The Natural Logarithmic Function: Differentiation. The Natural Logarithmic Function

Size: px
Start display at page:

Download "The Natural Logarithmic Function: Differentiation. The Natural Logarithmic Function"

Transcription

1 60_00.q //0 :0 PM Pag CHAPTER Logarihmic, Eponnial, an Ohr Transcnnal Funcions Scion. Th Naural Logarihmic Funcion: Diffrniaion Dvlop an us propris of h naural logarihmic funcion. Unrsan h finiion of h numbr. Fin rivaivs of funcions involving h naural logarihmic funcion. Th Naural Logarihmic Funcion Rcall ha h Gnral Powr Rul Th Grangr Collcion JOHN NAPIER (0 67) Logarihms wr invn b h Scoish mahmaician John Napir. Alhough h i no inrouc h naural logarihmic funcion, i is somims call h Napirian logarihm. n n C, n n Gnral Powr Rul has an imporan isclaimr i osn appl whn n. Consqunl, ou hav no foun an anirivaiv for h funcion f. In his scion, ou will us h Scon Funamnal Thorm of Calculus o fin such a funcion. This anirivaiv is a funcion ha ou hav no ncounr prviousl in h. I is nihr algbraic nor rigonomric, bu falls ino a nw class of funcions call logarihmic funcions. This paricular funcion is h naural logarihmic funcion. Dfiniion of h Naural Logarihmic Funcion Th naural logarihmic funcion is fin b ln > 0., Th omain of h naural logarihmic funcion is h s of all posiiv ral numbrs. From h finiion, ou can s ha ln is posiiv for > an ngaiv for 0 < <, as shown in Figur.. Morovr, ln 0, bcaus h uppr an lowr limis of ingraion ar qual whn. = If >, > 0. = If <, < 0. If >, hn ln > 0. If 0 < <, hn ln < 0. Figur. EXPLORATION Graphing h Naural Logarihmic Funcion Using onl h finiion of h naural logarihmic funcion, skch a graph of h funcion. Eplain our rasoning.

2 60_00.q //0 :0 PM Pag SECTION. Th Naural Logarihmic Funcion: Diffrniaion = ln (, 0) Each small lin sgmn has a slop of Figur.. NOTE Slop fils can b hlpful in ging a visual prspciv of h ircions of h soluions of a iffrnial quaion. To skch h graph of ln, ou can hink of h naural logarihmic funcion as an anirivaiv givn b h iffrnial quaion. Figur. is a compur-gnra graph, call a slop (or ircion) fil, showing small lin sgmns of slop. Th graph of ln is h soluion ha passs hrough h poin, 0. You will su slop fils in Scion 6.. Th following horm liss som basic propris of h naural logarihmic funcion. THEOREM. Propris of h Naural Logarihmic Funcion Th naural logarihmic funcion has h following propris.. Th omain is 0, an h rang is,.. Th funcion is coninuous, incrasing, an on-o-on.. Th graph is concav ownwar. = = = = = = = = = = = ln = = = = Th naural logarihmic funcion is incrasing, an is graph is concav ownwar. Figur. Proof Th omain of f ln is 0, b finiion. Morovr, h funcion is coninuous bcaus i is iffrniabl. I is incrasing bcaus is rivaiv f Firs rivaiv is posiiv for > 0, as shown in Figur.. I is concav ownwar bcaus f Scon rivaiv is ngaiv for > 0. Th proof ha f is on-o-on is lf as an rcis (s Ercis ). Th following limis impl ha is rang is h nir ral lin. lim ln an lim ln 0 Vrificaion of hs wo limis is givn in Appni A. Using h finiion of h naural logarihmic funcion, ou can prov svral imporan propris involving opraions wih naural logarihms. If ou ar alra familiar wih logarihms, ou will rcogniz ha hs propris ar characrisic of all logarihms. LOGARITHMS Napir coin h rm logarihm, from h wo Grk wors logos (or raio) an arihmos (or numbr), o scrib h hor ha h spn 0 ars vloping an ha firs appar in h book Mirifici Logarihmorum canonis scripio (A Dscripion of h Marvlous Rul of Logarihms). THEOREM. Logarihmic Propris If a an b ar posiiv numbrs an n is raional, hn h following propris ar ru.. ln 0. lnab ln a ln b. lna n n ln a. ln a ln a ln b b

3 60_00.q //0 :0 PM Pag CHAPTER Logarihmic, Eponnial, an Ohr Transcnnal Funcions Proof Th firs propr has alra bn iscuss. Th proof of h scon propr follows from h fac ha wo anirivaivs of h sam funcion iffr a mos b a consan. From h Scon Funamnal Thorm of Calculus an h finiion of h naural logarihmic funcion, ou know ha ln. So, consir h wo rivaivs an lna a a ln a ln 0. Bcaus lna an ln a ln ar boh anirivaivs of, h mus iffr a mos b a consan. lna ln a ln C B ling, ou can s ha C 0. Th hir propr can b prov similarl b comparing h rivaivs of ln n an n ln. Finall, using h scon an hir propris, ou can prov h fourh propr. ln a b lnab ln a lnb ln a ln b Eampl shows how logarihmic propris can b us o pan logarihmic prssions. EXAMPLE Epaning Logarihmic Eprssions f() = ln a. ln 0 ln 0 ln 9 Propr 9 b. Rwri wih raional ponn. ln ln g() = ln ln Propr c. ln 6 ln6 ln Propr ln 6 ln ln Propr. ln ln ln ln ln ln ln ln ln ln ln ln Figur. Whn using h propris of logarihms o rwri logarihmic funcions, ou mus chck o s whhr h omain of h rwrin funcion is h sam as h omain of h original. For insanc, h omain of f ln is all ral numbrs cp 0, an h omain of g ln is all posiiv ral numbrs. (S Figur..)

4 60_00.q //0 :0 PM Pag SECTION. Th Naural Logarihmic Funcion: Diffrniaion = Ara = =.7 is h bas for h naural logarihm bcaus ln. Figur. Th Numbr I is likl ha ou hav sui logarihms in an algbra cours. Thr, wihou h bnfi of calculus, logarihms woul hav bn fin in rms of a bas numbr. For ampl, common logarihms hav a bas of 0 an hrfor log 0 0. (You will larn mor abou his in Scion..) Th bas for h naural logarihm is fin using h fac ha h naural logarihmic funcion is coninuous, is on-o-on, an has a rang of,. So, hr mus b a uniqu ral numbr such ha ln, as shown in Figur.. This numbr is no b h lr. I can b shown ha is irraional an has h following cimal approimaion Dfiniion of Th lr nos h posiiv ral numbr such ha ln. = ln (, ) (, ) ( 0, 0) (, ) FOR FURTHER INFORMATION To larn mor abou h numbr, s h aricl Unpc Occurrncs of h Numbr b Harris S. Shulz an Bill Lonar in Mahmaics Magazin. To viw his aricl, go o h wbsi Onc ou know ha ln, ou can us logarihmic propris o valua h naural logarihms of svral ohr numbrs. For ampl, b using h propr ln n n ln n n ou can valua ln n for various valus of n, as shown in h abl an in Figur.6. (, ) (, ) If n, hn ln n. Figur.6 ln Th logarihms shown in h abl abov ar convnin bcaus h -valus ar ingr powrs of. Mos logarihmic prssions ar, howvr, bs valua wih a calculaor. EXAMPLE Evaluaing Naural Logarihmic Eprssions a. ln 0.69 b. ln.66 c. ln 0..0

