from exact asymptotic safety to physics beyond the Standard Model

Size: px
Start display at page:

Download "from exact asymptotic safety to physics beyond the Standard Model"

Transcription

1 from exact asymptotic safety to physics beyond the Standard Model Daniel F Litim Heidelberg, 9 Mar 2017 DF Litim DF Litim, F Sannino, AD Bond, DF Litim, AD Bond, G Hiller, K Kowalska, DF Litim,

2 standard model local QFT for fundamental interactions strong nuclear force weak force electromagnetic force open challenges what comes beyond the SM? how does gravity fit in?

3 asymptotic safety idea: some or all couplings achieve interacting UV fixed point Wilson 71 Weinberg 79 if so, new directions for BSM physics &, possibly, quantum gravity proof of existence: 4D gauge-yukawa theory with exact asymptotic safety Litim, Sannino, Bond,

4 asymptotic safety today: 1. theorems for asymptotic safety Bond, Litim weakly interacting UV completions of the Standard Model 3. constraints from data (colliders) AD Bond, G Hiller, K Kowalska, DF Litim,

5 asymptotic safety today: 1. theorems for asymptotic safety Bond, Litim weakly interacting UV completions of the Standard Model 3. constraints from data (colliders) AD Bond, G Hiller, K Kowalska, DF Litim,

6 conditions for asymptotic safety results Bond, Litim *) *) *) provided certain auxiliary conditions hold true

7 basics of asymptotic safety gauge theory Yukawa t g = B g 2 + C g 3 D g 2 0 t < y = = E B/C y 2 F 1 g y t =lnµ/ 1 loop coefficients D, E, F > 0 in any QFT B>0 asymptotic freedom C<0or C>0 in the latter case: g = B C Banks-Zaks IR FP

8 basics of asymptotic safety gauge t g = B g 2 + C g 3 D g 2 0 t < y = = E B/C y 2 F 1 g y t =lnµ/ 1 loop coefficients D, E, F > 0 in any QFT B<0 infrared freedom for C < 0 we must have C S 2 < 1 11 CG 2

9 result: 1.0 E 8 = min C 2(R) C 2 (adj) 1 c E 7 E 6 F 4 G 2 SOHNL SUHNL SpHNL asymptotic safety N 1 11

10 result: 1.0 E 8 = min C 2(R) C 2 (adj) 1 c E 7 E 6 F 4 G 2 SOHNL SUHNL SpHNL implication: B apple 0 ) C>0 no go theorem asymptotic safety N 1 11

11 basics of asymptotic safety gauge t g = B g 2 + C g 3 D g 2 0 t < y = = E B/C y 2 F 1 g y t =lnµ/ 1 loop coefficients D, E, F > 0 in any QFT B<0 infrared freedom B<0 ) C>0 Bond, Litim

12 basics of asymptotic safety gauge t g = B g 2 + C g 3 D g 2 0 t < y = = E B/C y 2 F 1 g y t =lnµ/ 1 loop coefficients D, E, F > 0 in any QFT B<0 infrared freedom B<0 ) C>0 can other couplings help? more gauge: useless scalar quartics: useless Yukawas: unique viable option Bond, Litim

13 basics of asymptotic safety gauge Yukawa t g = B 2 g + C 3 g D 2 g y t t y = E 2 y F g y 1 loop coefficients D, E, F > 0 in any QFT

14 basics of asymptotic safety gauge Yukawa t g = B 2 g + C 3 g D 2 g y t t y = E 2 y F g y 1 Yukawa nullcline y = F E g

15 basics of asymptotic safety gauge Yukawa t g = B 2 g + C 3 g D 2 g y t t y = E 2 y F g y 1 Yukawa nullcline y = F E g g =( B + C 0 g ) 2 g shifted two-loop C! C 0 = C D F E interacting UV fixed point iff DF CE>0

16 basics of asymptotic safety gauge Yukawa t g = B 2 g + C 3 g D 2 g y t t y = E 2 y F g y 1 Yukawa nullcline y = F E g g =( B + C 0 g ) 2 g gauge-yukawa fixed point ( g, y)= B C 0, B F C 0 E UV or IR

17 basics of asymptotic safety gauge Yukawa t g = B 2 g + C 3 g D 2 g y t t y = E 2 y F g y 1 summary of fixed points ( g, y)=(0, 0) B Gaussian UV or IR ( g, y)= ( g, y)= C, 0 B C 0, B F C 0 E Banks-Zaks gauge-yukawa IR UV or IR

18 conditions for asymptotic safety results Bond, Litim *) *) *) provided certain auxiliary conditions hold true

19 B>0 >C B,C > 0 >C 0 Y4 Y4 G G BZ 0 >B,C 0 B,C,C 0 > 0 GY Y4 Y4 GY G G BZ

20 asymptotic safety 1. theorems for asymptotic safety Bond, Litim weakly interacting UV completions of the Standard Model 3. constraints from data (colliders) AD Bond, G Hiller, K Kowalska, DF Litim, AD Bond, G Hiller, K Kowalska, DF Litim,

21 asymptotic safety beyond the SM Bond, Hiller, Kowalska, Litim, N F flavors of BSM fermions BSM singlet scalars i(r 3,R 2,Y) S ij global flavor symmetry U(N F ) U(N F ) L BSM, Yukawa = y Tr( L S R + R S L) BSM Lagrangean L = L SM + L BSM, kin. + L BSM, pot. + L BSM, Yukawa

22 UV fixed points

23 BSM fixed points weak becomes strong FP 2 > =0 strong becomes weak UV critical surface 2 ( ), 3 ( ) FP 3 3 > 0 strong remains strong 2 =0 weak remains weak UV critical surface 2 ( ), 3 ( ) FP 4 2 3! 3 2 UV critical surface weak becomes the new strong 3 ( )

24 BSM fixed points FP 2 2 > 0 3 =0 R 2 = 3 R 2 = 4 R 2 = 5 FP 3 3 > 0 2 =0 R 2 = 1 R 2 = 2 R 2 = 3 FP 4 2, 3 > 0 R 2 = 1 R 2 = 2 R 2 = ' 10 15' R 3 6 R 3 10 R N F N F N F

