Chapter 6 Differential Equations and Mathematical Modeling

Size: px
Start display at page:

Download "Chapter 6 Differential Equations and Mathematical Modeling"

Transcription

1 6 Scion 6. hapr 6 Diffrnial Equaions and Mahmaical Modling Scion 6. Slop Filds and Eulr s Mhod (pp. ) Eploraion Sing h Slops. Sinc rprsns a lin wih a slop of, w should d pc o s inrvals wih no chang in. W s his a odd mulipls of π /.. Sinc is h dpndn variabl, I will hav no ffc on h valu of cos. d. Th graph of will loo h sam a all valus of. d. Whn, cos.this can b sn on h graph d nar h origin. A ha poin, h chang in and chang in ar h sam.. Whn π, cos. This can b sn in h d graph a π. A his poin, h chang in is ngaiv of h chang in. 6. This is ru bcaus ach poin on h graph has a ngaiv of islf. Quic Rviw 6.. Ys. d d. Ys. d d d. No. d ( ). Ys. d d d. No. d ( ) 6. Ys. d d ( ) d 7. Ys. sc sc an d 8. No. d d 9. () (). sin cos sin() cos() 7. sc ( ) sc( ). an ln( ) π an () ln(() ) π Scion 6. Erciss. ( sc ) d an. (sc an ) d sc. (sin 8 ) d cos. d ln. d ln an 6. d sin 7. ( cos( )) sin( ) sin 8. cos sin 9. (sc ( )( )) d an. (sin u) cosudu (sin u). sin d cos cos( ), cos. cos d sin sin( ), sin 6 7. du ( 7 ) d 7, 7 u

2 Scion da ( ) d 6 (), A. d c (), ( > ) / 6. d c sc an 7. / 7 an( ) ( ), 7 / an 7 ln an an ( ), an 8. d 6 ln 6 ln() 6(), 7 ln 67 ( > ) 9. dv ( sc an 6) sc sc( ) ( ), V π π sc < <. ds ( ) () (), s d. f d d () a sin( ) sin( ) du d. f d d () a cos u cos d cos. F ( ) f ( ) d a cos F ( ) 9 d () () an d a. G s f Gs () an. Graph (b). (sin ) (sin) > (sin ( )) > 6. Graph (c). (sin ) (sin) > (sin ( )) < 7. Graph (a). (cos ) > (cos) > (cos( ) > 8. Graph (d). (cos) > (cos) > (cos( )) < 9....

3 66 Scion 6... (, ) Δ Δ d d Δ ( Δ, Δ) (, )... (.,.) (.,.)... (.,.) (.,.)... (.,.66).66.. (, ) d Δ Δ d Δ ( Δ, Δ).. (, )... (.,.) (.,.)... (.,.) (.,.)... (.,.). (, ) d Δ Δ d Δ ( Δ, Δ) (, )... (.,.) (.,.)... (.,.) 6.. (.,.)... (.,.6).6 (, ) d Δ Δ d Δ ( Δ, Δ) 7. (, )... (.9, ) (.9, )... (.8,.99) (.8,.99)... (.7,.97) (, ) Δ Δ d d Δ ( Δ, Δ) (, ).. (., ) (., )... (.,.) (.,.)... (.,.). 6. (, ) d Δ Δ d Δ ( Δ, Δ) (, )... (.9,.) (.9,.).9..9 (.8,.9) (.8,.9).8..8 (.7,.7).7 7. (, ) Δ Δ d d Δ ( Δ, Δ) (, ).. (.9,.) (.9, )... (.8,.) (.8,.)... (.7,.). 8. (, ) d Δ Δ d Δ ( Δ, Δ) (, )... (.9,.) (.9, )... (.8,.) (.8,.)... (.7,.).

4 Scion (a) Graph (b) (b) Th slop is alwas posiiv, so (a) and (c) can b ruld ou. (a) (b) (c) p p. (a) Graph (b) (b) Th soluion should hav posiiv slop whn is ngaiv, zro slop whn is zro and ngaiv slop whn is posiiv sinc slop d. Graphs (a) and (c) don show his slop parn. (, ) (, ) (, ) (a) (b) (c). Thr ar posiiv slops in h scond quadrn of h slop fild. Th graph of has ngaiv slops in h scond quadrn.. Th slop of sin would b a h origin, whil h slop fild shows a slop of zro a vr poin on h -ais... (, ) Δ Δ d d Δ ( Δ, Δ) (, )... (.,.) (.,.)... (.,.6) (.,.6)... (.,.96) (.,.96).6..6 (.,.). Eulr s Mhod givs an sima f(.).. Th soluion o h iniial valu problm is f(), from which w g f(.).6. Th 6.. prcnag rror is hus 9.%. 6. (, ) d Δ Δ d Δ ( Δ, Δ) (, )... (.9,.7) (.9,.7).8..8 (.8,.) (.8,.).6..6 (.7,.6).7,.6)... (.6,.9).9 Eulr s Mhod givs an sima f(.6).9. Th soluion o h iniial valu problm is f(), from which w g f(.6).96. Th prcnag rror is hus %. 96. (. A vr (, ), ( )/ ( )/ )( ), so h slops ar ngaiv rciprocals. Th slop lins ar hrfor prpndicular. 6. Sinc h slops mus b ngaiv rciprocals, g() cos. 7. Th prpndicular slop fild would b producd b sin, so cos for an consan. d 8. Th prpndicular slop fild would b producd b d, so. for an consan. 9. Tru. Th ar all lins of h form. 6. Fals. For ampl, f() is a soluion of d, bu f ( ) is no a soluion of d. 6.. m 6. E. <, >, hrfor d <. 6. B. ( ) 6. A. d.

5 68 Scion (a) d d d d ( ) Iniial condiion: () Soluion:, > (b) Again,. Iniial condiion: ( ) ( ) ( ) Soluion:, < d (c) For <, d d. d For >, d d. And for, is undfind. d (d) L b h valu from par (b), and l b h valu from par (a). Thus, and. () ( ) ( ) ( ) ( ) 7 Thus, and (a) d (ln ) for > d (b) d d d ln ( ) ( ) ( ) d for < (c) For >, ln ln, which is a soluion o h diffrnial quaion, as w showd in par (a). For <, ln ln ( ), which is a soluion o h diffrnial quaion, as w showd in par (b). Thus, d ln for all cp. d (d) For <, w hav ln ( ), which is a soluion o h difrnial quaion, as w showd in par (a). For >, w hav ln, which is a soluion o h diffrnial quaion, as w showd par (b). Thus, for all cp. d 67. (a) d 6 6 d (b) sin d cos cos d sin (c) d d

6 Scion (a) d 8 8() () 8 d () () () (b) cos sin d sin cos sin cos sin cos d cos sin cos sin cos sin (c) d d (a) d (b) d (c) d d ( ) (d) d d ( ) () d d ( ) / 7. (a) / / d d 6 (b) d d 6 (c) sin sin d cos cos d sin (d) d ( ) d d d ( ) () d ( d sin cos ) cos sin d ( d cos sin )sin cos sin cos Scion 6. Anidiffrniaion b Subsiuion (pp. ) Eploraion Ar fudu ( ) and fud ( ) h Sam Thing?. f ( u) du u du u 6. u ( ) 6. f( u) u ( ) 7 6 d 7. No

7 7 Scion 6. Quic Rviw 6.. d ( ) ( ) / /. d d ( ) ( ) / / ( ) ( ). d. d. d 6. d 7. d 8. d 8 6 () ( ) ( ) sin () cos ( ) i 8 sin () cos () i sin an cos i cos co sin 9. i (sc an sc ) d sc an. sc an sc sc an sc (an sc ) sc an sc ( csc co csc ) d csc co csc co csc csc co csc (co csc ) csc co csc Scion 6. Erciss. (cos ) d sin. d.. an. ( sc ) d an / 6. ( sc an ) d sc 7. ( co u ) ( csc u) csc u 8. ( csc u ) ( csc uco u) csc uco u 9. ( ). ln ln (ln ). (an u ) u. ( sin u ) u / /. f ( u) du u du u f ( u) d u d d d. f ( u) du u du u f ( u) d u d d u u 7. f ( u) du du u 7 7 f ( u) du d d 7 6. f( u) du sinu du cosu cos f ( u) d sinu d sin d cos 7. u du d du d sin d sin udu cos u hc: cos d d cos ( sin )( ) sin

8 Scion u du d d du cos( ) d cosu du sinu hc: 9. u du d sin( ) d sin( ) cos( )( ) cos( d ) du d sc an d scu anu du scu sc hc: d sc scan sc an d i. u 7 du 7d du d ( ) d u du u ( ) hc: d ( 7 ) ( 7 ) ( 7) 8( 7 ) d. u du d du d d du 9 9u 9 du 9 u du u an u hc:. u r du r dr du r dr an d an d 9rdr du 9 r u u / / du ( ) u 6 r d hc: r d ( ) 6 6 r 9r r. u cos du sin du sin cos sin u du hc: d d cos cos sin cos sin. u du ( 8) du ( ) du ( ) u cos i 9 ( r )

9 7 Scion 6.. oninud 8 8 ( ) ( ) u du hc: d ( ) d ( ) ( 8) 8( ) ( ). L u du d d du ( ) u u 6. L u du d sc ( ) d sc u du anu an( ) 7. L u an du sc d / an sc d u du 8. L u θ π du dθ / u / (an ) u ( ) sc θ π an θ π θ sc an d u u du scu sc θ π 9. an( ) d u du d du d anudu ln cos( ) or ln sc( ). (sin ) d u sin du cos d du d cos u d co. L u z du dz du dz cos( z ) dz cos u du sinu. L u co du csc d sin( z ) / co csc d u du. L u ln du d ln 6 6 d u du 7 u 7 7 (ln ) 7 / u (co ) /. L u an du sc d 7 7 an sc d u du 8 i u 8 8 an /. L u s 8 / du s ds du s / ds

10 Scion oninud / / s cos( s 8) ds u du cos sinu / sin( s 8) d 6. csc d sin L u du d du d csc d csc udu co u co( ) 7. L u cos( ) du sin( )( ) du sin( ) sin( ) cos ( ) u du u cos( ) sc( ) 8. L u sin du cos 6cos ( sin ) d 9. ln u ln 6 u du 6u 6 sin d du du d du ln u ln(ln ) u. an sc d u an du sc d du d sc udu u an d. u du d du d du u ln ln( ) d. u a du d du u an u a a a an 8 an d sin. co cos d L u cos du sind du sind d co u du ln u ln cos ( An quivaln prssion is ln sc.). L u 8 du d du d d u 8 / du / i u 8

11 7 Scion 6. sc an. sc d sc i sc an d sc sc an d sc an Lu sc an du sc an sc d sc d ln ln sc u du u an csc co 6. csc d csc csc co d csc csc co d csc co Lu csc co du csc co csc d csc du du ln u ln csc co 7. sin d (sin ) sin d ( cos )sin d u cos du sin d ( u ) du u u cos cos 8. sc d (sc )sc d ( an )sc d u an du sc d ( u ) du u u an an 9. sin d ( sin ) d ( cos d ) u du d ( cos udu ) ( u sin u) sin. cos d ( ( cos ) ) d ( cos ) d u du d ( cos u ) du ( sin u u) sin. an an (sc ) d (an sc an ) d u an du sc d ( u udu ) u u an an. (cos sin ) d (cos sin )(cos sin ) d ((cos )) d sin. L u du / u du / u / ( ) ( ) () 8 8 /. L u r du r dr du r dr / r r dr u du i u / ( ) ( )

12 Scion L u an du sc d an sc d u du π / u ( ) ( ) 6. L u r du r dr du r dr r dr u du ( r ) 7. L u / / du d / du d d () u du / ( ) 8. Lu sin du cos d du cos d π cos d π sin 9. L u u u / du ( ) / ( ) u du du u / / () 7 6. L u cos du sin θ dθ du sin θ dθ 6 cos θ sin θ dθ π / / u du / i u () 7 d 6. u du d 7 du lnu ln( ) ln u. d 6. u du d du ln u ln ( ) ln( 7). 97 u 6. u du du ln u ln( ) ln u. 69 π / π / π 6. π co d cos d sin u sin du cos d π / du π / π / π lnu ln (sin ) u π / π / d 6. u du d du lnu ln( ) ln( ).8 u d 66. u du d du u ln ln( ). 9 u

13 76 Scion L u 9, du d. (a) / / d u du u / (b) d u du 9 / u 9 d L u cos, du sin d. π / (a) ( cos )sind udu u π / ( ) ( ) (b) ( cos )sin d udu u 6 6 ( cos ) π / ( cos )sin ( cos ) 6 d π /6 π /6 ( 6 ) 6 () 69. W show ha f ( ) an and f( ), whr f( ) ln cos. cos d f ( ) ln cos d cos d (ln cos ln cos ) d d ln cos d ( sin ) an cos cos f () (ln ) cos 9 π / 7. ln sin 6 sin u sin v sin du cos d d u d ln 6 v d (ln u ln v 6) d du cos co u sin f ( ) co( ) 6 7. Fals. Th inrval of ingraion should chang from [, π / ] o [,], rsuling in a diffrn numrical answr. 7. Tru. Using h subsiuion u f( ), du f ( ) d, 7. D. w hav b a ( b) f ( ) d f du u f f ( a) ln ( ) u ln( f ( b )) ln( f ( a f( b) )) ln f( a). 7. E. d f ( b) f ( a) 7. B. F ( ad ) F( a) F( a) 7 a F ( ) d F( a) F( a) 7 a 76. A. d sin cos d π cos cos( ) π cos 77. (a) L u du d / d u du / u / ( ) d / Alrnaivl, ( ). d (b) B Par of h Fundamnal Thorm of alculus, and, so boh ar d d anidrivaivs of.

