aumpion w hav α β >, hrfor h fir rm in h RHS of. i poiiv ha i d 3 u d u du From hi w hav dēu, θ b B B : R R. du α β d u β d u d 3 d du du α β > du β d u du div S nθb S nu 3 div S nθ b S nu du d divs nθ b S nu du No ha h rm appard in R ar of h following form θ b d u d n B [ θ b d 3 d du ] [ d 3 d 3n B y b d u d B B y b u B 3 n y b u B 8 [ y b p u u ] ]

9 W now apply ingraion by par o implify h rm appard in R. du R div S nθb S nu 3 div S nθ b S nu du d divs nθ b S nu du B θ b S nu d u S n 3θb S nu du S n θb du S n B d θ b θ u 3 d θ b θ u θ b du θ B B B d θ b θ u d θ b θ u θ b du θ B B B d θ b θ u d θ b θ u B B No ha h wo rm ha appar a lowr bound for R 3 ar of h form d [ θ b θ u d p n y u b u ] B B [ d θ b θ u d p n y u b u ] B B Rmark.. I i raighforward o how ha n > p p impli n > p b. 3. Homognou Soluion In hi cion, w xamin homognou oluion of h form u r ψθ. No ha h mhod and ida ha w apply hr ar diffrn from h on ud in [7]. Thorm 3.. Suppo ha u r ψθ i a abl oluion of. hn ψ providd p > n n and p Γ n Γ Γ n Γ > Γ n Γ n Proof. Sinc u aifi., h funcion ψ aifi w omi h P.V. x p x ψ p ψθ y ψσ θ x y n dy x p [ and g 3. ψθa n, θ W now drop x p whr A n, : x ψθ r ψσ < θ, σ > n x n x n n ddσ whr y r ψθ ψθ < θ, σ > n ψθ ψσ < θ, σ > n n ddσ] n ddσ S n K < θ, σ >ψθ ψσdσ ψp θ S n < θ, σ > n 9 n dσd

10 and No ha K < θ, σ > K < θ, σ > : W now K α < θ, σ > n < θ, σ > n n < θ, σ > n nα α <θ,σ> n n < θ, σ > n d dcraing in α. Thi can b n by h following lmnary calculaion α K α For h la par w hav ud h fac ha for p > n n From 3. w g h following 3. S n ψ θa n, d d n < θ, σ > n d. Th mo imporan propry of h K α i ha K α i nα ln α ln d < θ, σ > n ln nα α < θ, σ > n d < w hav α < n α. S n K < θ, σ >ψθ ψσ dθdσ S n ψ p θdθ W a andard cu-off funcion η ɛ Cc R a h origin and a infiniy ha i η ɛ for ɛ < r < ɛ and η ɛ for ihr r < ɛ/ or r > /ɛ. W h abiliy.8 on h funcion φx r n ψθη ɛ r. No ha φx φy Sn r n ψθηr y n ψση y dy dσd y R x y n n r y r y < θ, σ > n Now y r hn φx φy Sn R x y n dy r n ψθηr n ψσηr n ddσ n < θ, σ > n r n ψθηr n ψσηr n ηrψθ ηrψσ n ddσ S n < θ, σ > n n r n ηrψθ n ddσ S n < θ, σ > n r n ηr r n Dfin Λ n, : S n n <θ,σ> n Sn n n ψθ ψσ Sn n n < θ, σ > n ddσ ηr ηrψσ ddσ < θ, σ > n n dσd. Thrfor, φx φy x y n dy r n ηrψθλ n, r n ηr r n K n S n Sn n < θ, σ >ψθ ψσdσ ηr ηrψσ ddσ < θ, σ > n d

11 Applying h abov, w compu h lf-hand id of h abiliy inqualiy.8, Rn φx φy φx φyφx R x y n dxdy n R x y n dxdy n r η rdr ψ Λ n, dθ S n r η rdr < θ, σ >ψθ ψσ dσdθ 3.3 K n S n [ ] r ηrηr ηrdr S n Sn n n ψσψθ < θ, σ > n W now compu h cond rm in h abiliy inqualiy.8 for h funcion φx r n ψθηr and u r ψθ, 3. p u φ p p r r n ψ p η rdr r η rdr ψ p θdθ S n Du o h dfiniion of h η ɛ, w hav r η ɛ rdr ln/ɛ O. No ha hi rm appar in boh rm of h abiliy inqualiy ha w compud in 3.3 and 3.5. W now claim ha f ɛ : r η ɛ rη ɛ r η ɛ rdr Oln No ha η ɛ r for ɛ < r < ɛ and η ɛr for ihr r < ɛ or r > ɛ. Now conidr variou rang of valu of, o compar h uppor of η ɛ r and η ɛ r. From h dfiniion of η ɛ, w hav f ɛ ɛ ɛ r η ɛ rη ɛ r η ɛ rdr In wha follow w conidr a fw ca o xplain h claim. For xampl whn ɛ < ɛ < ɛ hn f ɛ ɛ Now conidr h ca ɛ < ɛ < ɛ hn ɛ. So, f ɛ ɛ ɛ ɛ r dr r dr ɛ ɛ ɛ Ohr ca can b rad imilarly. From hi on can ha [ ] 3.5 r ηrηr ηrdr S n O S n n n ln S n < θ, σ > n ɛ r dr ln r dr ln ln ɛ ln Sn n n < θ, σ > n ψσψθddσdθ Collcing highr ordr rm of h abiliy inqualiy w g 3.8 Λ n, ψ S < θ, σ >ψθ ψσ dσ p n K n S n From hi and 3. w obain Λ n, pa n, ψ K n S n S n S n ψ p pk < θ, σ >ψθ ψσ dσ ψσψθdσdθd dσdθd

12 for p > n No ha K α i dcraing in α. Thi impli K n < K n. So, K n h ohr hand h aumpion of h horm impli ha Λ n, pa n, <. Thrfor, ψ. pk <. On Rmark 3.. No ha in hi cion w nvr ud h fac ha < <. So hi proof hold for a largr rang of h paramr.. Enrgy Eima In hi cion, w provid om ima for oluion of.. Th ima ar ndd in h nx cion whn w prform a blow-down analyi argumn. Th mhod and ida providd in hi cion ar rongly moivad by [7, 8]. Lmma.. Th following idnii hold for any funcion ζ and η,.. b ζ b ζη b ζη ζ b η ζ b ζ η ζ η ζ b η ζ η b ζη η b ζ ζ b η ζ η Proof. W omi h proof, inc i i lmnary. W apply h givn idnii o g om nrgy ima. Lmma.. L u b a oluion of. ha i abl ouid a ball B R and u aifi.7. Thn hr xi a poiiv conan C uch ha u p η y b b u η C y b u.3 b η b η η b η. C y b u b u η Proof. Muliply h quaion wih y b uη whr η i a funcion o g y b u η bu u η divy b b u From hi w g.5 C n, Apply Lmma. for ζ u w g C n, u p η.6 y b u η b u y b u η b u C n, u p η y b b u η No ha h la ingral i y b u b η u η y b u η y b b η u η lim y yb y b u u η u p η y b b u b u η y b u b η u divy b b η η y b u b η u η y b u b u η y b u b η η b η