5 60_00.q //0 :0 PM Pag 6 6 CHAPTER Logarihmic, Eponnial, an Ohr Transcnnal Funcions Th Drivaiv of h Naural Logarihmic Funcion Th rivaiv of h naural logarihmic funcion is givn in Thorm.. Th firs par of h horm follows from h finiion of h naural logarihmic funcion as an anirivaiv. Th scon par of h horm is simpl h Chain Rul vrsion of h firs par. THEOREM. Drivaiv of h Naural Logarihmic Funcion L u b a iffrniabl funcion of... u > 0 ln u u u ln, > 0 u u, EXAMPLE Diffrniaion of Logarihmic Funcions EXPLORATION Us a graphing uili o graph an ln in h sam viwing winow, in which 0. an 8. Eplain wh h graphs appar o b inical. a. b. u ln u ln u u c. Prouc Rul ln ln ln ln ln. Chain Rul ln ln ln ln u u Napir us logarihmic propris o simplif calculaions involving proucs, quoins, an powrs. Of cours, givn h availabili of calculaors, hr is now lil n for his paricular applicaion of logarihms. Howvr, hr is gra valu in using logarihmic propris o simplif iffrniaion involving proucs, quoins, an powrs. EXAMPLE Diffrnia Logarihmic Propris as Ais o Diffrniaion f ln. Soluion Bcaus f ln ln ln ou can wri f. Rwri bfor iffrniaing. Diffrnia. inicas ha in h HM mahspac CD-ROM an h onlin Euspac ssm for his, ou will fin an Opn Eploraion, which furhr plors his ampl using h compur algbra ssms Mapl, Mahca, Mahmaica, an Driv.

6 60_00.q //0 :0 PM Pag 7 SECTION. Th Naural Logarihmic Funcion: Diffrniaion 7 EXAMPLE Diffrnia Logarihmic Propris as Ais o Diffrniaion f ln. Soluion f ln ln ln ln f 6 Wri original funcion. Rwri bfor iffrniaing. Diffrnia. Simplif. NOTE In Eampls an, b sur ou s h bnfi of appling logarihmic propris bfor iffrniaing. Consir, for insanc, h ifficul of irc iffrniaion of h funcion givn in Eampl. On occasion, i is convnin o us logarihms as ais in iffrniaing nonlogarihmic funcions. This procur is call logarihmic iffrniaion. EXAMPLE 6 Logarihmic Diffrniaion Fin h rivaiv of,. Soluion No ha > 0 for all. So, ln is fin. Bgin b aking h naural logarihm of ach si of h quaion. Thn appl logarihmic propris an iffrnia implicil. Finall, solv for. ln ln ln ln ln, Wri original quaion. Tak naural log of ach si. Logarihmic propris Diffrnia. Simplif. Solv for. Subsiu for. Simplif.

7 60_00.q //0 :0 PM Pag 8 8 CHAPTER Logarihmic, Eponnial, an Ohr Transcnnal Funcions Bcaus h naural logarihm is unfin for ngaiv numbrs, ou will ofn ncounr prssions of h form ln u. Th following horm sas ha ou can iffrnia funcions of h form ln u as if h absolu valu sign wr no prsn. THEOREM. Drivaiv Involving Absolu Valu If u is a iffrniabl funcion of such ha u 0, hn. ln u u u Proof If hn an h rsul follows from Thorm.. If hn u u > 0, u, u < 0, u, an ou hav ln u lnu u u u u. u EXAMPLE 7 Drivaiv Involving Absolu Valu Fin h rivaiv of f ln cos. = ln ( + + ) (, ln ) Rlaiv minimum Th rivaiv of changs from ngaiv o posiiv a. Figur.7 Soluion Using Thorm., l u cos an wri ln cos u u EXAMPLE 8 sin cos an. Loca h rlaiv rma of ln. Simplif. Fining Rlaiv Erma Soluion Diffrniaing, ou obain. ln u u u u cos Bcaus 0 whn, ou can appl h Firs Drivaiv Ts an conclu ha h poin, ln is a rlaiv minimum. Bcaus hr ar no ohr criical poins, i follows ha his is h onl rlaiv rmum (s Figur.7).

8 60_00.q //0 :0 PM Pag 9 SECTION. Th Naural Logarihmic Funcion: Diffrniaion 9. Compl h abl blow. Us a graphing uili an Simpson s Rul wih n 0 o approima h ingral.. (a) Plo h poins gnra in Ercis an connc hm wih a smooh curv. Compar h rsul wih h graph of ln. (b) Us a graphing uili o graph for 0.. Compar h rsul wih h graph of ln. In Erciss 6, us a graphing uili o valua h logarihm b (a) using h naural logarihm k an (b) using h ingraion capabiliis o valua h ingral /.. ln. ln 8.. ln ln 0.6 In Erciss 7 0, mach h funcion wih is graph. [Th graphs ar labl (a), (b), (c), an ().] (a) (c) Erciss for Scion. / In Erciss 6, skch h graph of h funcion an sa is omain. (b) () 7. f ln 8. f ln 9. f ln 0. f ln. f ln. f ln. f ln. f ln. f ln 6. g ln In Erciss 7 an 8, us h propris of logarihms o approima h inica logarihms, givn ha ln 0.69 an ln (a) ln 6 (b) ln (c) ln 8 () ln 8. (a) ln 0. (b) ln (c) ln () In Erciss 9 8, us h propris of logarihms o pan h logarihmic prssion. 9. ln 0. ln. ln z. lnz. ln a. lna. ln 6. ln 7. ln zz 8. ln In Erciss 9, wri h prssion as a logarihm of a singl quani. 9. ln ln 0. ln ln ln z. ln ln ln. ln ln ln. ln ln. ln ln ln In Erciss an 6, (a) vrif ha f g b using a graphing uili o graph f an g in h sam viwing winow. (b) Thn vrif ha f g algbraicall.. 6. f ln, f ln, In Erciss 7 0, fin h limi. 7. lim ln 8. lim ln lim ln 0. lim ln In Erciss, fin an quaion of h angn lin o h graph of h logarihmic funcion a h poin, 0.. ln. ln S for work-ou soluions o o-numbr rciss. (, 0) > 0, 6 g ln ln g ln ln ln 7 (, 0) 6

9 60_00.q //0 :0 PM Pag 0 0 CHAPTER Logarihmic, Eponnial, an Ohr Transcnnal Funcions. ln. ln In Erciss 70, fin h rivaiv of h funcion.. g ln 6. h ln 7. ln 8. ln 9. ln 0. ln. f ln.. g ln.. lnln 6. lnln 7. ln 8. ln 9. f ln 60. f ln ln 6. lnsin 6. lncsc cos lncos ln sin ln cos ln sc an sin ln ln 69. f 70. g In Erciss 7 76, (a) fin an quaion of h angn lin o h graph of f a h givn poin, (b) us a graphing uili o graph h funcion an is angn lin a h poin, an (c) us h rivaiv faur of a graphing uili o confirm our rsuls. 7. f ln, f sin ln,, 0 7. f ln,, f ln, f ln sin, f ln, In Erciss 77 an 78, us implici iffrniaion o fin /. 77. ln ln 0,, 0 In Erciss 79 an 80, us implici iffrniaion o fin an quaion of h angn lin o h graph a h givn poin. 79. ln, 80. ln,, ln, ln, 0 h ln 0, f ln In Erciss 8 an 8, show ha h funcion is a soluion of h iffrnial quaion. 8. ln 8. ln In Erciss 8 88, loca an rlaiv rma an inflcion poins. Us a graphing uili o confirm our rsuls. 8. ln 8. ln 8. ln ln ln Linar an Quaraic Approimaions In Erciss 89 an 90, us a graphing uili o graph h funcion. Thn graph P f f an Funcion Diffrnial Equaion 0 0 ln P f f f in h sam viwing winow. Compar h valus of f, P, an P an hir firs rivaivs a. 89. f ln 90. f ln In Erciss 9 an 9, us Nwon s Mho o approima, o hr cimal placs, h -coorina of h poin of inrscion of h graphs of h wo quaions. Us a graphing uili o vrif our rsul. 9. ln, 9. ln, In Erciss 9 98, us logarihmic iffrniaion o fin / Wriing Abou Concps 99. In our own wors, sa h propris of h naural logarihmic funcion. 00. Dfin h bas for h naural logarihmic funcion. 0. L f b a funcion ha is posiiv an iffrniabl on h nir ral lin. L g ln f. (a) If g is incrasing, mus f b incrasing? Eplain. (b) If h graph of f is concav upwar, mus h graph of g b concav upwar? Eplain.

