What Shall We Learn from h^3 Measurement. Maxim Perelstein, Cornell Higgs Couplings Workshop, SLAC November 12, 2016

Size: px
Start display at page:

Download "What Shall We Learn from h^3 Measurement. Maxim Perelstein, Cornell Higgs Couplings Workshop, SLAC November 12, 2016"

Transcription

1 What Shall We Learn from h^3 Measurement Maxim Perelstein, Cornell Higgs Couplings Workshop, SLAC November 12, 2016

2 The Shape of Things to Come LHC: spin-0, elementary-looking Higgs field This field is allowed to have a potential a new kind of object in real-world relativistic QFT What we know now: Measuring Higgs cubic coupling is the next step in extending our knowledge of the shape of V: 1

3 h^3 in the Standard Model SM postulates a simple Higgs potential: This leads to a tree-level prediction: Leading loop corrections can be taken into account with Coleman- Weinberg potential: Higgs-dependent masses : SM radiative corrections dominated by top and W/Z contributions, well known (direct measurement of top Yukawa would be helpful) 2

4 h^3 Beyond the SM Example: add a gauge-singlet real scalar Impose a symmetry: This fixes the potential: V = V SM (H)+ 1 2 M 0 2 S 2 + ζ H 2 S 2 No admixture of in the 125 GeV state no Br shifts If, shows up in exotic Higgs decays But if, direct signatures become much harder However, loops contribute to the CW potential: [e.g. S. Gori s talk] [e.g. Craig et. al., ] Higgs cubic coupling measurement could be the first to discover such a scalar 3

5 Radiative EWSB An extreme example: what if (After all we know something s wrong with the The Higgs potential is term ) This has a minimum at Higgs boson mass constraint: In this model: breaks EW symmetry [Coleman, Weinberg, 73] +66% deviation from SM Perturbativity is questionable, but still this gives a useful illustration of how large the effects can be, without conflict with current data 4

6 d=6 EWSB Another extreme example: what if (After all we know something s wrong with the term ) EWSB can be achieved by balancing a negative quartic against a non-renormalizable operator: Reproducing the observed vev and Higgs mass requires Predict: +133% deviation from SM Applicability of EFT is questionable, but still this gives a useful illustration of how large the effects can be, without conflict with current data 5

7 ElectroWeak Phase Transition In our world, EW gauge symmetry is broken: Right after Big Bang, Universe is filled with high-t plasma Higgs moving through the plasma acquires a thermal mass (much like photon plasma mass ) Symmetry is restored at high T Electroweak phase transition at kt GeV, SU(2) U(1) Y U(1) em T K How much can we learn about the dynamics of this transition? First-order ( boiling ) or second-order ( quasiadiabatic ) transition? 6

8 First- or Second-Order EWPT? First-order transition: bubbles of broken-symmetry phase nucleate inside restoredsymmetry phase, grow, collide, take over Non-equilibrium process, can enable baryogenesis (EWBG scenario) Second-order: field remains homogeneous at all times, vacuum gradually shifts from 0 to v Which one is it? Controlled by 7

9 EWPT and Collider Data Direct relics from the transition in the early universe unlikely to survive (possibly gravitational waves?) No possibility of producing plasma with restored EW symmetry (T-RHIC?) so no direct experimental probe However, finite-t physics is described by the same Lagrangian as the T=0 physics we will study at colliders Only particles with mass up to TeV scale are relevant for the EW phase transition ( decoupling ) Determine the TeV-scale Lagrangian at colliders order of the transition, critical temperature, etc. [see e.g. Grojean and Servant, 2006] What measurements will be necessary to address this? learn the 8

10 Finite-T Effective Potential Assume weakly coupled physics at the TeV scale (beware: perturbation theory at finite-t still tricky) Assume single physical higgs h participates in the transition (easy to generalize away from this assumption) One-loop effective potential has the form V T (h) = i V (h; T )=V t (h)+v T =0 (h)+v T (h) T=0 (Coleman-Weinberg) part: V T =0 (h) = g i ( 1) F i 64π 2 i Finite-T part: g i ( 1) F i T 2π 2 M 4 i ( log M i 2 ) µ 2 + C i Higgs-dependent Mass dkk 2 log[1 ( 1) F i exp( β k 2 + Mi 2)] In a renormalizable theory M 2 i = M 2 i,0 + a i h 2 9