13 From hi and.6 w g.7 C n, u p η.8 y b b u η y b u η W now apply h abiliy inqualiy.8 for φ uη o g.9 p u p η y b b u η From.9 and.7 w obain u p η. y b b u η C C y b u b u η y b u b η η b η y b u b u η C y b u η y b u b η η b η No ha from Lmma. w hav b u η η b u u b η u η. So from. w g. u p η y b b u η C y b u b u η C y b u η. C No alo ha u b u u b u. Thrfor,.3 y b u η y b η b u. From hi and. w g u p η.5 Thi finih h proof. y b b u η C y b u b η η b η y b u b η C y b u b u η y b u b u η y b u b u η y b u b η η b η b η Corollary.. Wih h am aumpion a Lmma.. Thn hr xi a poiiv conan C uch ha.6 u p y b b u CR y b u B R B R B R Proof. Thi i a dirc conqunc of h ima.3. Subiu η wih η m in.3 for a numbr 3 < m N. Thrfor.7 m y b u b u η η m ɛ y b b u wη m Cɛ y b u η m η for a mall nough ɛ >. On can apply h andard funcion o finih h proof. Lmma.3. Suppo ha u i a oluion of. ha i abl ouid om ball B R \ B R and x dfin C c.8 ρx Rn ηx ηy x y n dy. 3. For η

14 Thn.9 u p η dx Rn uxηx uyηy x y n dxdy C u ρdx Proof. Proof i qui imilar o Lmma. in [7] and w omi i hr. Lmma.. L m > n/ and x. S. ρx Rn ηx ηy Thn hr i a conan C Cn,, m > uch ha x y n dy whr ηx x m/. C x n/ ρx C x n/ Proof. Proof i qui imilar o Lmma. in [7] and w omi i hr. Corollary.. Suppo ha m > n/, η givn by. and R > R >. Dfin. ρ R x Rn η R x η R y x y n dy whr η R x ηx/rψx/r for h andard funcion ψ ha i ψ C and ψ, ψ on B and ψ on \ B. Thn hr xi a conan C > uch ha ρ R x Cη x/r x n R ρx/r. Lmma.5. Suppo ha u i a oluion of. ha i abl ouid a ball B R. Conidr ρ R ha i dfind in Corollary 5. for n/ < m < n/ p /. Thn hr xi a conan C > uch ha u ρ R C u ρ R p B 3R for any R > 3R Proof. Proof i qui imilar o Lmma. in [7] and w omi i hr. Lmma.6. Suppo ha p n n. L u b a oluion of. ha i abl ouid a ball B R aifi.7. Thn hr xi a conan C > uch ha for any R > 3R. Proof. Th xnion u aifi From hi w hav B R y 3 u dxdy C n, B R y b u C ūx, y C n, u z x R,z u z C n, x R,z u z C n, C n, R [ R p y x z y n y 3 x z y n dy dz dzdx and u R x z α n dα x z x z α n dα x R,z u z n [ x z n x z R n dα ] x R,z u z x z n [ x z R n x z n dα ] W now pli h ingral o x z < R and x z > R. For h ca of x z < R w g ]

15 x R, xz <R C x R, xz <R x R, xz <R u z n [ x z n x z R n ] u z x z n [ x z R n x z n ] u z x z n /p R u zdz CR u p ηr B 3R B 3R /p u zρ R zdz B 3R n CR p p n CR η / R B 3R /p Hr w hav ud Lmma.3 and Lmma.5. For h ca of x z > R w apply h man valu inqualiy o g u z n [ x z n x z R n ] x R, xz R CR CR x R, xz R x R, xz R z R p n CR. u zρdz u z x z n [ x z R n x z n ] u z x z n Hr w hav ud Corollary. and Lmma.5. Thi finih h proof. Lmma.7. L u b a oluion of. ha i abl ouid a ball B R and u aifi.7. Thn hr xi a poiiv conan C uch ha.3 u p y b b u p n CR B R B R Proof. Thi i a dirc conqunc of Corollary. and Lmma Blow-Down Analyi In hi cion w provid h proof of Thorm.. Proof of Thorm.. Suppo ha u i a oluion of. ha i abl ouid h ball of radiu R and uppo ha u i i xnion aifying.7. L fir conidr h ubcriical ca, i.. < p p S n. No ha for h ubcriical ca Lmma impli ha u Ḣ L p. Muliplying. wih u and doing ingraion, w obain 5. u p u Ḣ in addiion muliplying. wih u x ux yild u u / u / u ww 5

16 whr w / u. Following ida providd in [8, 8] and h uing h chang of variabl z x on can g h following Pohozav idniy n u p n w d p R n R n w w / dz n u Ḣ Thi qualiy oghr and 5. prov h horm for h ubcriical ca. W now focu on h uprcriical ca, i.. p > p S n. W prform h proof in a fw p. Sp. lim Eu,, <. From Thorm. E i nondcraing. So, w only nd o how ha Eu,, i boundd. No ha Eu,, From Lmma.7 w conclud ha Eu,, d Eu,, γdγd p γ n y3 b u dydx C n, u p dx dγd C p Bγ Bγ whr C > i indpndn from. For h nx rm in h nrgy w hav 3 γ n y 3 u dydx Bγ dγd p n C 3 B n y 3 u dydxd \B 3 B n y 3 u dydx d 3 3 n d whr C > i indpndn from. In h abov ima w hav applid Lmma.6. For h nx rm w hav n 3 γ 3 [ [ d 3n γ y 3 dγ B γ n y 3 B [ n B y 3 p γ u u n γ B 3 \B y 3 B γ y 3 p u u p γ u u ] dγd p u u ]d p γ u u C whr C > i indpndn from. Th r of h rm can b rad imilarly. Sp. Thr xi a qunc i uch ha u i convrg wakly in Hloc Rn, y 3 dxdy o a funcion u. No ha hi i a dirc conqunc of Lmma.7. Sp 3. u i homognou. 6 ] dγd

17 To prov hi claim, apply h cal invarianc of E, i finin and h monooniciy formula; givn R > R >, lim Eu,, R i Eu,, R i i lim Eu i,, R Eu i,, R i lim inf i B R \B R B R \B R y 3 r n p r u i y 3 r n p r u In h la inqualiy w hav ud h wak convrgnc of u i o u p r u Thrfor, u i homognou. Sp. u. Thi i a dirc conqunc of Thorm 3.. u u a.. in Rn. Sp 5. u i convrg rongly o zro in H B R \ B ɛ, y 3 dydx and u i L p B R \ B ɛ for all R > ɛ >. Sp 6. u. ui dydx Iu, Iu, y 3 b u dxdy κ u p dx p B B y 3 b u dxdy κ u p dx p Bɛ Bɛ y 3 b u dxdy κ u p dx p B\Bɛ B\Bɛ p n ε Iu, ε y 3 b u dxdy κ p B\Bɛ p n Cε y 3 u dxdy κ p B\Bɛ dydx in H loc Rn, y 3 dydx. Thi impli convrg rongly o zro in B\Bɛ u p dx B\Bɛ u p dx Ling and hn ε, w dduc ha lim Iu,. Uing h monooniciy of E, 5. Eu, p n E d up I C [,] B \B u and o lim Eu,. Sinc u i mooh, w alo hav Eu,. Sinc E i monoon, E and o ū mu b homognou, a conradicion unl u. Rmark 5.. No ha w xpc ha whn.9 do no hold ha i whn 5.3 p Γ n Γ Γ n Γ Γ n Γ n hr xi radial nir abl oluion. Th mhod of conrucion of uch oluion i h on ha i applid in [7] and rfrnc hrin. Mor prcily, on nd o mimic h andard proof for h xinc of a minimal oluion ha i axially ymmric for h aociad problm on boundd domain. Thn applying h runcaion mhod and h moving plan mhod on can how ha h minimal oluion i boundd and radially dcraing. From llipic ima and om claical convxiy argumn h minimal oluion would convrg o h ingular oluion ha i abl. Thi impli ha 5.3 hould hold. Finally uing h ingular oluion and h minimal oluion on can conruc a radial, boundd and mooh oluion via rcaling argumn. 7