10 60_00.q //0 :0 PM Pag SECTION. Th Naural Logarihmic Funcion: Diffrniaion Wriing Abou Concps (coninu) 0. Consir h funcion f ln on,. (a) Eplain wh Roll s Thorm (Scion.) os no appl. (b) Do ou hink h conclusion of Roll s Thorm is ru for f? Eplain. Tru or Fals? In Erciss 0 an 0, rmin whhr h samn is ru or fals. If i is fals, plain wh or giv an ampl ha shows i is fals. 0. ln ln ln 0. If ln, hn 0. Hom Morgag Th rm (in ars) of a $0,000 hom morgag a 0% inrs can b approima b whr is h monhl pamn in ollars. (a) Us a graphing uili o graph h mol. (b) Us h mol o approima h rm of a hom morgag for which h monhl pamn is $67.. Wha is h oal amoun pai? (c) Us h mol o approima h rm of a hom morgag for which h monhl pamn is $068.. Wha is h oal amoun pai? () Fin h insananous ra of chang of wih rspc o whn 67. an () Wri a shor paragraph scribing h bnfi of h highr monhl pamn. 06. Soun Innsi Th rlaionship bwn h numbr of cibls an h innsi of a soun I in was pr cnimr squar is 0 log 0 I 0 6. > 000 Us h propris of logarihms o wri h formula in simplr form, an rmin h numbr of cibls of a soun wih an innsi of 0 0 was pr squar cnimr. 07. Moling Daa Th abl shows h mpraur T ( F) a which war boils a slc prssurs p (pouns pr squar inch). (Sourc: Sanar Hanbook of Mchanical Enginrs) p T p T ln, ( am) A mol ha approimas h aa is T ln p 7.9p (a) Us a graphing uili o plo h aa an graph h mol. (b) Fin h ra of chang of T wih rspc o p whn p 0 an p 70. (c) Us a graphing uili o graph T. Fin lim Tp an p inrpr h rsul in h con of h problm. 08. Moling Daa Th amosphric prssur crass wih incrasing aliu. A sa lvl, h avrag air prssur is on amosphr (.07 kilograms pr squar cnimr). Th abl shows h prssurs p (in amosphrs) a slc alius h (in kilomrs). h p (a) Us a graphing uili o fin a mol of h form p a b ln h for h aa. Eplain wh h rsul is an rror mssag. (b) Us a graphing uili o fin h logarihmic mol h a b ln p for h aa. (c) Us a graphing uili o plo h aa an graph h mol. () Us h mol o sima h aliu whn p 0.7. () Us h mol o sima h prssur whn h. (f) Us h mol o fin h ra of chang of prssur whn h an h 0. Inrpr h rsuls. 09. Tracri A prson walking along a ock rags a boa b a 0-mr rop. Th boa ravls along a pah known as a racri (s figur). Th quaion of his pah is 0 ln (a) Us a graphing uili o graph h funcion. (b) Wha is h slop of his pah whn an 9? (c) Wha os h slop of h pah approach as 0? Tracri 0 0. Conjcur Us a graphing uili o graph f an g in h sam viwing winow an rmin which is incrasing a h grar ra for larg valus of. Wha can ou conclu abou h ra of growh of h naural logarihmic funcion? (a) f ln, g (b) f ln, g. Prov ha h naural logarihmic funcion is on-o-on.. (a) Us a graphing uili o graph ln. (b) Us h graph o inif an rlaiv minima an inflcion poins. (c) Us calculus o vrif our answr o par (b).

Copyright 2012 Pearson Education, Inc. Publishing as Prentice Hall.

Copyright 2012 Pearson Education, Inc. Publishing as Prentice Hall. Chapr Rviw 0 6. ( a a ln a. This will qual a if an onl if ln a, or a. + k an (ln + c. Thrfor, a an valu of, whr h wo curvs inrsc, h wo angn lins will b prpnicular. 6. (a Sinc h lin passs hrough h origin

More information

Elementary Differential Equations and Boundary Value Problems

Elementary Differential Equations and Boundary Value Problems Elmnar Diffrnial Equaions and Boundar Valu Problms Boc. & DiPrima 9 h Ediion Chapr : Firs Ordr Diffrnial Equaions 00600 คณ ตศาสตร ว ศวกรรม สาขาว ชาว ศวกรรมคอมพ วเตอร ป การศ กษา /55 ผศ.ดร.อร ญญา ผศ.ดร.สมศ

More information

Chapter 2 The Derivative Business Calculus 99

Chapter 2 The Derivative Business Calculus 99 Chapr Th Drivaiv Businss Calculus 99 Scion 5: Drivaivs of Formulas In his scion, w ll g h rivaiv ruls ha will l us fin formulas for rivaivs whn our funcion coms o us as a formula. This is a vry algbraic

More information

Midterm exam 2, April 7, 2009 (solutions)

Midterm exam 2, April 7, 2009 (solutions) Univrsiy of Pnnsylvania Dparmn of Mahmaics Mah 26 Honors Calculus II Spring Smsr 29 Prof Grassi, TA Ashr Aul Midrm xam 2, April 7, 29 (soluions) 1 Wri a basis for h spac of pairs (u, v) of smooh funcions

More information

EXERCISE - 01 CHECK YOUR GRASP

EXERCISE - 01 CHECK YOUR GRASP DIFFERENTIAL EQUATION EXERCISE - CHECK YOUR GRASP 7. m hn D() m m, D () m m. hn givn D () m m D D D + m m m m m m + m m m m + ( m ) (m ) (m ) (m + ) m,, Hnc numbr of valus of mn will b. n ( ) + c sinc

More information

Boyce/DiPrima 9 th ed, Ch 2.1: Linear Equations; Method of Integrating Factors

Boyce/DiPrima 9 th ed, Ch 2.1: Linear Equations; Method of Integrating Factors Boc/DiPrima 9 h d, Ch.: Linar Equaions; Mhod of Ingraing Facors Elmnar Diffrnial Equaions and Boundar Valu Problms, 9 h diion, b William E. Boc and Richard C. DiPrima, 009 b John Wil & Sons, Inc. A linar

More information

XV Exponential and Logarithmic Functions

XV Exponential and Logarithmic Functions MATHEMATICS 0-0-RE Dirnial Calculus Marin Huard Winr 08 XV Eponnial and Logarihmic Funcions. Skch h graph o h givn uncions and sa h domain and rang. d) ) ) log. Whn Sarah was born, hr parns placd $000