25 summary of fixed points R FP 2 FP 3 1 N F FP R 3

26 benchmark models

27 benchmark models model A 1 weak becomes strong, strong becomes weak matching scale cross - over scale FP 2 (R 3,R 2,N F )= (1,4,12) 0.1 a y cross-over a a low scale R 3 = 1, R 2 = 4, N F = m HGeVL

28 benchmark models 1 strong remains strong, weak remains weak model B FP matching cross - over scale 3 scale (R 3,R 2,N F )= (10,1,30) 0.1 a y cross-over 0.01 a 3 a low scale R 3 = 10, R 2 = 1, N F = m HGeVL

29 benchmark models model B weak BZ (R 3,R 2,N F )= (10,1,30) FP 4 Hmodel BL a a y NO matching onto SM a mêm 0

30 benchmark models model C 1 strong matching remains strong scale weak remains weak FP 3 cross - over scale (R 3,R 2,N F )= (10,4,80) 0.1 a 3 a y 0.01 cross-over low scale R 3 = 10, R 2 = 4, N F = m HGeVL a 2

31 benchmark models model C weak becomes matching scale the new strong a 2 FP 4 cross - over scale (R 3,R 2,N F )= (10,4,80) a y a R 3 = 10, R 2 = 4, N F = 80 high scale m HGeVL

32 benchmark models model C 1 weak becomes strong & strong becomes weak FP 2 matching scale (model C) cross-over II cross - over scale a 2 FP 2 (R 3,R 2,N F )= (10,4,80) 0.1 FP 4 a y 0.01 FP4 flyby matching scale high scale cross-over II a 3 cross-over I R 3 = 10, R 2 = 4, N F = m HGeVL

33 benchmark models model D weak stronger matching than scalestrong FP 4 cross - over scale (R 3,R 2,N F )= (3,4,290) a 2 a cross-over a y low scale R 3 = 3, R 2 = 4, N F = m HGeVL

34 summary of SM matching: when it works FP 2 genuinely, except in special circumstances (competition with other nearby FPs) FP 3 genuinely, except in special circumstances (competition with other nearby FPs)

35 summary of SM matching: when it works N F 4 FP 4 R 2 3 m low scale high scale no match HweakL no match HstrongL R 3

36 asymptotic safety 1. theorems for asymptotic safety Bond, Litim weakly interacting UV completions of the Standard Model 3. constraints from data (colliders) AD Bond, G Hiller, K Kowalska, DF Litim,

37 phenomenology assume low scale matching some BSM masses within TeV energy range assume R 3 6= 1 for LHC ( R 3 = 1 can be tested at future e + e colliders) flavor symmetry: stable BSM fermions broken flavor symmetry: lightest BSM fermion stable constraints from running couplings the weak sector long-lived QCD bound states di-boson searches

38 SU(3) BSM running ATLAS & CMS: a M 1.5 TeV Model E Model C Model B

39 SU(2) BSM running a Model E ModelC Model A

40 di-boson spectra and resonances assume resonant production of BSM scalars low Ms M S < p s M S. M M S < 2M high Ms M. M S < 2M loop-mediated decay into GG = gg,,zz,z, or WW g G ψ i S ii ψ i g G interference effects

41 dijet cross section ATLAS dijet bounds on BR A no interference max. interference Model B Model D A = % 0.1 M S =1.5 TeV M

42 mass exclusion limits 100 scan over masses R hadron searches Model B (10,1,30) BSM running M no interference di-jet limits max. interference LHC M

43 conclusions theorems for fixed points and asymptotic safety systematics weakly interacting UV completions of the SM UV FPs can be partially or fully interacting matching to SM explained, works in many cases window of opportunities for BSM new physics, can be probed at LHC constraints from colliders

44 extra material

45 U(1)Y BSM a 3 * ı D C Û C Ìı B B U(1) Y Landau pole arising below M Pl ÒE Û A D a 2 * C ı

46 phase diagrams phase diagrams of simple gauge theories parameters B,C C 0 matter content Yukawa structure

47 phase diagrams asymptotic freedom Y4 G (B >0 >C,C 0 )

48 phase diagrams asymptotic freedom & BZ Y4 G G BZ (B,C > 0 >C 0 )

49 phase diagrams asymptotic freedom, BZ & GY Y4 GY G BZ (B,C,C 0 > 0)

50 phase diagrams asymptotic safety & GY GY Y4 G G (C >0 >B,C 0 )

51 extensions I interacting UV FPs with exact asymptotic safety exist for simple gauge theories Litim, Sannino, but: do interacting UV FPs with exact asymptotic safety exist for semi-simple gauge theories? Yes! ERG 2016 this meeting space of UV FP solutions is non-empty

52 extensions II what is the impact of couplings with non-vanishing canonical mass dimension? results: fixed point persists effective potential remains stable

53 extensions II Lagrangean Litim, Sannino, further scalar invariants gauge Nc colours Yukawa Nf flavours Higgs Nf times Nf ( 2 ) Buyukbese, Lattice2016 (in prep.)

54 extensions II results: exact eigenvalue spectrum n = D n + O( ) n

55 more weak sector contributions to muon anomalous magnetic moment together with a exp leads to constraint µ (2 3) 10 9 d(r 3 ) S(R 2 ) N F TeV M obeyed by all benchmark models. contributions to the rho parameter arise if fermion multiplets encounter mass splitting M M due to SU(2) breaking N F d(r 3 ) S(R 2 ) M 2. (40 GeV) 2 sub-percent splitting for TeV or higher BSM masses

56 R-hadron searches assume pair-production of BSM fermions 2M < p s at least the lightest has a long life ( > hadron ) and forms colorless QCD bound states with SM matter pp! via t-channel gluon fusion N F C 3 with C 3 =[C 2 (R 3 )] 2 d(r 3 ) d(r 2 ) lower limits M min from ATLAS and CMS gluino searches model B, C, D, E: 2.3, >2.4, 2.2, 2.0 TeV

57 di-boson spectra and resonances assume resonant production of BSM scalars low Ms M S < p s M S. M M S < 2M high Ms M. M S < 2M loop-mediated decay into GG = gg,,zz,z, or WW g G ψ i S ii ψ i g G interference effects

58 decays into electroweak gauge bosons further signatures if d(r 2 ) 6= 1 general scalar resonance decaying into WW,ZZ,Z, growth with dim(r2) G VV êg gg R 3 = 3 WW ZZ Zg gg low Ms M S. M G VV êg gg R 3 = 10 WW gg ZZ Zg dhr 2 L dhr 2 L