18 Rfrnc [] L. Caffarlli, B. Gida, J. Spruck, Aympoic ymmry and local bhavior of milinar llipic quaion wih criical Sobolv growh, Comm. Pur Appl. Mah. 989, no. 3, 7-97 [] L. Caffarlli and L. Silvr, An xnion problm rlad o h fracional Laplacian, Comm. Parial Diffrnial Equaion 3 7, no. 7-9, 5-6. [3] J. Ca, Sun-Yung Alic Chang, On fracional GJMS opraor, prprin hp://arxiv.org/ab/6.86 [] Sun-Yung Alic Chang and Maria dl Mar Gonzalz, Fracional Laplacian in conformal gomry, Advanc in Mahmaic 6, no., -3. [5] W. Chn, C. Li, B. Ou, Claificaion of oluion for an ingral quaion, Comm. Pur Appl. Mah. 59 6, no. 3, [6] W. Chn, X. Cui, R. Zhuo, Z. Yuan, A Liouvill horm for h fracional laplacian, arxiv:.7v. [7] J. Davila, L. Dupaign, J. Wi, On h fracional Lan-Emdn quaion, prprin. [8] J. Davila, L. Dupaign and K. Wang, J. Wi, A Monooniciy Formula and a Liouvill-yp Thorm for a Fourh Ordr Suprcriical Problm, Advanc in Mahmaic 58, -85. [9] M. Fall, Smilinar llipic quaion for h fracional Laplacian wih Hardy ponial, prprin. hp://arxiv.org/pdf/9.553v.pdf [] A. Farina; On h claificaion of oluion of h Lan-Emdn quaion on unboundd domain of R N, J. Mah. Pur Appl , no. 5, [] F. Gazzola, H. C. Grunau, Radial nir oluion for uprcriical biharmonic quaion, Mah. Annal [] B. Gida, J. Spruck, A priori bound for poiiv oluion of nonlinar llipic quaion, Comm. Parial Diffrnial Equaion [3] Ira W. Hrb, Spcral hory of h opraor p m / Z /r, Comm. Mah. Phy , no. 3, [] Y. Li, Rmark on om conformally invarian ingral quaion: h mhod of moving phr, J. Eur. Mah. Soc. JEMS 6, no., [5] C. S. Lin, A claificaion of oluion of a conformally invarian fourh ordr quaion in R N, Commn. Mah. Hlv [6] D. D. Joph, T. S. Lundgrn, Quailinar Dirichl problm drivn by poiiv ourc, Arch. Raional Mch. Anal. 9 97/ [7] F. Pacard, A no on h rgulariy of wak oluion of u u α in, Houon J. Mah no, [8] Ro-Oon, J. Srra, Local ingraion by par and Pohozav idnii for highr ordr fracional Laplacian, prprin hp://arxiv.org/ab/6.7 [9] J. Wi, X. Xu; Claificaion of oluion of highr ordr conformally invarian quaion, Mah. Ann , no., 7-8. [] D. Yafav, Sharp Conan in h Hardy-Rllich Inqualii, Journal of Funcional Analyi 68, [] R. Yang, On highr ordr xnion for h fracional Laplacian, prprin. hp://arxiv.org/pdf/3.3v.pdf Dparmn of Mahmaical and Saiical Scinc, CAB 63, Univriy of Albra, Edmonon, Albra, Canada T6G G addr: fazly@ualbra.ca Dparmn of Mahmaic, Univriy of Briih Columbia, Vancouvr, B.C. Canada V6T Z. addr: jcwi@mah.ubc.ca 8

Chapter 5 The Laplace Transform. x(t) input y(t) output Dynamic System

Chapter 5 The Laplace Transform. x(t) input y(t) output Dynamic System EE 422G No: Chapr 5 Inrucor: Chung Chapr 5 Th Laplac Tranform 5- Inroducion () Sym analyi inpu oupu Dynamic Sym Linar Dynamic ym: A procor which proc h inpu ignal o produc h oupu dy ( n) ( n dy ( n) +

More information

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018 DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS Aoc. Prof. Dr. Burak Kllci Spring 08 OUTLINE Th Laplac Tranform Rgion of convrgnc for Laplac ranform Invr Laplac ranform Gomric valuaion

More information

On the Derivatives of Bessel and Modified Bessel Functions with Respect to the Order and the Argument

On the Derivatives of Bessel and Modified Bessel Functions with Respect to the Order and the Argument Inrnaional Rsarch Journal of Applid Basic Scincs 03 Aailabl onlin a wwwirjabscom ISSN 5-838X / Vol 4 (): 47-433 Scinc Eplorr Publicaions On h Driais of Bssl Modifid Bssl Funcions wih Rspc o h Ordr h Argumn

More information

Transfer function and the Laplace transformation

Transfer function and the Laplace transformation Lab No PH-35 Porland Sa Univriy A. La Roa Tranfr funcion and h Laplac ranformaion. INTRODUTION. THE LAPLAE TRANSFORMATION L 3. TRANSFER FUNTIONS 4. ELETRIAL SYSTEMS Analyi of h hr baic paiv lmn R, and

More information

LaPlace Transform in Circuit Analysis

LaPlace Transform in Circuit Analysis LaPlac Tranform in Circui Analyi Obciv: Calcula h Laplac ranform of common funcion uing h dfiniion and h Laplac ranform abl Laplac-ranform a circui, including componn wih non-zro iniial condiion. Analyz

More information

Boyce/DiPrima 9 th ed, Ch 2.1: Linear Equations; Method of Integrating Factors

Boyce/DiPrima 9 th ed, Ch 2.1: Linear Equations; Method of Integrating Factors Boc/DiPrima 9 h d, Ch.: Linar Equaions; Mhod of Ingraing Facors Elmnar Diffrnial Equaions and Boundar Valu Problms, 9 h diion, b William E. Boc and Richard C. DiPrima, 009 b John Wil & Sons, Inc. A linar

More information

Elementary Differential Equations and Boundary Value Problems

Elementary Differential Equations and Boundary Value Problems Elmnar Diffrnial Equaions and Boundar Valu Problms Boc. & DiPrima 9 h Ediion Chapr : Firs Ordr Diffrnial Equaions 00600 คณ ตศาสตร ว ศวกรรม สาขาว ชาว ศวกรรมคอมพ วเตอร ป การศ กษา /55 ผศ.ดร.อร ญญา ผศ.ดร.สมศ

More information

Chapter 12 Introduction To The Laplace Transform

Chapter 12 Introduction To The Laplace Transform Chapr Inroducion To Th aplac Tranorm Diniion o h aplac Tranorm - Th Sp & Impul uncion aplac Tranorm o pciic uncion 5 Opraional Tranorm Applying h aplac Tranorm 7 Invr Tranorm o Raional uncion 8 Pol and

More information

Instructors Solution for Assignment 3 Chapter 3: Time Domain Analysis of LTIC Systems

Instructors Solution for Assignment 3 Chapter 3: Time Domain Analysis of LTIC Systems Inrucor Soluion for Aignmn Chapr : Tim Domain Anali of LTIC Sm Problm i a 8 x x wih x u,, an Zro-inpu rpon of h m: Th characriic quaion of h LTIC m i i 8, which ha roo a ± j Th zro-inpu rpon i givn b zi

More information

Chap.3 Laplace Transform

Chap.3 Laplace Transform Chap. aplac Tranorm Tranorm: An opraion ha ranorm a uncion ino anohr uncion i Dirniaion ranorm: ii x: d dx x x Ingraion ranorm: x: x dx x c Now, conidr a dind ingral k, d,ha ranorm ino a uncion o variabl

