Critical behavior of the QED 3 -Gross-Neveu-Yukawa model at four loops

Size: px
Start display at page:

Download "Critical behavior of the QED 3 -Gross-Neveu-Yukawa model at four loops"

Transcription

1 Critical behavior of the QED 3 -Gross-Neveu-Yukawa model at four loops Nikolai Zerf Institut für Physik Humboldt Universität zu Berlin DESY Zeuthen 2019 [arxiv: ] Nikolai Zerf (IP HUB) CB 4L DESYz / 28

2 Overview 1 The chiral Ising QED 3 -Gross-Neveu-Yukawa Model 2 Observables 3 Renormalization 4 Fixed Point Analysis 5 Results 6 Application Nikolai Zerf (IP HUB) CB 4L DESYz / 28

3 Motivation Obtain reliable & precise predictions In HEP the SM (QFT with L SM ) provides collider observables New physics L real = L SM +L X? New physics includes realization of SUSY? (MSSM, nmssm,...) Origin of L SM? Origin of QFTs? How to proceed? Build and run LHC to find new physics Calculate observables at higher order in PT Investigate on various QFTs (maybe no HEP relevancy) Nikolai Zerf (IP HUB) CB 4L DESYz / 28

4 Work in collaboration with... University of Alberta (Edmonton) Joseph Maciejko Rufus Boyack DESY Zeuthen Peter Marquard Nikolai Zerf (IP HUB) CB 4L DESYz / 28

5 The chiral Ising QED 3 -Gross-Neveu-Yukawa Model chiral Ising Gross-Neveu-model: L GN = Ψ / Ψ+ 1 2 g2 ( Ψ Ψ) 2. Ψ: Fermion with N flavours (closed fermion loops N) 4-Fermion interaction of Ising type (real singlet) Lorenzian Symmetry Renormalizable in d = 2 Nikolai Zerf (IP HUB) CB 4L DESYz / 28

6 The chiral Ising QED 3 -Gross-Neveu-Yukawa Model chiral Ising Gross-Neveu-model: L GN = Ψ / Ψ+ 1 2 g2 ( Ψ Ψ) 2. Ψ: Fermion with N flavours (closed fermion loops N) 4-Fermion interaction of Ising type (real singlet) Lorenzian Symmetry Renormalizable in d = 2 chiral Ising Gross-Neveu-Yukawa-model: L GNY = Ψ / Ψ+gφ Ψ Ψ ( µφ) m2 φ ! λ2 φ 4. Lorenzian Symmetry additional real scalar field φ UV complete in d = 4 (renormalizable) Nikolai Zerf (IP HUB) CB 4L DESYz / 28

7 The chiral Ising QED 3 -Gross-Neveu-Yukawa Model QED 3 : L QED = Ψ γ µ ( µ iea µ )Ψ+ 1 4 F µνf µν + 1 2ξ ( µa µ ) 2. Nikolai Zerf (IP HUB) CB 4L DESYz / 28

8 The chiral Ising QED 3 -Gross-Neveu-Yukawa Model The chiral Ising QED 3 -Gross-Neveu-Yukawa model: L QED3 GNY = Ψ /DΨ+gφ Ψ Ψ ( µφ) m2 φ ! λ2 φ F µνf µν + 1 2ξ ( µa µ ) 2. Ψ: four-component fermion with N flavours UV complete in d = 4 (renormalizable) discrete, chiral Z2 symmetry: Ψ γ 5 Ψ, Ψ = Ψ γ 0 Ψγ 5, φ φ. Nikolai Zerf (IP HUB) CB 4L DESYz / 28

9 Where to find such a QFT? In a condensed matter systems like in layers of graphene (d=2+1) [S.-S.Lee 07] Appearance as LowEnergyTheory in a mean field approximation Lorenzian Symmetry emergent at IR fixed point Band structure yields a linear fermionic dispersion relation at the Dirac-point: Nikolai Zerf (IP HUB) CB 4L DESYz / 28

10 The relevant physical Observables Critical exponents and Anomalous Dimenions at the non-trivial QuantumCricticalPoint in d = 2 + 1: where e, g,λ 0 holds η φ γ φ (e 2, g2,λ2 ), η φ 2 γ φ 2(e 2, g2,λ2 ), η A γ A (e 2, g2,λ2 ), ω... ν In d = 2+1: Strong dynamics Nikolai Zerf (IP HUB) CB 4L DESYz / 28

11 Methods FunctionalRenormalizationGroup MonteCarlo conformal Boot Strap Large N approximation Weak coupling expansion (PT) around d = 4 ǫ Nikolai Zerf (IP HUB) CB 4L DESYz / 28

12 Methods FunctionalRenormalizationGroup MonteCarlo conformal Boot Strap Large N approximation Weak coupling expansion (PT) around d = 4 ǫ Nikolai Zerf (IP HUB) CB 4L DESYz / 28

13 Example: chiral Ising Gross-Neveu UC η φ for N = 8 [Ihrig,Mihaila,Scherer 18]: Nikolai Zerf (IP HUB) CB 4L DESYz / 28

14 Renormalization of χ I -QED 3 -GNY L QED3 GNY = Ψ /DΨ+gφ Ψ Ψ ( µφ) m2 φ ! λ2 φ F µνf µν + 1 2ξ ( µa µ ) 2. Nikolai Zerf (IP HUB) CB 4L DESYz / 28

15 Renormalization of χ I -QED 3 -GNY L 0 QED 3 GNY = Ψ 0 /D 0 Ψ 0 + g 0 φ 0 Ψ0 Ψ ( µφ 0 ) (m2 ) 0 (φ 0 ) ! (λ0 ) 2 (φ 0 ) F0 µν(f 0 ) µν + 1 2ξ 0( µa 0 µ) 2. Nikolai Zerf (IP HUB) CB 4L DESYz / 28

16 Renormalization of χ I -QED 3 -GNY L 0 QED 3 GNY = Ψ 0 /D 0 Ψ 0 + g 0 φ 0 Ψ0 Ψ ( µφ 0 ) (m2 ) 0 (φ 0 ) ! (λ0 ) 2 (φ 0 ) F0 µν(f 0 ) µν + 1 2ξ 0( µa 0 µ) 2. Field and coupling redefinitions (using MS and RS= µ): φ 0 = Z φ φ, Ψ 0 = Z Ψ Ψ, A 0 = Z A A, λ 0 =µ ǫ/2 Z λ λ, g 0 =µ ǫ/2 Z g g, e 0 =µ ǫ/2 Z e e, (m 2 ) 0 =Z m 2m 2 µ 2, ξ 0 =Z ξ ξ. Nikolai Zerf (IP HUB) CB 4L DESYz / 28

17 Renormalization of χ I -QED 3 -GNY L 0 QED 3 GNY = Ψ 0 /D 0 Ψ 0 + g 0 φ 0 Ψ0 Ψ ( µφ 0 ) (m2 ) 0 (φ 0 ) ! (λ0 ) 2 (φ 0 ) F0 µν(f 0 ) µν + 1 2ξ 0( µa 0 µ) 2. Field and coupling redefinitions (using MS and RS= µ): φ 0 = Z φ φ, Ψ 0 = Z Ψ Ψ, A 0 = Z A A, λ 0 =µ ǫ/2 Z λ λ, g 0 =µ ǫ/2 Z g g, e 0 =µ ǫ/2 Z e e, (m 2 ) 0 =Z m 2m 2 µ 2, ξ 0 =Z ξ ξ. Use short hands: Z φ 4 =Z 2 λ Z2 φ, Z ΨΨφ =Z gz Ψ Zφ, Z ΨΨA =Z e Z Ψ ZA, Z φ 2 =Z m 2Z φ. Nikolai Zerf (IP HUB) CB 4L DESYz / 28

18 Renormalization of χ I -QED 3 -GNY L 0 QED 3 GNY =Z Ψ Ψ / Ψ+iµ ǫ/2 Z ΨΨA e Ψ /AΨ+µ ǫ/2 Z ΨΨφ gφ Ψ Ψ + Z φ 1 2 ( µφ) 2 + Z φ m2 µ 2 φ 2 +µ ǫ Z φ 4 1 4! λ2 φ 4 + Z A 1 4 F µνf µν + 1 2ξ ( µa µ ) 2. Field and coupling redefinitions (using MS and RS= µ): φ 0 = Z φ φ, Ψ 0 = Z Ψ Ψ, A 0 = Z A A, λ 0 =µ ǫ/2 Z λ λ, g 0 =µ ǫ/2 Z g g, e 0 =µ ǫ/2 Z e e, (m 2 ) 0 =Z m 2m 2 µ 2, ξ 0 =Z ξ ξ. Use short hands: Z φ 4 =Z 2 λ Z2 φ, Z ΨΨφ =Z gz Ψ Zφ, Z ΨΨA =Z e Z Ψ ZA, Z φ 2 =Z m 2Z φ. Nikolai Zerf (IP HUB) CB 4L DESYz / 28