59 decays into electroweak gauge bosons reduced decay widths VV = 1 F VV gg, with F = 4 3 C 2 (R 2 ) C 2 (R 3 ) 2 for small hypercharge coupling WW = , ZZ , Z , modification of widths for high Ms FP 4 WW, ZZ Z? FP 2 WW, ZZ, Z, FP 3 WW, ZZ, Z,

asymptotic safety beyond the Standard Model

asymptotic safety beyond the Standard Model asymptotic safety beyond the Standard Model Daniel F Litim Frankfurt, 18 May 2017 standard model local QFT for fundamental interactions strong nuclear force weak force electromagnetic force open challenges

More information

Kamila Kowalska. TU Dortmund. based on and work in progress with A.Bond, G.Hiller and D.Litim EPS-HEP Venice, 08 July 2017

Kamila Kowalska. TU Dortmund. based on and work in progress with A.Bond, G.Hiller and D.Litim EPS-HEP Venice, 08 July 2017 Towards an asymptotically safe completion of the Standard Model Kamila Kowalska TU Dortmund based on 1702.01727 and work in progress with A.Bond, G.Hiller and D.Litim 08.07.2017 EPS-HEP 2017 Venice, 08

More information

Directions for BSM physics from Asymptotic Safety

Directions for BSM physics from Asymptotic Safety Bad Honnef- 21.6.2018 Directions for BSM physics from Asymptotic Safety phenomenology connecting theory to data Gudrun Hiller, TU Dortmund q f e DFG FOR 1873 et 1 Asymptotic Safety pheno for cosmology

More information

Higgs Property Measurement with ATLAS

Higgs Property Measurement with ATLAS Higgs Property Measurement with ATLAS Haijun Yang (on behalf of the ATLAS) Shanghai Jiao Tong University Hadron Collider Physics Symposium HCP 2012, Kyoto University, Japan November 12-16, 2012 Observation

More information

Photon Coupling with Matter, u R

Photon Coupling with Matter, u R 1 / 16 Photon Coupling with Matter, u R Consider the up quark. We know that the u R has electric charge 2 3 e (where e is the proton charge), and that the photon A is a linear combination of the B and

More information

The Standard Model and Beyond

The Standard Model and Beyond The Standard Model and Beyond Nobuchika Okada Department of Physics and Astronomy The University of Alabama 2011 BCVSPIN ADVANCED STUDY INSTITUTE IN PARTICLE PHYSICS AND COSMOLOGY Huê, Vietnam, 25-30,

More information

Higgs Searches and Properties Measurement with ATLAS. Haijun Yang (on behalf of the ATLAS) Shanghai Jiao Tong University

Higgs Searches and Properties Measurement with ATLAS. Haijun Yang (on behalf of the ATLAS) Shanghai Jiao Tong University Higgs Searches and Properties Measurement with ATLAS Haijun Yang (on behalf of the ATLAS) Shanghai Jiao Tong University LHEP, Hainan, China, January 11-14, 2013 Outline Introduction of SM Higgs Searches

More information

Little Higgs Models Theory & Phenomenology

Little Higgs Models Theory & Phenomenology Little Higgs Models Theory Phenomenology Wolfgang Kilian (Karlsruhe) Karlsruhe January 2003 How to make a light Higgs (without SUSY) Minimal models The Littlest Higgs and the Minimal Moose Phenomenology

More information

Discovery potential of toppartners in a realistic composite Higgs model with early LHC data

Discovery potential of toppartners in a realistic composite Higgs model with early LHC data Discovery potential of toppartners in a realistic composite Higgs model with early LHC data Günther Dissertori, Elisabetta Furlan, Filip Moortgat, JHEP09(20)019 Kick-off Meeting Of The LHCPhenoNet Initial

More information

The mass of the Higgs boson

The mass of the Higgs boson The mass of the Higgs boson LHC : Higgs particle observation CMS 2011/12 ATLAS 2011/12 a prediction Higgs boson found standard model Higgs boson T.Plehn, M.Rauch Spontaneous symmetry breaking confirmed

More information

Particle Physics Today, Tomorrow and Beyond. John Ellis

Particle Physics Today, Tomorrow and Beyond. John Ellis Particle Physics Today, Tomorrow and Beyond John Ellis Summary of the Standard Model Particles and SU(3) SU(2) U(1) quantum numbers: Lagrangian: gauge interactions matter fermions Yukawa interactions Higgs

More information

Looking through the Higgs portal with exotic Higgs decays

Looking through the Higgs portal with exotic Higgs decays Looking through the Higgs portal with exotic Higgs decays Jessie Shelton University of Illinois, Urbana-Champaign Unlocking the Higgs Portal (U. Mass. Amherst) May 1, 2014 A light SM-like Higgs is narrow

More information

A Minimal Composite Goldstone Higgs model

A Minimal Composite Goldstone Higgs model A Minimal Composite Goldstone Higgs model Lattice for BSM Physics 2017, Boston University Plan of the talk Introduction to composite Goldstone Higgs models Lattice results for the SU(2) Goldstone Higgs

More information

Strongly coupled gauge theories: What can lattice calculations teach us?

Strongly coupled gauge theories: What can lattice calculations teach us? Strongly coupled gauge theories: What can lattice calculations teach us? Anna Hasenfratz University of Colorado Boulder Rencontres de Moriond, March 21 216 Higgs era of particle physics The 212 discovery

More information

Double Higgs production via gluon fusion (gg hh) in composite models

Double Higgs production via gluon fusion (gg hh) in composite models Double Higgs production via gluon fusion (gg hh) in composite models Ennio Salvioni CERN and University of Padova based on work in collaboration with C.Grojean (CERN), M.Gillioz (Zürich), R.Gröber and

More information

Higgs Signals and Implications for MSSM

Higgs Signals and Implications for MSSM Higgs Signals and Implications for MSSM Shaaban Khalil Center for Theoretical Physics Zewail City of Science and Technology SM Higgs at the LHC In the SM there is a single neutral Higgs boson, a weak isospin

More information

Simplified models in collider searches for dark matter. Stefan Vogl

Simplified models in collider searches for dark matter. Stefan Vogl Simplified models in collider searches for dark matter Stefan Vogl Outline Introduction/Motivation Simplified Models for the LHC A word of caution Conclusion How to look for dark matter at the LHC? experimentally