More information

Final Exam : Solutions

Final Exam : Solutions Comp : Algorihm and Daa Srucur Final Exam : Soluion. Rcuriv Algorihm. (a) To bgin ind h mdian o {x, x,... x n }. Sinc vry numbr xcp on in h inrval [0, n] appar xacly onc in h li, w hav ha h mdian mu b

More information

Midterm exam 2, April 7, 2009 (solutions)

Midterm exam 2, April 7, 2009 (solutions) Univrsiy of Pnnsylvania Dparmn of Mahmaics Mah 26 Honors Calculus II Spring Smsr 29 Prof Grassi, TA Ashr Aul Midrm xam 2, April 7, 29 (soluions) 1 Wri a basis for h spac of pairs (u, v) of smooh funcions

More information

S.Y. B.Sc. (IT) : Sem. III. Applied Mathematics. Q.1 Attempt the following (any THREE) [15]

S.Y. B.Sc. (IT) : Sem. III. Applied Mathematics. Q.1 Attempt the following (any THREE) [15] S.Y. B.Sc. (IT) : Sm. III Applid Mahmaics Tim : ½ Hrs.] Prlim Qusion Papr Soluion [Marks : 75 Q. Amp h following (an THREE) 3 6 Q.(a) Rduc h mari o normal form and find is rank whr A 3 3 5 3 3 3 6 Ans.:

More information

A Condition for Stability in an SIR Age Structured Disease Model with Decreasing Survival Rate

A Condition for Stability in an SIR Age Structured Disease Model with Decreasing Survival Rate A Condiion for abiliy in an I Ag rucurd Disas Modl wih Dcrasing urvival a A.K. upriana, Edy owono Dparmn of Mahmaics, Univrsias Padjadjaran, km Bandung-umng 45363, Indonsia fax: 6--7794696, mail: asupria@yahoo.com.au;

More information

A UNIFIED APPROACH TO SINGULAR PROBLEMS ARISING IN THE MEMBRANE THEORY*

A UNIFIED APPROACH TO SINGULAR PROBLEMS ARISING IN THE MEMBRANE THEORY* 55(2) APPLICATIONS OF MATHEMATICS No., 47 75 A UNIFIED APPROACH TO SINGULAR PROBLEMS ARISING IN THE MEMBRANE THEORY* Irna Rachůnková, Olomouc, Grno Pulvrr, Win, Ewa B. Winmüllr, Win (Rcivd January 4, 28,

More information

14.02 Principles of Macroeconomics Fall 2005 Quiz 3 Solutions

14.02 Principles of Macroeconomics Fall 2005 Quiz 3 Solutions 4.0 rincipl of Macroconomic Fall 005 Quiz 3 Soluion Shor Quion (30/00 poin la a whhr h following amn ar TRUE or FALSE wih a hor xplanaion (3 or 4 lin. Each quion coun 5/00 poin.. An incra in ax oday alway

More information

Math 266, Practice Midterm Exam 2

Math 266, Practice Midterm Exam 2 Mh 66, Prcic Midrm Exm Nm: Ground Rul. Clculor i NOT llowd.. Show your work for vry problm unl ohrwi d (pril crdi r vilbl). 3. You my u on 4-by-6 indx crd, boh id. 4. Th bl of Lplc rnform i vilbl h l pg.

More information

Ma/CS 6a Class 15: Flows and Bipartite Graphs

Ma/CS 6a Class 15: Flows and Bipartite Graphs //206 Ma/CS 6a Cla : Flow and Bipari Graph By Adam Shffr Rmindr: Flow Nwork A flow nwork i a digraph G = V, E, oghr wih a ourc vrx V, a ink vrx V, and a capaciy funcion c: E N. Capaciy Sourc 7 a b c d

More information

Lecture 4: Laplace Transforms

Lecture 4: Laplace Transforms Lur 4: Lapla Transforms Lapla and rlad ransformaions an b usd o solv diffrnial quaion and o rdu priodi nois in signals and imags. Basially, hy onvr h drivaiv opraions ino mulipliaion, diffrnial quaions

More information

An Indian Journal FULL PAPER. Trade Science Inc. A stage-structured model of a single-species with density-dependent and birth pulses ABSTRACT

An Indian Journal FULL PAPER. Trade Science Inc. A stage-structured model of a single-species with density-dependent and birth pulses ABSTRACT [Typ x] [Typ x] [Typ x] ISSN : 974-7435 Volum 1 Issu 24 BioTchnology 214 An Indian Journal FULL PAPE BTAIJ, 1(24), 214 [15197-1521] A sag-srucurd modl of a singl-spcis wih dnsiy-dpndn and birh pulss LI

More information

THE INVOLUTE-EVOLUTE OFFSETS OF RULED SURFACES *

THE INVOLUTE-EVOLUTE OFFSETS OF RULED SURFACES * Iranian Journal of Scinc & Tchnology, Tranacion A, Vol, No A Prind in h Ilamic Rpublic of Iran, 009 Shiraz Univriy THE INVOLUTE-EVOLUTE OFFSETS OF RULED SURFACES E KASAP, S YUCE AND N KURUOGLU Ondokuz

More information

Boyce/DiPrima 9 th ed, Ch 7.8: Repeated Eigenvalues

Boyce/DiPrima 9 th ed, Ch 7.8: Repeated Eigenvalues Boy/DiPrima 9 h d Ch 7.8: Rpad Eignvalus Elmnary Diffrnial Equaions and Boundary Valu Problms 9 h diion by William E. Boy and Rihard C. DiPrima 9 by John Wily & Sons In. W onsidr again a homognous sysm

More information

On Ψ-Conditional Asymptotic Stability of First Order Non-Linear Matrix Lyapunov Systems

On Ψ-Conditional Asymptotic Stability of First Order Non-Linear Matrix Lyapunov Systems In. J. Nonlinar Anal. Appl. 4 (213) No. 1, 7-2 ISSN: 28-6822 (lcronic) hp://www.ijnaa.smnan.ac.ir On Ψ-Condiional Asympoic Sabiliy of Firs Ordr Non-Linar Marix Lyapunov Sysms G. Sursh Kumar a, B. V. Appa

More information

Rigidity Results for Elliptic PDEs

Rigidity Results for Elliptic PDEs 1/20 Rigidity Results for Elliptic PDEs Mostafa Fazly University of Alberta Collaborators: Nassif Ghoussoub (UBC) Juncheng Wei (UBC-Chinese U Hong Kong) Yannick Sire (UMarseille) Workshop on Partial Differential

More information

where: u: input y: output x: state vector A, B, C, D are const matrices

where: u: input y: output x: state vector A, B, C, D are const matrices Sa pac modl: linar: y or in om : Sa q : f, u Oupu q : y h, u u Du F Gu y H Ju whr: u: inpu y: oupu : a vcor,,, D ar con maric Eampl " $ & ' " $ & 'u y " & * * * * [ ],, D H D I " $ " & $ ' " & $ ' " &

More information

Poisson process Markov process

Poisson process Markov process E2200 Quuing hory and lraffic 2nd lcur oion proc Markov proc Vikoria Fodor KTH Laboraory for Communicaion nwork, School of Elcrical Enginring 1 Cour oulin Sochaic proc bhind quuing hory L2-L3 oion proc

More information

Let s look again at the first order linear differential equation we are attempting to solve, in its standard form:

Let s look again at the first order linear differential equation we are attempting to solve, in its standard form: Th Ingraing Facor Mhod In h prvious xampls of simpl firs ordr ODEs, w found h soluions by algbraically spara h dpndn variabl- and h indpndn variabl- rms, and wri h wo sids of a givn quaion as drivaivs,