14 Scion oninud (c) Using NINT o find h valus of and, w hav: (d) d) ) d d d d d d 78. (a) F f d [ ( ) ] shouldqual ( ). (b) Th slop fild should hlp ou visualiz h soluion curv F( ). (c) Th graphs of F( ) and f( ) should diffr onl b a vrical shif. (d) A abl of valus for should show ha for an valu of in h appropria domain. () Th graph of f should b h sam as h graph of NDER of F(). (f) Firs, w nd o find F ( ). L u, du d. / d u du u / Thrfor, w ma l F ( ). a) d ( ) ( ) d f( ) b) 79. (a) sin cos d udu u sin (b) sin cos d udu u cos (c) Sinc sin ( cos ), h wo answrs diffr b a consan (accound for in h consan of ingraion). 8. (a) sc an d udu u an (b) sc an d udu u sc (c) Sinc sc an, h wo answrs diffr b a consan (accound for in h consan of ingraion). d cosudu cosudu 8. (a) du. sin u cos u ( No cos u>, so cos u cosu cos u.) d (b) du u sin d udu udu 8. (a) du sc sc an u sc u d (b) du u an d sin / sin i sin cos 8. (a) / sin sin / π/ π sin cos cos sin c) (b) d / π / π / sin ( cos ) [ ( / )sin ] / π ( π )/

15 78 Scion (a) d an sc udu an an u / π/ π sc udu scu scudu d π (b) udu u u sc ln sc an ln ( ) ln ( ) ln ( ) / π / Scion 6. Anidiffrniaion b Pars (pp. 9) Eploraion hoosing h Righu and dv. u du dv cos v cos d Using for u is nvr a good ida bcaus i placs us bac whr w sard.. u cos du cos sin dv d v d Th slcion of u cos will plac a mor difficul ingral ino vdu.. u cos dusin dv d v d Th slcion of dv d will plac a mor difficul ingral ino vdu.. u and dv cos d ar good choics bcaus h ingral is simplifid. Quic Rviw 6.. ( )(cos )( ) (sin )( ) d. d. d. d cos sin ( ) ln( )( ) ln ( ) ( ) i ( ). an an an 6. cos ( ) cos cos 7. sinπ d cosπ π cosπ cos π π ( ) π π π 8. d d Ingra boh sids. d 9. sin d ( sin ) d Ingra boh sids. ( sin ) d cos ( ) cos. d (sin cos ) d (cos sin ) (sin cos ) cos sin sin cos sin Scion 6. Erciss. sin d dv sin d v sin dcos u du d cos cos d cos sin. d dv d v d u du d d

16 Scion dv v u du. cos ( ) dv cos sin v cos ( ) u du sin cos( ) sin cos ( ) 9. cos d dv cos d v cos d sin u du d sin sin d dv sin d v sin dcos u du d sin cos cos d sin cos sin 6. d dv d v d u du d d dv v d u du d d 7. d dv d v d u du 6 6 d d dv v d u du d d 8. cos d dv cos d v d cos sin u du d sin sin d dv sin v d sin cos u du d sin 8 cos 8cos d sin 8 cos 6sin 9. ln dv v u ln du ln ln. ln dv v u ln du ln ln 9. ( )sin d ( ) dv sin d v sin dcos u du d ( )cos cos d ( )cos sin ( )cos( ) sin( ) ( )cos sin [, ] b [, ]

17 8 Scion 6.. d dv v d u du d d ( ) ( ) ( ) [, ] b [, ]. du sc d dv sc d v sc d an w dw d an an d an ln cos an( ) ln cos( ) u an( ) ln cos( ) [.,.] b [, ]. dz ln d dv v d u ln du d d ln ln 6 () () ln ( ) z ln 6 6 [, ] b [, ]. d dv ( ) v ( ) d ( ) u du d / / ( ) d ( ) / / ( ) ( ) / / ( )( ) ( ) ( ) / ( ) / [, ] b [, ] 6. d / / / dv ( ) v ( ) d ( ) u du d / / ( ) d ( ) / 8 / ( ) ( ) / 8 / ( )( ) ( ) 8 / 8 / 8 ( ) ( ) [, ] b [, ] 7. sin d / / / dv d v d u sin du cos d sin cosd dv d v d u cos dusin d sind sin ( cos sin d) sin d (sin cos )

18 Scion cos d dv cos d v cos d sin u du d sin sin d dv sin d v sin dcos u du d cos d sin ( cos cos d) cos d (sin cos ) 9. cos d dv cosd v cosd sin u du d sin sin d dv sin v sin d cos u du d cos d sin ( cos d cos d) cos d ( sin cos ) d ( ). L u dv d du ( ) d v ( ) d ( ) ( ) d L u dv d du d v ( ) ( ) d ( ) ( ) d ( ) ( ) ( 7 7). Us abular ingraion wih f () and g ( ).. sin d dv sind v sindcos u du d cos cos d dv cos d v cosd sin u du d sin d cos ( sin sin d) sin d ( cos sin ). Us abular ingraion wih f () and g ( ). d 8 8. Us abular ingraion wih f () and g ( ) cos. sin cos sin cos 8

19 8 Scion 6.. Us abular ingraion wih f () and g ( ) sin. π / sin d cos sin cos cos sin π / sin d cos sin π ( ) ( ) π. 7 8 π hc: NINT sin,,, Us abular ingraion wih f () and g ( ) cos. cos d sin cos sin cos 8 sin cos 8 π / cos d sin 8 cos π ( 6 8 ) ( ) 8 π. 6 π hc: NINT cos,,,. π / 7. L u dv cos d du d v sin cos d ( ) sin sin ( d) sin sin d L u dv sin d du d v cos cos d sin ( ) cos cos ( d) ( sin cos ) 9 9 cos d cos d 9 ( sin cos ) 9 cos d ( sin cos ) cos d ( sin cos ) 6 [ ( sin9 cos 9) ( sin( 6) cos ( 6)] 6 [ ( cos9 sin 9) ( cos6 sin 6)] hc: NINT ( cos,,, ) L u dv sin d du d v cos sin d ( ) cos ( cos d) cos cos d

20 Scion oninud L u dv cos d du v sin sin d cos ( ) sin sin d ( ) (cos sin ) sin d sin d (cos sin ) sin d (cos sin ) sin d (cos sin ) (cos sin ) 6 [cos( 6) sin( 6)] (cos sin ) 6 (cos 6 sin 6). 8 hc: NINT ( sin,,, ) d L u dv d du d v d ( ) ( ) d L u dv d du d v d () 8 8. ln d L u ln dv d du d v d (ln ) ln d ln 9. θ sc θ d θ L u sc dv d du du v No ha w ar old >, so no absolu valu is ndd in h prssion for du. d (sc θ) θ θ θ θ θ θ θ dθ sc θ θ L w θ, dw θ dθ θ sc θ w dw θ sc θ w θ sc θ θ. d L u dv sc an d du d v sc θ scθ sc θ dθ θ scθ ln scθ anθ No : In h las sp, w usd h rsul of Ercis 9 in Scion 6... L u dv sin d du d v cos sin d cos cos d cos sin π (a) sin d sin d π cos sin π( ) () π π

21 8 Scion 6.. oninud π π (b) sin d sin d π π π π cos sin π() π( ) π π π π π (c) sin d sin d sin d π π π. W bgin b valuaing ( ) d. π L u dv d du ( ) d v ( ) d ( ) ( ) d L u dv d du d v ( ) d ( ) ( ) d ( ) ( ) ( ) Th graph shows ha h wo curvs inrsc a, whr.. Th ara w s is ( ) d ( ) (. 888 ) (.86 ).76. Firs, w valua cos. L u dv cos du v sin cos sin sin L u dv sin du v cos cos sin cos cos cos (sin cos ) cos (sin cos ) Now w find h avrag valu of cos for π. π Avrag valu cos π π cos π π (sin cos ) π π ( ) ( ) π π.9 π 6. Tru. Us pars, ling u, dv g()d, and v f(). 7. Tru. Us pars, ling u, dv g()d, and v f(). 8. B. cos d sin cos sin S problm. sin d cos sin S problm. h ( ) sin 9. B. sin ( ) d dv sin( ) d v sin( ) d cos u du d cos( ) cos( ) d cos sin( ).. csc d dv csc d v csc dco u du d co co d co ln sin.. ln d dv d v d u ln du d ln d ln. (a) L u dv d du d v d d ( ) (b) Using h rsul from par (a): L u dv d du d v d d ( ) ( )

22 Scion oninud (c) Using h rsul from par (b): L u dv d du d v d d ( ) ( 6 6) (d) n d d d d d d n ( ) n n n n n or n n n n n( n) n n ( ) ( n)! ( ) ( n!) () Us mahmaical inducion or argu basd on abula ingraion. Alrnal, show ha h drivaiv of h answr o par (d) is n : d n n n d ( n n n ( ) n n ( ) ( n!) ( ) n! ) n n n [ n n( n) n n ( ) (!) n ( ) n!] d ( ) d n n n n n n n n n ( ) ( n!) ( ) n!] n n n [ n n( n) n n ( ) ( n!) ( ) n! ] n n n n( n ) n nn ( )( n) n ( ) n! ] n d. L w. Thn dw, so d dw w dw. sin d (sin w)( wdw) wsin wdw L u w dv sin wdw du dw v cos w w sin wdww cos w cos wdw w cos w sin w sin d w sin wdw w cos w sin w cos sin. L w 9. Thn dw () d, so 9 d 9 dw w dw. 9 w dw ( ) wdw w w dw w L u w dv dw w du dw v w w w w dw w dw w w w w ( w) 9 w d w dw ( ) w w ( 9 ) 9. L w. Thn dw d. 7 w d ( ) d w dw. Us abular ingraion wih f () w and gw ( ) w. w w w w w w dw w w 6w 6 w ( w w 6w6) 7 w d w dw ( w w 6 w 6 w ) 6 ( 6 6) 6. L ln r. Thn dr,andsodr r. r Using h rsul of Ercis, w hav: sin (ln r) dr (sin ) (sin cos ) ln r [ sin (ln r) cos (ln r) ] r [in s (ln r) cos (ln r) ] n 7. L u dv cos d n du n d v sin n n n cos d sin (sin )( n d) n n sin n sin d

23 86 Scion 6. n 8. L u dv sin d n du n d v cos n n n sin d ( )( cos ) ( cos )( n ) d n n cos n cos d n 9. L u dv d a n a du n d v a n d ( a a n ( n ) d) n a n d, a a a n a n a a a. L u (ln ) dv d n n n(ln ) du d v n n (ln ) d (ln ) ( ) n n (ln ) d n n (ln ) n (ln ) d. (a) L f ( ). Thn f( ), so d f ( ). Hnc, f ( ) d ( ) f ( ) f ( ) (b) L u dv f ( ) du v f ( ) f ( ) f( ) f( ) f ( )( ) f( ) Hnc, f ( ) d f ( ) f ( ) f( ).. L u f ( ) dv d d du d f ( ) d v d f d f d f ( ) ( ) ( ) d. (a) Using f ( ) sin and f( ) sin, π π, w hav: sin d sin sin sin cos sin cos (sin ) d (b) sin d sin sin d, sin d u du d sin u du sin u (c) cos (sin ) sin d. (a) Using f ( ) an and f( ) an, π π < <, w hav: d an an an an ln sc ( Scion 6., Eampl ) an ln cos an ln cos (an ) d (b) an d an an d d an d u, du d an u du an ln u an ln ( ) (c) ln cos (an ) ln ln ( ). (a) Using f ( ) cos and f( ) cos, π, w hav: cos d cos cos cos sin cos sin (cos ) d (b) cos d cos cos d cos u, du d cos u du cos u cos d d (c) sin (cos )