19 How to obtain Zs? Using DREG get poles in small ǫ = 4 d of 1-PI n-point functions at L = 1, 2, 3, 4 loops for any kinematics Z φ, Z φ 2 Z Ψ Z A Z φ 4 Z ΨΨφ Z ΨΨA Nikolai Zerf (IP HUB) CB 4L DESYz / 28

20 How to obtain Zs? Using DREG get poles in small ǫ = 4 d of 1-PI n-point functions at L = 1, 2, 3, 4 loops for any kinematics Z φ, Z φ 2 Z Ψ Z A Z φ 4 Z ΨΨφ Z ΨΨA Further we obtain Z mψ,1 and Z mψ,a flavour singlet & adjoint mass term: L 0 m 1 =µz Ψ1Ψ m 1 Ψ 1 Ψ, L 0 mta =µz ΨTA Ψ m T A Ψ TA Ψ. Nikolai Zerf (IP HUB) CB 4L DESYz / 28

21 How to obtain Zs? Number of Feynman diagrams: Loops Nikolai Zerf (IP HUB) CB 4L DESYz / 28

22 How to obtain Zs? (technics) Chosing massiv tadpole kinematics Use single IR regulator mass M in every denominator Expand in small external momenta pi /M 1 All integrals are 1-scale tadpole integrals Use infrared rearrangement [Chetyrkin,Misiak,Munz] to consistently subtract artificial terms M 2 Nikolai Zerf (IP HUB) CB 4L DESYz / 28

23 How to obtain Zs? (technics) Chosing massiv tadpole kinematics Use single IR regulator mass M in every denominator Expand in small external momenta pi /M 1 All integrals are 1-scale tadpole integrals Use infrared rearrangement [Chetyrkin,Misiak,Munz] to consistently subtract artificial terms M 2 Fully automatized setup QGRAF [Nogueira] q2e [Seidensticker] exp [Seidensticker] FORM [Vermaseren & Co] CRUSHER [Marquard,Seidel] Nikolai Zerf (IP HUB) CB 4L DESYz / 28

24 19 Fully Massive Master Integrals 2 [Laporta][Czakon 04] Nikolai Zerf (IP HUB) CB 4L DESYz / 28

25 β- & γ- Functions Bare parameters do not depend on RS µ β g 2 = d g2 d lnµ β λ 2 = dλ2 d lnµ β e 2 = de2 d lnµ β g 2 = ǫg 2 +β (1L) g 2 β λ 2 = ǫλ 2 +β (1L) λ β e 2 = ǫe 2 +β (1L) e 2 +β (2L) g 2 +β (2L) λ +β (2L) e 2 γ x = d ln Z x /d lnµ x {A,φ,φ 2,...} γ A = γ (1L) A γ φ = γ (1L) φ γ φ 2 = γ (1L) φ 2 +γ (2L) A +γ (2L) φ +γ (2L) φ 2 +γ (3L) A +γ (3L) φ +γ (3L) φ 2 QED Ward-Identity: β e 2 = ( ǫ+γ A )e 2. +β (3L) g 2 +β (3L) λ +β (3L) e 2 +γ (4L) A, +β (4L) g 2, +β (4L) λ, +β (4L) e 2, +γ (4L) φ, +γ (4L) φ 2. Nikolai Zerf (IP HUB) CB 4L DESYz / 28

26 Showcasing β s - & γ s β (1L) e 2 = 8N 3 e4, β (1L) g 2 = 12e 2 g 2 +2(2N +3)g 4, β (1L) λ 2 = 2Ng 4 +8Ng 2 λ 2 +72λ 4, γ (1L) φ = 4Ng 2, γ (1L) φ 2 = 24λ 2. Nikolai Zerf (IP HUB) CB 4L DESYz / 28

27 Showcasing β s - & γ s β (2L) e = 8Ne 6 4Ne 4 g 2, 2 ( = 24N β (2L) g 2 ) g 6 + ( 40N 3 ) 6 e 4 g 2 +4(5N +12)e 2 g 4 96g 4 λ 2 +96g 2 λ 4, β (2L) λ 2 = 16Ng 6 +28Ng 4 λ 2 288Ng 2 λ λ 6 8Ne 2 g 4 +40Ne 2 g 2 λ 2, γ (2L) φ = 20Ne 2 g 2 10Ng 4 +96λ 4, γ (2L) φ 2 = 8Ng 4 +96Ng 2 λ λ 4. Nikolai Zerf (IP HUB) CB 4L DESYz / 28

28 Showcasing β s - & γ s β (3L) e 2 = 6Ne6 g 2 +2N(7N +6)e 4 g 4 4N 9 (22N +9)e8, β (3L) λ = N (628N ζ3)g8 4 + N 2 (1736N ζ3)g6 λ 2 +12N( 72N ζ 3)g 4 λ Ng 2 λ (145+96ζ 3)λ 8 +N(116N ζ 3)e 4 g 4 2N(32N ζ 3)e 4 g 2 λ 2 +2N( 11+96ζ 3)e 2 g 6 +6N( ζ 3)e 2 g 4 λ N( 17+16ζ [ 3)e 2 g 2 λ 4, β (3L) g = 32N 2 +N(49 432ζ 327 ] 3) ζ3 e 4 g 4 [ ] 560N N(23 24ζ 3) 258 e 6 g 2 27 [ ( ) N 2 +N ζ3 697 ] ζ3 g (5N +7)g 6 λ 2 +24( 30N +91)g 4 λ g 2 λ 6 +[2N( 79+48ζ 3) ζ 3]e 2 g 6 +96e 2 g 4 λ 2. γ (3L) φ = 3N(7+16ζ 3)e 2 g 4 + N (200N ζ3)g6 4 +N( 32N ζ 3)e 4 g Ng 4 λ 2 720Ng 2 λ λ 6. γ (3L) φ = 32N(4N 2 9+3ζ3)g6 +12N(24N ζ 3)g 4 λ Ng 2 λ λ 6 +32N( 7+9ζ 3)e 2 g 4 +72N(17 16ζ 3)e 2 g 2 λ 2. Nikolai Zerf (IP HUB) CB 4L DESYz / 28

29 Showcasing β s - & γ s β (4L) e 2 = 2N 3 [N( ζ3) ζ3]e6 g 4 + 2N 9 (322N ζ3)e8 g 2 240Ne 4 g 4 λ Ne 4 g 2 λ 4 4N 243 [616N2 +36N( ζ3)+5589]e 10 4N 9 [27N2 +N(299 24ζ3)+105+9ζ3]e 4 g 6, β (4L) λ = N [ ] 64N 2 2 ( ζ3) 32N( ζ3 288ζ4 1920ζ5)+3( ζ3 3696ζ ζ5) 24 [ g 10 N ζ5) ] 4N 2 ( ζ3)+N( ζ ζ ζ5) 3( ζ3 984ζ4 g 8 λ 2 +N[2304N 2 ( 1+2ζ3) 8N( ζ3 3888ζ4) ζ ζ ζ5]g 6 λ 4 +64N[6N(263+72ζ3) ζ3 5184ζ ζ5]g 4 λ 6 576N( ζ3 1728ζ4)g 2 λ ( ζ3 864ζ ζ5)λ 10 4N 243 [16N2 ( ζ3) 81N(185+16ζ3 240ζ4) 81( ζ3 +432ζ4 +240ζ5)]e 6 g 4 [ ] 32N N ( ζ3)+8N( ζ3 +96ζ4) ζ3 864ζ4 2880ζ5 e 6 g 2 λ N 6 [8N( ζ3 +336ζ ζ5)+3( ζ ζ ζ5)]e4 g 6 + 2N 9 [2N( ζ3 144ζ ζ5) 9( ζ3 7920ζ ζ5)]e4 g 4 λ 2 12N[4N( ζ3 48ζ4)+3( ζ3 +432ζ4 +960ζ5)]e 4 g 2 λ 4 γ (4L) φ = N 243 [16N2 ( ζ3)+972N( ζ3 +96ζ4)+81( ζ3 1296ζ4 4320ζ5)]e 6 g 2 2N 3 [N2 ( ζ3)+N( ζ3 +108ζ4) ζ3 +90ζ4 +120ζ5]g 8 + N 9 [N( ζ ζ4 5760ζ5) 9( ζ3 1008ζ4 +480ζ5)]e4 g 4 16N(76N ζ3)g 6 λ 2 64N(3N ζ3)g 4 λ Ng 2 λ λ 8 + N 12 [32N(161+96ζ3 72ζ4) ζ3 3888ζ4 1440ζ5]e2 g 6 944Ne 2 g 4 λ N( 67+48ζ3)e 2 g 2 λ 4, N 3 [3N( ζ3 1200ζ4)+4( ζ3 1566ζ ζ5)]e2 g 8 + N 6 [16N( ζ3 2736ζ4) ζ ζ ζ5]e2 g 6 λ 2 8N[9N( ζ3 144ζ4) ζ3+1080ζ ζ5]e 2 g 4 λ N( ζ3)e [ 2 g 2 λ 6., ( ) β (4L) 88N 3 g = 2N ( ζ3 324ζ4)+N 2648ζ3 +552ζ4 1680ζ ζ3 +342ζ ] [ ( ) 32N 1720ζ5 g N (83 144ζ3)+ ( ζ3 162ζ4)+N 288ζ ζ ] [ 16N +1344ζ3 e 8 g 2 3 4N2 + ( ζ3) ( ζ3 7776ζ4) ( ) 35 +N ζ3 +912ζ ζ ] 7464ζ ζ ζ5 e 6 g [96N 2 8N( ζ3) 3( ζ3)]g 8 λ 2 8[24N 2 +4N( ζ3)+135(33+40ζ3)]g 6 λ 4 ( +576(8N ζ3)g 4 λ g 2 λ 8 + [N ) +928ζ3 +64ζ4 640ζ5 9 ( +N ) ζ3 528ζ ζ ] +6024ζ3 432ζ ζ5 e 4 g ( ) [ ( ) 14944N ζ3 e 4 g 4 λ 2 + N 2 ( ζ3 +96ζ4)+N +2056ζ3 756ζ4 1400ζ ] +3386ζ3 918ζ4 1460ζ5 e 2 g 8 +16[N( ζ3) ζ3]e 2 g 6 λ [6N( 67+48ζ3) 815]e 2 g 4 λ 4. γ (4L) φ 2 = N 2 [64N2 ( 11+18ζ3)+8N( ζ3 +108ζ4 +560ζ5) ζ3 2016ζ ζ5]g 8 3N[256N 2 ( 1+2ζ3) 8N( ζ3 240ζ4) ζ ζ4 5760ζ5]g 6 λ 2 96N[16N(11+3ζ3) ζ3 216ζ4]g 4 λ N(313+96ζ3)g 2 λ (187+18ζ3 +36ζ4)λ 8 2N 3 [4N( ζ3 72ζ4 +240ζ5) ζ ζ ζ5]e4 g 4 +4N[4N( ζ3 48ζ4)+3( ζ3 +432ζ4 +960ζ5)]e 4 g 2 λ 2 4N[3N(89+192ζ3 96ζ4) ζ3 720ζ4 200ζ5]e 2 g 6 +8N[N( ζ3 432ζ4) ζ3 504ζ ζ5]e 2 g 4 λ N( 49+48ζ3)e 2 g 2 λ 4. Nikolai Zerf (IP HUB) CB 4L DESYz / 28