11 Effective Potential: Ring Terms Beyond one-loop, include ring contributions ( Can be summed up to yield: V r (h, T )= T [Mb 3 (Mb 2 +Π b (0)) 3/2] 12π b [Carrington, PRD 1992] Only bosons contribute (due to IR divergence) Important for the first-order EWPT since at high T, which can produce the desired dip Higgs-dependent Mass V r T h 3 Ring terms controlled by the same parameters as the oneloop effective potential 10

12 First-Order Phase Transition V eff (h; T ) V eff (h; T ) V eff (h; T ) h h h T>T c T = T c T = T n T c critical temperature: nucleation temperature: V eff (h; T ) V eff (0) = V eff (v(t c )) Γ n H T 2 n M Pl Γ n e S T =0 h strong first-order transition (needed for EWBG): ξ = v(t c) 1 T c 11

13 Effective Potential from Colliders? To fully reconstruct finite-t potential, we need to know the following: Higgs zero-temperature tree-level potential: vev, mass Full spectrum of states (SM and BSM) with significant couplings to the Higgs and masses up to ~few 100 GeV Their fermion numbers and state multiplicities Their masses and couplings to the Higgs: M 2 i = M 2 i,0 + a i h 2 One possibility is to directly discover all new states, measure their masses and couplings This is difficult: e.g. V = V SM (H)+ 1 2 M 2 0 S 2 + ζ H 2 S 2 m S > m h with 2 12

14 EWPT and Higgs Cubic [Noble, MP, ] Idea: look for simple observables that are correlated with the order of the EWPT in a reasonably model-independent framework Proposal: use Higgs boson cubic self-coupling Heuristic explanation: λ 3 In the SM transition is cross over for a 125 GeV Higgs New physics must change the shape of V(h) at T c This changes the shape of V(h) at T=0 different λ 3 (v, m h ) Models with 1st order phase transition exhibit large (typically %) deviations of from its SM value λ 3 Evidence: analysis of a series of toy models designed to mimic the known mechanisms for getting a first-order PT 13

15 Toy Model 1: Quantum EWPT Single Higgs doublet, SM couplings to SM states, add a real scalar field S Scalar potential: V = V SM (H)+ 1 2 M 2 0 S 2 + ζ H 2 S 2 For simplicity, assume (for now) positive Compute effective Higgs potential as a function of temperature M 2 0,ζ S =0 Look for minima: V eff / h =0 If h =0and h 0minima coexist, 1st order transition Scan find points with first-order EWPT Physical Higgs boson cubic self-coupling: λ 3 = d3 V eff (v; T =0) dh 3 14

16 Blue points: bumpy T=0 3.0 potentials Quantum EWPT: Results Ξ vs Λ Λ 3 vs m h for Ξ 1 Plots from Ξ 1.5 Λ Λ 3 m h ~20% minimal deviation Exp. prospects: 27% for H-20 scenario at ILC [ ] 5-10% at a 100 TeV pp collider Updates later in this session (talks by M. Klute, T. Tanabe) 15

17 Including Negative ( Two-Step ) ΛHS Μ S 2 0 two step PT one step PT Μ S ΛHS [Curtin, Meade, Yu, ] m S GeV m S GeV Two-step phase transitions are possible with, large shift in the cubic in most of the two-step region <10% deviations in a (funny) corner of parameter space 16

18 Cubic vs. Presicion Higgsstrahlung ΛHS 2 HS m S GeV m S [GeV] [in %] also makes a one-loop contribution to [Craig, Englert, McCullough, ; Katz, MP, ] Precision measurement at Higgs factories: e.g. CEPC claims % Comparable sensitivity to h^3, depends on details 17