24 Scion (a) Using f ( ) log and f( ), w hav logd log log ln log log ln d (b) logd log log d d log (c) log d ln d log ln log ln Quic Quiz Scion E.... A. d dv d v d u du d d. (a) (b) L and b in h diffrnial quaion: d ( b) b b (c) Firs, no ha d () () a h poin (, ). Also, d d ( ), which is a h d d d poin (, ). B h Scond Drvaiv s, g has a local maimum a (, ). Scion 6. Eponnial Growh and Dca (pp. 6) Eploraion hoosing a onvnin Bas. h. h is h rciprocal o h doubling priod. h. log h log log 7. 9 ars. log. h. h is h rciprocal o h ripling priod. h. log h log log 6. 9 ars. log. h. h is h rciprocal o h half lif. h 6.. log(. ) h log log(. ) 9. 8 ars. log Quic Rviw 6.. a b. c ln d. ln( ). 6 6 ln6 ln ln 8. ln. ln 8. ln. ln.. 68 l n ln ln ( )ln ln ln (lnln) ln ln ln. 7

25 88 Scion ln. ln ln. ln ln. ln. l og ln ln ln ln 9. ln( ). ln ± ± Scion 6. Erciss. d () (), valid for all ral numbrs. d.. () ( ), valid on h inrval (, ) d ln ln, valid on h inrval (, ) d ln ± A,valid for all ral numbrs. d ( ) 6. ln ( ) / c / A / 6 /, valid for all ral numbrs 7. d cos d an an () an, valid for all ral numbrs. cos sin sin cos d sin sin sin ln ( ), valid for all ral numbrs. 8. d d ln ( ), valid for all ral numbrs. 9. d., valid for all ral numbrs.. ln d ln d u ln du d u du u (ln ) (ln ) (ln ), valid on h inrval (, ).

26 Scion (). (). (). (). () () () ln. ln (. ln ). Soluion : () or () i. () () 6 ( ) 6 ln. ln. ln Soluion: () 6 (. ln ) or () 6 i /. Doubling im: A () A r ln. 86 ln 86. r.86 Amoun in ars: 86 A (. )( ) $, Annual ra: r A () A ( r)( ) r ln r ln r. 6. 6% Amoun in ars: r A () A [( ln )/ ]( ) A ln i $ 8 7. Iniial dposi: r A () A (. )( ) 898. A 898. A $ Doubling im: A () A r. 6. ln. ln. ars. 8. Annual ra: A () A r ( r)( ), r. 7 ln r. 7 r ln % Doubling im: A () A r ln. 7 ln 96. ars.7 9. (a) Annuall:. 7 ln ln.7 ln. 9 ars ln.7 (b) Monhl: ln ln ln. ar. ln 7 6 s (c) Quarrl:. 7 ln ln.87 ln ln.87 (d) oninuousl: ln. 7 ln. 9 ars. 7 ars

27 9 Scion 6.. (a) Annuall:. 8 ln ln. 8 ln 8. 7 ars ln. 8 (b) Monhl: (c) Quarrl: ln ln ln. ars. ln ln ln.6 ln ln.6 (d) oninuousl: ln. 8 ln 8. ars ln. 77 ln ( / ) 9 ars. 77 ars. ln ln ( / ) (a) Sinc hr ar 8 half-hour doubling ims in hours, hr will b 8 8. bacria. (b) Th bacria rproduc fas nough ha vn if man ar dsrod hr ar sill nough lf o ma h prson sic.. Using, w hav, and,,. Hnc, which givs, ln, or ln. Solving,, w hav. Thr wr bacria iniiall. W could solv his mor quicl b noicing ha h populaion incrasd b a facor of, i.. doubld wic, in hrs, so h doubling im is hr. Thus in hrs h populaion would hav doubld ims, so h iniial populaion was, ln ln das 8. ln ln 6. (a) Half-lif. das (b). ln.. ln. 99. das. Th sampl will b usful for abou 99 das. 7. Sinc ( ),w hav: ( )( ) ln ln ln ln. ln. (. ln.) Funcion: or 8. Sinc ( ).,w hav:. ( )( ). ln ln. (ln. ln ). 8 (ln. ln ) / Funcion:. or. 9. A im, h amoun rmaining is. ( / ). 99. This is lss han % of h original amoun, which mans ha ovr 9% has dcad alra.. T Ts ( T Ts) ( )( ) 6 ( T 6) ( )( ) 6 ( T 6) Dividing h firs quaion b h scond, w hav: ln Subsiuing bac ino h firs quaion, w hav: [(ln )/ ]( ) ( T 6) ( T 6) 6 T 6 T Th bam s iniial mpraur is F.

28 Scion (a) Firs, w find h valu of. T Ts ( T Ts) ( )( ) 6 ( 9 ) 7 ln 7 Whn h soup cools o, w hav: [( / ) ln (/7)] ( 9 ) [( / )ln (/7)] 7 ln ln 7 ln 7. min ln 7 I as a oal of abou 7. minus, which is an addiional 7. minus afr h firs minus. (b) Using h sam valu of as in par (a), w hav: T Ts ( T Ts) ( ) [ ( )] [( 9 / ) [( / ) ln (/7)] ln ln 7 ln. 6 ln 7 ln (/7)] I as abou.6 minus. Firs, w find h valu of. Taing righ now as, 6 abov room mpraur mans T T s 6. Thus, w hav T Ts ( T Ts) ( )( ) ln 7 6 (a) T T ( T T ) 6. s s ( ( / ) ln ( 76 / ))( ) I will b abou. abov room mpraur. (b) T T ( T T ) s s ( ( / ) ln ( 7/ 6))( ) I will b abou.79 abov room mpraur. (c) T T ( T T ) s s ( ( / )ln (7/6)) 6 7 ln 6 ln 6 ln (/6). 7 min ln ( 7/ 6) I will a abou.7 min or.9 hr.. (a) T T s 79. 7(. 9) (b) T 79. 7(. 9) (c) Solving T and using h ac valus from h rgrssion quaion, w obain. sc. (d) Subsiuing ino h quaion w found in par (b), h mpraur was approimal (a) Nwon s Law of ooling prdics ha h diffrnc bwn h prob mpraur (T ) and h surrounding mpraur (Ts) is an ponnial funcion of im, bu in his cas Ts, so T is an ponnial funcion of im. (b) T [, ] b [, 86] (c) A abou 7 sconds. (d) Us ln (s Eampl ). 7. ln. ln. 7 ln. 668 ars ln rar La is abou 668 ars old. 6. Us ln (s Eampl ). 7 (a) 7. ln 7. ln.7 7 ln. 7, 7 ars ln Th animal did abou,7 ars bfor A.D., in,7 B.. (b) 8. ln 8. ln.8 7 ln. 8, ars ln Th animal did abou, ars bfor A.D., in, B..

29 9 Scion oninud (c) 6. ln 6. ln. 6 7 ln. 6, 7 ars ln 7. Th animal did abou,7 ars bfor A.D., in,7 B.. ln( / ). ln( / ) ars.. 8. r ln ( ) r. r ln( ). 6 ars. 9. ( )( ) 8 8. ln 8. A h: ( ln. 8/ ). ln g Abou 8. g will rmain.... ln.. ln r I will a abou 6.9 ars.. (a) dp p dh dp dh p dp dh p ln p h ln p h h p p A h Iniial condiion: p p whn h p A A p Soluion: p p h Using h givn aliud-prssur daa, w hav p millibars, so: h p ( )( ) ln. m Thus, w hav p. (b) A m, h prssur is 9 (( / ) ln ( / ))( ). 8 millibars. (c) 9 h 9 h 9 ln ( 9 / ) h ln 9.77 m ln ( 9 / ) Th prssur is 9 millibars a an aliud of abou.977 m.. B h Law of Eponnial hang, 6.. A hour, h amoun rmaining will b 6. ( ). 88 grams.. (a) B h Law of Eponnial hang, h soluion is (b). V V (/ ). (/ ) ln. ln. 9. sc I will a abou 9. sconds.. (a) A () A I grows b a facor of ach ar. (b) ln I will a ln. r. (c) In on ar our accoun grows from A o A, so ou can arn A A, or ( ) ims our iniial amoun. This rprsns an incras of abou 7%.. (a) 9 ( r)( ) ln9 r ln9 r. or. % (b) ( r)( ) ln r ln r. 9 or. 9% h

30 Scion (a) r r ln r ln r (b) (c) ln 69., so h doubling im is 69. which is almos r h sam as h ruls. (d) 7 7 ars or. ars r () r ln r ln r Sinc ln. 99, a suiabl rul is 8 8 or. r i (W choos 8 insad of bcaus 8 has mor facors.) 7. Fals. Th corrc soluion is, which can b wrin (wih a nw ) as. 8. Tru. Th diffrnial quaion is solvd b an ponnial quaion ha can b wrin in an bas. No ha ( ) whn /(ln ). 9. D. A() A r 7 ln( ) r ln( ) A A. D. r / 99/r 99 ln(. ) ln(. ) 99 ln(. ) r ln(. ). E. T 68 ( 68) (. ) ln 7 7min. 7. (a) Sinc acclraion is dv, w hav Forc m dv v. (b) From m dv v w g dv m v, which is h diffrnial quaion for ponnial growh modld b ( v / m ). Sinc v v a, i follows ha v. (c) In ach cas, w would solv ( m / ). If is consan, an incras in m would rquir an incras in. Th objc of largr mass as longr o slow down. Alrnaivl, on can considr h quaion dv m v o s ha v changs mor slowl for largr valus of m. ( m / ) vm. (a) s v ( m / ) () Iniial condiion: s( ) vm vm vm s ( m / ) vm () vm ( ) ( m / ) vm ( m / ) vm (b) lim s ( ) lim ( ) vm. coasing disanc ( 8. )( 99. ). 998 W now ha vm 998. and. m ( 9. 9) Using Equaion, w hav: vm ( m / ) s () ( ) /. ( ) 66.. ( )

31 9 Scion 6.. oninud A graph of h modl is shown suprimposd on a graph of h daa. Graphical suppor:, 6. vm coasing disanc ( 86. )( 8. ) vm ( s () ( / m ) ) ( 7. /. 8) s () 97. ( ) s (). 97( ) A graph of h modl is shown suprimposd on a graph of h daa. r ,.687, Graphical suppor:.,. [, ] b [, ] 7. (a) ,.78, Graphical suppor:, (b) r , 7.876, (c) As w compound mor ims, h incrmn of im bwn compounding approachs. oninuous compounding is basd on an insananous ra of chang which is a limi of avrag ras as h incrmn in im approachs. 8. (a) To simplif calculaions somwha, w ma wri: a a a mg v () a a a a mg a a mg ( ) a mg a Th lf sid of h diffrnial quaion is: m dv m mg a a ( )( ) ( a ) ma mg a a ( ) ( ) m g mg a a ( ) ( ) m a mg a ( )

32 Scion oninud Th righ sid of h diffrnial quaion is: mg v mg mg a mg a mg a a ( ) a ( ) mg a ( ) a mg a ( ) Sinc h lf and righ sids ar qual, h diffrnial quaion is saisfid. mg And v( ), so h iniial condiion is also saisfid. a a a mg (b) lim v ( ) lim i a a a mg lim mg Th limiing vloci is a a mg mg. mg (c) 6 79 f /sc. Th limiing vloci is abou 79 f/sc, or abou mi/hr. Scion 6. Logisic Growh (pp. 6 76) Eploraion Eponnial Growh Rvisid. ( ) 96 (.. ( ) ) No. This numbr is much largr han h simad numbr of aoms.., ( ) log. 9 hours log Eploraion Larning From h Diffrnial Equaion. dp will b clos o zro whn P is clos o M.. P is half h valu of M a is vr.. Th graph bgins a downward rnd a half h carring capaci, causing a dclin in growh ras.. Whn h iniial populaion is lss han M, h iniial growh ra is posiiv.. Whn h iniial populaion is mor han M, h iniial growh ra is ngaiv. 6. Whn h iniial populaion is qual o M, h growh ra is a a maimum. 7. lim P ( ) M. lim P ( ) dpnds onl on M. Quic Rviw 6.. ). ). ). ). (, ) 6 6. lim f ( ) 6. ( ) 6 7. lim f ( ) (. ( )) 6 8. ( ) (. ( )) 9. From problms 6 and 7, h wo horizonal asmpos ar and 6.