30 Determination of e, g,λ IR fixed point is reached for µ : {β e 2,β g 2,β λ 2} T = 0. Solve for zeros in {e, g,λ} loop by loop in dep. of ǫ χ I -QED 3 -GNY fixed point (1-Loop): e 2 = 3 8N ǫ+o(ǫ2 ), g 2 = 2N + 9 4N(2N + 3) ǫ+o(ǫ2 ), λ 2 2N 15+X = 144N(2N + 3) ǫ+o(ǫ2 ), X 4N N N N. Nikolai Zerf (IP HUB) CB 4L DESYz / 28

31 Determination of e, g,λ N = 1: [Janssen,He 17] 1.5 e 2 = 3ǫ/4 1.0 QED 3-GN g 2 /ǫ G WF λ/ǫ Nikolai Zerf (IP HUB) CB 4L DESYz / 28

32 Critical Exponents inverse correlation length exponent ν 1 : RG eigenvalue of (relevant) scalar mass term: ν 1 = d ln(m2 ) d lnµ = 2+η φ 2 η φ. (e 2,g 2,λ2 ) stability exponent ω: ω = min(ev[j]), β e 2 β e 2 β e 2 e 2 g 2 λ 2 β J = g 2 β g 2 β g 2 e 2 g 2 λ 2 β λ 2 β λ 2 β λ 2 e 2 g 2 λ 2 (e 2,g 2,λ 2 ). stable FP/CP: ω > 0. unstable FP/CP: ω < 0. Nikolai Zerf (IP HUB) CB 4L DESYz / 28

33 Quantum Phasetransitions Phenomenology of Quantum Phasetransitions x = (X X c )/X c ξ x ν (1+C x ω +...) correlation length around Quantum Critical Point (QCP) ξ correlation length exponent ν subleading/stability exponent ω Nikolai Zerf (IP HUB) CB 4L DESYz / 28

34 Excursion: FS Fermion Bilinear During the calculation of fermion mass renormalization: Nikolai Zerf (IP HUB) CB 4L DESYz / 28

35 Excursion: FS Fermion Bilinear During the calculation of fermion mass renormalization: Nikolai Zerf (IP HUB) CB 4L DESYz / 28

36 Excursion: FS Fermion Bilinear During the calculation of fermion mass renormalization: Nikolai Zerf (IP HUB) CB 4L DESYz / 28

37 Excursion: FS Fermion Bilinear During the calculation of fermion mass renormalization: L m1 mixes (in d = 4) with: L φ 3 = 1 3! hφ3 Nikolai Zerf (IP HUB) CB 4L DESYz / 28

38 Excursion: FS Fermion Bilinear During the calculation of fermion mass renormalization: L m1 mixes (in d = 4) with: L φ 3 = 1 3! hφ3 flavour singlet fermion mass term L m1 breaks chiral Z 2 Symmetry Coupled system for β h and β m1 Nikolai Zerf (IP HUB) CB 4L DESYz / 28

39 Excursion: FS Fermion Bilinear During the calculation of fermion mass renormalization: L m1 mixes (in d = 4) with: L φ 3 = 1 3! hφ3 flavour singlet fermion mass term L m1 breaks chiral Z 2 Symmetry Coupled system for β h and β m1 Nikolai Zerf (IP HUB) CB 4L DESYz / 28

40 Excursion: FS Fermion Bilinear During the calculation of fermion mass renormalization: L m1 mixes (in d = 4) with: L φ 3 = 1 3! hφ3 flavour singlet fermion mass term L m1 breaks chiral Z 2 Symmetry Coupled system for β h and β m1 Its Eigenvalues at fixed point reproduce corresponding large N results expanded up to O(ǫ 4 ) Nikolai Zerf (IP HUB) CB 4L DESYz / 28

41 Excursion: FS Fermion Bilinear During the calculation of fermion mass renormalization: L m1 mixes (in d = 4) with: L φ 3 = 1 3! hφ3 flavour singlet fermion mass term L m1 breaks chiral Z 2 Symmetry Coupled system for β h and β m1 Its Eigenvalues at fixed point reproduce corresponding large N results expanded up to O(ǫ 4 ) L ma does not mix (tr[t A ] = 0) Nikolai Zerf (IP HUB) CB 4L DESYz / 28

42 Fermion Bilinear Scaling β-function for both masses and φ 3 coupling: x {1, T A } FS operator mixing yields: β mx = d m x d lnµ = ( 1 γ ΨxΨ +γ Ψ)m x, β h = d h d lnµ = ( ǫ γ φ γ φ)h. (β m1,β h ) T = M (m 1, h) T, Λ ± = 1 2 (M 11 + M 22 )± 1 4 (M 11 M 22 ) 2 + M 12 M 21. Scaling dimension of ΨxΨ and φ 3 at fixed point: ΨT A Ψ =d 1 η ΨT A Ψ +η Ψ, Ψ1Ψ =d+ Λ (e 2,g 2,λ2 ), φ 3 =d+ Λ + (e 2,g 2,λ2 ). Nikolai Zerf (IP HUB) CB 4L DESYz / 28

43 Checks Full agreement with indep. calc. at 1-Loop [Janssen,He 17] & 3-Loop [Ihrig,Mihaila,Scherer 18] e = 0, g = 0 φ 4 Ising Universality Class [Vladimirov,Kazakov,Tarasov 79] g = 0, λ = 0 QED [Gorishny,Kataev,Larin,Surguladze 91] e = 0 χ I GNY [Zerf,Mihaila,Marquard,Herbut,Scherer, 17] large N calculations [Manashov,Strohmaier,18][Gracey 92 18] ξ dependence in γ Ψ only linear and only in γ (1L) Ψ [Gracey, 7][Kißler,Kreimer 17] Nikolai Zerf (IP HUB) CB 4L DESYz / 28

44 Results At 1-Loop: [Janssen,He 17] η φ = 2N + 9 2N + 3 ǫ+o(ǫ2 ), ν 1 = 2 10N2 + 39N + X ǫ+o(ǫ 2 ), 6N(2N + 3) ω = ǫ+o(ǫ 2 ), ( ) 2N + 6 ΨxΨ = 3 ǫ+o(ǫ 2 ). 2N + 3 Nikolai Zerf (IP HUB) CB 4L DESYz / 28

45 Results At 4-Loop (N = 1 numeric rep.): η φ 2.2ǫ ǫ ǫ ǫ 4 +O(ǫ 5 ), ν ǫ ǫ ǫ ǫ 4 +O(ǫ 5 ), ω ǫ+0.3ǫ ǫ ǫ 4 +O(ǫ 5 ), Ψ1Ψ 3 1.6ǫ ǫ ǫ ǫ 4 +O(ǫ 5 ), ΨTAΨ 3 1.6ǫ+1.987ǫ ǫ ǫ 4 +O(ǫ 5 ). Nikolai Zerf (IP HUB) CB 4L DESYz / 28