19 A Word of Caution: Boson+Fermion 4 Ξ vs Λ 3 Extension of Toy Model: Add particles of opposite spin-statistics Ξ 3 2 V T =0 (h) = i g i ( 1) F i 64π 2 M 4 i ( log M i 2 ) µ 2 + C i V T (h) = g i ( 1) F i T 2π 2 dkk 2 log[1 ( 1) F i exp( β k 2 + Mi 2)] i Cancellation between B and F contributions at T=0 can result in near-sm value of - counterexample to our claim λ 3 [But SUSY has to be broken by strong coupling to the SM via h M 100 GeV δλ 3 λ 3 7% Λ 3 accidental] 18

20 Charged/Colored Scalars Similar results if the scalars driving first-order EWPT are colored or electrically charged Couplings to are already measured at ~10-20% level, will improve to ~a few % with more LHC data This will completely cover the parameter space Plots withfrom viable EWPT Results: RH Stop Plots from RH Stop If a signalresults: is seen, still want to measure Higgs cubic as it provides h=1, f~h3, 1L2ê3, hgg h=1, f~h3, 1L2ê3, hgg direct information about the Higgs potential (admittedly at T=0) h=1, f~h3, 1L2ê3, hgg h=1, f~h3, 1L2ê3, hgg k NOT ruled out if k m f HGeVL m f HGeVL [Katz, MP, ] 300 m f HGeVL m f HGeVL in the Figure 1. The region a strongly first-order EWPT occurs of parameter space where panel) 1.5 stop benchmark RH model. Also shown are the fractional deviations of 2.5 the hgg (left k k and h (right panel) couplings from their SM values. Solid/black lines: contours of constant EWPT strength parameter (see Eq. (2.9)). Dashed/orange lines: contours of constant Figure 1. The region of parameter space where a strongly first-order EWPT occurs in the 150 MIN deviation ~17%, probed at 3-sigma at LHC-14 19

21 TM 2: Non-renormalizable EWPT An alternative way to get 1st-order EWPT: add a nonrenormalizable operator to the SM Higgs potential V = µ 2 H 2 + λ H Λ 2 H 6 [Grojean, Servant, Wells 2004] Reasonable EFT if v Λ First-order transition can occur for 6 Ξ vs Λ λ 1 µ 2 > 0,λ<0 Λ 3 vs m h for Ξ 1 Plots from Ξ 4 3 Λ Λ % minimal deviation m h 20

22 TM 3: Higgs-Singlet Mixing As in TM1, add 1 real scalar, but with a more general potential: V (H, S) =µ 2 H 2 + λ H 4 + a 1 2 H 2 S + a 2 2 H 2 S 2 + b 2 2 S2 + b 3 3 S3 + b 4 Generically, both H and S get vevs at zero temperature Strongly first-order EWPT possible, large deviations in Higgs cubic consistent with (current) constraints 4 S4 Tc % 13%- 30%- 50%- SM g g 111 [Profume, Ramsey-Musolf, Wainwright, Winslow, ] 21

23 Conclusions Measuring Higgs cubic coupling gives new information about the shape of the Higgs potential Large (up to ~factor-of-two) deviations from the SM are possible, consistent with current Higgs data Models with first-order electroweak phase transition (needed for viable electroweak baryogenesis) generically predict large deviations of Higgs cubic from the SM A ~10%-level measurement of the Higgs cubic would provide a stringer test of such models 22

Higgs Couplings and Electroweak Phase Transition

Higgs Couplings and Electroweak Phase Transition Higgs Couplings and Electroweak Phase Transition Maxim Perelstein, Cornell! ACFI Workshop, Amherst MA, September 17, 2015 Based on:! Andrew Noble, MP, 071018, PRD! Andrey Katz, MP, 1401.1827, JHEP ElectroWeak

More information

Testing Electroweak Phase Transition at Future Colliders

Testing Electroweak Phase Transition at Future Colliders Testing Electroweak Phase Transition at Future Colliders Maxim Perelstein, Cornell Hong Kong IAS Conference, January 19, 2016 Based on: Andrew Noble, MP, 071018, PRD Andrey Katz, MP, 1401.1827, JHEP Katz,