More information

2.1. Differential Equations and Solutions #3, 4, 17, 20, 24, 35

2.1. Differential Equations and Solutions #3, 4, 17, 20, 24, 35 MATH 5 PS # Summr 00.. Diffrnial Equaions and Soluions PS.# Show ha ()C #, 4, 7, 0, 4, 5 ( / ) is a gnral soluion of h diffrnial quaion. Us a compur or calculaor o skch h soluions for h givn valus of h

More information

Lecture 1: Numerical Integration The Trapezoidal and Simpson s Rule

Lecture 1: Numerical Integration The Trapezoidal and Simpson s Rule Lcur : Numrical ngraion Th Trapzoidal and Simpson s Rul A problm Th probabiliy of a normally disribud (man µ and sandard dviaion σ ) vn occurring bwn h valus a and b is B A P( a x b) d () π whr a µ b -

More information

5. An object moving along an x-coordinate axis with its scale measured in meters has a velocity of 6t

5. An object moving along an x-coordinate axis with its scale measured in meters has a velocity of 6t AP CALCULUS FINAL UNIT WORKSHEETS ACCELERATION, VELOCTIY AND POSITION In problms -, drmin h posiion funcion, (), from h givn informaion.. v (), () = 5. v ()5, () = b g. a (), v() =, () = -. a (), v() =

More information

UNIT #5 EXPONENTIAL AND LOGARITHMIC FUNCTIONS

UNIT #5 EXPONENTIAL AND LOGARITHMIC FUNCTIONS Answr Ky Nam: Da: UNIT # EXPONENTIAL AND LOGARITHMIC FUNCTIONS Par I Qusions. Th prssion is quivaln o () () 6 6 6. Th ponnial funcion y 6 could rwrin as y () y y 6 () y y (). Th prssion a is quivaln o

More information

46. Let y = ln r. Then dy = dr, and so. = [ sin (ln r) cos (ln r)

46. Let y = ln r. Then dy = dr, and so. = [ sin (ln r) cos (ln r) 98 Scion 7.. L w. Thn dw d, so d dw w dw. sin d (sin w)( wdw) w sin w dw L u w dv sin w dw du dw v cos w w sin w dw w cos w + cos w dw w cos w+ sin w+ sin d wsin wdw w cos w+ sin w+ cos + sin +. L w +

More information

Chapter 6 Differential Equations and Mathematical Modeling

Chapter 6 Differential Equations and Mathematical Modeling 6 Scion 6. hapr 6 Diffrnial Equaions and Mahmaical Modling Scion 6. Slop Filds and Eulr s Mhod (pp. ) Eploraion Sing h Slops. Sinc rprsns a lin wih a slop of, w should d pc o s inrvals wih no chang in.

More information

S.Y. B.Sc. (IT) : Sem. III. Applied Mathematics. Q.1 Attempt the following (any THREE) [15]

S.Y. B.Sc. (IT) : Sem. III. Applied Mathematics. Q.1 Attempt the following (any THREE) [15] S.Y. B.Sc. (IT) : Sm. III Applid Mahmaics Tim : ½ Hrs.] Prlim Qusion Papr Soluion [Marks : 75 Q. Amp h following (an THREE) 3 6 Q.(a) Rduc h mari o normal form and find is rank whr A 3 3 5 3 3 3 6 Ans.:

More information

On the Derivatives of Bessel and Modified Bessel Functions with Respect to the Order and the Argument

On the Derivatives of Bessel and Modified Bessel Functions with Respect to the Order and the Argument Inrnaional Rsarch Journal of Applid Basic Scincs 03 Aailabl onlin a wwwirjabscom ISSN 5-838X / Vol 4 (): 47-433 Scinc Eplorr Publicaions On h Driais of Bssl Modifid Bssl Funcions wih Rspc o h Ordr h Argumn

More information

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018 DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS Aoc. Prof. Dr. Burak Kllci Spring 08 OUTLINE Th Laplac Tranform Rgion of convrgnc for Laplac ranform Invr Laplac ranform Gomric valuaion

More information

Double Slits in Space and Time

Double Slits in Space and Time Doubl Slis in Sac an Tim Gorg Jons As has bn ror rcnly in h mia, a am l by Grhar Paulus has monsra an inrsing chniqu for ionizing argon aoms by using ulra-shor lasr ulss. Each lasr uls is ffcivly on an

More information

Instructors Solution for Assignment 3 Chapter 3: Time Domain Analysis of LTIC Systems

Instructors Solution for Assignment 3 Chapter 3: Time Domain Analysis of LTIC Systems Inrucor Soluion for Aignmn Chapr : Tim Domain Anali of LTIC Sm Problm i a 8 x x wih x u,, an Zro-inpu rpon of h m: Th characriic quaion of h LTIC m i i 8, which ha roo a ± j Th zro-inpu rpon i givn b zi

More information

Voltage v(z) ~ E(z)D. We can actually get to this wave behavior by using circuit theory, w/o going into details of the EM fields!

Voltage v(z) ~ E(z)D. We can actually get to this wave behavior by using circuit theory, w/o going into details of the EM fields! Considr a pair of wirs idal wirs ngh >, say, infinily long olag along a cabl can vary! D olag v( E(D W can acually g o his wav bhavior by using circui hory, w/o going ino dails of h EM filds! Thr

More information

Wave Equation (2 Week)

Wave Equation (2 Week) Rfrnc Wav quaion ( Wk 6.5 Tim-armonic filds 7. Ovrviw 7. Plan Wavs in Losslss Mdia 7.3 Plan Wavs in Loss Mdia 7.5 Flow of lcromagnic Powr and h Poning Vcor 7.6 Normal Incidnc of Plan Wavs a Plan Boundaris

More information

1973 AP Calculus BC: Section I

1973 AP Calculus BC: Section I 97 AP Calculus BC: Scio I 9 Mius No Calculaor No: I his amiaio, l dos h aural logarihm of (ha is, logarihm o h bas ).. If f ( ) =, h f ( ) = ( ). ( ) + d = 7 6. If f( ) = +, h h s of valus for which f

More information

Applied Statistics and Probability for Engineers, 6 th edition October 17, 2016

Applied Statistics and Probability for Engineers, 6 th edition October 17, 2016 Applid Saisics and robabiliy for Enginrs, 6 h diion Ocobr 7, 6 CHATER Scion - -. a d. 679.. b. d. 88 c d d d. 987 d. 98 f d.. Thn, = ln. =. g d.. Thn, = ln.9 =.. -7. a., by symmry. b.. d...6. 7.. c...

More information

SOLUTIONS. 1. Consider two continuous random variables X and Y with joint p.d.f. f ( x, y ) = = = 15. Stepanov Dalpiaz

SOLUTIONS. 1. Consider two continuous random variables X and Y with joint p.d.f. f ( x, y ) = = = 15. Stepanov Dalpiaz STAT UIUC Pracic Problms #7 SOLUTIONS Spanov Dalpiaz Th following ar a numbr of pracic problms ha ma b hlpful for compling h homwor, and will lil b vr usful for suding for ams.. Considr wo coninuous random

More information

Institute of Actuaries of India

Institute of Actuaries of India Insiu of Acuaris of India ubjc CT3 Probabiliy and Mahmaical aisics Novmbr Examinaions INDICATIVE OLUTION Pag of IAI CT3 Novmbr ol. a sampl man = 35 sampl sandard dviaion = 36.6 b for = uppr bound = 35+*36.6

More information

B) 25y e. 5. Find the second partial f. 6. Find the second partials (including the mixed partials) of