46 Results At 4-Loop (N = 1 numeric rep.): η φ 2.2ǫ ǫ ǫ ǫ 4 +O(ǫ 5 ), ν ǫ ǫ ǫ ǫ 4 +O(ǫ 5 ), ω ǫ+0.3ǫ ǫ ǫ 4 +O(ǫ 5 ), Ψ1Ψ 3 1.6ǫ ǫ ǫ ǫ 4 +O(ǫ 5 ), ΨTAΨ 3 1.6ǫ+1.987ǫ ǫ ǫ 4 +O(ǫ 5 ). naive extrapolation to d = 3 means ǫ = 1! Nikolai Zerf (IP HUB) CB 4L DESYz / 28

47 Results At 4-Loop (N = 1 numeric rep.): η φ 2.2ǫ ǫ ǫ ǫ 4 +O(ǫ 5 ), ν ǫ ǫ ǫ ǫ 4 +O(ǫ 5 ), ω ǫ+0.3ǫ ǫ ǫ 4 +O(ǫ 5 ), Ψ1Ψ 3 1.6ǫ ǫ ǫ ǫ 4 +O(ǫ 5 ), ΨTAΨ 3 1.6ǫ+1.987ǫ ǫ ǫ 4 +O(ǫ 5 ). naive extrapolation to d = 3 means ǫ = 1! Use Padé / Padé-Borel approximants for extrapolation Nikolai Zerf (IP HUB) CB 4L DESYz / 28

48 Application Conjectured duality in d = 3 at QCP [Wang,Nahum,Metlitski,Xu,Senthil 17]: χ I -QED 3 -GNY(N = 1) SU(2)NCCP 1. SU(2)NCCP 1 : L CP 1 = α=1,2 D b z α 2 ( z z 2 2 ) 2. zα : complex bosonic spinon field with SU(2) flavour Db : covariant derivative containing NC U(1) gauge field b µ EFT for Néel VBS phase transitions by spin 1/2 magnets on square lattice Emergent SO(5) symmetry at the QCP (seen in num. calc. [Nahum,Serna,Chalker,. 15]) Nikolai Zerf (IP HUB) CB 4L DESYz / 28

49 Web of Dualities CP 1 z σ z z η Néel = η VBS M b QED 3 GN η Néel = η φ φ η VBS = η φ ν CP 1 = ν QED3 GN φ 2 z z [ Ψσ z Ψ]=3 1/ν QED3 GN 1/ν CP 1 =3 [ Ψσ z Ψ] Ψσ z Ψ [Ihrig,Mihaila,Scherer 18] Nikolai Zerf (IP HUB) CB 4L DESYz / 28

50 Web of Dualities Duality/SO(5) symmetry implies relation within χ I -QED 3 -GNY(N = 1): ΨT A Ψ = 3 ν 1. Results for η φ can be directly compared: η φ = η Néel = η VBS. Nikolai Zerf (IP HUB) CB 4L DESYz / 28

51 Padée Extrapolation ( ΨTA Ψ = 3 ν 1.) 3.0 _ T A (N=1) [0/2] [1/1] [0/3] [1/2] [2/1] [1/3] [2/2] [3/1] 1/ (N=1) Nikolai Zerf (IP HUB) CB 4L DESYz / 28 [0/2] [1/1] [0/3] [1/2] [2/1] [1/3] [2/2] [3/1]

52 Padée Extrapolation η φ 4 (N=1) [1/1] [2/1] [1/3] [2/2] [3/1] Nikolai Zerf (IP HUB) CB 4L DESYz / 28

53 Comparing with Literature N = 1 1/ν 3 1/ν η φ ΨTAΨ [0/2] [0/2] PB [1/1] [1/1] PB [0/3] [0/3] PB [1/2] [1/2] PB 2.14 [2/1] [2/1] PB [0/4] [0/4] PB [1/3] [1/3] PB [2/2] [2/2] PB 1.74 [3/1] [3/1] PB NCCP 1 χ I -QED 3 -GNY (N = 1) η Néel 0.26(3) [1] η φ 2.1(1) [2] 0.35(3) [3] 1.3(9) [4] 0.30(5) [5] 0.22 [6] 0.259(6) [7] η VBS 0.28(8) [5] 0.25(3) [7] 3 1/ν 1.72(5) [1] 3 1/ν 2.33(1) [2] 1.53(9) [3] 2.7(4) [4] 1.15(19) [5] 1.21 [6] ΨTAΨ 2.12(50) [2] 1 [7] 1.8(5) [4] 0.76(4) [8] [1] [Sandvik 07] [2] [Ihrig,Janssen,Mihaila,Scherer 18] [3] [Melko,Kaul 08] [4] [Janssen,He 17] [5] [Pujari,Damle,Alet 13] [6] [Bartosch 13] [7] [Nahum,Serna,Chalker,. 15] [8] [Shao,Guo,Sandvik 16] Nikolai Zerf (IP HUB) CB 4L DESYz / 28

54 Summary Renormalization of χ I -QED 3 -GNY around d = 4 performed for general N at the four loop level Fixed point analysis of η φ,ν 1,ω, ΨTA Ψ, Ψ1Ψ via ǫ expansion Padé extrapolation to d = 3 Inconclusive numerical results concerning the duality for N = 1 χ I -QED 3 -GNY(N = 1) SU(2)NCCP 1. Five loop analysis? Nikolai Zerf (IP HUB) CB 4L DESYz / 28

55 To backup slides Nikolai Zerf (IP HUB) CB 4L DESYz

56 Pure QED 3 at 5-Loop (d=3) QED3 _ N [0/2] [1/1] [0/3] [2/1] [1/3] [2/2] [3/1] [0/5] [3/2] [4/1] Nikolai Zerf (IP HUB) CB 4L DESYz

57 Padé Approximants Padé: [m/n](ǫ) m i=0 a iǫ i 1+ n j=1 b jǫ j, Borel: (ǫ) = k k ǫ k, B (ǫ) k (ǫ) = 0 k k! ǫk, dt e t B (ǫt). Nikolai Zerf (IP HUB) CB 4L DESYz

58 References [1] A. W. Sandvik, Evidence for Deconfined Quantum Criticality in a Two- Dimensional Heisenberg Model with Four-Spin Interactions, Phys. Rev. Lett. 98, (2007). [2] B. Ihrig, L. Janssen, L. N. Mihaila and M. M. Scherer, Deconfined criticality from the QED 3 -Gross-Neveu model at three loops, Phys. Rev. B 98, no. 11, (2018) [3] R. G. Melko and R. K. Kaul, Scaling in the Fan of an Unconventional Quantum Critical Point, Phys. Rev. Lett. 100, (2008). [4] L. Janssen and Y.-C. He, Critical behavior of the QED 3 -Gross-Neveu model: Duality and deconfined criticality, Phys. Rev. B 96, (2017). [5] S. Pujari, K. Damle, and F. Alet, Néel-State to Valence-Bond-Solid Transition on the Honeycomb Lattice: Evidence for Deconfined Criticality, Phys. Rev. Lett. 111, (2013). [6] L. Bartosch, Corrections to scaling in the critical theory of deconfined criticality, Phys. Rev. B 88, (2013). [7] A. Nahum, J. T. Chalker, P. Serna, M. Ortuño, and A. M. Somoza, Deconfined Quantum Criticality, Scaling Violations, and Classical Loop Models, Phys. Rev. X 5, (2015). [8] H. Shao, W. Guo, and A. W. Sandvik, Quantum criticality with two length scales, Science 352, 213 (2016). Nikolai Zerf (IP HUB) CB 4L DESYz

Theory of Elementary Particles homework VIII (June 04)

Theory of Elementary Particles homework VIII (June 04) Theory of Elementary Particles homework VIII June 4) At the head of your report, please write your name, student ID number and a list of problems that you worked on in a report like II-1, II-3, IV- ).

More information

(Im)possible emergent symmetry and conformal bootstrap

(Im)possible emergent symmetry and conformal bootstrap (Im)possible emergent symmetry and conformal bootstrap Yu Nakayama earlier results are based on collaboration with Tomoki Ohtsuki Phys.Rev.Lett. 117 (2016) Symmetries in nature The great lesson from string

More information

Regularization Physics 230A, Spring 2007, Hitoshi Murayama

Regularization Physics 230A, Spring 2007, Hitoshi Murayama Regularization Physics 3A, Spring 7, Hitoshi Murayama Introduction In quantum field theories, we encounter many apparent divergences. Of course all physical quantities are finite, and therefore divergences

More information

QFT Dimensional Analysis

QFT Dimensional Analysis QFT Dimensional Analysis In the h = c = 1 units, all quantities are measured in units of energy to some power. For example m = p µ = E +1 while x µ = E 1 where m stands for the dimensionality of the mass

More information

Introduction to Renormalization Group

Introduction to Renormalization Group Introduction to Renormalization Group Alex Kovner University of Connecticut, Storrs, CT Valparaiso, December 12-14, 2013 Alex Kovner (UConn) Introduction to Renormalization Group December 12-14, 2013 1

More information

Kaluza-Klein Masses and Couplings: Radiative Corrections to Tree-Level Relations

Kaluza-Klein Masses and Couplings: Radiative Corrections to Tree-Level Relations Kaluza-Klein Masses and Couplings: Radiative Corrections to Tree-Level Relations Sky Bauman Work in collaboration with Keith Dienes Phys. Rev. D 77, 125005 (2008) [arxiv:0712.3532 [hep-th]] Phys. Rev.