More information

Golden SUSY, Boiling Plasma, and Big Colliders. M. Perelstein, Cornell University IPMU LHC Workshop talk, 12/18/07

Golden SUSY, Boiling Plasma, and Big Colliders. M. Perelstein, Cornell University IPMU LHC Workshop talk, 12/18/07 Golden SUSY, Boiling Plasma, and Big Colliders M. Perelstein, Cornell University IPMU LHC Workshop talk, 12/18/07 Outline Part I: Supersymmetric Golden Region and its Collider Signature (with Christian

More information

Singlet Assisted Electroweak Phase Transitions and Precision Higgs Studies

Singlet Assisted Electroweak Phase Transitions and Precision Higgs Studies Singlet Assisted Electroweak Phase Transitions and Precision Higgs Studies Peter Winslow Based on: PRD 91, 035018 (2015) (arxiv:1407.5342) S. Profumo, M. Ramsey-Musolf, C. Wainwright, P. Winslow arxiv:1510.xxxx

More information

The SCTM Phase Transition

The SCTM Phase Transition The SCTM Phase Transition ICTP / SAIFR 2015 Mateo García Pepin In collaboration with: Mariano Quirós Motivation The Model The phase transition Summary EW Baryogenesis A mechanism to explain the observed

More information

Physics Case for! e+e- Colliders! at 250 GeV. Maxim Perelstein, Cornell Americas Workshop on Linear Colliders 2017, SLAC June 29, 2017

Physics Case for! e+e- Colliders! at 250 GeV. Maxim Perelstein, Cornell Americas Workshop on Linear Colliders 2017, SLAC June 29, 2017 Physics Case for e+e- Colliders at 250 GeV Maxim Perelstein, Cornell Americas Workshop on Linear Colliders 2017, SLAC June 29, 2017 Particle Physics in 2017 The Standard Model (SM) has been the undisputed

More information

Higgs Physics and Cosmology

Higgs Physics and Cosmology Higgs Physics and Cosmology Koichi Funakubo Department of Physics, Saga University 1 This year will be the year of Higgs particle. The discovery of Higgs-like boson will be reported with higher statistics

More information

A model of the basic interactions between elementary particles is defined by the following three ingredients:

A model of the basic interactions between elementary particles is defined by the following three ingredients: I. THE STANDARD MODEL A model of the basic interactions between elementary particles is defined by the following three ingredients:. The symmetries of the Lagrangian; 2. The representations of fermions

More information

Probing New Physics of Cubic Higgs Interaction

Probing New Physics of Cubic Higgs Interaction Probing New Physics of Cubic Higgs Interaction Jing Ren University of Toronto ACFI Workhop September 19, 2015 Based on H.J. He (Tsinghua), JR, W. Yao (LBNL), 1506.03302 1 Outline Motivation New physics

More information

EW Naturalness in Light of the LHC Data. Maxim Perelstein, Cornell U. ACP Winter Conference, March

EW Naturalness in Light of the LHC Data. Maxim Perelstein, Cornell U. ACP Winter Conference, March EW Naturalness in Light of the LHC Data Maxim Perelstein, Cornell U. ACP Winter Conference, March 3 SM Higgs: Lagrangian and Physical Parameters The SM Higgs potential has two terms two parameters: Higgs

More information

Twin Higgs Theories. Z. Chacko, University of Arizona. H.S Goh & R. Harnik; Y. Nomura, M. Papucci & G. Perez

Twin Higgs Theories. Z. Chacko, University of Arizona. H.S Goh & R. Harnik; Y. Nomura, M. Papucci & G. Perez Twin Higgs Theories Z. Chacko, University of Arizona H.S Goh & R. Harnik; Y. Nomura, M. Papucci & G. Perez Precision electroweak data are in excellent agreement with the Standard Model with a Higgs mass

More information

Electroweak baryogenesis in the MSSM. C. Balázs, Argonne National Laboratory EWBG in the MSSM Snowmass, August 18, /15