B) 25y e. 5. Find the second partial f. 6. Find the second partials (including the mixed partials) of Sampl Final 00 1. Suppos z = (, y), ( a, b ) = 0, y ( a, b ) = 0, ( a, b ) = 1, ( a, b ) = 1, and y ( a, b ) =. Thn (a, b) is h s is inconclusiv a saddl poin a rlaiv minimum a rlaiv maimum. * (Classiy

More information

Let s look again at the first order linear differential equation we are attempting to solve, in its standard form:

Let s look again at the first order linear differential equation we are attempting to solve, in its standard form: Th Ingraing Facor Mhod In h prvious xampls of simpl firs ordr ODEs, w found h soluions by algbraically spara h dpndn variabl- and h indpndn variabl- rms, and wri h wo sids of a givn quaion as drivaivs,

More information

Spring 2006 Process Dynamics, Operations, and Control Lesson 2: Mathematics Review

Spring 2006 Process Dynamics, Operations, and Control Lesson 2: Mathematics Review Spring 6 Procss Dynamics, Opraions, and Conrol.45 Lsson : Mahmaics Rviw. conx and dircion Imagin a sysm ha varis in im; w migh plo is oupu vs. im. A plo migh imply an quaion, and h quaion is usually an

More information

LaPlace Transform in Circuit Analysis

LaPlace Transform in Circuit Analysis LaPlac Tranform in Circui Analyi Obciv: Calcula h Laplac ranform of common funcion uing h dfiniion and h Laplac ranform abl Laplac-ranform a circui, including componn wih non-zro iniial condiion. Analyz

More information

Thomas Whitham Sixth Form

Thomas Whitham Sixth Form Thomas Whitham Sith Form Pur Mathmatics Cor rvision gui Pag Algbra Moulus functions graphs, quations an inqualitis Graph of f () Draw f () an rflct an part of th curv blow th ais in th ais. f () f () f

More information

Thomas Whitham Sixth Form

Thomas Whitham Sixth Form Thomas Whitham Sith Form Pur Mathmatics Unit C Algbra Trigonomtr Gomtr Calculus Vctor gomtr Pag Algbra Molus functions graphs, quations an inqualitis Graph of f () Draw f () an rflct an part of th curv

More information

CHAPTER CHAPTER14. Expectations: The Basic Tools. Prepared by: Fernando Quijano and Yvonn Quijano

CHAPTER CHAPTER14. Expectations: The Basic Tools. Prepared by: Fernando Quijano and Yvonn Quijano Expcaions: Th Basic Prpard by: Frnando Quijano and Yvonn Quijano CHAPTER CHAPTER14 2006 Prnic Hall Businss Publishing Macroconomics, 4/ Olivir Blanchard 14-1 Today s Lcur Chapr 14:Expcaions: Th Basic Th

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com C3 Eponnials and logarihms - Eponnial quaions. Rabbis wr inroducd ono an island. Th numbr of rabbis, P, yars afr hy wr inroducd is modlld by h quaion P = 3 0, 0 (a) Wri down h numbr of rabbis ha wr inroducd

More information

CPSC 211 Data Structures & Implementations (c) Texas A&M University [ 259] B-Trees

CPSC 211 Data Structures & Implementations (c) Texas A&M University [ 259] B-Trees CPSC 211 Daa Srucurs & Implmnaions (c) Txas A&M Univrsiy [ 259] B-Trs Th AVL r and rd-black r allowd som variaion in h lnghs of h diffrn roo-o-laf pahs. An alrnaiv ida is o mak sur ha all roo-o-laf pahs

More information

On the Speed of Heat Wave. Mihály Makai

On the Speed of Heat Wave. Mihály Makai On h Spd of Ha Wa Mihály Maai maai@ra.bm.hu Conns Formulaion of h problm: infini spd? Local hrmal qulibrium (LTE hypohsis Balanc quaion Phnomnological balanc Spd of ha wa Applicaion in plasma ranspor 1.

More information

3(8 ) (8 x x ) 3x x (8 )

3(8 ) (8 x x ) 3x x (8 ) Scion - CHATER -. a d.. b. d.86 c d 8 d d.9997 f g 6. d. d. Thn, = ln. =. =.. d Thn, = ln.9 =.7 8 -. a d.6 6 6 6 6 8 8 8 b 9 d 6 6 6 8 c d.8 6 6 6 6 8 8 7 7 d 6 d.6 6 6 6 6 6 6 8 u u u u du.9 6 6 6 6 6

More information

Final Exam : Solutions

Final Exam : Solutions Comp : Algorihm and Daa Srucur Final Exam : Soluion. Rcuriv Algorihm. (a) To bgin ind h mdian o {x, x,... x n }. Sinc vry numbr xcp on in h inrval [0, n] appar xacly onc in h li, w hav ha h mdian mu b

More information

Midterm Examination (100 pts)

Midterm Examination (100 pts) Econ 509 Spring 2012 S.L. Parn Midrm Examinaion (100 ps) Par I. 30 poins 1. Dfin h Law of Diminishing Rurns (5 ps.) Incrasing on inpu, call i inpu x, holding all ohr inpus fixd, on vnuall runs ino h siuaion

More information

MSLC Math 151 WI09 Exam 2 Review Solutions

MSLC Math 151 WI09 Exam 2 Review Solutions Eam Rviw Solutions. Comput th following rivativs using th iffrntiation ruls: a.) cot cot cot csc cot cos 5 cos 5 cos 5 cos 5 sin 5 5 b.) c.) sin( ) sin( ) y sin( ) ln( y) ln( ) ln( y) sin( ) ln( ) y y

More information

Chapter 12 Introduction To The Laplace Transform

Chapter 12 Introduction To The Laplace Transform Chapr Inroducion To Th aplac Tranorm Diniion o h aplac Tranorm - Th Sp & Impul uncion aplac Tranorm o pciic uncion 5 Opraional Tranorm Applying h aplac Tranorm 7 Invr Tranorm o Raional uncion 8 Pol and

More information

REPETITION before the exam PART 2, Transform Methods. Laplace transforms: τ dτ. L1. Derive the formulas : L2. Find the Laplace transform F(s) if.

REPETITION before the exam PART 2, Transform Methods. Laplace transforms: τ dτ. L1. Derive the formulas : L2. Find the Laplace transform F(s) if. Tranform Mhod and Calculu of Svral Variabl H7, p Lcurr: Armin Halilovic KTH, Campu Haning E-mail: armin@dkh, wwwdkh/armin REPETITION bfor h am PART, Tranform Mhod Laplac ranform: L Driv h formula : a L[

More information

Microscopic Flow Characteristics Time Headway - Distribution

Microscopic Flow Characteristics Time Headway - Distribution CE57: Traffic Flow Thory Spring 20 Wk 2 Modling Hadway Disribuion Microscopic Flow Characrisics Tim Hadway - Disribuion Tim Hadway Dfiniion Tim Hadway vrsus Gap Ahmd Abdl-Rahim Civil Enginring Dparmn,

More information

Chapter 5 The Laplace Transform. x(t) input y(t) output Dynamic System

Chapter 5 The Laplace Transform. x(t) input y(t) output Dynamic System EE 422G No: Chapr 5 Inrucor: Chung Chapr 5 Th Laplac Tranform 5- Inroducion () Sym analyi inpu oupu Dynamic Sym Linar Dynamic ym: A procor which proc h inpu ignal o produc h oupu dy ( n) ( n dy ( n) +

More information

Transfer function and the Laplace transformation

Transfer function and the Laplace transformation Lab No PH-35 Porland Sa Univriy A. La Roa Tranfr funcion and h Laplac ranformaion. INTRODUTION. THE LAPLAE TRANSFORMATION L 3. TRANSFER FUNTIONS 4. ELETRIAL SYSTEMS Analyi of h hr baic paiv lmn R, and