More information

CSE 245: Computer Aided Circuit Simulation and Verification

CSE 245: Computer Aided Circuit Simulation and Verification CSE 45: Compur Aidd Circui Simulaion and Vrificaion Fall 4, Sp 8 Lcur : Dynamic Linar Sysm Oulin Tim Domain Analysis Sa Equaions RLC Nwork Analysis by Taylor Expansion Impuls Rspons in im domain Frquncy

More information

EXERCISE - 01 CHECK YOUR GRASP

EXERCISE - 01 CHECK YOUR GRASP DIFFERENTIAL EQUATION EXERCISE - CHECK YOUR GRASP 7. m hn D() m m, D () m m. hn givn D () m m D D D + m m m m m m + m m m m + ( m ) (m ) (m ) (m + ) m,, Hnc numbr of valus of mn will b. n ( ) + c sinc

More information

CIVL 8/ D Boundary Value Problems - Quadrilateral Elements (Q4) 1/8

CIVL 8/ D Boundary Value Problems - Quadrilateral Elements (Q4) 1/8 CIVL 8/7111 -D Boundar Vau Prom - Quadriara Emn (Q) 1/8 ISOPARAMERIC ELEMENS h inar rianguar mn and h iinar rcanguar mn hav vra imporan diadvanag. 1. Boh mn ar una o accura rprn curvd oundari, and. h provid

More information

REPETITION before the exam PART 2, Transform Methods. Laplace transforms: τ dτ. L1. Derive the formulas : L2. Find the Laplace transform F(s) if.

REPETITION before the exam PART 2, Transform Methods. Laplace transforms: τ dτ. L1. Derive the formulas : L2. Find the Laplace transform F(s) if. Tranform Mhod and Calculu of Svral Variabl H7, p Lcurr: Armin Halilovic KTH, Campu Haning E-mail: armin@dkh, wwwdkh/armin REPETITION bfor h am PART, Tranform Mhod Laplac ranform: L Driv h formula : a L[

More information

2.1. Differential Equations and Solutions #3, 4, 17, 20, 24, 35

2.1. Differential Equations and Solutions #3, 4, 17, 20, 24, 35 MATH 5 PS # Summr 00.. Diffrnial Equaions and Soluions PS.# Show ha ()C #, 4, 7, 0, 4, 5 ( / ) is a gnral soluion of h diffrnial quaion. Us a compur or calculaor o skch h soluions for h givn valus of h

More information

Network Design with Weighted Players

Network Design with Weighted Players Nwork Dign wih Wighd Playr Ho-Lin Chn Tim Roughgardn Jun 21, 27 Abrac W conidr a modl of gam-horic nwork dign iniially udid by Anhlvich al. [2], whr lfih playr lc pah in a nwork o minimiz hir co, which

More information

Network Design with Weighted Players (SPAA 2006 Full Paper Submission)

Network Design with Weighted Players (SPAA 2006 Full Paper Submission) Nwork Dign wih Wighd Playr SPAA 26 Full Papr Submiion) Ho-Lin Chn Tim Roughgardn March 7, 26 Abrac W conidr a modl of gam-horic nwork dign iniially udid by Anhlvich al. [1], whr lfih playr lc pah in a

More information

Nonlocal Symmetries and Exact Solutions for PIB Equation

Nonlocal Symmetries and Exact Solutions for PIB Equation Commun. Thor. Phys. 58 01 331 337 Vol. 58 No. 3 Spmbr 15 01 Nonlocal Symmris and Exac Soluions for PIB Equaion XIN Xiang-Png 1 MIAO Qian 1 and CHEN Yong í 1 1 Shanghai Ky Laboraory of Trusworhy Compuing

More information

Wave Equation (2 Week)

Wave Equation (2 Week) Rfrnc Wav quaion ( Wk 6.5 Tim-armonic filds 7. Ovrviw 7. Plan Wavs in Losslss Mdia 7.3 Plan Wavs in Loss Mdia 7.5 Flow of lcromagnic Powr and h Poning Vcor 7.6 Normal Incidnc of Plan Wavs a Plan Boundaris

More information

General Article Application of differential equation in L-R and C-R circuit analysis by classical method. Abstract

General Article Application of differential equation in L-R and C-R circuit analysis by classical method. Abstract Applicaion of Diffrnial... Gnral Aricl Applicaion of diffrnial uaion in - and C- circui analysis by classical mhod. ajndra Prasad gmi curr, Dparmn of Mahmaics, P.N. Campus, Pokhara Email: rajndraprasadrgmi@yahoo.com

More information

Lecture 1: Numerical Integration The Trapezoidal and Simpson s Rule

Lecture 1: Numerical Integration The Trapezoidal and Simpson s Rule Lcur : Numrical ngraion Th Trapzoidal and Simpson s Rul A problm Th probabiliy of a normally disribud (man µ and sandard dviaion σ ) vn occurring bwn h valus a and b is B A P( a x b) d () π whr a µ b -

More information

[ ] 1+ lim G( s) 1+ s + s G s s G s Kacc SYSTEM PERFORMANCE. Since. Lecture 10: Steady-state Errors. Steady-state Errors. Then

[ ] 1+ lim G( s) 1+ s + s G s s G s Kacc SYSTEM PERFORMANCE. Since. Lecture 10: Steady-state Errors. Steady-state Errors. Then SYSTEM PERFORMANCE Lctur 0: Stady-tat Error Stady-tat Error Lctur 0: Stady-tat Error Dr.alyana Vluvolu Stady-tat rror can b found by applying th final valu thorm and i givn by lim ( t) lim E ( ) t 0 providd

More information

Spring 2006 Process Dynamics, Operations, and Control Lesson 2: Mathematics Review

Spring 2006 Process Dynamics, Operations, and Control Lesson 2: Mathematics Review Spring 6 Procss Dynamics, Opraions, and Conrol.45 Lsson : Mahmaics Rviw. conx and dircion Imagin a sysm ha varis in im; w migh plo is oupu vs. im. A plo migh imply an quaion, and h quaion is usually an

More information

Lecture 26: Leapers and Creepers

Lecture 26: Leapers and Creepers Lcur 6: Lapr and Crpr Scrib: Grain Jon (and Marin Z. Bazan) Dparmn of Economic, MIT May, 005 Inroducion Thi lcur conidr h analyi of h non-parabl CTRW in which h diribuion of p iz and im bwn p ar dpndn.

More information

Applied Statistics and Probability for Engineers, 6 th edition October 17, 2016

Applied Statistics and Probability for Engineers, 6 th edition October 17, 2016 Applid Saisics and robabiliy for Enginrs, 6 h diion Ocobr 7, 6 CHATER Scion - -. a d. 679.. b. d. 88 c d d d. 987 d. 98 f d.. Thn, = ln. =. g d.. Thn, = ln.9 =.. -7. a., by symmry. b.. d...6. 7.. c...

More information

2. The Laplace Transform

2. The Laplace Transform Th aac Tranorm Inroucion Th aac ranorm i a unamna an vry uu oo or uying many nginring robm To in h aac ranorm w conir a comx variab σ, whr σ i h ra ar an i h imaginary ar or ix vau o σ an w viw a a oin

More information

C From Faraday's Law, the induced voltage is, C The effect of electromagnetic induction in the coil itself is called selfinduction.