More information

A New Regulariation of N = 4 Super Yang-Mills Theory

A New Regulariation of N = 4 Super Yang-Mills Theory A New Regulariation of N = 4 Super Yang-Mills Theory Humboldt Universität zu Berlin Institut für Physik 10.07.2009 F. Alday, J. Henn, J. Plefka and T. Schuster, arxiv:0908.0684 Outline 1 Motivation Why

More information

QED s in 2+1 dimensions: complex fixed points and dualities

QED s in 2+1 dimensions: complex fixed points and dualities Prepared for submission to JHEP SISSA 53/2018/FISI arxiv:1812.01544v1 [hep-th] 4 Dec 2018 QED s in 2+1 dimensions: complex fixed points and dualities Sergio Benvenuti, 1,2 Hrachya Khachatryan 1 1 International

More information

QFT Dimensional Analysis

QFT Dimensional Analysis QFT Dimensional Analysis In h = c = 1 units, all quantities are measured in units of energy to some power. For example m = p µ = E +1 while x µ = E 1 where m stands for the dimensionality of the mass rather

More information

Renormalization Group: non perturbative aspects and applications in statistical and solid state physics.

Renormalization Group: non perturbative aspects and applications in statistical and solid state physics. Renormalization Group: non perturbative aspects and applications in statistical and solid state physics. Bertrand Delamotte Saclay, march 3, 2009 Introduction Field theory: - infinitely many degrees of

More information

The Superfluid-Insulator transition

The Superfluid-Insulator transition The Superfluid-Insulator transition Boson Hubbard model M.P. A. Fisher, P.B. Weichmann, G. Grinstein, and D.S. Fisher, Phys. Rev. B 40, 546 (1989). Superfluid-insulator transition Ultracold 87 Rb atoms

More information

Ultraviolet Divergences

Ultraviolet Divergences Ultraviolet Divergences In higher-order perturbation theory we encounter Feynman graphs with closed loops, associated with unconstrained momenta. For every such momentum k µ, we have to integrate over

More information

Five-loop renormalization group functions of O(n)-symmetric φ 4 -theory and ǫ-expansions of critical exponents up to ǫ 5

Five-loop renormalization group functions of O(n)-symmetric φ 4 -theory and ǫ-expansions of critical exponents up to ǫ 5 arxiv:hep-th/9503230v1 1 Apr 1995 Five-loop renormalization group functions of O(n)-symmetric φ 4 -theory and ǫ-expansions of critical exponents up to ǫ 5 H. Kleinert, J. Neu and V. Schulte-Frohlinde Institut

More information

Effective Field Theory for Cold Atoms I

Effective Field Theory for Cold Atoms I Effective Field Theory for Cold Atoms I H.-W. Hammer Institut für Kernphysik, TU Darmstadt and Extreme Matter Institute EMMI School on Effective Field Theory across Length Scales, ICTP-SAIFR, Sao Paulo,

More information

Scale without conformal invariance

Scale without conformal invariance Scale without conformal invariance Andy Stergiou Department of Physics, UCSD based on arxiv:1106.2540, 1107.3840, 1110.1634, 1202.4757 with Jean-François Fortin and Benjamín Grinstein Outline The physics:

More information

Deconfined Quantum Critical Points

Deconfined Quantum Critical Points Deconfined Quantum Critical Points Leon Balents T. Senthil, MIT A. Vishwanath, UCB S. Sachdev, Yale M.P.A. Fisher, UCSB Outline Introduction: what is a DQCP Disordered and VBS ground states and gauge theory

More information

Hyperfine Splitting in the Bottomonium System on the Lattice and in the Continuum

Hyperfine Splitting in the Bottomonium System on the Lattice and in the Continuum Hyperfine Splitting in the Bottomonium System on the Lattice and in the Continuum Nikolai Zerf in collaboration with M. Baker, A. Penin, D. Seidel Department of Physics University of Alberta Radcor-Loopfest,

More information

!onformali" Los# J.-W. Lee D. T. Son M. Stephanov D.B.K. arxiv: Phys.Rev.D80:125005,2009

!onformali Los# J.-W. Lee D. T. Son M. Stephanov D.B.K. arxiv: Phys.Rev.D80:125005,2009 !onformali" Los# J.-W. Lee D. T. Son M. Stephanov D.B.K arxiv:0905.4752 Phys.Rev.D80:125005,2009 Motivation: QCD at LARGE N c and N f Colors Flavors Motivation: QCD at LARGE N c and N f Colors Flavors

More information

A Minimal Composite Goldstone Higgs model

A Minimal Composite Goldstone Higgs model A Minimal Composite Goldstone Higgs model Lattice for BSM Physics 2017, Boston University Plan of the talk Introduction to composite Goldstone Higgs models Lattice results for the SU(2) Goldstone Higgs

More information

RG Limit Cycles (Part I)

RG Limit Cycles (Part I) RG Limit Cycles (Part I) Andy Stergiou UC San Diego based on work with Jean-François Fortin and Benjamín Grinstein Outline The physics: Background and motivation New improved SE tensor and scale invariance

More information

This means that n or p form a doublet under isospin transformation. Isospin invariance simply means that. [T i, H s ] = 0

This means that n or p form a doublet under isospin transformation. Isospin invariance simply means that. [T i, H s ] = 0 1 QCD 1.1 Quark Model 1. Isospin symmetry In early studies of nuclear reactions, it was found that, to a good approximation, nuclear force is independent of the electromagnetic charge carried by the nucleons

More information

Critical behaviour of Four-Fermi-Theories in 3 dimensions

Critical behaviour of Four-Fermi-Theories in 3 dimensions Critical behaviour of Four-Fermi-Theories in 3 dimensions Björn H. Wellegehausen with Daniel Schmidt and Andreas Wipf Institut für Theoretische Physik, JLU Giessen Workshop on Strongly-Interacting Field

More information

Applications of AdS/CFT correspondence to cold atom physics

Applications of AdS/CFT correspondence to cold atom physics Applications of AdS/CFT correspondence to cold atom physics Sergej Moroz in collaboration with Carlos Fuertes ITP, Heidelberg Outline Basics of AdS/CFT correspondence Schrödinger group and correlation

More information

Advanced Quantum Field Theory Example Sheet 1

Advanced Quantum Field Theory Example Sheet 1 Part III Maths Lent Term 2017 David Skinner d.b.skinner@damtp.cam.ac.uk Advanced Quantum Field Theory Example Sheet 1 Please email me with any comments about these problems, particularly if you spot an

More information

NTNU Trondheim, Institutt for fysikk

NTNU Trondheim, Institutt for fysikk NTNU Trondheim, Institutt for fysikk Examination for FY3464 Quantum Field Theory I Contact: Michael Kachelrieß, tel. 99890701 Allowed tools: mathematical tables Some formulas can be found on p.2. 1. Concepts.

More information

PNJL Model and QCD Phase Transitions

PNJL Model and QCD Phase Transitions PNJL Model and QCD Phase Transitions Hiromichi Nishimura Washington University in St. Louis INT Workshop, Feb. 25, 2010 Phase Transitions in Quantum Chromodynamics This Talk Low Temperature Lattice and

More information

Non-SUSY BSM: Lecture 1/2

Non-SUSY BSM: Lecture 1/2 Non-SUSY BSM: Lecture 1/2 Generalities Benasque September 26, 2013 Mariano Quirós ICREA/IFAE Mariano Quirós (ICREA/IFAE) Non-SUSY BSM: Lecture 1/2 1 / 31 Introduction Introduction There are a number of

More information

A Light Dilaton in Walking Gauge Theories. arxiv: , PRD Yang Bai, TA

A Light Dilaton in Walking Gauge Theories. arxiv: , PRD Yang Bai, TA A Light Dilaton in Walking Gauge Theories arxiv:1006.4375, PRD Yang Bai, TA Gauge Theories with N f Massless Fermions Conformal or Near-Conformal Behavior in the IR: Dynamical Electroweak Symmetry Breaking.