33 96 Scion Scion 6. Erciss. A ( ) B ( ), B8 B, A( ) ( )( ) A. A ( ) B ( ) 6, B( ) ( ) 6 B B, A( ) ( ) 6 A A. A ( ) B ( ) 6, B( ) 6( ) 7B B, A( ) 6 7A A. A ( ) B ( ), B( ) 6B B /, A( ) 6A A /. S problm. d d ln ln ( ) ln ( ) 6. S problm. 6 d d 6 ln ( ) ln ( ) ( ) ln ( ) 7. ) d u du d du ln u u ln( ) 8. 9) 6 9 d 9 A B d A ( ) B ( ), B( ) B /, A( ) A / / d / ln d 9. an d. 9 an 7. d A B 7 A ( ) B( ) 7, B( ( ) ) 7 B /, A( / ) 7 A d ln

34 Scion d A B A ( ) B( ), B( ( ) ) ( ) B, A A A d ln( ) ln( ) ln ( ) 8 7 A B 8 7 A( ) B( ) 87, B 8 7 B B, A( ) 8 7 A ( ) 87 A A d ln ln ( ) ln 7 d A B 7 A ( 7) B 7, 7B ( 7) 7B B, A( 7) ( ) 7A A d 7 ln ln ( 7) ( ) ln 7 6. d A B 6 A ( ) B 6, B ( ) 6 B B, A( ) ( ) 6 A 6 A d ln ln ln 6. du d A B A ( ) B ( ), B( ) B B, A( ) A A u d u ln ln u ln 7. F ( ) d d A B A ( )( ) B ( ) ( ),, B B, A A d F ( ) ln ln ln F ( ) ln

35 98 Scion G ( ) ) A ( ) B ( ), B( ) B B, A ( ) A A G () ( ) ( ) ln ln ln 9. d u du d du ln u ln u. d u du ( ) d du ln u u ln. d ) d u du ( ) d du ln u u ln. d ) d u du d du u ln u ln. (a) individuals. (b) individuals. (c) dp ( ). 6( )( ) 6 individuals pr ar.. (a) 7 individuals. (b) individuals. (c) dp ( ). 8( )( 7 ) 98 individuals pr ar.. (a) individuals. (b) 6 individuals. (c) dp ( 6). ( 6)( 6) 7 individuals pr ar. 6. (a) individuals. (b) individuals. (c) dp ( ) ( )( ) 6. individuals pr ar. 7. dp. 6 P( P) dp. 6 P( P) A B P P A( P) BP P, B B. P, A( ) A A P P dp P P dp. ln Pln ( P).

36 Scion oninud P ln. P. c P. c P. ( ) 8 c P. c [, 7] b [, ] dp P( 7 P) dp P 7 P. 8 ( ) A B P 7 P A( 7 P) BP P 7, 7 B B. P, A( 7 ) A... P 7 P dp. 8 P P dp 6. 7 ln P ln ( 7 P). 6 7 P ln 6. P 7 6. c P 7 6. c P 7 6. ( ) c c 69 7 P [, ] b [, 7] 9.. dp. P( P) dp P( P). A B P P A( P) BP P, B B. 8 P, A( ) A A P 7 P dp. P P dp. ln P ln ( P). P ln. P. P P c 9 P. 9 dp [, ] b [, ] c. ( ) P P. ( ) c c dp P( P) A B P P A( P) BP P, B B. P, A( ) A A... P P dp P P dp.

37 Scion 6.. oninud ln Pln ( P). P ln. P. c P. c P. ( ) c c 99 P. 99 [, ] b [, ]. (a) P () M A This is a logisic growh modl wih.7 and M. (b) P( ) 8 8. Iniiall hr ar 8 rabbis.. (a) P ().. M A This is a logisic growh modl wih and M. (b) P( ). Iniiall sudn has h masls.. (a) dp. P( P). P( P) ( ) M PM P Thus,. and M. M P A. A Iniial condiion: P( ) 6 6 A A A Formula: P. (b) ln 8 ln ws ln ln. 8. I will a abou 7. ws o rach guppis, and abou.8 ws o rach guppis.. (a) dp. P( P). P( P) ( ) M PM P Thus,. and M. M P A. A Iniial condiion: P( ) 8, whr rprsns h ar A 8( A) A Formula: P (), or approimal. / P ()

38 Scion 6.. oninud (b) Th populaion P() will round o whn P () / 9... ( 9. )( ).., 89. ln, 89 (ln,89 ln ) 8. 8 I will a abou 8 ars.. dp P( M P) dp PM ( P) Q R P M P RP Q( M P) P, MQ Q M P M, MR R M M M dp P M P ( ) P ( M P) dp M M P ln M P M M P M M A P M P M A 6. (a) dp M ( P) dp M P ln( M P) c M P c A P M A (b) lim P ( ) M A M (c) Whn. (d) This curv has no inflcion poin. If h iniial populaion is grar han M, h curv is alwas concav up and approachs M asmpoicall from abov. If h iniial populaion is smallr han M, h curv is alwas concav down and approachs M asmpoicall from blow. 7. (a) Th rgrssion quaion is P 8.. [, 7] b [, 6] (b) P(. ) 79 9,. ( ). 7 popl (c) P , or. (d) dp 7 P( M P) (. ) P( P). 8. (a) Th rgrssion quaion is P (b) P(. ) 879 8,. ( ) (c) P , or.. (d) dp 7 P( M P) (. 66 ) P( P) 9. Fals. I dos loo ponnial, bu i rsmbls h soluion o dp P( ) ( 9) P.

39 Scion 6.. Tru. Th graph will b a logisic curv wih lim P ( ) and lim P ( ).. D. 6.. B. ( ) ( ) (..) 9 %. D.. B. d ( )( ) A B A ( ) B ( ), B( ) B B, A( ) A A d 8 ln ln. (a) No ha > and M >, so h sign of dp is h samas h sign of ( MP)( Pm). For m < P < M, boh MP and Pmar posiiv, so h produc is posiiv. For P< mor P> M, h prssions M P and P m hav opposi signs, so h produc is ngaiv. (b) dp M ( MP)( Pm) dp P P ( )( ) dp ( P)( P) dp ( P)( P ) ( P ) ( P) dp ( P)( P) dp P P dp P P ln P ln P P ln P P / ± P P P A / / / P A AP / / P( A ) A / A P / A A (c) A ( A) A AA 9A A 9 / ( / 9) P () / ( / 9) / ( ) ( 9) P () / 9 / ( 8 ) P () / 9 (d) [, 7] b [, ] No ha h slop fild is givn b dp. ( P)( P). dp () M ( MP)( Pm) M dp ( MP)( Pm) M M m dp M m ( MP)( Pm) ( P m) ( MP) dp M m ( MP)( Pm) M dp M m M P P m M M P P m dp M m M ln M P ln P m M m M P m M m ln M P M P m ( Mm) / M ± M P P m M P A ( Mm) / M ( Mm) / M P m ( MP) A ( Mm) / M ( Mm) / M P( A ) AM m P A ( Mm) / M M m ( Mm) / M A AM m AM m P( ) A A

40 hapr 6 Rviw. oninud () P( )( A) AM m AP ( ( ) M) mp( ) A m P ( ) P( ) m P( ) M M P( ) Thrfor, h soluion o h diffrnial quaion is P AM ( Mm) / M m P( ) m whr A ( Mm) / M A M P( ). 6. (a) an a a (b) a ln a a (c) a 7. (a) ln (b) ( ) 8. (a) This is ru sinc A B ( ) ( ) (b) A ( ) B ( ), A B, 9, A B A B 9 B 9 (c) ln ( ) Quic Quiz.... d. A. ( )( ) A B A ( ) B ( ), B B /, A A / / / d ln A ( ) B ( ) ( ) dp P P. dp P( P) A B P P A( P) BP P, B B. P, A A... P P dp P ln / P P / P( ) / ( ) A A. lim P ( ) / ( ). (b) P( ) / ( ) A A 66. lim P ( ) / ( ). 66 (c) Spara h variabls. dy Y lny Y / / whr / / Y (d) lim / / / lim lim / / / ( ) hapr 6 Rviw Erciss π / π / π. sc θ dθ anθ an an. d ( )

41 hapr 6 Rviw. L u du d du d 6 d 8 ( ) u du 8 u L u du d du d sin( ) d sinudu. L u sin 6. du cos d π / / / sin cos d u du / / 7. L u an i u / ( ) d d ( ) ( ) du sc d π / an / 6 ( ) ( ) sc d du u u 8. L u lnr du r dr lnr / dr u du r / u ( ) 9. d 6 ( )( ) A B A ( ) B ( ), B( ) B, A( ) A A d 6 ln( ) ln( ) ln 6. d 6 ( ) A B 6 A ( ) B 6, B ( ) 6 B, A( ) () 6 A 6 A d ln ln( ) 6ln. L u sin du cos d du cos d cos sin d u du ln u ln sin

42 hapr 6 Rviw. L u du d du d d u du / i u / ( ) /. L u du du u du u ln ln( ) ln. L u θ du dθ θ sc an d θ θ θ θ sc u an udu scu sc θ. L u ln du an(ln ) anudu sinu cosu du L w cosu dw sinudu w dw ln w ln cosu ln cos(ln ) 6. L u du d sc( ) d sc udu ln sc u an u ln sc( ) an( ) 7. L u ln du d d ln u du ln u ln ln 8. / / / 9. Us abular ingraion wih f ( ) and g ( ) cos. cos d sin cos 6sin 6cos. L u ln dv d du d v ln d ln d ln d ln

43 6 hapr 6 Rviw. Lu dv sin d du d v cos sin d cos cos d Ingra b pars again L u dv cos d du 9 d v sin sin d cos sin 9 sin d sin d cos sin sin d [ cos sin ] sin cos. L u dv d du d v d d L u dv d du d v d d ( )( ) A B A ( ) B ( ), B( ) B B /, A( ) A A / d / / d ln. d ( )( ) A B A ( ) B( ), B( ( ) ) ( ) B B, A S 9 A A d ln ( ) ( ). d d d 6 ( ) 6 Graphical suppor:

44 hapr 6 Rviw 7 6. d d d d () Graphical suppor: 7. ln ( ) ln( ) ln( ) Graphical Suppor: cscθ π cscθ 9. ( ) d ( ) d ( ) d () ( ) d ln () ln Graphical suppor: L f( ) ln. Wfirsshowhgraphof f ( ), >, along wih hslopfildfor f ( ). 8. cscθco θ dθ cscθco θdθ cscθco θdθ

45 8 hapr 6 Rviw 9. oninud W now show h graph of f ( ) along wih h slop fild for f ( ).. dr ( ) cos dr ( ) cos dr ( ) cos r sin r ( ) r sin dr ( ) ( sin ) r cos r ( ) r cos dr (cos ) r sin r( ) r sin Graphical suppor: W firs show h graph of r sin along wih h slop fild for r cos.. d d d ln () Graphical suppor:. ( )( ) d d ( ) d ( ) ln ( ) Graphical suppor: N, w show h graph of r cos along wih h slop fild for r sin. Finall w show h graphof r sin along wih h slop fild for r cos.. ( ) ( ) A B A( ) B, B, A

46 hapr 6 Rviw 9. oninud. ln ln ln c c A ( ).. A A d. ( ) d. ( ) A B. A( ) B(. ), B(. ) B, A A ln ln. ln.. c. A ( ).( ) A A sin Graph (b).. Graph (d).. Graph (c).. Graph (a).. (,) Δ Δ Δ ( Δ, Δ ) d d (,)... (.,.) (.,.)... (.,.) (.,.)... (.,.6).6. (,) Δ Δ Δ ( Δ, Δ ) d d (,)... (.9,.) (.9,.)... (.8,.) (.8,.)... (.7,.6).6. W s h graph of a funcion whos drivaiv is sin. Graph (b) is incrasing on [ π, π ], whr sin is posiiv, and oscillas slighl ousid of his inrval. This is h corrc choic, and his can b vrifid b graphing NINT sin,,,. 6. W s h graph of a funcion whos drivaiv is. Sinc > for all, h dsird graph is incrasing for all. Thus, h onl possibili is graph (d), and w ma vrif ha his is corrc b graphing NINT (,,, ).