C From Faraday's Law, the induced voltage is, C The effect of electromagnetic induction in the coil itself is called selfinduction. Inducors and Inducanc C For inducors, v() is proporional o h ra of chang of i(). Inducanc (con d) C Th proporionaliy consan is h inducanc, L, wih unis of Hnris. 1 Hnry = 1 Wb / A or 1 V sc / A. C L dpnds

More information

Laplace Transforms recap for ccts

Laplace Transforms recap for ccts Lalac Tranform rca for cc Wha h big ida?. Loo a iniial condiion ron of cc du o caacior volag and inducor currn a im Mh or nodal analyi wih -domain imdanc rianc or admianc conducanc Soluion of ODE drivn

More information

Introduction to SLE Lecture Notes

Introduction to SLE Lecture Notes Inroducion o SLE Lecure Noe May 13, 16 - The goal of hi ecion i o find a ufficien condiion of λ for he hull K o be generaed by a imple cure. I urn ou if λ 1 < 4 hen K i generaed by a imple curve. We will

More information

Consider a system of 2 simultaneous first order linear equations

Consider a system of 2 simultaneous first order linear equations Soluon of sysms of frs ordr lnar quaons onsdr a sysm of smulanous frs ordr lnar quaons a b c d I has h alrna mar-vcor rprsnaon a b c d Or, n shorhand A, f A s alrady known from con W know ha h abov sysm

More information

Why Laplace transforms?

Why Laplace transforms? MAE4 Linar ircui Why Lalac ranform? Firordr R cc v v v KVL S R inananou for ach Subiu lmn rlaion v S Ordinary diffrnial quaion in rm of caacior volag Lalac ranform Solv Invr LT V u, v Ri, i A R V A _ v

More information

Optimal time-consistent investment in the dual risk model with diffusion

Optimal time-consistent investment in the dual risk model with diffusion Opimal im-conin invmn in h dual rik modl wih diffuion LIDONG ZHANG Tianjin Univriy of Scinc and Tchnology Collg of Scinc TEDA, Sr 3, Tianjin CHINA zhanglidong999@.com XIMIN RONG Tianjin Univriy School

More information

FIRST-ORDER SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS I: Introduction and Linear Systems

FIRST-ORDER SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS I: Introduction and Linear Systems FIRST-ORDER SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS I: Inroducion and Linar Sysms David Lvrmor Dparmn of Mahmaics Univrsiy of Maryland 9 Dcmbr 0 Bcaus h prsnaion of his marial in lcur will diffr from

More information

Voltage v(z) ~ E(z)D. We can actually get to this wave behavior by using circuit theory, w/o going into details of the EM fields!

Voltage v(z) ~ E(z)D. We can actually get to this wave behavior by using circuit theory, w/o going into details of the EM fields! Considr a pair of wirs idal wirs ngh >, say, infinily long olag along a cabl can vary! D olag v( E(D W can acually g o his wav bhavior by using circui hory, w/o going ino dails of h EM filds! Thr

More information

Institute of Actuaries of India

Institute of Actuaries of India Insiu of Acuaris of India ubjc CT3 Probabiliy and Mahmaical aisics Novmbr Examinaions INDICATIVE OLUTION Pag of IAI CT3 Novmbr ol. a sampl man = 35 sampl sandard dviaion = 36.6 b for = uppr bound = 35+*36.6

More information

1 Finite Automata and Regular Expressions

1 Finite Automata and Regular Expressions 1 Fini Auom nd Rgulr Exprion Moivion: Givn prn (rgulr xprion) for ring rching, w migh wn o convr i ino drminiic fini uomon or nondrminiic fini uomon o mk ring rching mor fficin; drminiic uomon only h o

More information

Lagrangian for RLC circuits using analogy with the classical mechanics concepts

Lagrangian for RLC circuits using analogy with the classical mechanics concepts Lagrangian for RLC circuis using analogy wih h classical mchanics concps Albrus Hariwangsa Panuluh and Asan Damanik Dparmn of Physics Educaion, Sanaa Dharma Univrsiy Kampus III USD Paingan, Maguwoharjo,

More information

The Laplace Transform

The Laplace Transform Th Lplc Trnform Dfiniion nd propri of Lplc Trnform, picwi coninuou funcion, h Lplc Trnform mhod of olving iniil vlu problm Th mhod of Lplc rnform i ym h rli on lgbr rhr hn clculu-bd mhod o olv linr diffrnil

More information

fiziks Institute for NET/JRF, GATE, IIT JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES MATEMATICAL PHYSICS SOLUTIONS are

fiziks Institute for NET/JRF, GATE, IIT JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES MATEMATICAL PHYSICS SOLUTIONS are MTEMTICL PHYSICS SOLUTIONS GTE- Q. Considr an ani-symmric nsor P ij wih indics i and j running from o 5. Th numbr of indpndn componns of h nsor is 9 6 ns: Soluion: Th numbr of indpndn componns of h nsor

More information

(1) Then we could wave our hands over this and it would become:

(1) Then we could wave our hands over this and it would become: MAT* K285 Spring 28 Anthony Bnoit 4/17/28 Wk 12: Laplac Tranform Rading: Kohlr & Johnon, Chaptr 5 to p. 35 HW: 5.1: 3, 7, 1*, 19 5.2: 1, 5*, 13*, 19, 45* 5.3: 1, 11*, 19 * Pla writ-up th problm natly and

More information

whereby we can express the phase by any one of the formulas cos ( 3 whereby we can express the phase by any one of the formulas

whereby we can express the phase by any one of the formulas cos ( 3 whereby we can express the phase by any one of the formulas Third In-Class Exam Soluions Mah 6, Profssor David Lvrmor Tusday, 5 April 07 [0] Th vrical displacmn of an unforcd mass on a spring is givn by h 5 3 cos 3 sin a [] Is his sysm undampd, undr dampd, criically

More information

On General Solutions of First-Order Nonlinear Matrix and Scalar Ordinary Differential Equations

On General Solutions of First-Order Nonlinear Matrix and Scalar Ordinary Differential Equations saartvlos mcnirbata rovnuli akadmiis moamb 3 #2 29 BULLTN OF TH ORN NTONL DMY OF SNS vol 3 no 2 29 Mahmaics On nral Soluions of Firs-Ordr Nonlinar Mari and Scalar Ordinary Diffrnial uaions uram L Kharaishvili

More information

Laplace Transform. National Chiao Tung University Chun-Jen Tsai 10/19/2011

Laplace Transform. National Chiao Tung University Chun-Jen Tsai 10/19/2011 plc Trnorm Nionl Chio Tung Univriy Chun-Jn Ti /9/ Trnorm o Funcion Som opror rnorm uncion ino nohr uncion: d Dirniion: x x, or Dx x dx x Indini Ingrion: x dx c Dini Ingrion: x dx 9 A uncion my hv nicr

More information

Recall that by Theorems 10.3 and 10.4 together provide us the estimate o(n2 ), S(q) q 9, q=1

Recall that by Theorems 10.3 and 10.4 together provide us the estimate o(n2 ), S(q) q 9, q=1 Chaptr 11 Th singular sris Rcall that by Thorms 10 and 104 togthr provid us th stimat 9 4 n 2 111 Rn = SnΓ 2 + on2, whr th singular sris Sn was dfind in Chaptr 10 as Sn = q=1 Sq q 9, with Sq = 1 a q gcda,q=1

More information

Estimation of Mean Time between Failures in Two Unit Parallel Repairable System

Estimation of Mean Time between Failures in Two Unit Parallel Repairable System Inrnaional Journal on Rcn Innovaion rnd in Comuing Communicaion ISSN: -869 Volum: Iu: 6 Eimaion of Man im bwn Failur in wo Uni Paralll Rairabl Sym Sma Sahu V.K. Paha Kamal Mha hih Namdo 4 ian Profor D.