More information

Light generations partners at the LHC

Light generations partners at the LHC Light generations partners at the LHC Giuliano Panico CERN IPNL Lyon 21 March 2014 based on C. Delaunay, T. Flacke, J. Gonzales, S. Lee, G. P. and G. Perez 1311.2072 [hep-ph] Introduction Introduction

More information

arxiv: v1 [hep-ex] 5 Sep 2014

arxiv: v1 [hep-ex] 5 Sep 2014 Proceedings of the Second Annual LHCP CMS CR-2014/199 September 8, 2014 Future prospects of Higgs Physics at CMS arxiv:1409.1711v1 [hep-ex] 5 Sep 2014 Miguel Vidal On behalf of the CMS Experiment, Centre

More information

Buried Higgs Csaba Csáki (Cornell) with Brando Bellazzini (Cornell) Adam Falkowski (Rutgers) Andi Weiler (CERN)

Buried Higgs Csaba Csáki (Cornell) with Brando Bellazzini (Cornell) Adam Falkowski (Rutgers) Andi Weiler (CERN) Buried Higgs Csaba Csáki (Cornell) with Brando Bellazzini (Cornell) Adam Falkowski (Rutgers) Andi Weiler (CERN) Rutgers University, December 8, 2009 Preview Found a SUSY model, where: Weird higgs decays

More information

Triplet Higgs Scenarios

Triplet Higgs Scenarios Triplet Higgs Scenarios Jack Gunion U.C. Davis Grenoble Higgs Workshop, March 2, 203 Higgs-like LHC Signal Fits with MVA CMS suggest we are heading towards the SM, but it could simply be a decoupling limit

More information

Searches for Supersymmetry at ATLAS

Searches for Supersymmetry at ATLAS Searches for Supersymmetry at ATLAS Renaud Brunelière Uni. Freiburg On behalf of the ATLAS Collaboration pp b b X candidate 2 b-tagged jets pt 52 GeV and 96 GeV E T 205 GeV, M CT (bb) 20 GeV Searches for

More information

Review of Higgs results at LHC (ATLAS and CMS results)

Review of Higgs results at LHC (ATLAS and CMS results) Review of Higgs results at LHC (ATLAS and CMS results) Università degli Studi di Genova and INFN, Genova, Italy E-mail: andrea.favareto@ge.infn.it The status of Higgs sector studies at the Large Hadron

More information

Exotic scalars. Stefania Gori. Second MCTP Spring Symposium on Higgs Boson Physics. The University of Chicago & Argonne National Laboratory

Exotic scalars. Stefania Gori. Second MCTP Spring Symposium on Higgs Boson Physics. The University of Chicago & Argonne National Laboratory Exotic Exotic scalars scalars and and the the Higgs Higgs to to gamma gamma -- gamma gamma rate rate Stefania Gori The University of Chicago & Argonne National Laboratory Second MCTP Spring Symposium on

More information

Lecture 23. November 16, Developing the SM s electroweak theory. Fermion mass generation using a Higgs weak doublet

Lecture 23. November 16, Developing the SM s electroweak theory. Fermion mass generation using a Higgs weak doublet Lecture 23 November 16, 2017 Developing the SM s electroweak theory Research News: Higgs boson properties and use as a dark matter probe Fermion mass generation using a Higgs weak doublet Summary of the

More information

HIGGS-GRAVITATIONAL INTERATIONS! IN PARTICLE PHYSICS & COSMOLOGY

HIGGS-GRAVITATIONAL INTERATIONS! IN PARTICLE PHYSICS & COSMOLOGY HIGGS-GRAVITATIONAL INTERATIONS! IN PARTICLE PHYSICS & COSMOLOGY beyond standard model ZHONG-ZHI XIANYU Tsinghua University June 9, 015 Why Higgs? Why gravity? An argument from equivalence principle Higgs:

More information

Introduction to the Standard Model New Horizons in Lattice Field Theory IIP Natal, March 2013

Introduction to the Standard Model New Horizons in Lattice Field Theory IIP Natal, March 2013 Introduction to the Standard Model New Horizons in Lattice Field Theory IIP Natal, March 2013 Rogerio Rosenfeld IFT-UNESP Lecture 1: Motivation/QFT/Gauge Symmetries/QED/QCD Lecture 2: QCD tests/electroweak

More information

UNPARTICLE PHYSICS. Jonathan Feng UC Irvine. Detecting the Unexpected UC Davis November 2007

UNPARTICLE PHYSICS. Jonathan Feng UC Irvine. Detecting the Unexpected UC Davis November 2007 UNPARTICLE PHYSICS Jonathan Feng UC Irvine Detecting the Unexpected UC Davis 16-17 November 2007 OVERVIEW New physics weakly coupled to SM through heavy mediators Mediators SM CFT Many papers [hep-un]

More information

125 GeV Higgs Boson and Gauge Higgs Unification

125 GeV Higgs Boson and Gauge Higgs Unification 125 GeV Higgs Boson and Gauge Higgs Unification Nobuchika Okada The University of Alabama Miami 2013, Fort Lauderdale, Dec. 12 18, 2013 Discovery of Higgs boson at LHC! 7/04/2012 Standard Model Higgs boson

More information

Tutorial 8: Discovery of the Higgs boson

Tutorial 8: Discovery of the Higgs boson Tutorial 8: Discovery of the Higgs boson Dr. M Flowerdew May 6, 2014 1 Introduction From its inception in the 1960 s, the Standard Model was quickly established, but it took about 50 years for all of the

More information

Physics at e + e - Linear Colliders. 4. Supersymmetric particles. M. E. Peskin March, 2002

Physics at e + e - Linear Colliders. 4. Supersymmetric particles. M. E. Peskin March, 2002 Physics at e + e - Linear Colliders 4. Supersymmetric particles M. E. Peskin March, 2002 In this final lecture, I would like to discuss supersymmetry at the LC. Supersymmetry is not a part of the Standard

More information

BSM physics at the LHC. Akimasa Ishikawa (Kobe University)