47 hapr 6 Rviw 7. (iv) Th givn graph loos h graph of, which saisfis and (). d 8. Ys, is a soluion. 9. (a) dv 6 dv ( 6) v Iniial condiion: v whn v. (b) v() ( ) 6 6 Th paricl movs 6 m. [, ] b [, ]. (a) Half-lif ln ln. 6 ln (b) Man lif. T T ( T T ) s. 89 ars s T ( ) Us h fac ha T 8 and o find. ( )( ) 8 ( ) ln 7 (( / ) ln ( 9/ 7)) T ( ) (( / ) ln ( 9/ 7)) 7 ( ) (( / ) ln ( 9/ 7)) ln 7 ln6 ln 6 7 min ln ( 9/ 7) I oo a oal of abou 7 minus o cool from F o 7 F. Thrfor, h im o cool from 8 F o 7 F was abou 9 minus.. T T ( T T ) s s W hav h ssm: 9 Ts ( 6 Ts) Ts ( 6 Ts) 9 Ts Ts Thus, and 6 Ts 6 Ts Sinc ( ), his mans: 9 T s T 6 Ts s 6 Ts ( 9 Ts) ( Ts)( 6Ts) 78Ts Ts 8 79Ts Ts Ts Th rfrigraor mpraur was.. Us h mhod of Eampl in Scion ln ln. 99 ln. 99. ln Th paining is abou. ars old.. Us h mhod of Eampl in Scion 6.. Sinc 9% of h carbon- has dcad, % rmains.. ln. 7 ln. ln. 8, 9 ln Th charcoal sampl is abou 8.9 ars old. 6. Us ars. r 7 r r ln ln ln r. 6 Th ra of apprciaion is abou., or.%. 7. Using h Law of Eponnial hang in Scion 6. wih appropria changs of variabls, h soluion o h diffrnial quaion is L( ) L, whr L L( ) is h surfac innsi. W now. 8, so ln. and our quaion bcoms 8 / 8 L ( ) L (ln. )( / 8 ) L. W now find h dph whr h innsi is on-nh of h surfac valu.

48 hapr 6 Rviw 7. oninud / 8. ln. ln 8 8 ln f ln. You can wor wihou arificial ligh o a dph of abou 9.8 f. A 8. (a) V ( c ) A c V A ln c V A ln c V ( A/ V ) c ( A/ V ) c ± ( A/ V ) c± c D ( A/ V ) Iniial condiion whn c D c D ( Soluion: c c A / ( ) V ) (b) lim ( ) lim[ c ( c ) ] c ( A/ V ) 9. (a) p ().. M. This is p whr M, A, and. A Thrfor, i is a soluion of h logisic diffrnial quaion. dp M PM P dp ( ), or P( P). Th carring capaci is. (b) P( ). Iniiall hr wr infcd sudns. (c). 6.. ln.. ln 9. das. I oo abou 6 das. 6. Us h Fundamnal Thorm of alculus. d d d sin d ( ) (sin ) ( ) d (sin ) d (cos )( ) 6 cos( ) 6 Thus, h diffrnial quaion is saisfid. Vrif h iniial condiions: ( ) (sin ) ( ) ( ) sin( ) 6. dp P. P 8 dp. P 8 P P dp. ( 8 ) ( 8 P) P dp. P( 8 P) p dp 8 P. ln P ln 8 P. P ln. 8 P 8 P ln. P 8 P. P 8 P. ± P 8. A P 8 P. A Iniial condiion: P( ) 8 A A 6 A 8 Soluion: P. 8 8 P 6. Mhod ompar graph of ln wih ln NDER 9. Th graphs should b h sam. Mhod ompar graph of NINT( ln ) ln wih. Th graphs should b h sam or 9 diffr onl b a vrical ranslaion.

49 hapr 6 Rviw 6. (a),, (. 6). 6 ln ln. 6 ln. ln. 6 I will a abou. ars. (b).,, 6. 6 ln. 6 ln.. 6 I will a abou. ars. d 6. (a) f ( ) u ( ) u ( ) d d g ( ) u ( ) u ( ) d (b) f( ) g( ) u () u () u() u() u () (a) Th rgrssion quaion is Th graph is shown blow. (b) (. ) 786,. ( ) popl (c) dp P( 786. P) (d) Th carring capaci drops o 67,.6, which is blow h acual populaion. Th logisic rgrssion is srongl affcd b poins a h rms of h daa, spciall whn hr ar so fw daa poins bing usd. Whil h fi ma b mor dramaic for a small daa s, h quaion is no as rliabl. 66. (a) T (. 97) [, ] b [, 9] (b) Solving T () graphicall, w obain 9. sc. Th mpraur will rach afr abou 9. sconds. (c) Whn h prob was rmovd, h mpraur was abou T( ) (a) of h own has hard h rumor whn i is sprading h fass. (b). ( ) A B. A( ). B, B. 8, A 8.. ln.... A ( ) A A ( ). (c) 9. Solv for o obain ln 8. das. 68. (a) dp ( 6 P). Spara h variabls o obain dp 6 P dp P 6 ln P 6 P 6 6 P 6 P () 6 (b) 6 / ln. 69 i. 69 (c) lim( 6 ) 6

50 Scion (a) Spara h variabls o obain dv v 7 ln v 7 v v 7 v 7 (b) lim( 7) 7 f pr scond (c) 7 ln. sconds hapr 7 Applicaions of Dfini Ingrals Scion 7. Ingral as N hang (pp ) Eploraion Rvisiing Eampl 8 8. s () ( ) 8 s( ) 9 8 Thus, s (). 8. s( ). 6 This is h sam as h answr w found in Eampl a. 8. s( ). This is h sam answr w found in Eampl b. Quic Rviw 7.. On h inrval, sin whn π, π, or. Ts on π poin on ach subinrval: for,sin ;for π π,sin ; for,sin ; and for π,sin. Th funcion changs sign a π, π, and. Th graph is f(). ( )( ) whn or. Ts on poin on ach subinrval: for, ; for, ; and for,. Th funcion changs sign a and. Th graph is f(). has no ral soluions, sinc b ac ( ) ()() 8 <. Th funcion is alwas posiiv. Th graph is f(). ( ) ( ) whn Ts on poin on ach subinrval: for, ; for, ; and or.,. Th funcion changs sign a. Th graph is f(). On h inrval, cos whn, π, π, π or. Ts on poin on ach subinrval: for π 8, cos, for, cos for π, 6 cos π; and for, cos 8.. Th funcion changs sign a π π,, and π. Th graph is f() 6. whn. On h rs of h inrval, is alwas posiiv. 7.. Ts on poin on ach subinrval: for, ; for,. Th funcion changs sign a. Th graph is f()

46. Let y = ln r. Then dy = dr, and so. = [ sin (ln r) cos (ln r)

46. Let y = ln r. Then dy = dr, and so. = [ sin (ln r) cos (ln r) 98 Scion 7.. L w. Thn dw d, so d dw w dw. sin d (sin w)( wdw) w sin w dw L u w dv sin w dw du dw v cos w w sin w dw w cos w + cos w dw w cos w+ sin w+ sin d wsin wdw w cos w+ sin w+ cos + sin +. L w +

More information

Elementary Differential Equations and Boundary Value Problems

Elementary Differential Equations and Boundary Value Problems Elmnar Diffrnial Equaions and Boundar Valu Problms Boc. & DiPrima 9 h Ediion Chapr : Firs Ordr Diffrnial Equaions 00600 คณ ตศาสตร ว ศวกรรม สาขาว ชาว ศวกรรมคอมพ วเตอร ป การศ กษา /55 ผศ.ดร.อร ญญา ผศ.ดร.สมศ

More information

UNIT #5 EXPONENTIAL AND LOGARITHMIC FUNCTIONS

UNIT #5 EXPONENTIAL AND LOGARITHMIC FUNCTIONS Answr Ky Nam: Da: UNIT # EXPONENTIAL AND LOGARITHMIC FUNCTIONS Par I Qusions. Th prssion is quivaln o () () 6 6 6. Th ponnial funcion y 6 could rwrin as y () y y 6 () y y (). Th prssion a is quivaln o

More information

Copyright 2012 Pearson Education, Inc. Publishing as Prentice Hall.

Copyright 2012 Pearson Education, Inc. Publishing as Prentice Hall. Chapr Rviw 0 6. ( a a ln a. This will qual a if an onl if ln a, or a. + k an (ln + c. Thrfor, a an valu of, whr h wo curvs inrsc, h wo angn lins will b prpnicular. 6. (a Sinc h lin passs hrough h origin

More information

2.1. Differential Equations and Solutions #3, 4, 17, 20, 24, 35

2.1. Differential Equations and Solutions #3, 4, 17, 20, 24, 35 MATH 5 PS # Summr 00.. Diffrnial Equaions and Soluions PS.# Show ha ()C #, 4, 7, 0, 4, 5 ( / ) is a gnral soluion of h diffrnial quaion. Us a compur or calculaor o skch h soluions for h givn valus of h

More information

5. An object moving along an x-coordinate axis with its scale measured in meters has a velocity of 6t

5. An object moving along an x-coordinate axis with its scale measured in meters has a velocity of 6t AP CALCULUS FINAL UNIT WORKSHEETS ACCELERATION, VELOCTIY AND POSITION In problms -, drmin h posiion funcion, (), from h givn informaion.. v (), () = 5. v ()5, () = b g. a (), v() =, () = -. a (), v() =

More information

Boyce/DiPrima 9 th ed, Ch 2.1: Linear Equations; Method of Integrating Factors

Boyce/DiPrima 9 th ed, Ch 2.1: Linear Equations; Method of Integrating Factors Boc/DiPrima 9 h d, Ch.: Linar Equaions; Mhod of Ingraing Facors Elmnar Diffrnial Equaions and Boundar Valu Problms, 9 h diion, b William E. Boc and Richard C. DiPrima, 009 b John Wil & Sons, Inc. A linar

More information

Chapter 6 Test December 9, 2008 Name

Chapter 6 Test December 9, 2008 Name Chapr 6 Ts Dcmbr 9, 8 Nam. Evalua - ÄÄ ÄÄ - + - ÄÄ ÄÄ ÄÄ - + H - L u - and du u - du - - - A - u - D - - - ÄÄÄÄ 6 6. Evalua i j + z i j + z i 7 j ÄÄÄ + z 9 + ÄÄÄ ÄÄÄ 9 ÄÄÄ + C 6 ÄÄÄ + ÄÄÄ 9 ÄÄÄ + C 9.

More information

EXERCISE - 01 CHECK YOUR GRASP

EXERCISE - 01 CHECK YOUR GRASP DIFFERENTIAL EQUATION EXERCISE - CHECK YOUR GRASP 7. m hn D() m m, D () m m. hn givn D () m m D D D + m m m m m m + m m m m + ( m ) (m ) (m ) (m + ) m,, Hnc numbr of valus of mn will b. n ( ) + c sinc

More information

Lecture 1: Numerical Integration The Trapezoidal and Simpson s Rule

Lecture 1: Numerical Integration The Trapezoidal and Simpson s Rule Lcur : Numrical ngraion Th Trapzoidal and Simpson s Rul A problm Th probabiliy of a normally disribud (man µ and sandard dviaion σ ) vn occurring bwn h valus a and b is B A P( a x b) d () π whr a µ b -

More information

Applied Statistics and Probability for Engineers, 6 th edition October 17, 2016

Applied Statistics and Probability for Engineers, 6 th edition October 17, 2016 Applid Saisics and robabiliy for Enginrs, 6 h diion Ocobr 7, 6 CHATER Scion - -. a d. 679.. b. d. 88 c d d d. 987 d. 98 f d.. Thn, = ln. =. g d.. Thn, = ln.9 =.. -7. a., by symmry. b.. d...6. 7.. c...