More information

Lecture 4: Laplace Transforms

Lecture 4: Laplace Transforms Lur 4: Lapla Transforms Lapla and rlad ransformaions an b usd o solv diffrnial quaion and o rdu priodi nois in signals and imags. Basially, hy onvr h drivaiv opraions ino mulipliaion, diffrnial quaions

More information

EE 350 Signals and Systems Spring 2005 Sample Exam #2 - Solutions

EE 350 Signals and Systems Spring 2005 Sample Exam #2 - Solutions EE 35 Signals an Sysms Spring 5 Sampl Exam # - Soluions. For h following signal x( cos( sin(3 - cos(5 - T, /T x( j j 3 j 3 j j 5 j 5 j a -, a a -, a a - ½, a 3 /j-j -j/, a -3 -/jj j/, a 5 -½, a -5 -½,

More information

a 1and x is any real number.

a 1and x is any real number. Calcls Nots Eponnts an Logarithms Eponntial Fnction: Has th form y a, whr a 0, a an is any ral nmbr. Graph y, Graph y ln y y Th Natral Bas (Elr s nmbr): An irrational nmbr, symboliz by th lttr, appars

More information

4.1 The Uniform Distribution Def n: A c.r.v. X has a continuous uniform distribution on [a, b] when its pdf is = 1 a x b

4.1 The Uniform Distribution Def n: A c.r.v. X has a continuous uniform distribution on [a, b] when its pdf is = 1 a x b 4. Th Uniform Disribuion Df n: A c.r.v. has a coninuous uniform disribuion on [a, b] whn is pdf is f x a x b b a Also, b + a b a µ E and V Ex4. Suppos, h lvl of unblivabiliy a any poin in a Transformrs

More information

The Natural Logarithm

The Natural Logarithm The Naural Logarihm 5-4-007 The Power Rule says n = n + n+ + C provie ha n. The formula oes no apply o. An anierivaive F( of woul have o saisfy F( =. Bu he Funamenal Theorem implies ha if > 0, hen Thus,

More information

DE Dr. M. Sakalli

DE Dr. M. Sakalli DE-0 Dr. M. Sakalli DE 55 M. Sakalli a n n 0 a Lh.: an Linar g Equaions Hr if g 0 homognous non-homognous ohrwis driving b a forc. You know h quaions blow alrad. A linar firs ordr ODE has h gnral form

More information

Section 4.3 Logarithmic Functions

Section 4.3 Logarithmic Functions 48 Chapr 4 Sion 4.3 Logarihmi Funions populaion of 50 flis is pd o doul vry wk, lading o a funion of h form f ( ) 50(), whr rprsns h numr of wks ha hav passd. Whn will his populaion rah 500? Trying o solv

More information

CSE 245: Computer Aided Circuit Simulation and Verification

CSE 245: Computer Aided Circuit Simulation and Verification CSE 45: Compur Aidd Circui Simulaion and Vrificaion Fall 4, Sp 8 Lcur : Dynamic Linar Sysm Oulin Tim Domain Analysis Sa Equaions RLC Nwork Analysis by Taylor Expansion Impuls Rspons in im domain Frquncy

More information

2. The Laplace Transform

2. The Laplace Transform Th aac Tranorm Inroucion Th aac ranorm i a unamna an vry uu oo or uying many nginring robm To in h aac ranorm w conir a comx variab σ, whr σ i h ra ar an i h imaginary ar or ix vau o σ an w viw a a oin

More information

First derivative analysis

First derivative analysis Robrto s Nots on Dirntial Calculus Chaptr 8: Graphical analysis Sction First drivativ analysis What you nd to know alrady: How to us drivativs to idntiy th critical valus o a unction and its trm points

More information

Economics 302 (Sec. 001) Intermediate Macroeconomic Theory and Policy (Spring 2011) 3/28/2012. UW Madison

Economics 302 (Sec. 001) Intermediate Macroeconomic Theory and Policy (Spring 2011) 3/28/2012. UW Madison Economics 302 (Sc. 001) Inrmdia Macroconomic Thory and Policy (Spring 2011) 3/28/2012 Insrucor: Prof. Mnzi Chinn Insrucor: Prof. Mnzi Chinn UW Madison 16 1 Consumpion Th Vry Forsighd dconsumr A vry forsighd

More information

Mathematics 1110H Calculus I: Limits, derivatives, and Integrals Trent University, Summer 2018 Solutions to the Actual Final Examination

Mathematics 1110H Calculus I: Limits, derivatives, and Integrals Trent University, Summer 2018 Solutions to the Actual Final Examination Mathmatics H Calculus I: Limits, rivativs, an Intgrals Trnt Univrsity, Summr 8 Solutions to th Actual Final Eamination Tim-spac: 9:-: in FPHL 7. Brought to you by Stfan B lan k. Instructions: Do parts

More information

Discussion 06 Solutions

Discussion 06 Solutions STAT Discussion Soluions Spring 8. Th wigh of fish in La Paradis follows a normal disribuion wih man of 8. lbs and sandard dviaion of. lbs. a) Wha proporion of fish ar bwn 9 lbs and lbs? æ 9-8. - 8. P

More information

Ma/CS 6a Class 15: Flows and Bipartite Graphs

Ma/CS 6a Class 15: Flows and Bipartite Graphs //206 Ma/CS 6a Cla : Flow and Bipari Graph By Adam Shffr Rmindr: Flow Nwork A flow nwork i a digraph G = V, E, oghr wih a ourc vrx V, a ink vrx V, and a capaciy funcion c: E N. Capaciy Sourc 7 a b c d

More information

The Variance-Covariance Matrix

The Variance-Covariance Matrix Th Varanc-Covaranc Marx Our bggs a so-ar has bn ng a lnar uncon o a s o daa by mnmzng h las squars drncs rom h o h daa wh mnsarch. Whn analyzng non-lnar daa you hav o us a program l Malab as many yps o

More information

Indeterminate Forms and L Hôpital s Rule. Indeterminate Forms

Indeterminate Forms and L Hôpital s Rule. Indeterminate Forms SECTION 87 Intrminat Forms an L Hôpital s Rul 567 Sction 87 Intrminat Forms an L Hôpital s Rul Rcogniz its that prouc intrminat forms Apply L Hôpital s Rul to valuat a it Intrminat Forms Rcall from Chaptrs

More information

2. Transfer function. Kanazawa University Microelectronics Research Lab. Akio Kitagawa

2. Transfer function. Kanazawa University Microelectronics Research Lab. Akio Kitagawa . ransfr funion Kanazawa Univrsiy Mirolronis Rsarh Lab. Akio Kiagawa . Wavforms in mix-signal iruis Configuraion of mix-signal sysm x Digial o Analog Analog o Digial Anialiasing Digial moohing Filr Prossor

More information

Phys463.nb Conductivity. Another equivalent definition of the Fermi velocity is

Phys463.nb Conductivity. Another equivalent definition of the Fermi velocity is 39 Anohr quival dfiniion of h Fri vlociy is pf vf (6.4) If h rgy is a quadraic funcion of k H k L, hs wo dfiniions ar idical. If is NOT a quadraic funcion of k (which could happ as will b discussd in h

More information

MARK SCHEME for the October/November 2014 series 9231 MATHEMATICS. 9231/12 Paper 1, maximum raw mark 100