More information

Richard Williams C. S. Fischer, W. Heupel, H. Sanchis-Alepuz

Richard Williams C. S. Fischer, W. Heupel, H. Sanchis-Alepuz Richard Williams C. S. Fischer, W. Heupel, H. Sanchis-Alepuz Overview 2 1.Motivation and Introduction 4. 3PI DSE results 2. DSEs and BSEs 3. npi effective action 6. Outlook and conclusion 5. 3PI meson

More information

The 1/N expansion method in quantum field theory

The 1/N expansion method in quantum field theory III d International School Symmetry in Integrable Systems and Nuclear Physics Tsakhkadzor, Armenia, 3-13 July 2013 The 1/N expansion method in quantum field theory Hagop Sazdjian IPN, Université Paris-Sud,

More information

Effective Theory for Electroweak Doublet Dark Matter

Effective Theory for Electroweak Doublet Dark Matter Effective Theory for Electroweak Doublet Dark Matter University of Ioannina, Greece 3/9/2016 In collaboration with Athanasios Dedes and Vassilis Spanos ArXiv:1607.05040 [submitted to PhysRevD] Why dark

More information

Solutions to gauge hierarchy problem. SS 10, Uli Haisch

Solutions to gauge hierarchy problem. SS 10, Uli Haisch Solutions to gauge hierarchy problem SS 10, Uli Haisch 1 Quantum instability of Higgs mass So far we considered only at RGE of Higgs quartic coupling (dimensionless parameter). Higgs mass has a totally

More information

Week 3: Renormalizable lagrangians and the Standard model lagrangian 1 Reading material from the books

Week 3: Renormalizable lagrangians and the Standard model lagrangian 1 Reading material from the books Week 3: Renormalizable lagrangians and the Standard model lagrangian 1 Reading material from the books Burgess-Moore, Chapter Weiberg, Chapter 5 Donoghue, Golowich, Holstein Chapter 1, 1 Free field Lagrangians

More information

Ginsparg-Wilson Fermions and the Chiral Gross-Neveu Model

Ginsparg-Wilson Fermions and the Chiral Gross-Neveu Model Ginsparg-Wilson Fermions and the DESY Zeuthen 14th September 2004 Ginsparg-Wilson Fermions and the QCD predictions Perturbative QCD only applicable at high energy ( 1 GeV) At low energies (100 MeV - 1

More information

National Nuclear Physics Summer School Lectures on Effective Field Theory. Brian Tiburzi. RIKEN BNL Research Center

National Nuclear Physics Summer School Lectures on Effective Field Theory. Brian Tiburzi. RIKEN BNL Research Center 2014 National Nuclear Physics Summer School Lectures on Effective Field Theory I. Removing heavy particles II. Removing large scales III. Describing Goldstone bosons IV. Interacting with Goldstone bosons

More information

Review and Preview. We are testing QED beyond the leading order of perturbation theory. We encounter... IR divergences from soft photons;

Review and Preview. We are testing QED beyond the leading order of perturbation theory. We encounter... IR divergences from soft photons; Chapter 9 : Radiative Corrections 9.1 Second order corrections of QED 9. Photon self energy 9.3 Electron self energy 9.4 External line renormalization 9.5 Vertex modification 9.6 Applications 9.7 Infrared

More information

Renormalization of the Yukawa Theory Physics 230A (Spring 2007), Hitoshi Murayama

Renormalization of the Yukawa Theory Physics 230A (Spring 2007), Hitoshi Murayama Renormalization of the Yukawa Theory Physics 23A (Spring 27), Hitoshi Murayama We solve Problem.2 in Peskin Schroeder. The Lagrangian density is L 2 ( µφ) 2 2 m2 φ 2 + ψ(i M)ψ ig ψγ 5 ψφ. () The action

More information

Quantum Monte Carlo Simulations in the Valence Bond Basis

Quantum Monte Carlo Simulations in the Valence Bond Basis NUMERICAL APPROACHES TO QUANTUM MANY-BODY SYSTEMS, IPAM, January 29, 2009 Quantum Monte Carlo Simulations in the Valence Bond Basis Anders W. Sandvik, Boston University Collaborators Kevin Beach (U. of

More information

Models of Neutrino Masses

Models of Neutrino Masses Models of Neutrino Masses Fernando Romero López 13.05.2016 1 Introduction and Motivation 3 2 Dirac and Majorana Spinors 4 3 SU(2) L U(1) Y Extensions 11 4 Neutrino masses in R-Parity Violating Supersymmetry

More information

Valence Bonds in Random Quantum Magnets

Valence Bonds in Random Quantum Magnets Valence Bonds in Random Quantum Magnets theory and application to YbMgGaO 4 Yukawa Institute, Kyoto, November 2017 Itamar Kimchi I.K., Adam Nahum, T. Senthil, arxiv:1710.06860 Valence Bonds in Random Quantum

More information

The Phases of QCD. Thomas Schaefer. North Carolina State University

The Phases of QCD. Thomas Schaefer. North Carolina State University The Phases of QCD Thomas Schaefer North Carolina State University 1 Motivation Different phases of QCD occur in the universe Neutron Stars, Big Bang Exploring the phase diagram is important to understanding

More information

Wilsonian renormalization

Wilsonian renormalization Wilsonian renormalization Sourendu Gupta Mini School 2016, IACS Kolkata, India Effective Field Theories 29 February 4 March, 2016 Outline Outline Spurious divergences in Quantum Field Theory Wilsonian

More information

Finite-temperature Field Theory

Finite-temperature Field Theory Finite-temperature Field Theory Aleksi Vuorinen CERN Initial Conditions in Heavy Ion Collisions Goa, India, September 2008 Outline Further tools for equilibrium thermodynamics Gauge symmetry Faddeev-Popov

More information

Entanglement signatures of QED3 in the kagome spin liquid. William Witczak-Krempa

Entanglement signatures of QED3 in the kagome spin liquid. William Witczak-Krempa Entanglement signatures of QED3 in the kagome spin liquid William Witczak-Krempa Aspen, March 2018 Chronologically: X. Chen, KITP Santa Barbara T. Faulkner, UIUC E. Fradkin, UIUC S. Whitsitt, Harvard S.

More information

PSEUDO SCALAR FORM FACTORS AT 3-LOOP QCD. Taushif Ahmed Institute of Mathematical Sciences, India March 22, 2016

PSEUDO SCALAR FORM FACTORS AT 3-LOOP QCD. Taushif Ahmed Institute of Mathematical Sciences, India March 22, 2016 PSEUDO SCALAR FORM FACTORS AT 3-LOOP QCD Taushif Ahmed Institute of Mathematical Sciences, India March, 016 PROLOGUE: SM & MSSM SM Complex scalar doublet (4 DOF) 3 DOF transform into longitudinal modes

More information

Quantum Field Theory. and the Standard Model. !H Cambridge UNIVERSITY PRESS MATTHEW D. SCHWARTZ. Harvard University

Quantum Field Theory. and the Standard Model. !H Cambridge UNIVERSITY PRESS MATTHEW D. SCHWARTZ. Harvard University Quantum Field Theory and the Standard Model MATTHEW D. Harvard University SCHWARTZ!H Cambridge UNIVERSITY PRESS t Contents v Preface page xv Part I Field theory 1 1 Microscopic theory of radiation 3 1.1

More information

Phys624 Formalism for interactions Homework 6. Homework 6 Solutions Restriction on interaction Lagrangian. 6.1.

Phys624 Formalism for interactions Homework 6. Homework 6 Solutions Restriction on interaction Lagrangian. 6.1. Homework 6 Solutions 6. - Restriction on interaction Lagrangian 6.. - Hermiticity 6.. - Lorentz invariance We borrow the following results from homework 4. Under a Lorentz transformation, the bilinears

More information

The 4-loop quark mass anomalous dimension and the invariant quark mass.

The 4-loop quark mass anomalous dimension and the invariant quark mass. arxiv:hep-ph/9703284v1 10 Mar 1997 UM-TH-97-03 NIKHEF-97-012 The 4-loop quark mass anomalous dimension and the invariant quark mass. J.A.M. Vermaseren a, S.A. Larin b, T. van Ritbergen c a NIKHEF, P.O.

More information

Kamila Kowalska. TU Dortmund. based on and work in progress with A.Bond, G.Hiller and D.Litim EPS-HEP Venice, 08 July 2017

Kamila Kowalska. TU Dortmund. based on and work in progress with A.Bond, G.Hiller and D.Litim EPS-HEP Venice, 08 July 2017 Towards an asymptotically safe completion of the Standard Model Kamila Kowalska TU Dortmund based on 1702.01727 and work in progress with A.Bond, G.Hiller and D.Litim 08.07.2017 EPS-HEP 2017 Venice, 08

More information

T -Parity in Little Higgs Models a

T -Parity in Little Higgs Models a T -Parity in Little Higgs Models a David Krohn a Based on arxiv:0803.4202 [hep-ph] with Itay Yavin, and work in progress with I.Y., Lian-Tao Wang, and Hsin-Chia Cheng Outline Review of little Higgs models

More information

July 2, SISSA Entrance Examination. PhD in Theoretical Particle Physics Academic Year 2018/2019. olve two among the three problems presented.