Electroweak baryogenesis in the MSSM. C. Balázs, Argonne National Laboratory EWBG in the MSSM Snowmass, August 18, /15 Electroweak baryogenesis in the MSSM C. Balázs, Argonne National Laboratory EWBG in the MSSM Snowmass, August 18, 2005 1/15 Electroweak baryogenesis in the MSSM The basics of EWBG in the MSSM Where do

More information

Electroweak Baryogenesis after LHC8

Electroweak Baryogenesis after LHC8 Electroweak Baryogenesis after LHC8 Gláuber Carvalho Dorsch with S. Huber and J. M. No University of Sussex arxiv:135.661 JHEP 131, 29(213) What NExT? Southampton November 27, 213 G. C. Dorsch EWBG after

More information

Electroweak phase transition with two Higgs doublets near the alignment limit

Electroweak phase transition with two Higgs doublets near the alignment limit Electroweak phase transition with two Higgs doublets near the alignment limit Jérémy Bernon The Hong Kong University of Science and Technology Based on 1712.08430 In collaboration with Ligong Bian (Chongqing

More information

Supersymmetric Origin of Matter (both the bright and the dark)

Supersymmetric Origin of Matter (both the bright and the dark) Supersymmetric Origin of Matter (both the bright and the dark) C.E.M. Wagner Argonne National Laboratory EFI, University of Chicago Based on following recent works: C. Balazs,, M. Carena and C.W.; Phys.

More information

Maria Krawczyk U. of Warsaw

Maria Krawczyk U. of Warsaw Higgs as a probe of a new physics Toyama, 11.2. 2015 Maria Krawczyk U. of Warsaw In coll. with I. Ginzburg, K. Kanishev, D.Sokolowska, B. Świeżewska, G. Gil, P.Chankowski, M. Matej, N. Darvishi, A. Ilnicka,

More information

A New Look at the Electroweak Baryogenesis in the post-lhc Era. Jing Shu ITP-CAS

A New Look at the Electroweak Baryogenesis in the post-lhc Era. Jing Shu ITP-CAS A New Look at the Electroweak Baryogenesis in the post-lhc Era. W. Huang, J. S,Y. Zhang, JHEP 1303 (2013) 164 J. S,Y. Zhang, Phys. Rev. Lett. 111 (2013) 091801 W. Huang, ZF. Kang, J. S, PW. Wu, JM. Yang,

More information

First Order Electroweak Phase Transition from (Non)Conformal Extensions of the Standard Model

First Order Electroweak Phase Transition from (Non)Conformal Extensions of the Standard Model Syddansk Universitet First Order Electroweak Phase Transition from (Non)Conformal Extensions of the Standard Model Sannino, Francesco; Virkajärvi, Jussi Tuomas Published in: Physical Review D (Particles,

More information

Dynamics of a two-step Electroweak Phase Transition

Dynamics of a two-step Electroweak Phase Transition Dynamics of a two-step Electroweak Phase Transition May 2, 2014 ACFI Higgs Portal Workshop in Collaboration with Pavel Fileviez Pérez Michael J. Ramsey-Musolf Kai Wang hiren.patel@mpi-hd.mpg.de Electroweak

More information

The Inert Doublet Matter

The Inert Doublet Matter 55 Zakopane, June. 2015 The Inert Doublet Matter Maria Krawczyk University of Warsaw In coll. with I. Ginzburg, K. Kanishev, D.Sokolowska, B. Świeżewska, G. Gil, P.Chankowski, M. Matej, N. Darvishi, A.

More information

Electroweak baryogenesis as a probe of new physics

Electroweak baryogenesis as a probe of new physics Electroweak baryogenesis as a probe of new physics Eibun Senaha (Nagoya U) HPNP25@Toyama U. February 3, 25 Outline Introduction Overview of electroweak baryogenesis (EWBG) Current status EWBG in SUSY models

More information

Double Higgs production via gluon fusion (gg hh) in composite models

Double Higgs production via gluon fusion (gg hh) in composite models Double Higgs production via gluon fusion (gg hh) in composite models Ennio Salvioni CERN and University of Padova based on work in collaboration with C.Grojean (CERN), M.Gillioz (Zürich), R.Gröber and