MARK SCHEME for the October/November 2014 series 9231 MATHEMATICS. 9231/12 Paper 1, maximum raw mark 100 CAMBRIDGE INTERNATIONAL EXAMINATIONS Cambrig Inrnaional Aanc Ll MARK SCHEME for h Ocobr/Nombr sris 9 MATHEMATICS 9/ Papr, maimum raw mar This mar schm is publish as an ai o achrs an canias, o inica h rquirmns

More information

The Fundamental Theorems of Calculus

The Fundamental Theorems of Calculus FunamenalTheorems.nb 1 The Funamenal Theorems of Calculus You have now been inrouce o he wo main branches of calculus: ifferenial calculus (which we inrouce wih he angen line problem) an inegral calculus

More information

( ) 2. Review Exercise 2. cos θ 2 3 = = 2 tan. cos. 2 x = = x a. Since π π, = 2. sin = = 2+ = = cotx. 2 sin θ 2+

( ) 2. Review Exercise 2. cos θ 2 3 = = 2 tan. cos. 2 x = = x a. Since π π, = 2. sin = = 2+ = = cotx. 2 sin θ 2+ Review Eercise sin 5 cos sin an cos 5 5 an 5 9 co 0 a sinθ 6 + 4 6 + sin θ 4 6+ + 6 + 4 cos θ sin θ + 4 4 sin θ + an θ cos θ ( ) + + + + Since π π, < θ < anθ should be negaive. anθ ( + ) Pearson Educaion

More information

CALCULUS EXPLORATION OF THE SECOND FUNDAMENTAL THEOREM OF CALCULUS. Second Fundamental Theorem of Calculus (Chain Rule Version):

CALCULUS EXPLORATION OF THE SECOND FUNDAMENTAL THEOREM OF CALCULUS. Second Fundamental Theorem of Calculus (Chain Rule Version): CALCULUS EXPLORATION OF THE SECOND FUNDAMENTAL THEOREM OF CALCULUS 6 cos Secon Funamenal Theorem of Calculus: f a 4 a f 6 cos Secon Funamenal Theorem of Calculus (Chain Rule Version): g f a E. Use he Secon

More information

AR(1) Process. The first-order autoregressive process, AR(1) is. where e t is WN(0, σ 2 )

AR(1) Process. The first-order autoregressive process, AR(1) is. where e t is WN(0, σ 2 ) AR() Procss Th firs-ordr auorgrssiv procss, AR() is whr is WN(0, σ ) Condiional Man and Varianc of AR() Condiional man: Condiional varianc: ) ( ) ( Ω Ω E E ) var( ) ) ( var( ) var( σ Ω Ω Ω Ω E Auocovarianc

More information

Logistic equation of Human population growth (generalization to the case of reactive environment).

Logistic equation of Human population growth (generalization to the case of reactive environment). Logisic quaion of Human populaion growh gnralizaion o h cas of raciv nvironmn. Srg V. Ershkov Insiu for Tim aur Exploraions M.V. Lomonosov's Moscow Sa Univrsi Lninski gor - Moscow 999 ussia -mail: srgj-rshkov@andx.ru

More information

Partial Derivatives: Suppose that z = f(x, y) is a function of two variables.

Partial Derivatives: Suppose that z = f(x, y) is a function of two variables. Chaptr Functions o Two Variabls Applid Calculus 61 Sction : Calculus o Functions o Two Variabls Now that ou hav som amiliarit with unctions o two variabls it s tim to start appling calculus to hlp us solv

More information

whereby we can express the phase by any one of the formulas cos ( 3 whereby we can express the phase by any one of the formulas

whereby we can express the phase by any one of the formulas cos ( 3 whereby we can express the phase by any one of the formulas Third In-Class Exam Soluions Mah 6, Profssor David Lvrmor Tusday, 5 April 07 [0] Th vrical displacmn of an unforcd mass on a spring is givn by h 5 3 cos 3 sin a [] Is his sysm undampd, undr dampd, criically

More information

Boyce/DiPrima 9 th ed, Ch 7.8: Repeated Eigenvalues

Boyce/DiPrima 9 th ed, Ch 7.8: Repeated Eigenvalues Boy/DiPrima 9 h d Ch 7.8: Rpad Eignvalus Elmnary Diffrnial Equaions and Boundary Valu Problms 9 h diion by William E. Boy and Rihard C. DiPrima 9 by John Wily & Sons In. W onsidr again a homognous sysm

More information

H is equal to the surface current J S

H is equal to the surface current J S Chapr 6 Rflcion and Transmission of Wavs 6.1 Boundary Condiions A h boundary of wo diffrn mdium, lcromagnic fild hav o saisfy physical condiion, which is drmind by Maxwll s quaion. This is h boundary condiion

More information

Additional Math (4047) Paper 2 (100 marks) y x. 2 d. d d

Additional Math (4047) Paper 2 (100 marks) y x. 2 d. d d Aitional Math (07) Prpar b Mr Ang, Nov 07 Fin th valu of th constant k for which is a solution of th quation k. [7] Givn that, Givn that k, Thrfor, k Topic : Papr (00 marks) Tim : hours 0 mins Nam : Aitional

More information

1973 AP Calculus AB: Section I

1973 AP Calculus AB: Section I 97 AP Calculus AB: Sction I 9 Minuts No Calculator Not: In this amination, ln dnots th natural logarithm of (that is, logarithm to th bas ).. ( ) d= + C 6 + C + C + C + C. If f ( ) = + + + and ( ), g=

More information

Voltage v(z) ~ E(z)D. We can actually get to this wave behavior by using circuit theory, w/o going into details of the EM fields!

Voltage v(z) ~ E(z)D. We can actually get to this wave behavior by using circuit theory, w/o going into details of the EM fields! Considr a pair of wirs idal wirs ngh >, say, infinily long olag along a cabl can vary! D olag v( E(D W can acually g o his wav bhavior by using circui hory, w/o going ino dails of h EM filds! Thr

More information

Natural Resource Economics

Natural Resource Economics Naura Rsourc Economics Acamic ar: 2018-2019 Prof. Luca Savaici uca.savaici@uniroma3.i Lsson 14: Opima conro sufficin coniions Naura Rsourc Economics - Luca Savaici 2018-19 1 FOCs Saic probm: Dnamic probm:

More information

Consider a system of 2 simultaneous first order linear equations

Consider a system of 2 simultaneous first order linear equations Soluon of sysms of frs ordr lnar quaons onsdr a sysm of smulanous frs ordr lnar quaons a b c d I has h alrna mar-vcor rprsnaon a b c d Or, n shorhand A, f A s alrady known from con W know ha h abov sysm

More information

10.6 Parametric Equations

10.6 Parametric Equations 0_006.qd /8/05 9:05 AM Page 77 Secion 0.6 77 Parameric Equaions 0.6 Parameric Equaions Wha ou should learn Evaluae ses of parameric equaions for given values of he parameer. Skech curves ha are represened

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by D. Klain Vrsion 207.0.05 Corrctions and commnts ar wlcom. Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix A A k I + A + k!