More information

S.Y. B.Sc. (IT) : Sem. III. Applied Mathematics. Q.1 Attempt the following (any THREE) [15]

S.Y. B.Sc. (IT) : Sem. III. Applied Mathematics. Q.1 Attempt the following (any THREE) [15] S.Y. B.Sc. (IT) : Sm. III Applid Mahmaics Tim : ½ Hrs.] Prlim Qusion Papr Soluion [Marks : 75 Q. Amp h following (an THREE) 3 6 Q.(a) Rduc h mari o normal form and find is rank whr A 3 3 5 3 3 3 6 Ans.:

More information

1973 AP Calculus BC: Section I

1973 AP Calculus BC: Section I 97 AP Calculus BC: Scio I 9 Mius No Calculaor No: I his amiaio, l dos h aural logarihm of (ha is, logarihm o h bas ).. If f ( ) =, h f ( ) = ( ). ( ) + d = 7 6. If f( ) = +, h h s of valus for which f

More information

Wave Equation (2 Week)

Wave Equation (2 Week) Rfrnc Wav quaion ( Wk 6.5 Tim-armonic filds 7. Ovrviw 7. Plan Wavs in Losslss Mdia 7.3 Plan Wavs in Loss Mdia 7.5 Flow of lcromagnic Powr and h Poning Vcor 7.6 Normal Incidnc of Plan Wavs a Plan Boundaris

More information

Spring 2006 Process Dynamics, Operations, and Control Lesson 2: Mathematics Review

Spring 2006 Process Dynamics, Operations, and Control Lesson 2: Mathematics Review Spring 6 Procss Dynamics, Opraions, and Conrol.45 Lsson : Mahmaics Rviw. conx and dircion Imagin a sysm ha varis in im; w migh plo is oupu vs. im. A plo migh imply an quaion, and h quaion is usually an

More information

3(8 ) (8 x x ) 3x x (8 )

3(8 ) (8 x x ) 3x x (8 ) Scion - CHATER -. a d.. b. d.86 c d 8 d d.9997 f g 6. d. d. Thn, = ln. =. =.. d Thn, = ln.9 =.7 8 -. a d.6 6 6 6 6 8 8 8 b 9 d 6 6 6 8 c d.8 6 6 6 6 8 8 7 7 d 6 d.6 6 6 6 6 6 6 8 u u u u du.9 6 6 6 6 6

More information

AR(1) Process. The first-order autoregressive process, AR(1) is. where e t is WN(0, σ 2 )

AR(1) Process. The first-order autoregressive process, AR(1) is. where e t is WN(0, σ 2 ) AR() Procss Th firs-ordr auorgrssiv procss, AR() is whr is WN(0, σ ) Condiional Man and Varianc of AR() Condiional man: Condiional varianc: ) ( ) ( Ω Ω E E ) var( ) ) ( var( ) var( σ Ω Ω Ω Ω E Auocovarianc

More information

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018 DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS Aoc. Prof. Dr. Burak Kllci Spring 08 OUTLINE Th Laplac Tranform Rgion of convrgnc for Laplac ranform Invr Laplac ranform Gomric valuaion

More information

Boyce/DiPrima 9 th ed, Ch 7.8: Repeated Eigenvalues

Boyce/DiPrima 9 th ed, Ch 7.8: Repeated Eigenvalues Boy/DiPrima 9 h d Ch 7.8: Rpad Eignvalus Elmnary Diffrnial Equaions and Boundary Valu Problms 9 h diion by William E. Boy and Rihard C. DiPrima 9 by John Wily & Sons In. W onsidr again a homognous sysm

More information

Let s look again at the first order linear differential equation we are attempting to solve, in its standard form:

Let s look again at the first order linear differential equation we are attempting to solve, in its standard form: Th Ingraing Facor Mhod In h prvious xampls of simpl firs ordr ODEs, w found h soluions by algbraically spara h dpndn variabl- and h indpndn variabl- rms, and wri h wo sids of a givn quaion as drivaivs,

More information

XV Exponential and Logarithmic Functions

XV Exponential and Logarithmic Functions MATHEMATICS 0-0-RE Dirnial Calculus Marin Huard Winr 08 XV Eponnial and Logarihmic Funcions. Skch h graph o h givn uncions and sa h domain and rang. d) ) ) log. Whn Sarah was born, hr parns placd $000

More information

B) 25y e. 5. Find the second partial f. 6. Find the second partials (including the mixed partials) of

B) 25y e. 5. Find the second partial f. 6. Find the second partials (including the mixed partials) of Sampl Final 00 1. Suppos z = (, y), ( a, b ) = 0, y ( a, b ) = 0, ( a, b ) = 1, ( a, b ) = 1, and y ( a, b ) =. Thn (a, b) is h s is inconclusiv a saddl poin a rlaiv minimum a rlaiv maimum. * (Classiy

More information

Charging of capacitor through inductor and resistor

Charging of capacitor through inductor and resistor cur 4&: R circui harging of capacior hrough inducor and rsisor us considr a capacior of capacianc is conncd o a D sourc of.m.f. E hrough a rsisr of rsisanc R, an inducor of inducanc and a y K in sris.

More information

An Indian Journal FULL PAPER. Trade Science Inc. A stage-structured model of a single-species with density-dependent and birth pulses ABSTRACT

An Indian Journal FULL PAPER. Trade Science Inc. A stage-structured model of a single-species with density-dependent and birth pulses ABSTRACT [Typ x] [Typ x] [Typ x] ISSN : 974-7435 Volum 1 Issu 24 BioTchnology 214 An Indian Journal FULL PAPE BTAIJ, 1(24), 214 [15197-1521] A sag-srucurd modl of a singl-spcis wih dnsiy-dpndn and birh pulss LI

More information

On the Speed of Heat Wave. Mihály Makai

On the Speed of Heat Wave. Mihály Makai On h Spd of Ha Wa Mihály Maai maai@ra.bm.hu Conns Formulaion of h problm: infini spd? Local hrmal qulibrium (LTE hypohsis Balanc quaion Phnomnological balanc Spd of ha wa Applicaion in plasma ranspor 1.

More information

DE Dr. M. Sakalli

DE Dr. M. Sakalli DE-0 Dr. M. Sakalli DE 55 M. Sakalli a n n 0 a Lh.: an Linar g Equaions Hr if g 0 homognous non-homognous ohrwis driving b a forc. You know h quaions blow alrad. A linar firs ordr ODE has h gnral form

More information

1997 AP Calculus AB: Section I, Part A

1997 AP Calculus AB: Section I, Part A 997 AP Calculus AB: Sction I, Part A 50 Minuts No Calculator Not: Unlss othrwis spcifid, th domain of a function f is assumd to b th st of all ral numbrs for which f () is a ral numbr.. (4 6 ) d= 4 6 6

More information

On the Derivatives of Bessel and Modified Bessel Functions with Respect to the Order and the Argument

On the Derivatives of Bessel and Modified Bessel Functions with Respect to the Order and the Argument Inrnaional Rsarch Journal of Applid Basic Scincs 03 Aailabl onlin a wwwirjabscom ISSN 5-838X / Vol 4 (): 47-433 Scinc Eplorr Publicaions On h Driais of Bssl Modifid Bssl Funcions wih Rspc o h Ordr h Argumn

More information

Calculus II (MAC )

Calculus II (MAC ) Calculus II (MAC232-2) Tst 2 (25/6/25) Nam (PRINT): Plas show your work. An answr with no work rcivs no crdit. You may us th back of a pag if you nd mor spac for a problm. You may not us any calculators.

More information

Lecture 2: Current in RC circuit D.K.Pandey

Lecture 2: Current in RC circuit D.K.Pandey Lcur 2: urrn in circui harging of apacior hrough Rsisr L us considr a capacior of capacianc is conncd o a D sourc of.m.f. E hrough a rsisr of rsisanc R and a ky K in sris. Whn h ky K is swichd on, h charging

More information

Midterm Examination (100 pts)

Midterm Examination (100 pts) Econ 509 Spring 2012 S.L. Parn Midrm Examinaion (100 ps) Par I. 30 poins 1. Dfin h Law of Diminishing Rurns (5 ps.) Incrasing on inpu, call i inpu x, holding all ohr inpus fixd, on vnuall runs ino h siuaion

More information

Logistic equation of Human population growth (generalization to the case of reactive environment).

Logistic equation of Human population growth (generalization to the case of reactive environment). Logisic quaion of Human populaion growh gnralizaion o h cas of raciv nvironmn. Srg V. Ershkov Insiu for Tim aur Exploraions M.V. Lomonosov's Moscow Sa Univrsi Lninski gor - Moscow 999 ussia -mail: srgj-rshkov@andx.ru

More information

2008 AP Calculus BC Multiple Choice Exam

2008 AP Calculus BC Multiple Choice Exam 008 AP Multipl Choic Eam Nam 008 AP Calculus BC Multipl Choic Eam Sction No Calculator Activ AP Calculus 008 BC Multipl Choic. At tim t 0, a particl moving in th -plan is th acclration vctor of th particl

More information

Phys463.nb Conductivity. Another equivalent definition of the Fermi velocity is

Phys463.nb Conductivity. Another equivalent definition of the Fermi velocity is 39 Anohr quival dfiniion of h Fri vlociy is pf vf (6.4) If h rgy is a quadraic funcion of k H k L, hs wo dfiniions ar idical. If is NOT a quadraic funcion of k (which could happ as will b discussd in h

More information

A THREE COMPARTMENT MATHEMATICAL MODEL OF LIVER

A THREE COMPARTMENT MATHEMATICAL MODEL OF LIVER A THREE COPARTENT ATHEATICAL ODEL OF LIVER V. An N. Ch. Paabhi Ramacharyulu Faculy of ahmaics, R D collgs, Hanamonda, Warangal, India Dparmn of ahmaics, Naional Insiu of Tchnology, Warangal, India E-ail:

More information

H is equal to the surface current J S

H is equal to the surface current J S Chapr 6 Rflcion and Transmission of Wavs 6.1 Boundary Condiions A h boundary of wo diffrn mdium, lcromagnic fild hav o saisfy physical condiion, which is drmind by Maxwll s quaion. This is h boundary condiion

More information

Transfer function and the Laplace transformation

Transfer function and the Laplace transformation Lab No PH-35 Porland Sa Univriy A. La Roa Tranfr funcion and h Laplac ranformaion. INTRODUTION. THE LAPLAE TRANSFORMATION L 3. TRANSFER FUNTIONS 4. ELETRIAL SYSTEMS Analyi of h hr baic paiv lmn R, and

More information

Decline Curves. Exponential decline (constant fractional decline) Harmonic decline, and Hyperbolic decline.

Decline Curves. Exponential decline (constant fractional decline) Harmonic decline, and Hyperbolic decline. Dlin Curvs Dlin Curvs ha lo flow ra vs. im ar h mos ommon ools for forasing roduion and monioring wll rforman in h fild. Ths urvs uikly show by grahi mans whih wlls or filds ar roduing as xd or undr roduing.

More information

Microscopic Flow Characteristics Time Headway - Distribution

Microscopic Flow Characteristics Time Headway - Distribution CE57: Traffic Flow Thory Spring 20 Wk 2 Modling Hadway Disribuion Microscopic Flow Characrisics Tim Hadway - Disribuion Tim Hadway Dfiniion Tim Hadway vrsus Gap Ahmd Abdl-Rahim Civil Enginring Dparmn,

More information

SOLUTIONS. 1. Consider two continuous random variables X and Y with joint p.d.f. f ( x, y ) = = = 15. Stepanov Dalpiaz

SOLUTIONS. 1. Consider two continuous random variables X and Y with joint p.d.f. f ( x, y ) = = = 15. Stepanov Dalpiaz STAT UIUC Pracic Problms #7 SOLUTIONS Spanov Dalpiaz Th following ar a numbr of pracic problms ha ma b hlpful for compling h homwor, and will lil b vr usful for suding for ams.. Considr wo coninuous random

More information

3.4 Repeated Roots; Reduction of Order

3.4 Repeated Roots; Reduction of Order 3.4 Rpd Roos; Rducion of Ordr Rcll our nd ordr linr homognous ODE b c 0 whr, b nd c r consns. Assuming n xponnil soluion lds o chrcrisic quion: r r br c 0 Qudric formul or fcoring ilds wo soluions, r &

More information

Institute of Actuaries of India

Institute of Actuaries of India Insiu of Acuaris of India ubjc CT3 Probabiliy and Mahmaical aisics Novmbr Examinaions INDICATIVE OLUTION Pag of IAI CT3 Novmbr ol. a sampl man = 35 sampl sandard dviaion = 36.6 b for = uppr bound = 35+*36.6

More information

CHAPTER. Linear Systems of Differential Equations. 6.1 Theory of Linear DE Systems. ! Nullcline Sketching. Equilibrium (unstable) at (0, 0)

CHAPTER. Linear Systems of Differential Equations. 6.1 Theory of Linear DE Systems. ! Nullcline Sketching. Equilibrium (unstable) at (0, 0) CHATER 6 inar Sysms of Diffrnial Equaions 6 Thory of inar DE Sysms! ullclin Skching = y = y y υ -nullclin Equilibrium (unsabl) a (, ) h nullclin y = υ nullclin = h-nullclin (S figur) = + y y = y Equilibrium

More information

Voltage v(z) ~ E(z)D. We can actually get to this wave behavior by using circuit theory, w/o going into details of the EM fields!