BSM physics at the LHC. Akimasa Ishikawa (Kobe University) BSM physics at the LHC Akimasa Ishikawa (Kobe University) 7 Jan. 2011 If SM Higgs exists Why BSM? To solve the hierarchy and naturalness problems O(1 TeV) Quadratic divergence of Higgs mass If SM Higgs

More information

arxiv:hep-ph/ v1 17 Apr 2000

arxiv:hep-ph/ v1 17 Apr 2000 SEARCH FOR NEW PHYSICS WITH ATLAS AT THE LHC arxiv:hep-ph/0004161v1 17 Apr 2000 V.A. MITSOU CERN, EP Division, CH-1211 Geneva 23, Switzerland and University of Athens, Physics Department, Nuclear and Particle

More information

The Higgs boson. Marina Cobal University of Udine

The Higgs boson. Marina Cobal University of Udine The Higgs boson Marina Cobal University of Udine Suggested books F.Halzen, A.D.Martin, Quarks & Leptons: An Introductory Course in Modern Particle Physics, Wiley 1984 Cap.14,15 W.E.Burcham,M.Jobes, Nuclear

More information

Non-Supersymmetric Seiberg duality Beyond the Planar Limit

Non-Supersymmetric Seiberg duality Beyond the Planar Limit Non-Supersymmetric Seiberg duality Beyond the Planar Limit Input from non-critical string theory, IAP Large N@Swansea, July 2009 A. Armoni, D.I., G. Moraitis and V. Niarchos, arxiv:0801.0762 Introduction

More information

Split SUSY and the LHC

Split SUSY and the LHC Split SUSY and the LHC Pietro Slavich LAPTH Annecy IFAE 2006, Pavia, April 19-21 Why Split Supersymmetry SUSY with light (scalar and fermionic) superpartners provides a technical solution to the electroweak

More information

What the Higgs is going on? (beyond the SM)

What the Higgs is going on? (beyond the SM) What the Higgs is going on? (beyond the SM) Cédric Delaunay LAPTH Annecy-le-vieux, France enigmass@lpsc.fr November 8th 2013 ~Menu~ a SM Higgs discovery: good and bad news new physics in Higgs phenomenology

More information

Probing Two Higgs Doublet Models with LHC and EDMs

Probing Two Higgs Doublet Models with LHC and EDMs Probing Two Higgs Doublet Models with LHC and EDMs Satoru Inoue, w/ M. Ramsey-Musolf and Y. Zhang (Caltech) ACFI LHC Lunch, March 13, 2014 Outline 1 Motivation for 2HDM w/ CPV 2 Introduction to 2HDM 3

More information

On behalf of the ATLAS and CMS Collaborations

On behalf of the ATLAS and CMS Collaborations On behalf of the ATLAS and CMS Collaborations Reza Goldouzian Université libre de Bruxelles 1 Ø There are several models of physics beyond the standard model require new particles that couple to quarks

More information

CEPC NOTE CEPC-RECO April 1, Higgs Signal Reconstruction at CEPC-v4 Baseline Detector for the CEPC CDR. CEPC Simulation Group

CEPC NOTE CEPC-RECO April 1, Higgs Signal Reconstruction at CEPC-v4 Baseline Detector for the CEPC CDR. CEPC Simulation Group CEPC NOTE CEPC-RECO-218-2 April 1, 218 Higgs Signal Reconstruction at CEPC-v4 Baseline Detector for the CEPC CDR CEPC Simulation Group Abstract Using the CEPC software chain, the reconstruction performance

More information

New Physics from Vector-Like Technicolor: Roman Pasechnik Lund University, THEP group

New Physics from Vector-Like Technicolor: Roman Pasechnik Lund University, THEP group New Physics from Vector-Like Technicolor: Roman Pasechnik Lund University, THEP group CP3 Origins, September 16 th, 2013 At this seminar I will touch upon... σ 2 Issues of the Standard Model Dramatically

More information

Measurement of the Higgs Couplings by Means of an Exclusive Analysis of its Diphoton decay

Measurement of the Higgs Couplings by Means of an Exclusive Analysis of its Diphoton decay Measurement of the Higgs Couplings by Means of an Exclusive Analysis of its Diphoton decay i.e. what do we know about the Higgs Marco Grassi The Discovery of a New Boson Evidence of a new boson with 5

More information

Higgs couplings and mass measurements with ATLAS. Krisztian Peters CERN On behalf of the ATLAS Collaboration

Higgs couplings and mass measurements with ATLAS. Krisztian Peters CERN On behalf of the ATLAS Collaboration Higgs couplings and mass measurements with ATLAS CERN On behalf of the ATLAS Collaboration July observation: qualitative picture A single state observed around ~125 GeV Qualitatively all observations consistent

More information

Effective Theory for Electroweak Doublet Dark Matter

Effective Theory for Electroweak Doublet Dark Matter Effective Theory for Electroweak Doublet Dark Matter University of Ioannina, Greece 3/9/2016 In collaboration with Athanasios Dedes and Vassilis Spanos ArXiv:1607.05040 [submitted to PhysRevD] Why dark

More information

What Shall We Learn from h^3 Measurement. Maxim Perelstein, Cornell Higgs Couplings Workshop, SLAC November 12, 2016

What Shall We Learn from h^3 Measurement. Maxim Perelstein, Cornell Higgs Couplings Workshop, SLAC November 12, 2016 What Shall We Learn from h^3 Measurement Maxim Perelstein, Cornell Higgs Couplings Workshop, SLAC November 12, 2016 The Shape of Things to Come LHC: spin-0, elementary-looking Higgs field This field is

More information

Search for BSM Higgs bosons in fermion decay modes with ATLAS

Search for BSM Higgs bosons in fermion decay modes with ATLAS Search for BSM Higgs bosons in fermion decay modes with ATLAS A. Straessner on behalf the ATLAS Collaboration FSP 103 ATLAS CC BY-SA 3.0 LHCP 2017 Shanghai May 15-20, 2017 LHCHXSWG-2015-002 arxiv:1302.7033

More information

arxiv: v1 [hep-ex] 7 Jan 2019

arxiv: v1 [hep-ex] 7 Jan 2019 Top quarks and exotics at ATLAS and CMS Leonid Serkin on behalf of the ATLAS and CMS Collaborations 1 arxiv:1901.01765v1 [hep-ex] 7 Jan 2019 INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine and

More information

Who is afraid of quadratic divergences? (Hierarchy problem) & Why is the Higgs mass 125 GeV? (Stability of Higgs potential)