More information

Electroweak Baryogenesis in the LHC era

Electroweak Baryogenesis in the LHC era Electroweak Baryogenesis in the LHC era Sean Tulin (Caltech) In collaboration with: Michael Ramsey-Musolf Dan Chung Christopher Lee Vincenzo Cirigliano Bjorn Gabrecht Shin ichiro ichiro Ando Stefano Profumo

More information

A Cosmologist s Perspective on Higgs Factories

A Cosmologist s Perspective on Higgs Factories A Cosmologist s Perspective on Higgs Factories ANDREW LONG UNIVERSITY OF CHICAGO, KICP @ BLV 2017 CLEVELAND, OH MAY 16, 2017 based on [1608.06619, PRD] with Peisi Huang & Lian-Tao Wang Why are cosmologists

More information

Lecture 03. The Standard Model of Particle Physics. Part II The Higgs Boson Properties of the SM

Lecture 03. The Standard Model of Particle Physics. Part II The Higgs Boson Properties of the SM Lecture 03 The Standard Model of Particle Physics Part II The Higgs Boson Properties of the SM The Standard Model So far we talked about all the particles except the Higgs If we know what the particles

More information

Secrets of the Higgs Boson

Secrets of the Higgs Boson Secrets of the Higgs Boson M. E. Peskin February 2015 Only four years ago, in the fall of 2011, it was a popular theme for discussion among particle physicists that the Higgs boson did not exist. Searches

More information

Electroweak Baryogenesis and the triple Higgs boson coupling

Electroweak Baryogenesis and the triple Higgs boson coupling Electroweak Baryogenesis and te triple Higgs boson coupling Eibun Senaa (Grad. Univ. Advanced Studies, KEK) Mar. 18-22, 2005, LCWS 05 @Stanford U. in collaboration wit Sinya Kanemura (Osaka U) Yasuiro

More information

Little Higgs Models Theory & Phenomenology

Little Higgs Models Theory & Phenomenology Little Higgs Models Theory Phenomenology Wolfgang Kilian (Karlsruhe) Karlsruhe January 2003 How to make a light Higgs (without SUSY) Minimal models The Littlest Higgs and the Minimal Moose Phenomenology

More information

generation Outline Outline Motivation Electroweak constraints Selected flavor constraints in B and D sector Conclusion Nejc Košnik

generation Outline Outline Motivation Electroweak constraints Selected flavor constraints in B and D sector Conclusion Nejc Košnik th Discovery Discovery of of the the 4 4th generation generation Outline Outline Motivation Electroweak constraints Selected flavor constraints in B and D sector Conclusion 1 Introduction Introduction

More information

SUSY-Yukawa Sum Rule at the LHC

SUSY-Yukawa Sum Rule at the LHC SUSY-Yukawa Sum Rule at the LHC David Curtin bla arxiv:1004.5350, arxiv:xxxx.xxxx In Collaboration with Maxim Perelstein, Monika Blanke bla Cornell Institute for High Energy Phenomenology Phenomenology

More information

125 GeV Higgs Boson and Gauge Higgs Unification

125 GeV Higgs Boson and Gauge Higgs Unification 125 GeV Higgs Boson and Gauge Higgs Unification Nobuchika Okada The University of Alabama Miami 2013, Fort Lauderdale, Dec. 12 18, 2013 Discovery of Higgs boson at LHC! 7/04/2012 Standard Model Higgs boson

More information

PHYSICS BEYOND SM AND LHC. (Corfu 2010)

PHYSICS BEYOND SM AND LHC. (Corfu 2010) PHYSICS BEYOND SM AND LHC (Corfu 2010) We all expect physics beyond SM Fantastic success of SM (LEP!) But it has its limits reflected by the following questions: What is the origin of electroweak symmetry

More information

Electroweak Phase Transition at CEPC: A cosmologist s perspective

Electroweak Phase Transition at CEPC: A cosmologist s perspective Electroweak Phase Transition at CEPC: A cosmologist s perspective (DR.) ANDREW LONG UNIVERSITY OF CHICAGO, KICP @ IHEP BEIJING WORKSHOP ON CEPC PHYSICS NOV 6, 2017 Based on 1608.06619 (PRD) with Peisi