More information

BSc Engineering Sciences A. Y. 2017/18 Written exam of the course Mathematical Analysis 2 August 30, x n, ) n 2

BSc Engineering Sciences A. Y. 2017/18 Written exam of the course Mathematical Analysis 2 August 30, x n, ) n 2 BSc Enginring Scincs A. Y. 27/8 Writtn xam of th cours Mathmatical Analysis 2 August, 28. Givn th powr sris + n + n 2 x n, n n dtrmin its radius of convrgnc r, and study th convrgnc for x ±r. By th root

More information

, the. L and the L. x x. max. i n. It is easy to show that these two norms satisfy the following relation: x x n x = (17.3) max

, the. L and the L. x x. max. i n. It is easy to show that these two norms satisfy the following relation: x x n x = (17.3) max ecure 8 7. Sabiliy Analyi For an n dimenional vecor R n, he and he vecor norm are defined a: = T = i n i (7.) I i eay o how ha hee wo norm aify he following relaion: n (7.) If a vecor i ime-dependen, hen

More information

DE Dr. M. Sakalli

DE Dr. M. Sakalli DE-0 Dr. M. Sakalli DE 55 M. Sakalli a n n 0 a Lh.: an Linar g Equaions Hr if g 0 homognous non-homognous ohrwis driving b a forc. You know h quaions blow alrad. A linar firs ordr ODE has h gnral form

More information

Sample Final Exam (finals03) Covering Chapters 1-9 of Fundamentals of Signals & Systems

Sample Final Exam (finals03) Covering Chapters 1-9 of Fundamentals of Signals & Systems Sample Final Exam Covering Chaper 9 (final04) Sample Final Exam (final03) Covering Chaper 9 of Fundamenal of Signal & Syem Problem (0 mar) Conider he caual opamp circui iniially a re depiced below. I LI

More information

Non-radial solutions to a bi-harmonic equation with negative exponent

Non-radial solutions to a bi-harmonic equation with negative exponent Non-radial solutions to a bi-harmonic equation with negative exponent Ali Hyder Department of Mathematics, University of British Columbia, Vancouver BC V6TZ2, Canada ali.hyder@math.ubc.ca Juncheng Wei

More information

FIXED POINTS AND STABILITY IN NEUTRAL DIFFERENTIAL EQUATIONS WITH VARIABLE DELAYS

FIXED POINTS AND STABILITY IN NEUTRAL DIFFERENTIAL EQUATIONS WITH VARIABLE DELAYS PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 136, Number 3, March 28, Page 99 918 S 2-9939(7)989-2 Aricle elecronically publihed on November 3, 27 FIXED POINTS AND STABILITY IN NEUTRAL DIFFERENTIAL

More information

SECTION where P (cos θ, sin θ) and Q(cos θ, sin θ) are polynomials in cos θ and sin θ, provided Q is never equal to zero.

SECTION where P (cos θ, sin θ) and Q(cos θ, sin θ) are polynomials in cos θ and sin θ, provided Q is never equal to zero. SETION 6. 57 6. Evaluation of Dfinit Intgrals Exampl 6.6 W hav usd dfinit intgrals to valuat contour intgrals. It may com as a surpris to larn that contour intgrals and rsidus can b usd to valuat crtain

More information

Boyce/DiPrima/Meade 11 th ed, Ch 6.1: Definition of Laplace Transform

Boyce/DiPrima/Meade 11 th ed, Ch 6.1: Definition of Laplace Transform Boy/DiPrima/Mad h d, Ch 6.: Diniion o apla Tranorm Elmnary Dirnial Equaion and Boundary Valu Problm, h diion, by William E. Boy, Rihard C. DiPrima, and Doug Mad 7 by John Wily & Son, In. Many praial nginring

More information

On the Speed of Heat Wave. Mihály Makai

On the Speed of Heat Wave. Mihály Makai On h Spd of Ha Wa Mihály Maai maai@ra.bm.hu Conns Formulaion of h problm: infini spd? Local hrmal qulibrium (LTE hypohsis Balanc quaion Phnomnological balanc Spd of ha wa Applicaion in plasma ranspor 1.

More information

CPSC 211 Data Structures & Implementations (c) Texas A&M University [ 259] B-Trees

CPSC 211 Data Structures & Implementations (c) Texas A&M University [ 259] B-Trees CPSC 211 Daa Srucurs & Implmnaions (c) Txas A&M Univrsiy [ 259] B-Trs Th AVL r and rd-black r allowd som variaion in h lnghs of h diffrn roo-o-laf pahs. An alrnaiv ida is o mak sur ha all roo-o-laf pahs

More information

Inextensible flows of S s surfaces of biharmonic

Inextensible flows of S s surfaces of biharmonic Inxnsibl flows of s surfacs of biharmonic -curvs accordin o abban fram in Hisnbr Group His Tala Körpinar Es Turhan Fira Univrsiy, Dparmn of Mahmaics 9, Elazi, Turky E-mail: alakorpinar@mailcom (Rcivd 0

More information

AR(1) Process. The first-order autoregressive process, AR(1) is. where e t is WN(0, σ 2 )

AR(1) Process. The first-order autoregressive process, AR(1) is. where e t is WN(0, σ 2 ) AR() Procss Th firs-ordr auorgrssiv procss, AR() is whr is WN(0, σ ) Condiional Man and Varianc of AR() Condiional man: Condiional varianc: ) ( ) ( Ω Ω E E ) var( ) ) ( var( ) var( σ Ω Ω Ω Ω E Auocovarianc

More information

Revisiting what you have learned in Advanced Mathematical Analysis

Revisiting what you have learned in Advanced Mathematical Analysis Fourir sris Rvisiing wh you hv lrnd in Advncd Mhmicl Anlysis L f x b priodic funcion of priod nd is ingrbl ovr priod. f x cn b rprsnd by rigonomric sris, f x n cos nx bn sin nx n cos x b sin x cosx b whr

More information

Algorithmic Discrete Mathematics 6. Exercise Sheet

Algorithmic Discrete Mathematics 6. Exercise Sheet Algorihmic Dicree Mahemaic. Exercie Shee Deparmen of Mahemaic SS 0 PD Dr. Ulf Lorenz 7. and 8. Juni 0 Dipl.-Mah. David Meffer Verion of June, 0 Groupwork Exercie G (Heap-Sor) Ue Heap-Sor wih a min-heap

More information

Chapter 3: Fourier Representation of Signals and LTI Systems. Chih-Wei Liu

Chapter 3: Fourier Representation of Signals and LTI Systems. Chih-Wei Liu Chapr 3: Fourir Rprsnaion of Signals and LTI Sysms Chih-Wi Liu Oulin Inroducion Complx Sinusoids and Frquncy Rspons Fourir Rprsnaions for Four Classs of Signals Discr-im Priodic Signals Fourir Sris Coninuous-im

More information

3.4 Repeated Roots; Reduction of Order

3.4 Repeated Roots; Reduction of Order 3.4 Rpd Roos; Rducion of Ordr Rcll our nd ordr linr homognous ODE b c 0 whr, b nd c r consns. Assuming n xponnil soluion lds o chrcrisic quion: r r br c 0 Qudric formul or fcoring ilds wo soluions, r &

More information

Cramér-Rao Inequality: Let f(x; θ) be a probability density function with continuous parameter

Cramér-Rao Inequality: Let f(x; θ) be a probability density function with continuous parameter WHEN THE CRAMÉR-RAO INEQUALITY PROVIDES NO INFORMATION STEVEN J. MILLER Abstract. W invstigat a on-paramtr family of probability dnsitis (rlatd to th Parto distribution, which dscribs many natural phnomna)

More information

cycle that does not cross any edges (including its own), then it has at least

cycle that does not cross any edges (including its own), then it has at least W prov th following thorm: Thorm If a K n is drawn in th plan in such a way that it has a hamiltonian cycl that dos not cross any dgs (including its own, thn it has at last n ( 4 48 π + O(n crossings Th

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by Dan Klain Vrsion 28928 Corrctions and commnts ar wlcom Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix () A A k I + A + k!