Who is afraid of quadratic divergences? (Hierarchy problem) & Why is the Higgs mass 125 GeV? (Stability of Higgs potential) Who is afraid of quadratic divergences? (Hierarchy problem) & Why is the Higgs mass 125 GeV? (Stability of Higgs potential) Satoshi Iso (KEK, Sokendai) Based on collaborations with H.Aoki (Saga) arxiv:1201.0857

More information

Phenomenology of low-energy flavour models: rare processes and dark matter

Phenomenology of low-energy flavour models: rare processes and dark matter IPMU February 2 nd 2016 Phenomenology of low-energy flavour models: rare processes and dark matter Lorenzo Calibbi ITP CAS, Beijing Introduction Why are we interested in Flavour Physics? SM flavour puzzle

More information

Where are we heading? Nathan Seiberg IAS 2016

Where are we heading? Nathan Seiberg IAS 2016 Where are we heading? Nathan Seiberg IAS 2016 Two half-talks A brief, broad brush status report of particle physics and what the future could be like The role of symmetries in physics and how it is changing

More information

Dynamical supersymmetry breaking, with Flavor

Dynamical supersymmetry breaking, with Flavor Dynamical supersymmetry breaking, with Flavor Cornell University, November 2009 Based on arxiv: 0911.2467 [Craig, Essig, Franco, Kachru, GT] and arxiv: 0812.3213 [Essig, Fortin, Sinha, GT, Strassler] Flavor

More information

Lecture III: Higgs Mechanism

Lecture III: Higgs Mechanism ecture III: Higgs Mechanism Spontaneous Symmetry Breaking The Higgs Mechanism Mass Generation for eptons Quark Masses & Mixing III.1 Symmetry Breaking One example is the infinite ferromagnet the nearest

More information

Composite Higgs and Flavor

Composite Higgs and Flavor Composite Higgs and Flavor Xiaohong Wu East China University of Science and Technology Seminar @ ICTS, Jun. 6, 2013 125GeV SM-like Higgs Discovered p 0 5 3-3 -5-7 -9 1 3 Combined observed γγ observed llll

More information

Properties of the Higgs Boson, and its interpretation in Supersymmetry

Properties of the Higgs Boson, and its interpretation in Supersymmetry Properties of the Higgs Boson, and its interpretation in Supersymmetry U. Ellwanger, LPT Orsay The quartic Higgs self coupling and Supersymmetry The Next-to-Minimal Supersymmetric Standard Model Higgs

More information

Rethinking Flavor Physics

Rethinking Flavor Physics Rethinking Flavor Physics René Sondenheimer FSU Jena & L. Egger, A. Maas arxiv:1701.02881 Cold Quantum Coffee, Heidelberg 30th of May 2017 LHC works remarkably well Higgs discovery completed SM 2 LHC works

More information

Two-Higgs-doublet models with Higgs symmetry

Two-Higgs-doublet models with Higgs symmetry Two-Higgs-doublet models with Higgs symmetry Chaehyun Yu a a School of Physics, KIAS, Seoul 130-722, Korea Abstract We investigate two-higgs-doublet models (2HDMs) with local U(1) H Higgs flavor symmetry

More information

Elementary Particles II

Elementary Particles II Elementary Particles II S Higgs: A Very Short Introduction Higgs Field, Higgs Boson, Production, Decays First Observation 1 Reminder - I Extend Abelian Higgs model to non-abelian gauge symmetry: ( x) +

More information

The SCTM Phase Transition

The SCTM Phase Transition The SCTM Phase Transition ICTP / SAIFR 2015 Mateo García Pepin In collaboration with: Mariano Quirós Motivation The Model The phase transition Summary EW Baryogenesis A mechanism to explain the observed

More information

Dark Matter and Gauged Baryon Number

Dark Matter and Gauged Baryon Number Dark Matter and Gauged Baryon Number Sebastian Ohmer Collaborators: Pavel Fileviez Pérez and Hiren H. Patel P. Fileviez Pérez, SO, H. H. Patel, Phys.Lett.B735(2014)[arXiv:1403.8029] P.Fileviez Pérez, SO,

More information

Higgs Searches at CMS

Higgs Searches at CMS Higgs Searches at CMS Ashok Kumar Department of Physics and Astrophysics University of Delhi 110007 Delhi, India 1 Introduction A search for the Higgs boson in the Standard Model (SM) and the Beyond Standard

More information

Adam Falkowski. 750 GeV discussion. LAL Orsay, 18 January 2016

Adam Falkowski. 750 GeV discussion. LAL Orsay, 18 January 2016 Adam Falkowski 75 GeV discussion LAL Orsay, 18 January 216 Is it true? Davis,Fairbairn,Heal,Tunney arxiv:161.3153 Text Claim that another function fits background better than ATLAS fit, and when it s used,

More information

Theory of anomalous couplings. in Effective Field Theory (EFT)

Theory of anomalous couplings. in Effective Field Theory (EFT) Theory of Anomalous Couplings in Effective Field Theory (EFT) Nicolas Greiner Max Planck Institut für Physik, München aqgc Dresden, 30.9. 2.10. 2103 Motivation July 4, 2012: New particle found! (Compatible

More information

Single Higgs production at LHC as a probe for an anomalous Higgs self coupling

Single Higgs production at LHC as a probe for an anomalous Higgs self coupling Single Higgs production at LHC as a probe for an anomalous Higgs self coupling Brookhaven National Laboratory E-mail: pgiardino@bnl.gov We explore the possibility of probing the trilinear Higgs self coupling

More information

Searches for Beyond SM Physics with ATLAS and CMS

Searches for Beyond SM Physics with ATLAS and CMS Searches for Beyond SM Physics with ATLAS and CMS (University of Liverpool) on behalf of the ATLAS and CMS collaborations 1 Why beyond SM? In 2012 the Standard Model of Particle Physics (SM) particle content

More information

Precision (B)SM Higgs future colliders

Precision (B)SM Higgs future colliders Flavor and top physics @ 100 TeV Workshop, IHEP/CAS, MARCH 5, 2015 Seung J. Lee (KAIST) Precision (B)SM Higgs Studies @ future colliders 1. Study of SM Higgs boson partial widths and branching fractions