July 2, SISSA Entrance Examination. PhD in Theoretical Particle Physics Academic Year 2018/2019. olve two among the three problems presented. July, 018 SISSA Entrance Examination PhD in Theoretical Particle Physics Academic Year 018/019 S olve two among the three problems presented. Problem I Consider a theory described by the Lagrangian density

More information

Asymptotic Safety in the ADM formalism of gravity

Asymptotic Safety in the ADM formalism of gravity Asymptotic Safety in the ADM formalism of gravity Frank Saueressig Research Institute for Mathematics, Astrophysics and Particle Physics Radboud University Nijmegen J. Biemans, A. Platania and F. Saueressig,

More information

Higher dimensional operators. in supersymmetry

Higher dimensional operators. in supersymmetry I. Antoniadis CERN Higher dimensional operators in supersymmetry with E. Dudas, D. Ghilencea, P. Tziveloglou Planck 2008, Barcelona Outline Effective operators from new physics integrating out heavy states

More information

Elementary/Composite Mixing in Randall-Sundrum Models

Elementary/Composite Mixing in Randall-Sundrum Models Elementary/Composite Mixing in Randall-Sundrum Models Brian Batell University of Minnesota with Tony Gherghetta - arxiv:0706.0890 - arxiv:0710.1838 Cornell 1/30/08 5D Warped Dimension = 4D Strong Dynamics

More information

The mass of the Higgs boson

The mass of the Higgs boson The mass of the Higgs boson LHC : Higgs particle observation CMS 2011/12 ATLAS 2011/12 a prediction Higgs boson found standard model Higgs boson T.Plehn, M.Rauch Spontaneous symmetry breaking confirmed

More information

arxiv:hep-ph/ v1 18 Nov 1996

arxiv:hep-ph/ v1 18 Nov 1996 TTP96-55 1 MPI/PhT/96-122 hep-ph/9611354 November 1996 arxiv:hep-ph/9611354v1 18 Nov 1996 AUTOMATIC COMPUTATION OF THREE-LOOP TWO-POINT FUNCTIONS IN LARGE MOMENTUM EXPANSION K.G. Chetyrkin a,b, R. Harlander

More information

QCD Phases with Functional Methods

QCD Phases with Functional Methods QCD Phases with Mario PhD-Advisors: Bernd-Jochen Schaefer Reinhard Alkofer Karl-Franzens-Universität Graz Institut für Physik Fachbereich Theoretische Physik Rab, September 2010 QCD Phases with Table of

More information

Relativistic Waves and Quantum Fields

Relativistic Waves and Quantum Fields Relativistic Waves and Quantum Fields (SPA7018U & SPA7018P) Gabriele Travaglini December 10, 2014 1 Lorentz group Lectures 1 3. Galileo s principle of Relativity. Einstein s principle. Events. Invariant

More information

Integrability of Conformal Fishnet Theory

Integrability of Conformal Fishnet Theory Integrability of Conformal Fishnet Theory Gregory Korchemsky IPhT, Saclay In collaboration with David Grabner, Nikolay Gromov, Vladimir Kazakov arxiv:1711.04786 15th Workshop on Non-Perturbative QCD, June

More information

Electroweak physics and the LHC an introduction to the Standard Model

Electroweak physics and the LHC an introduction to the Standard Model Electroweak physics and the LHC an introduction to the Standard Model Paolo Gambino INFN Torino LHC School Martignano 12-18 June 2006 Outline Prologue on weak interactions Express review of gauge theories

More information

QED and the Standard Model Autumn 2014

QED and the Standard Model Autumn 2014 QED and the Standard Model Autumn 2014 Joel Goldstein University of Bristol Joel.Goldstein@bristol.ac.uk These lectures are designed to give an introduction to the gauge theories of the standard model

More information

Quantum disordering magnetic order in insulators, metals, and superconductors

Quantum disordering magnetic order in insulators, metals, and superconductors Quantum disordering magnetic order in insulators, metals, and superconductors Perimeter Institute, Waterloo, May 29, 2010 Talk online: sachdev.physics.harvard.edu HARVARD Cenke Xu, Harvard arxiv:1004.5431

More information

from exact asymptotic safety to physics beyond the Standard Model

from exact asymptotic safety to physics beyond the Standard Model from exact asymptotic safety to physics beyond the Standard Model Daniel F Litim Heidelberg, 9 Mar 2017 DF Litim 1102.4624 DF Litim, F Sannino, 1406.2337 AD Bond, DF Litim, 1608.00519 AD Bond, G Hiller,

More information

Anomalies, gauge field topology, and the lattice

Anomalies, gauge field topology, and the lattice Anomalies, gauge field topology, and the lattice Michael Creutz BNL & U. Mainz Three sources of chiral symmetry breaking in QCD spontaneous breaking ψψ 0 explains lightness of pions implicit breaking of

More information

2-Group Global Symmetry

2-Group Global Symmetry 2-Group Global Symmetry Clay Córdova School of Natural Sciences Institute for Advanced Study April 14, 2018 References Based on Exploring 2-Group Global Symmetry in collaboration with Dumitrescu and Intriligator

More information

Axions Theory SLAC Summer Institute 2007

Axions Theory SLAC Summer Institute 2007 Axions Theory p. 1/? Axions Theory SLAC Summer Institute 2007 Helen Quinn Stanford Linear Accelerator Center Axions Theory p. 2/? Lectures from an Axion Workshop Strong CP Problem and Axions Roberto Peccei

More information

Badis Ydri Ph.D.,2001. January 19, 2011

Badis Ydri Ph.D.,2001. January 19, 2011 January 19, 2011 Curriculum Vitae.. : Fuzzy. : Noncommutative Gauge Theory and Emergent Geometry From Yang-Mills Matrix Models.. Education-Pre Baccalaureat in Mathematics (June 1989), Moubarek El Mili

More information

arxiv: v1 [hep-lat] 5 Nov 2018

arxiv: v1 [hep-lat] 5 Nov 2018 on the lattice: from super Yang-Mills towards super QCD arxiv:1811.01797v1 [hep-lat] 5 Nov 2018 Friedrich-Schiller-University Jena, Institute of Theoretical Physics, Max-Wien-Platz 1, D-07743 Jena, Germany

More information

Pati-Salam GUT-Flavour Models with Three Higgs Generations

Pati-Salam GUT-Flavour Models with Three Higgs Generations Pati-Salam GUT-Flavour Models with Three Higgs Generations Florian Hartmann in collaboration with Wolfgang Kilian and Karsten Schnitter based on: JHEP 1405 (2014) 064 and arxiv:1405.1901 Universität Siegen

More information

Physics 582, Problem Set 1 Solutions

Physics 582, Problem Set 1 Solutions Physics 582, Problem Set 1 Solutions TAs: Hart Goldman and Ramanjit Sohal Fall 2018 1. THE DIRAC EQUATION [20 PTS] Consider a four-component fermion Ψ(x) in 3+1D, L[ Ψ, Ψ] = Ψ(i/ m)ψ, (1.1) where we use

More information

FERMION MASSES FROM A CROSSOVER MECHANISM

FERMION MASSES FROM A CROSSOVER MECHANISM FERMION MASSES FROM A ROSSOVER MEHANISM Vincenzo ranchina and Emanuele Messina Department of Physics, University of atania, Italy Eleventh Workshop on Non-Perturbative Quantum hromodynamics June 6 -, 2,

More information

Attractor Structure of Gauged Nambu-Jona-Lasinio Model

Attractor Structure of Gauged Nambu-Jona-Lasinio Model Attractor Structure of Gauged ambu-jona-lasinio Model Department of Physics, Hiroshima University E-mail: h-sakamoto@hiroshima-u.ac.jp We have studied the inflation theory in the gauged ambu-jona-lasinio

More information

The Physics of Heavy Z-prime Gauge Bosons

The Physics of Heavy Z-prime Gauge Bosons The Physics of Heavy Z-prime Gauge Bosons Tevatron LHC LHC LC LC 15fb -1 100fb -1 14TeV 1ab -1 14TeV 0.5TeV 1ab -1 P - =0.8 P + =0.6 0.8TeV 1ab -1 P - =0.8 P + =0.6 χ ψ η LR SSM 0 2 4 6 8 10 12 2σ m Z'

More information

The Higgs Mechanism and the Higgs Particle

The Higgs Mechanism and the Higgs Particle The Higgs Mechanism and the Higgs Particle Heavy-Ion Seminar... or the Anderson-Higgs-Brout-Englert-Guralnik-Hagen-Kibble Mechanism Philip W. Anderson Peter W. Higgs Tom W. B. Gerald Carl R. François Robert

More information

Properties of monopole operators in 3d gauge theories

Properties of monopole operators in 3d gauge theories Properties of monopole operators in 3d gauge theories Silviu S. Pufu Princeton University Based on: arxiv:1303.6125 arxiv:1309.1160 (with Ethan Dyer and Mark Mezei) work in progress with Ethan Dyer, Mark