Voltage v(z) ~ E(z)D. We can actually get to this wave behavior by using circuit theory, w/o going into details of the EM fields! Considr a pair of wirs idal wirs ngh >, say, infinily long olag along a cabl can vary! D olag v( E(D W can acually g o his wav bhavior by using circui hory, w/o going ino dails of h EM filds! Thr

More information

Instructors Solution for Assignment 3 Chapter 3: Time Domain Analysis of LTIC Systems

Instructors Solution for Assignment 3 Chapter 3: Time Domain Analysis of LTIC Systems Inrucor Soluion for Aignmn Chapr : Tim Domain Anali of LTIC Sm Problm i a 8 x x wih x u,, an Zro-inpu rpon of h m: Th characriic quaion of h LTIC m i i 8, which ha roo a ± j Th zro-inpu rpon i givn b zi

More information

fiziks Institute for NET/JRF, GATE, IIT JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES MATEMATICAL PHYSICS SOLUTIONS are

fiziks Institute for NET/JRF, GATE, IIT JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES MATEMATICAL PHYSICS SOLUTIONS are MTEMTICL PHYSICS SOLUTIONS GTE- Q. Considr an ani-symmric nsor P ij wih indics i and j running from o 5. Th numbr of indpndn componns of h nsor is 9 6 ns: Soluion: Th numbr of indpndn componns of h nsor

More information

CHAPTER CHAPTER14. Expectations: The Basic Tools. Prepared by: Fernando Quijano and Yvonn Quijano

CHAPTER CHAPTER14. Expectations: The Basic Tools. Prepared by: Fernando Quijano and Yvonn Quijano Expcaions: Th Basic Prpard by: Frnando Quijano and Yvonn Quijano CHAPTER CHAPTER14 2006 Prnic Hall Businss Publishing Macroconomics, 4/ Olivir Blanchard 14-1 Today s Lcur Chapr 14:Expcaions: Th Basic Th

More information

Differentiation of Exponential Functions

Differentiation of Exponential Functions Calculus Modul C Diffrntiation of Eponntial Functions Copyright This publication Th Northrn Albrta Institut of Tchnology 007. All Rights Rsrvd. LAST REVISED March, 009 Introduction to Diffrntiation of

More information

Double Slits in Space and Time

Double Slits in Space and Time Doubl Slis in Sac an Tim Gorg Jons As has bn ror rcnly in h mia, a am l by Grhar Paulus has monsra an inrsing chniqu for ionizing argon aoms by using ulra-shor lasr ulss. Each lasr uls is ffcivly on an

More information

Chapter 2 The Derivative Business Calculus 99

Chapter 2 The Derivative Business Calculus 99 Chapr Th Drivaiv Businss Calculus 99 Scion 5: Drivaivs of Formulas In his scion, w ll g h rivaiv ruls ha will l us fin formulas for rivaivs whn our funcion coms o us as a formula. This is a vry algbraic

More information

Solution: APPM 1360 Final (150 pts) Spring (60 pts total) The following parts are not related, justify your answers:

Solution: APPM 1360 Final (150 pts) Spring (60 pts total) The following parts are not related, justify your answers: APPM 6 Final 5 pts) Spring 4. 6 pts total) Th following parts ar not rlatd, justify your answrs: a) Considr th curv rprsntd by th paramtric quations, t and y t + for t. i) 6 pts) Writ down th corrsponding

More information

Lecture 4: Laplace Transforms

Lecture 4: Laplace Transforms Lur 4: Lapla Transforms Lapla and rlad ransformaions an b usd o solv diffrnial quaion and o rdu priodi nois in signals and imags. Basially, hy onvr h drivaiv opraions ino mulipliaion, diffrnial quaions

More information

Mor Tutorial at www.dumblittldoctor.com Work th problms without a calculator, but us a calculator to chck rsults. And try diffrntiating your answrs in part III as a usful chck. I. Applications of Intgration

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com C3 Eponnials and logarihms - Eponnial quaions. Rabbis wr inroducd ono an island. Th numbr of rabbis, P, yars afr hy wr inroducd is modlld by h quaion P = 3 0, 0 (a) Wri down h numbr of rabbis ha wr inroducd

More information

Problem Set 7-7. dv V ln V = kt + C. 20. Assume that df/dt still equals = F RF. df dr = =

Problem Set 7-7. dv V ln V = kt + C. 20. Assume that df/dt still equals = F RF. df dr = = 20. Assume ha df/d sill equals = F + 0.02RF. df dr df/ d F+ 0. 02RF = = 2 dr/ d R 0. 04RF 0. 01R 10 df 11. 2 R= 70 and F = 1 = = 0. 362K dr 31 21. 0 F (70, 30) (70, 1) R 100 Noe ha he slope a (70, 1) is

More information

REPETITION before the exam PART 2, Transform Methods. Laplace transforms: τ dτ. L1. Derive the formulas : L2. Find the Laplace transform F(s) if.

REPETITION before the exam PART 2, Transform Methods. Laplace transforms: τ dτ. L1. Derive the formulas : L2. Find the Laplace transform F(s) if. Tranform Mhod and Calculu of Svral Variabl H7, p Lcurr: Armin Halilovic KTH, Campu Haning E-mail: armin@dkh, wwwdkh/armin REPETITION bfor h am PART, Tranform Mhod Laplac ranform: L Driv h formula : a L[

More information

1973 AP Calculus AB: Section I

1973 AP Calculus AB: Section I 97 AP Calculus AB: Sction I 9 Minuts No Calculator Not: In this amination, ln dnots th natural logarithm of (that is, logarithm to th bas ).. ( ) d= + C 6 + C + C + C + C. If f ( ) = + + + and ( ), g=

More information

Things I Should Know Before I Get to Calculus Class

Things I Should Know Before I Get to Calculus Class Things I Should Know Bfor I Gt to Calculus Class Quadratic Formula = b± b 4ac a sin + cos = + tan = sc + cot = csc sin( ± y ) = sin cos y ± cos sin y cos( + y ) = cos cos y sin sin y cos( y ) = cos cos

More information

1 st order ODE Initial Condition

1 st order ODE Initial Condition Mah-33 Chapers 1-1 s Order ODE Sepember 1, 17 1 1 s order ODE Iniial Condiion f, sandard form LINEAR NON-LINEAR,, p g differenial form M x dx N x d differenial form is equivalen o a pair of differenial

More information

Discussion 06 Solutions

Discussion 06 Solutions STAT Discussion Soluions Spring 8. Th wigh of fish in La Paradis follows a normal disribuion wih man of 8. lbs and sandard dviaion of. lbs. a) Wha proporion of fish ar bwn 9 lbs and lbs? æ 9-8. - 8. P

More information

u x v x dx u x v x v x u x dx d u x v x u x v x dx u x v x dx Integration by Parts Formula

u x v x dx u x v x v x u x dx d u x v x u x v x dx u x v x dx Integration by Parts Formula 7. Intgration by Parts Each drivativ formula givs ris to a corrsponding intgral formula, as w v sn many tims. Th drivativ product rul yilds a vry usful intgration tchniqu calld intgration by parts. Starting

More information

Math 34A. Final Review

Math 34A. Final Review Math A Final Rviw 1) Us th graph of y10 to find approimat valus: a) 50 0. b) y (0.65) solution for part a) first writ an quation: 50 0. now tak th logarithm of both sids: log() log(50 0. ) pand th right

More information

Southern Taiwan University

Southern Taiwan University Chaptr Ordinar Diffrntial Equations of th First Ordr and First Dgr Gnral form:., d +, d 0.a. f,.b I. Sparabl Diffrntial quations Form: d + d 0 C d d E 9 + 4 0 Solution: 9d + 4d 0 9 + 4 C E + d Solution:

More information

Partial Derivatives: Suppose that z = f(x, y) is a function of two variables.

Partial Derivatives: Suppose that z = f(x, y) is a function of two variables. Chaptr Functions o Two Variabls Applid Calculus 61 Sction : Calculus o Functions o Two Variabls Now that ou hav som amiliarit with unctions o two variabls it s tim to start appling calculus to hlp us solv

More information

Final Exam : Solutions

Final Exam : Solutions Comp : Algorihm and Daa Srucur Final Exam : Soluion. Rcuriv Algorihm. (a) To bgin ind h mdian o {x, x,... x n }. Sinc vry numbr xcp on in h inrval [0, n] appar xacly onc in h li, w hav ha h mdian mu b

More information

MAXIMA-MINIMA EXERCISE - 01 CHECK YOUR GRASP

MAXIMA-MINIMA EXERCISE - 01 CHECK YOUR GRASP EXERCISE - MAXIMA-MINIMA CHECK YOUR GRASP. f() 5 () 75 f'() 5. () 75 75.() 7. 5 + 5. () 7 {} 5 () 7 ( ) 5. f() 9a + a +, a > f'() 6 8a + a 6( a + a ) 6( a) ( a) p a, q a a a + + a a a (rjctd) or a a 6.

More information

Lecture 1: Growth and decay of current in RL circuit. Growth of current in LR Circuit. D.K.Pandey

Lecture 1: Growth and decay of current in RL circuit. Growth of current in LR Circuit. D.K.Pandey cur : Growh and dcay of currn in circui Growh of currn in Circui us considr an inducor of slf inducanc is conncd o a DC sourc of.m.f. E hrough a rsisr of rsisanc and a ky K in sris. Whn h ky K is swichd

More information

Part I: Short Answer [50 points] For each of the following, give a short answer (2-3 sentences, or a formula). [5 points each]

Part I: Short Answer [50 points] For each of the following, give a short answer (2-3 sentences, or a formula). [5 points each] Soluions o Midrm Exam Nam: Paricl Physics Fall 0 Ocobr 6 0 Par I: Shor Answr [50 poins] For ach of h following giv a shor answr (- snncs or a formula) [5 poins ach] Explain qualiaivly (a) how w acclra

More information

Midterm exam 2, April 7, 2009 (solutions)

Midterm exam 2, April 7, 2009 (solutions) Univrsiy of Pnnsylvania Dparmn of Mahmaics Mah 26 Honors Calculus II Spring Smsr 29 Prof Grassi, TA Ashr Aul Midrm xam 2, April 7, 29 (soluions) 1 Wri a basis for h spac of pairs (u, v) of smooh funcions

More information

ANSWERS TO EVEN NUMBERED EXERCISES IN CHAPTER 11

ANSWERS TO EVEN NUMBERED EXERCISES IN CHAPTER 11 8 Jun ANSWERS TO EVEN NUMBERED EXERCISES IN CHAPTER SECTION : INCENTIVE COMPATABILITY Exrcis - Educaional Signaling A yp consulan has a marginal produc of m( ) = whr Θ = {,, 3} Typs ar uniformly disribud

More information

The transition:transversion rate ratio vs. the T-ratio.

The transition:transversion rate ratio vs. the T-ratio. PhyloMah Lcur 8 by Dan Vandrpool March, 00 opics of Discussion ransiion:ransvrsion ra raio Kappa vs. ransiion:ransvrsion raio raio alculaing h xpcd numbr of subsiuions using marix algbra Why h nral im

More information

MEM 355 Performance Enhancement of Dynamical Systems A First Control Problem - Cruise Control

MEM 355 Performance Enhancement of Dynamical Systems A First Control Problem - Cruise Control MEM 355 Prformanc Enhancmn of Dynamical Sysms A Firs Conrol Problm - Cruis Conrol Harry G. Kwany Darmn of Mchanical Enginring & Mchanics Drxl Univrsiy Cruis Conrol ( ) mv = F mg sinθ cv v +.2v= u 9.8θ

More information

CSE 245: Computer Aided Circuit Simulation and Verification

CSE 245: Computer Aided Circuit Simulation and Verification CSE 45: Compur Aidd Circui Simulaion and Vrificaion Fall 4, Sp 8 Lcur : Dynamic Linar Sysm Oulin Tim Domain Analysis Sa Equaions RLC Nwork Analysis by Taylor Expansion Impuls Rspons in im domain Frquncy

More information

Control System Engineering (EE301T) Assignment: 2

Control System Engineering (EE301T) Assignment: 2 Conrol Sysm Enginring (EE0T) Assignmn: PART-A (Tim Domain Analysis: Transin Rspons Analysis). Oain h rspons of a uniy fdack sysm whos opn-loop ransfr funcion is (s) s ( s 4) for a uni sp inpu and also

More information

Single Correct Type. cos z + k, then the value of k equals. dx = 2 dz. (a) 1 (b) 0 (c)1 (d) 2 (code-v2t3paq10) l (c) ( l ) x.