More information

Rare exclusive decays of the Higgs and light quark Yukawa couplings

Rare exclusive decays of the Higgs and light quark Yukawa couplings Rare exclusive decays of the Higgs and light quark Yukawa couplings Frank Petriello Higgs Hunting 2015 July 30, 2015 Harvard Particle Theory Seminar December 3, 2013 1 Outline Introduction and motivation

More information

Lattice studies of the conformal window

Lattice studies of the conformal window Lattice studies of the conformal window Luigi Del Debbio University of Edinburgh Zeuthen - November 2010 T H E U N I V E R S I T Y O F E D I N B U R G H Luigi Del Debbio (University of Edinburgh) Lattice

More information

Hidden two-higgs doublet model

Hidden two-higgs doublet model Hidden two-higgs doublet model C, Uppsala and Lund University SUSY10, Bonn, 2010-08-26 1 Two Higgs doublet models () 2 3 4 Phenomenological consequences 5 Two Higgs doublet models () Work together with

More information

General Gauge Mediation Phenomenology

General Gauge Mediation Phenomenology Pre-Strings 2011 @ NORDITA Stockholm May 30 th 2011 General Gauge Mediation Phenomenology Valya Khoze (IPPP Durham University) with Steve Abel, Matt Dolan, David Grellscheid, Joerg Jaeckel, Peter Richardson,

More information

But not exact. Extend to arbitrary orders in perturbation theory? [Active research area.]

But not exact. Extend to arbitrary orders in perturbation theory? [Active research area.] 1 2 Jet evolution Scattering occurs at scale Q 2 0 Λ 2. makes quark with virtuality q 2, with 0 < q 2 < Q 2. Now the quark emits collinear and soft radiation as before, with small changes. The initial

More information

IX. Electroweak unification

IX. Electroweak unification IX. Electroweak unification The problem of divergence A theory of weak interactions only by means of W ± bosons leads to infinities e + e - γ W - W + e + W + ν e ν µ e - W - µ + µ Divergent integrals Figure

More information

Discovery of the Higgs Boson

Discovery of the Higgs Boson Discovery of the Higgs Boson Seminar: Key Experiments in Particle Physics Martin Vogrin Munich, 22. July 2016 Outline Theoretical part Experiments Results Open problems Motivation The SM is really two

More information

µ = (15.4 ± 0.2) 10 10

µ = (15.4 ± 0.2) 10 10 L µ L a Exp µ [1 1 ] a µ = a Exp µ a SM µ [1 1 ] 26.1 ± 8. (3.3 ) 31.6 ± 7.9 (4. ) 1165928.9 ± 6.3 33.5 ± 8.2 (4.1 ) 28.3 ± 8.7 (3.3 ) 29. ± 9. (3.2 ) 28.7 ± 8. (3.6 ) a EW µ = (15.4 ±.2) 1 1 µ µ L µ L

More information

Prospects On Standard Model And Higgs Physics At The HL-LHC

Prospects On Standard Model And Higgs Physics At The HL-LHC 1 2 3 Prospects On Standard Model And Higgs Physics At The HL-LHC Aleandro Nisati 1,a) 4 5 6 1 Istituto Nazionale di Fisica Nucleare, P.le Aldo Moro 2; Rome, 00185 (I); on behalf of the ATLAS and CMS collaborations

More information

Identification of the Higgs boson produced in association with top quark pairs in proton-proton

Identification of the Higgs boson produced in association with top quark pairs in proton-proton Identification of the Higgs boson produced in association with top quark pairs in proton-proton collision: an analysis of the final state containing three leptons with the ATLAS detector Valentina Vecchio,

More information

Quirks. Z. Chacko University of Maryland, College Park

Quirks. Z. Chacko University of Maryland, College Park Quirks Z. Chacko University of Maryland, College Park Disclaimer Only a small portion of this talk is based on my own work, in collaboration with Burdman, Goh, Harnik and Krenke. In particular, I have

More information

The Higgs Boson and Electroweak Symmetry Breaking

The Higgs Boson and Electroweak Symmetry Breaking The Higgs Boson and Electroweak Symmetry Breaking 1. Minimal Standard Model M. E. Peskin Chiemsee School September 2014 The Higgs boson has an odd position in the Standard Model of particle physics. On

More information

Early SUSY Searches in Events with Leptons with the ATLAS-Detector

Early SUSY Searches in Events with Leptons with the ATLAS-Detector Early SUSY Searches in Events with Leptons with the ATLAS-Detector Timo Müller Johannes Gutenberg-Universität Mainz 2010-29-09 EMG Annual Retreat 2010 Timo Müller (Universität Mainz) Early SUSY Searches

More information

Yukawa and Gauge-Yukawa Unification

Yukawa and Gauge-Yukawa Unification Miami 2010, Florida Bartol Research Institute Department Physics and Astronomy University of Delaware, USA in collaboration with Ilia Gogoladze, Rizwan Khalid, Shabbar Raza, Adeel Ajaib, Tong Li and Kai

More information

Electroweak Baryogenesis and Higgs Signatures

Electroweak Baryogenesis and Higgs Signatures Timothy Cohen (SLAC) 1/27 Electroweak Baryogenesis and Higgs Signatures Timothy Cohen (SLAC) with Aaron Pierce arxiv:1110.0482 with David Morrissey and Aaron Pierce arxiv:1203.2924 Second MCTP Spring Symposium

More information

Higgs Coupling Measurements!