More information

General Article Application of differential equation in L-R and C-R circuit analysis by classical method. Abstract

General Article Application of differential equation in L-R and C-R circuit analysis by classical method. Abstract Applicaion of Diffrnial... Gnral Aricl Applicaion of diffrnial uaion in - and C- circui analysis by classical mhod. ajndra Prasad gmi curr, Dparmn of Mahmaics, P.N. Campus, Pokhara Email: rajndraprasadrgmi@yahoo.com

More information

FIRST-ORDER SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS I: Introduction and Linear Systems

FIRST-ORDER SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS I: Introduction and Linear Systems FIRST-ORDER SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS I: Inroducion and Linar Sysms David Lvrmor Dparmn of Mahmaics Univrsiy of Maryland 9 Dcmbr 0 Bcaus h prsnaion of his marial in lcur will diffr from

More information

An Indian Journal FULL PAPER. Trade Science Inc. A stage-structured model of a single-species with density-dependent and birth pulses ABSTRACT

An Indian Journal FULL PAPER. Trade Science Inc. A stage-structured model of a single-species with density-dependent and birth pulses ABSTRACT [Typ x] [Typ x] [Typ x] ISSN : 974-7435 Volum 1 Issu 24 BioTchnology 214 An Indian Journal FULL PAPE BTAIJ, 1(24), 214 [15197-1521] A sag-srucurd modl of a singl-spcis wih dnsiy-dpndn and birh pulss LI

More information

Review - Quiz # 1. 1 g(y) dy = f(x) dx. y x. = u, so that y = xu and dy. dx (Sometimes you may want to use the substitution x y

Review - Quiz # 1. 1 g(y) dy = f(x) dx. y x. = u, so that y = xu and dy. dx (Sometimes you may want to use the substitution x y Review - Quiz # 1 (1) Solving Special Tpes of Firs Order Equaions I. Separable Equaions (SE). d = f() g() Mehod of Soluion : 1 g() d = f() (The soluions ma be given implicil b he above formula. Remember,

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by Dan Klain Vrsion 28928 Corrctions and commnts ar wlcom Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix () A A k I + A + k!

More information

Differentiation of Exponential Functions

Differentiation of Exponential Functions Calculus Modul C Diffrntiation of Eponntial Functions Copyright This publication Th Northrn Albrta Institut of Tchnology 007. All Rights Rsrvd. LAST REVISED March, 009 Introduction to Diffrntiation of

More information

Multiple Short Term Infusion Homework # 5 PHA 5127

Multiple Short Term Infusion Homework # 5 PHA 5127 Multipl Short rm Infusion Homwork # 5 PHA 527 A rug is aministr as a short trm infusion. h avrag pharmacokintic paramtrs for this rug ar: k 0.40 hr - V 28 L his rug follows a on-compartmnt boy mol. A 300

More information

(π 3)k. f(t) = 1 π 3 sin(t)

(π 3)k. f(t) = 1 π 3 sin(t) Mah 6 Fall 6 Dr. Lil Yen Tes Show all our work Name: Score: /6 No Calculaor permied in his par. Read he quesions carefull. Show all our work and clearl indicae our final answer. Use proper noaion. Problem

More information

( ) ( ) + = ( ) + ( )

( ) ( ) + = ( ) + ( ) Mah 0 Homwork S 6 Soluions 0 oins. ( ps I ll lav i o you vrify ha h omplimnary soluion is : y ( os( sin ( Th guss for h pariular soluion and is drivaivs ar, +. ( os( sin ( ( os( ( sin ( Y ( D 6B os( +

More information

Why Laplace transforms?

Why Laplace transforms? MAE4 Linar ircui Why Lalac ranform? Firordr R cc v v v KVL S R inananou for ach Subiu lmn rlaion v S Ordinary diffrnial quaion in rm of caacior volag Lalac ranform Solv Invr LT V u, v Ri, i A R V A _ v

More information

Higher order derivatives

Higher order derivatives Robrto s Nots on Diffrntial Calculus Chaptr 4: Basic diffrntiation ruls Sction 7 Highr ordr drivativs What you nd to know alrady: Basic diffrntiation ruls. What you can larn hr: How to rpat th procss of

More information

On General Solutions of First-Order Nonlinear Matrix and Scalar Ordinary Differential Equations

On General Solutions of First-Order Nonlinear Matrix and Scalar Ordinary Differential Equations saartvlos mcnirbata rovnuli akadmiis moamb 3 #2 29 BULLTN OF TH ORN NTONL DMY OF SNS vol 3 no 2 29 Mahmaics On nral Soluions of Firs-Ordr Nonlinar Mari and Scalar Ordinary Diffrnial uaions uram L Kharaishvili

More information

y = 2xe x + x 2 e x at (0, 3). solution: Since y is implicitly related to x we have to use implicit differentiation: 3 6y = 0 y = 1 2 x ln(b) ln(b)

y = 2xe x + x 2 e x at (0, 3). solution: Since y is implicitly related to x we have to use implicit differentiation: 3 6y = 0 y = 1 2 x ln(b) ln(b) 4. y = y = + 5. Find th quation of th tangnt lin for th function y = ( + ) 3 whn = 0. solution: First not that whn = 0, y = (1 + 1) 3 = 8, so th lin gos through (0, 8) and thrfor its y-intrcpt is 8. y

More information

Review Exercises for Chapter 3

Review Exercises for Chapter 3 60_00R.qd //0 :9 M age CHATER Applicaions of Differeniaion Review Eercises for Chaper. Give he definiion of a criical number, and graph a funcion f showing he differen pes of criical numbers.. Consider

More information

Chap.3 Laplace Transform

Chap.3 Laplace Transform Chap. aplac Tranorm Tranorm: An opraion ha ranorm a uncion ino anohr uncion i Dirniaion ranorm: ii x: d dx x x Ingraion ranorm: x: x dx x c Now, conidr a dind ingral k, d,ha ranorm ino a uncion o variabl

More information

Circuits and Systems I

Circuits and Systems I Circuis and Sysms I LECTURE #3 Th Spcrum, Priodic Signals, and h Tim-Varying Spcrum lions@pfl Prof. Dr. Volan Cvhr LIONS/Laboraory for Informaion and Infrnc Sysms Licns Info for SPFirs Slids This wor rlasd

More information

Fourier Series and Parseval s Relation Çağatay Candan Dec. 22, 2013

Fourier Series and Parseval s Relation Çağatay Candan Dec. 22, 2013 Fourir Sris nd Prsvl s Rlion Çğy Cndn Dc., 3 W sudy h m problm EE 3 M, Fll3- in som dil o illusr som conncions bwn Fourir sris, Prsvl s rlion nd RMS vlus. Q. ps h signl sin is h inpu o hlf-wv rcifir circui

More information

Decline Curves. Exponential decline (constant fractional decline) Harmonic decline, and Hyperbolic decline.

Decline Curves. Exponential decline (constant fractional decline) Harmonic decline, and Hyperbolic decline. Dlin Curvs Dlin Curvs ha lo flow ra vs. im ar h mos ommon ools for forasing roduion and monioring wll rforman in h fild. Ths urvs uikly show by grahi mans whih wlls or filds ar roduing as xd or undr roduing.

More information

C From Faraday's Law, the induced voltage is, C The effect of electromagnetic induction in the coil itself is called selfinduction.

C From Faraday's Law, the induced voltage is, C The effect of electromagnetic induction in the coil itself is called selfinduction. Inducors and Inducanc C For inducors, v() is proporional o h ra of chang of i(). Inducanc (con d) C Th proporionaliy consan is h inducanc, L, wih unis of Hnris. 1 Hnry = 1 Wb / A or 1 V sc / A. C L dpnds

More information

SMT 2014 Calculus Test Solutions February 15, 2014 = 3 5 = 15.

SMT 2014 Calculus Test Solutions February 15, 2014 = 3 5 = 15. SMT Calculus Tes Soluions February 5,. Le f() = and le g() =. Compue f ()g (). Answer: 5 Soluion: We noe ha f () = and g () = 6. Then f ()g () =. Plugging in = we ge f ()g () = 6 = 3 5 = 5.. There is a

More information