More information

Circuit Transients time

Circuit Transients time Circui Tranin A Solp 3/29/0, 9/29/04. Inroducion Tranin: A ranin i a raniion from on a o anohr. If h volag and currn in a circui do no chang wih im, w call ha a "ady a". In fac, a long a h volag and currn

More information

Chapter 10. The singular integral Introducing S(n) and J(n)

Chapter 10. The singular integral Introducing S(n) and J(n) Chaptr Th singular intgral Our aim in this chaptr is to rplac th functions S (n) and J (n) by mor convnint xprssions; ths will b calld th singular sris S(n) and th singular intgral J(n). This will b don

More information

MEM 355 Performance Enhancement of Dynamical Systems A First Control Problem - Cruise Control

MEM 355 Performance Enhancement of Dynamical Systems A First Control Problem - Cruise Control MEM 355 Prformanc Enhancmn of Dynamical Sysms A Firs Conrol Problm - Cruis Conrol Harry G. Kwany Darmn of Mchanical Enginring & Mchanics Drxl Univrsiy Cruis Conrol ( ) mv = F mg sinθ cv v +.2v= u 9.8θ

More information

Laplace Transform. Inverse Laplace Transform. e st f(t)dt. (2)

Laplace Transform. Inverse Laplace Transform. e st f(t)dt. (2) Laplace Tranform Maoud Malek The Laplace ranform i an inegral ranform named in honor of mahemaician and aronomer Pierre-Simon Laplace, who ued he ranform in hi work on probabiliy heory. I i a powerful

More information

Advanced Engineering Mathematics, K.A. Stroud, Dexter J. Booth Engineering Mathematics, H.K. Dass Higher Engineering Mathematics, Dr. B.S.

Advanced Engineering Mathematics, K.A. Stroud, Dexter J. Booth Engineering Mathematics, H.K. Dass Higher Engineering Mathematics, Dr. B.S. Rfrc: (i) (ii) (iii) Advcd Egirig Mhmic, K.A. Sroud, Dxr J. Booh Egirig Mhmic, H.K. D Highr Egirig Mhmic, Dr. B.S. Grwl Th mhod of m Thi coi of h followig xm wih h giv coribuio o h ol. () Mid-rm xm : 3%

More information

PROOF OF FIRST STANDARD FORM OF NONELEMENTARY FUNCTIONS

PROOF OF FIRST STANDARD FORM OF NONELEMENTARY FUNCTIONS Intrnational Journal Of Advanc Rsarch In Scinc And Enginring http://www.ijars.com IJARSE, Vol. No., Issu No., Fbruary, 013 ISSN-319-8354(E) PROOF OF FIRST STANDARD FORM OF NONELEMENTARY FUNCTIONS 1 Dharmndra

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by D. Klain Vrsion 207.0.05 Corrctions and commnts ar wlcom. Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix A A k I + A + k!

More information

Math 3301 Homework Set 6 Solutions 10 Points. = +. The guess for the particular P ( ) ( ) ( ) ( ) ( ) ( ) ( ) cos 2 t : 4D= 2

Math 3301 Homework Set 6 Solutions 10 Points. = +. The guess for the particular P ( ) ( ) ( ) ( ) ( ) ( ) ( ) cos 2 t : 4D= 2 Mah 0 Homwork S 6 Soluions 0 oins. ( ps) I ll lav i o you o vrify ha y os sin = +. Th guss for h pariular soluion and is drivaivs is blow. Noi ha w ndd o add s ono h las wo rms sin hos ar xaly h omplimnary

More information

Lecture 4: Parsing. Administrivia

Lecture 4: Parsing. Administrivia Adminitrivia Lctur 4: Paring If you do not hav a group, pla pot a rqut on Piazzza ( th Form projct tam... itm. B ur to updat your pot if you find on. W will aign orphan to group randomly in a fw day. Programming

More information

SUPERCRITICAL BRANCHING DIFFUSIONS IN RANDOM ENVIRONMENT

SUPERCRITICAL BRANCHING DIFFUSIONS IN RANDOM ENVIRONMENT Elc. Comm. in Proa. 6 (), 78 79 ELECTRONIC COMMUNICATIONS in PROBABILITY SUPERCRITICAL BRANCHING DIFFUSIONS IN RANDOM ENVIRONMENT MARTIN HUTZENTHALER ETH Zürich, Dparmn of Mahmaics, Rämisrass, 89 Zürich.

More information

Copyright 2012 Pearson Education, Inc. Publishing as Prentice Hall.

Copyright 2012 Pearson Education, Inc. Publishing as Prentice Hall. Chapr Rviw 0 6. ( a a ln a. This will qual a if an onl if ln a, or a. + k an (ln + c. Thrfor, a an valu of, whr h wo curvs inrsc, h wo angn lins will b prpnicular. 6. (a Sinc h lin passs hrough h origin

More information

6.8 Laplace Transform: General Formulas

6.8 Laplace Transform: General Formulas 48 HAP. 6 Laplace Tranform 6.8 Laplace Tranform: General Formula Formula Name, ommen Sec. F() l{ f ()} e f () d f () l {F()} Definiion of Tranform Invere Tranform 6. l{af () bg()} al{f ()} bl{g()} Lineariy

More information

Mathematische Annalen

Mathematische Annalen Mah. Ann. 39, 33 339 (997) Mahemaiche Annalen c Springer-Verlag 997 Inegraion by par in loop pace Elon P. Hu Deparmen of Mahemaic, Norhweern Univeriy, Evanon, IL 628, USA (e-mail: elon@@mah.nwu.edu) Received:

More information

18.03SC Unit 3 Practice Exam and Solutions

18.03SC Unit 3 Practice Exam and Solutions Sudy Guide on Sep, Dela, Convoluion, Laplace You can hink of he ep funcion u() a any nice mooh funcion which i for < a and for > a, where a i a poiive number which i much maller han any ime cale we care

More information

CS4445/9544 Analysis of Algorithms II Solution for Assignment 1

CS4445/9544 Analysis of Algorithms II Solution for Assignment 1 Conider he following flow nework CS444/944 Analyi of Algorihm II Soluion for Aignmen (0 mark) In he following nework a minimum cu ha capaciy 0 Eiher prove ha hi aemen i rue, or how ha i i fale Uing he

More information

H is equal to the surface current J S

H is equal to the surface current J S Chapr 6 Rflcion and Transmission of Wavs 6.1 Boundary Condiions A h boundary of wo diffrn mdium, lcromagnic fild hav o saisfy physical condiion, which is drmind by Maxwll s quaion. This is h boundary condiion

More information

UNIT #5 EXPONENTIAL AND LOGARITHMIC FUNCTIONS

UNIT #5 EXPONENTIAL AND LOGARITHMIC FUNCTIONS Answr Ky Nam: Da: UNIT # EXPONENTIAL AND LOGARITHMIC FUNCTIONS Par I Qusions. Th prssion is quivaln o () () 6 6 6. Th ponnial funcion y 6 could rwrin as y () y y 6 () y y (). Th prssion a is quivaln o

More information

( ) ( ) + = ( ) + ( )

( ) ( ) + = ( ) + ( ) Mah 0 Homwork S 6 Soluions 0 oins. ( ps I ll lav i o you vrify ha h omplimnary soluion is : y ( os( sin ( Th guss for h pariular soluion and is drivaivs ar, +. ( os( sin ( ( os( ( sin ( Y ( D 6B os( +

More information

Deift/Zhou Steepest descent, Part I

Deift/Zhou Steepest descent, Part I Lctur 9 Dift/Zhou Stpst dscnt, Part I W now focus on th cas of orthogonal polynomials for th wight w(x) = NV (x), V (x) = t x2 2 + x4 4. Sinc th wight dpnds on th paramtr N N w will writ π n,n, a n,n,

More information