Single Correct Type. cos z + k, then the value of k equals. dx = 2 dz. (a) 1 (b) 0 (c)1 (d) 2 (code-v2t3paq10) l (c) ( l ) x. IIT JEE/AIEEE MATHS y SUHAAG SIR Bhopl, Ph. (755)3 www.kolsss.om Qusion. & Soluion. In. Cl. Pg: of 6 TOPIC = INTEGRAL CALCULUS Singl Corr Typ 3 3 3 Qu.. L f () = sin + sin + + sin + hn h primiiv of f()

More information

Calculus II Solutions review final problems

Calculus II Solutions review final problems Calculus II Solutions rviw final problms MTH 5 Dcmbr 9, 007. B abl to utiliz all tchniqus of intgration to solv both dfinit and indfinit intgrals. Hr ar som intgrals for practic. Good luck stuing!!! (a)

More information

First derivative analysis

First derivative analysis Robrto s Nots on Dirntial Calculus Chaptr 8: Graphical analysis Sction First drivativ analysis What you nd to know alrady: How to us drivativs to idntiy th critical valus o a unction and its trm points

More information

4.1 The Uniform Distribution Def n: A c.r.v. X has a continuous uniform distribution on [a, b] when its pdf is = 1 a x b

4.1 The Uniform Distribution Def n: A c.r.v. X has a continuous uniform distribution on [a, b] when its pdf is = 1 a x b 4. Th Uniform Disribuion Df n: A c.r.v. has a coninuous uniform disribuion on [a, b] whn is pdf is f x a x b b a Also, b + a b a µ E and V Ex4. Suppos, h lvl of unblivabiliy a any poin in a Transformrs

More information

MATH 31B: MIDTERM 2 REVIEW. x 2 e x2 2x dx = 1. ue u du 2. x 2 e x2 e x2] + C 2. dx = x ln(x) 2 2. ln x dx = x ln x x + C. 2, or dx = 2u du.

MATH 31B: MIDTERM 2 REVIEW. x 2 e x2 2x dx = 1. ue u du 2. x 2 e x2 e x2] + C 2. dx = x ln(x) 2 2. ln x dx = x ln x x + C. 2, or dx = 2u du. MATH 3B: MIDTERM REVIEW JOE HUGHES. Inegraion by Pars. Evaluae 3 e. Soluion: Firs make he subsiuion u =. Then =, hence 3 e = e = ue u Now inegrae by pars o ge ue u = ue u e u + C and subsiue he definiion

More information

The Natural Logarithmic Function: Differentiation. The Natural Logarithmic Function

The Natural Logarithmic Function: Differentiation. The Natural Logarithmic Function 60_00.q //0 :0 PM Pag CHAPTER Logarihmic, Eponnial, an Ohr Transcnnal Funcions Scion. Th Naural Logarihmic Funcion: Diffrniaion Dvlop an us propris of h naural logarihmic funcion. Unrsan h finiion of h

More information

WEEK-3 Recitation PHYS 131. of the projectile s velocity remains constant throughout the motion, since the acceleration a x

WEEK-3 Recitation PHYS 131. of the projectile s velocity remains constant throughout the motion, since the acceleration a x WEEK-3 Reciaion PHYS 131 Ch. 3: FOC 1, 3, 4, 6, 14. Problems 9, 37, 41 & 71 and Ch. 4: FOC 1, 3, 5, 8. Problems 3, 5 & 16. Feb 8, 018 Ch. 3: FOC 1, 3, 4, 6, 14. 1. (a) The horizonal componen of he projecile

More information

dy 1. If fx ( ) is continuous at x = 3, then 13. If y x ) for x 0, then f (g(x)) = g (f (x)) when x = a. ½ b. ½ c. 1 b. 4x a. 3 b. 3 c.

dy 1. If fx ( ) is continuous at x = 3, then 13. If y x ) for x 0, then f (g(x)) = g (f (x)) when x = a. ½ b. ½ c. 1 b. 4x a. 3 b. 3 c. AP CALCULUS BC SUMMER ASSIGNMENT DO NOT SHOW YOUR WORK ON THIS! Complt ts problms during t last two wks of August. SHOW ALL WORK. Know ow to do ALL of ts problms, so do tm wll. Itms markd wit a * dnot

More information

y = 2xe x + x 2 e x at (0, 3). solution: Since y is implicitly related to x we have to use implicit differentiation: 3 6y = 0 y = 1 2 x ln(b) ln(b)

y = 2xe x + x 2 e x at (0, 3). solution: Since y is implicitly related to x we have to use implicit differentiation: 3 6y = 0 y = 1 2 x ln(b) ln(b) 4. y = y = + 5. Find th quation of th tangnt lin for th function y = ( + ) 3 whn = 0. solution: First not that whn = 0, y = (1 + 1) 3 = 8, so th lin gos through (0, 8) and thrfor its y-intrcpt is 8. y

More information

Review Lecture 5. The source-free R-C/R-L circuit Step response of an RC/RL circuit. The time constant = RC The final capacitor voltage v( )

Review Lecture 5. The source-free R-C/R-L circuit Step response of an RC/RL circuit. The time constant = RC The final capacitor voltage v( ) Rviw Lcur 5 Firs-ordr circui Th sourc-fr R-C/R-L circui Sp rspons of an RC/RL circui v( ) v( ) [ v( 0) v( )] 0 Th i consan = RC Th final capacior volag v() Th iniial capacior volag v( 0 ) Volag/currn-division

More information

Section 4.3 Logarithmic Functions

Section 4.3 Logarithmic Functions 48 Chapr 4 Sion 4.3 Logarihmi Funions populaion of 50 flis is pd o doul vry wk, lading o a funion of h form f ( ) 50(), whr rprsns h numr of wks ha hav passd. Whn will his populaion rah 500? Trying o solv

More information

MATHEMATICS (B) 2 log (D) ( 1) = where z =

MATHEMATICS (B) 2 log (D) ( 1) = where z = MATHEMATICS SECTION- I STRAIGHT OBJECTIVE TYPE This sction contains 9 multipl choic qustions numbrd to 9. Each qustion has choic (A), (B), (C) and (D), out of which ONLY-ONE is corrct. Lt I d + +, J +

More information

Math 116 Second Midterm March 21, 2016

Math 116 Second Midterm March 21, 2016 Mah 6 Second Miderm March, 06 UMID: EXAM SOLUTIONS Iniials: Insrucor: Secion:. Do no open his exam unil you are old o do so.. Do no wrie your name anywhere on his exam. 3. This exam has pages including

More information

Week #13 - Integration by Parts & Numerical Integration Section 7.2

Week #13 - Integration by Parts & Numerical Integration Section 7.2 Week #3 - Inegraion by Pars & Numerical Inegraion Secion 7. From Calculus, Single Variable by Hughes-Halle, Gleason, McCallum e. al. Copyrigh 5 by John Wiley & Sons, Inc. This maerial is used by permission

More information

whereby we can express the phase by any one of the formulas cos ( 3 whereby we can express the phase by any one of the formulas

whereby we can express the phase by any one of the formulas cos ( 3 whereby we can express the phase by any one of the formulas Third In-Class Exam Soluions Mah 6, Profssor David Lvrmor Tusday, 5 April 07 [0] Th vrical displacmn of an unforcd mass on a spring is givn by h 5 3 cos 3 sin a [] Is his sysm undampd, undr dampd, criically

More information

On General Solutions of First-Order Nonlinear Matrix and Scalar Ordinary Differential Equations

On General Solutions of First-Order Nonlinear Matrix and Scalar Ordinary Differential Equations saartvlos mcnirbata rovnuli akadmiis moamb 3 #2 29 BULLTN OF TH ORN NTONL DMY OF SNS vol 3 no 2 29 Mahmaics On nral Soluions of Firs-Ordr Nonlinar Mari and Scalar Ordinary Diffrnial uaions uram L Kharaishvili

More information

t + t sin t t cos t sin t. t cos t sin t dt t 2 = exp 2 log t log(t cos t sin t) = Multiplying by this factor and then integrating, we conclude that

t + t sin t t cos t sin t. t cos t sin t dt t 2 = exp 2 log t log(t cos t sin t) = Multiplying by this factor and then integrating, we conclude that ODEs, Homework #4 Soluions. Check ha y ( = is a soluion of he second-order ODE ( cos sin y + y sin y sin = 0 and hen use his fac o find all soluions of he ODE. When y =, we have y = and also y = 0, so

More information

( ) 2. Review Exercise 2. cos θ 2 3 = = 2 tan. cos. 2 x = = x a. Since π π, = 2. sin = = 2+ = = cotx. 2 sin θ 2+

( ) 2. Review Exercise 2. cos θ 2 3 = = 2 tan. cos. 2 x = = x a. Since π π, = 2. sin = = 2+ = = cotx. 2 sin θ 2+ Review Eercise sin 5 cos sin an cos 5 5 an 5 9 co 0 a sinθ 6 + 4 6 + sin θ 4 6+ + 6 + 4 cos θ sin θ + 4 4 sin θ + an θ cos θ ( ) + + + + Since π π, < θ < anθ should be negaive. anθ ( + ) Pearson Educaion

More information

Review - Quiz # 1. 1 g(y) dy = f(x) dx. y x. = u, so that y = xu and dy. dx (Sometimes you may want to use the substitution x y

Review - Quiz # 1. 1 g(y) dy = f(x) dx. y x. = u, so that y = xu and dy. dx (Sometimes you may want to use the substitution x y Review - Quiz # 1 (1) Solving Special Tpes of Firs Order Equaions I. Separable Equaions (SE). d = f() g() Mehod of Soluion : 1 g() d = f() (The soluions ma be given implicil b he above formula. Remember,

More information

Homework #3. 1 x. dx. It therefore follows that a sum of the

Homework #3. 1 x. dx. It therefore follows that a sum of the Danil Cannon CS 62 / Luan March 5, 2009 Homwork # 1. Th natural logarithm is dfind by ln n = n 1 dx. It thrfor follows that a sum of th 1 x sam addnd ovr th sam intrval should b both asymptotically uppr-

More information

( A) ( B) ( C) ( D) ( E)

( A) ( B) ( C) ( D) ( E) d Smsr Fial Exam Worksh x 5x.( NC)If f ( ) d + 7, h 4 f ( ) d is 9x + x 5 6 ( B) ( C) 0 7 ( E) divrg +. (NC) Th ifii sris ak has h parial sum S ( ) for. k Wha is h sum of h sris a? ( B) 0 ( C) ( E) divrgs

More information

EE 434 Lecture 22. Bipolar Device Models

EE 434 Lecture 22. Bipolar Device Models EE 434 Lcur 22 Bipolar Dvic Modls Quiz 14 Th collcor currn of a BJT was masurd o b 20mA and h bas currn masurd o b 0.1mA. Wha is h fficincy of injcion of lcrons coming from h mir o h collcor? 1 And h numbr

More information

A Condition for Stability in an SIR Age Structured Disease Model with Decreasing Survival Rate

A Condition for Stability in an SIR Age Structured Disease Model with Decreasing Survival Rate A Condiion for abiliy in an I Ag rucurd Disas Modl wih Dcrasing urvival a A.K. upriana, Edy owono Dparmn of Mahmaics, Univrsias Padjadjaran, km Bandung-umng 45363, Indonsia fax: 6--7794696, mail: asupria@yahoo.com.au;

More information

CPSC 211 Data Structures & Implementations (c) Texas A&M University [ 259] B-Trees

CPSC 211 Data Structures & Implementations (c) Texas A&M University [ 259] B-Trees CPSC 211 Daa Srucurs & Implmnaions (c) Txas A&M Univrsiy [ 259] B-Trs Th AVL r and rd-black r allowd som variaion in h lnghs of h diffrn roo-o-laf pahs. An alrnaiv ida is o mak sur ha all roo-o-laf pahs

More information