Higgs Coupling Measurements! Status, prospects, and interplay with searches for physics BSM Seminar University of California - Irvine April 23rd, 2014 Introduction Fantastic progress since discovery July 2012 Observation in three

More information

Higgs Couplings and Electroweak Phase Transition

Higgs Couplings and Electroweak Phase Transition Higgs Couplings and Electroweak Phase Transition Maxim Perelstein, Cornell! ACFI Workshop, Amherst MA, September 17, 2015 Based on:! Andrew Noble, MP, 071018, PRD! Andrey Katz, MP, 1401.1827, JHEP ElectroWeak

More information

Search for new physics in rare D meson decays

Search for new physics in rare D meson decays Search for new physics in rare D meson decays Svjetlana Fajfer and Sasa Prelovsek Department of Physics, University of Ljubljana and J. Stefan Institute, Ljubljana, Slovenia XXXIII INTERNATIONAL CONFERENCE

More information

A model of the basic interactions between elementary particles is defined by the following three ingredients:

A model of the basic interactions between elementary particles is defined by the following three ingredients: I. THE STANDARD MODEL A model of the basic interactions between elementary particles is defined by the following three ingredients:. The symmetries of the Lagrangian; 2. The representations of fermions

More information

Review of ATLAS experimental results (II)

Review of ATLAS experimental results (II) Review of ATLAS experimental results (II) Rachid Mazini Academia Sinica Taiwan CTEQ 2012 summer school Lima, Peru 30 July -8 August Rachid Mazini, Academia Sinica 1 Outline part II Higgs searches H, H

More information

Higgs boson(s) in the NMSSM

Higgs boson(s) in the NMSSM Higgs boson(s) in the NMSSM U. Ellwanger, LPT Orsay Supersymmetry had a bad press recently: No signs for squarks/gluino/charginos/neutralinos... at the LHC Conflict (?) between naturalness and the Higgs

More information

Searching for the Higgs at the LHC

Searching for the Higgs at the LHC Searching for the Higgs at the LHC Philip Lawson Boston University - PY 898 - Special Topics in LHC Physics 3/16/2009 1 Outline Theory & Background of Higgs Mechanism Production Modes Decay Modes - Discovery

More information

Di-photon at 750 GeV! (A first read)

Di-photon at 750 GeV! (A first read) Di-photon at 750 GeV! (A first read) LianTao Wang ( )! U. Chicago Jan. 1, IAS HKUST Excess around 750 GeV?! Events / 40 GeV 4 3 1 ATLAS Preliminary Data Background-only fit -1 s = 13 TeV, 3. fb Events

More information

The Higgs Boson as a Probe of New Physics. Ian Lewis (University of Kansas)

The Higgs Boson as a Probe of New Physics. Ian Lewis (University of Kansas) The Higgs Boson as a Probe of New Physics Ian Lewis University of Kansas 1 July 4, 2012 ATLAS and CMS announce discovery of a new particle. Consistent with long sought-after Higgs boson. "We have reached

More information

Lecture 03. The Standard Model of Particle Physics. Part II The Higgs Boson Properties of the SM

Lecture 03. The Standard Model of Particle Physics. Part II The Higgs Boson Properties of the SM Lecture 03 The Standard Model of Particle Physics Part II The Higgs Boson Properties of the SM The Standard Model So far we talked about all the particles except the Higgs If we know what the particles

More information

Search for W' tb in the hadronic final state at ATLAS

Search for W' tb in the hadronic final state at ATLAS Search for W' tb in the hadronic final state at ATLAS Ho Ling Li The University of Chicago January 5, 2015 1 Introduction What is W'? A charged, heavy, Standard-Model-like W gauge boson Analysis channels

More information

Overview. The quest of Particle Physics research is to understand the fundamental particles of nature and their interactions.

Overview. The quest of Particle Physics research is to understand the fundamental particles of nature and their interactions. Overview The quest of Particle Physics research is to understand the fundamental particles of nature and their interactions. Our understanding is about to take a giant leap.. the Large Hadron Collider

More information

Holographic Techni-dilaton

Holographic Techni-dilaton Holographic Techni-dilaton Maurizio Piai Swansea University D. Elander, MP, arxiv: 1212.2600 D. Elander, MP arxiv: 1112.2915 - NPB R. Lawrance, MP arxiv: 1207.0427 D. Elander, MP arxiv: 1208.0546 - NPB

More information

ATLAS Run II Exotics Results. V.Maleev (Petersburg Nucleare Physics Institute) on behalf of ATLAS collaboration

ATLAS Run II Exotics Results. V.Maleev (Petersburg Nucleare Physics Institute) on behalf of ATLAS collaboration ATLAS Run II Exotics Results V.Maleev (Petersburg Nucleare Physics Institute) on behalf of ATLAS collaboration What is the dark matter? Is the Higgs boson solely responsible for electroweak symmetry breaking

More information

750GeV diphoton excess and some explanations. Jin Min Yang

750GeV diphoton excess and some explanations. Jin Min Yang 750GeV diphoton excess and some explanations Jin Min Yang ITP, Beijing / TUHEP, Tohoku IPMU, Tokyo U 2016.3.9 Outline 1 Introduction 2 750GeV diphoton excess 3 Some explanations 4 Conclusion & outlook

More information

The production of additional bosons and the impact on the Large Hadron Collider

The production of additional bosons and the impact on the Large Hadron Collider The production of additional bosons and the impact on the Large Hadron Collider presented by Alan S. Cornell for the HEP group, University of the Witwatersrand With N.Chakrabarty, T.Mandal and B.Mukhopadhyaya

More information

STANDARD MODEL and BEYOND: SUCCESSES and FAILURES of QFT. (Two lectures)

STANDARD MODEL and BEYOND: SUCCESSES and FAILURES of QFT. (Two lectures) STANDARD MODEL and BEYOND: SUCCESSES and FAILURES of QFT (Two lectures) Lecture 1: Mass scales in particle physics - naturalness in QFT Lecture 2: Renormalisable or non-renormalisable effective electroweak

More information

Reinterpretations of non-resonant searches for Higgs boson pairs

Reinterpretations of non-resonant searches for Higgs boson pairs Reinterpretations of non-resonant searches for Higgs boson pairs HH Workshop, Fermilab Alexandra Carvalho, Florian Goertz, Ken Mimasu, Maxime Gouzevitch, Anamika Aggarwal arxiv:1710.08261v1 (on preparation

More information

Precision Top Quark Measurements at Linear Colliders. M. E. Peskin LCWS 2015 November 2015

Precision Top Quark Measurements at Linear Colliders. M. E. Peskin LCWS 2015 November 2015 Precision Top Quark Measurements at Linear Colliders M. E. Peskin LCWS 2015 November 2015 In discussion of the physics case for future e+e- colliders, the top quark is often unappreciated. Some people

More information

Strongly Coupled Dark Matter at the LHC

Strongly Coupled Dark Matter at the LHC Strongly Coupled Dark Matter at the LHC Graham Kribs University of Oregon Appelquist et al (LSD Collaboration): 1402.6656; 1503.04203; 1503.04205 GK, Adam Martin, Ethan Neil, Bryan Ostdiek, Tom Tong [in

More information