More information

Lattice studies of the conformal window

Lattice studies of the conformal window Lattice studies of the conformal window Luigi Del Debbio University of Edinburgh Zeuthen - November 2010 T H E U N I V E R S I T Y O F E D I N B U R G H Luigi Del Debbio (University of Edinburgh) Lattice

More information

Asymptotically free nonabelian Higgs models. Holger Gies

Asymptotically free nonabelian Higgs models. Holger Gies Asymptotically free nonabelian Higgs models Holger Gies Friedrich-Schiller-Universität Jena & Helmholtz-Institut Jena & Luca Zambelli, PRD 92, 025016 (2015) [arxiv:1502.05907], arxiv:16xx.yyyyy Prologue:

More information

Precision Calculations to Top- and Bottom-Yukawa Couplings within the SM and BSM

Precision Calculations to Top- and Bottom-Yukawa Couplings within the SM and BSM Precision Calculations to Top- and Bottom-Yukawa Couplings within the SM and BSM Institut for Theoretical Physics, University of Heidelberg, 69117 Heidelberg, Germany E-mail: mihaila@thphys.uni-heidelberg.de

More information

Fun with the S parameter on the lattice

Fun with the S parameter on the lattice Fun with the S parameter on the lattice David Schaich (Boston Colorado Syracuse) from work with the LSD Collaboration and USQCD BSM community arxiv:1009.5967 & arxiv:1111.4993 Origin of Mass 2013 Lattice

More information

Quark tensor and axial charges within the Schwinger-Dyson formalism

Quark tensor and axial charges within the Schwinger-Dyson formalism Quark tensor and axial charges within the Schwinger-Dyson formalism, Takahiro M. Doi, Shotaro Imai, Hideo Suganuma Department of Physics, Graduate School of Science, Kyoto University, Kitashirakawa-oiwake,

More information

Finite Temperature Field Theory

Finite Temperature Field Theory Finite Temperature Field Theory Dietrich Bödeker, Universität Bielefeld 1. Thermodynamics (better: thermo-statics) (a) Imaginary time formalism (b) free energy: scalar particles, resummation i. pedestrian

More information

Minimal Supersymmetric Standard Model (MSSM). Nausheen R. Shah

Minimal Supersymmetric Standard Model (MSSM). Nausheen R. Shah Minimal Supersymmetric Standard Model (MSSM). Nausheen R. Shah June 8, 2003 1 Introduction Even though the Standard Model has had years of experimental success, it has been known for a long time that it

More information

RG flow of the Higgs potential. Holger Gies

RG flow of the Higgs potential. Holger Gies RG flow of the Higgs potential Holger Gies Helmholtz Institute Jena & Friedrich-Schiller-Universität Jena & C. Gneiting, R. Sondenheimer, PRD 89 (2014) 045012, [arxiv:1308.5075], & S. Rechenberger, M.M.

More information

Holography and Mottness: a Discrete Marriage

Holography and Mottness: a Discrete Marriage Holography and Mottness: a Discrete Marriage Thanks to: NSF, EFRC (DOE) Ka Wai Lo M. Edalati R. G. Leigh Seungmin Hong Mott Problem Mott Problem + # + Mott Problem + # + σ(ω) Ω -1 cm -1 VO 2 T=360 K T=295

More information

Introduction to Quantum Chromodynamics (QCD)

Introduction to Quantum Chromodynamics (QCD) Introduction to Quantum Chromodynamics (QCD) Jianwei Qiu Theory Center, Jefferson Lab May 29 June 15, 2018 Lecture One The plan for my four lectures q The Goal: To understand the strong interaction dynamics

More information

Cut off dependence in a few basic quantities this into redefinition: A ren. = A 0 (4.2) 1 Z ψ. g 0 Z ψ Z Z T ψψa. g ren. =

Cut off dependence in a few basic quantities this into redefinition: A ren. = A 0 (4.2) 1 Z ψ. g 0 Z ψ Z Z T ψψa. g ren. = Chapter 4 Renormalization Cut off dependence in a few basic quantities this into redefinition: L t a t aµν + ψ µν0 0 0 (ip 0 m 0 )ψ 0 (4.) 4 A ren. A 0 (4.) ZA ψ ren. ψ 0 Z ψ (4.) Z g ψψa ren. ψ ren. γ

More information

Unitarity, Dispersion Relations, Cutkosky s Cutting Rules

Unitarity, Dispersion Relations, Cutkosky s Cutting Rules Unitarity, Dispersion Relations, Cutkosky s Cutting Rules 04.06.0 For more information about unitarity, dispersion relations, and Cutkosky s cutting rules, consult Peskin& Schröder, or rather Le Bellac.

More information

Anomalies and discrete chiral symmetries

Anomalies and discrete chiral symmetries Anomalies and discrete chiral symmetries Michael Creutz BNL & U. Mainz Three sources of chiral symmetry breaking in QCD spontaneous breaking ψψ 0 explains lightness of pions implicit breaking of U(1) by

More information

D-term Dynamical SUSY Breaking. Nobuhito Maru (Keio University)

D-term Dynamical SUSY Breaking. Nobuhito Maru (Keio University) D-term Dynamical SUSY Breaking Nobuhito Maru (Keio University) with H. Itoyama (Osaka City University) Int. J. Mod. Phys. A27 (2012) 1250159 [arxiv: 1109.2276 [hep-ph]] 12/6/2012 SCGT2012@Nagoya University

More information

RG flow of the Higgs potential. Holger Gies

RG flow of the Higgs potential. Holger Gies RG flow of the Higgs potential Holger Gies Helmholtz Institute Jena & TPI, Friedrich-Schiller-Universität Jena & C. Gneiting, R. Sondenheimer, PRD 89 (2014) 045012, [arxiv:1308.5075], & S. Rechenberger,

More information

1 Running and matching of the QED coupling constant

1 Running and matching of the QED coupling constant Quantum Field Theory-II UZH and ETH, FS-6 Assistants: A. Greljo, D. Marzocca, J. Shapiro http://www.physik.uzh.ch/lectures/qft/ Problem Set n. 8 Prof. G. Isidori Due: -5-6 Running and matching of the QED

More information

Lectures on Standard Model Effective Field Theory

Lectures on Standard Model Effective Field Theory Lectures on Standard Model Effective Field Theory Yi Liao Nankai Univ SYS Univ, July 24-28, 2017 Page 1 Outline 1 Lecture 4: Standard Model EFT: Dimension-six Operators SYS Univ, July 24-28, 2017 Page

More information

Spectral Properties of Quarks in the Quark-Gluon Plasma

Spectral Properties of Quarks in the Quark-Gluon Plasma Lattice27 : 2, Aug., 27 Spectral Properties of Quarks in the Quark-Gluon Plasma Masakiyo Kitazawa (Osaka Univ.) F. Karsch and M.K., arxiv:78.299 Why Quark? Because there are quarks. in the deconfined phase

More information

The symmetries of QCD (and consequences)

The symmetries of QCD (and consequences) The symmetries of QCD (and consequences) Sinéad M. Ryan Trinity College Dublin Quantum Universe Symposium, Groningen, March 2018 Understand nature in terms of fundamental building blocks The Rumsfeld

More information

PAPER 44 ADVANCED QUANTUM FIELD THEORY

PAPER 44 ADVANCED QUANTUM FIELD THEORY MATHEMATICAL TRIPOS Part III Friday, 3 May, 203 9:00 am to 2:00 pm PAPER 44 ADVANCED QUANTUM FIELD THEORY Attempt no more than THREE questions. There are FOUR questions in total. The questions carry equal

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature09910 Supplementary Online Material METHODS Single crystals were made at Kyoto University by the electrooxidation of BEDT-TTF in an 1,1,2- tetrachloroethylene solution of KCN, CuCN, and

More information

FeynRules New models phenomenology made easy

FeynRules New models phenomenology made easy FeynRules New models phenomenology made easy Claude Duhr March 11, 2008 MC4BSM Why yet another tool..? FeynRules Example: - How to add a new sector to the SM Conclusion Why yet another tool..? In general,

More information

Dipole operator constraints on composite Higgs models

Dipole operator constraints on composite Higgs models Matthias König May 27th, 2014 Dipole operators: emerge from one-loop correction to fermion-photon coupling f i R f j L γ/g. Various observables are governed by dipole operatores such as electric dipole

More information

PAPER 305 THE STANDARD MODEL

PAPER 305 THE STANDARD MODEL MATHEMATICAL TRIPOS Part III Tuesday, 6 June, 017 9:00 am to 1:00 pm PAPER 305 THE STANDARD MODEL Attempt no more than THREE questions. There are FOUR questions in total. The questions carry equal weight.

More information

arxiv: v2 [hep-lat] 23 Dec 2008

arxiv: v2 [hep-lat] 23 Dec 2008 arxiv:8.964v2 [hep-lat] 23 Dec 28, F. Farchioni, A. Ferling, G. Münster, J. Wuilloud University of Münster, Institute for Theoretical Physics Wilhelm-Klemm-Strasse 9, D-4849 Münster, Germany E-mail: k_demm@uni-muenster.de

More information