More information

arxiv: v1 [hep-ph] 1 Dec 2016

arxiv: v1 [hep-ph] 1 Dec 2016 PREPARED FOR SUBMISSION TO JHEP YITP-2016-48 Thermal Resummation and Phase Transitions arxiv:1612.00466v1 [hep-ph] 1 Dec 2016 David Curtin a Patrick Meade b Harikrishnan Ramani b a Maryland Center for

More information

SUSY-Yukawa Sum Rule at the LHC

SUSY-Yukawa Sum Rule at the LHC SUSY-Yukawa Sum Rule at the LHC David Curtin bla arxiv:1004.5350, arxiv:xxxx.xxxx In Collaboration with Maxim Perelstein, Monika Blanke bla Cornell Institute for High Energy Phenomenology SUSY 2010 Parallel

More information

Decoupling and Alignment in Light of the Higgs Data. Howard E. Haber Pi Day, 2014 Bay Area ParCcle Physics Seminar San Francisco State Univ.

Decoupling and Alignment in Light of the Higgs Data. Howard E. Haber Pi Day, 2014 Bay Area ParCcle Physics Seminar San Francisco State Univ. Decoupling and Alignment in Light of the Higgs Data Howard E. Haber Pi Day, 2014 Bay Area ParCcle Physics Seminar San Francisco State Univ. Outline I. IntroducCon Ø Snapshot of the LHC Higgs data Ø SuggesCons

More information

Electroweak baryogenesis from a dark sector

Electroweak baryogenesis from a dark sector Electroweak baryogenesis from a dark sector with K. Kainulainen and D. Tucker-Smith Jim Cline, McGill U. Moriond Electroweak, 24 Mar., 2017 J. Cline, McGill U. p. 1 Outline Has electroweak baryogenesis

More information

The Shadow of a Scale-Invariant Hidden U(1)

The Shadow of a Scale-Invariant Hidden U(1) The Shadow of a Scale-Invariant Hidden U1) We-Fu Chang Feb. 26, 2008 at APCTP 2008 with John Ng and Jackson Wu) PRD74:095005,75:115016 Motivation Model Coleman-Weinberg Phenomenology and U1) We-Fu Chang,

More information

Higgs phenomenology & new physics. Shinya KANEMURA (Univ. of Toyama)

Higgs phenomenology & new physics. Shinya KANEMURA (Univ. of Toyama) Higgs phenomenology & new physics Shinya KANEMURA (Univ. of Toyama) KEKTH07, Dec. 13. 2007 Content of talk Introduction Electroweak Symmetry Breaking Physics of Higgs self-coupling Self-coupling measurement

More information

Simplified models in collider searches for dark matter. Stefan Vogl

Simplified models in collider searches for dark matter. Stefan Vogl Simplified models in collider searches for dark matter Stefan Vogl Outline Introduction/Motivation Simplified Models for the LHC A word of caution Conclusion How to look for dark matter at the LHC? experimentally

More information

Can the Hbb coupling be equal in magnitude to its Standard Model value but opposite in sign? Howard E. Haber July 22, 2014

Can the Hbb coupling be equal in magnitude to its Standard Model value but opposite in sign? Howard E. Haber July 22, 2014 Can the Hbb coupling be equal in magnitude to its Standard Model value but opposite in sign? Howard E. Haber July 22, 2014 Outline I. Higgs physics afer discovery Ø What is the current data telling us?

More information

SM, EWSB & Higgs. MITP Summer School 2017 Joint Challenges for Cosmology and Colliders. Homework & Exercises

SM, EWSB & Higgs. MITP Summer School 2017 Joint Challenges for Cosmology and Colliders. Homework & Exercises SM, EWSB & Higgs MITP Summer School 017 Joint Challenges for Cosmology and Colliders Homework & Exercises Ch!"ophe Grojean Ch!"ophe Grojean DESY (Hamburg) Humboldt University (Berlin) ( christophe.grojean@desy.de

More information

EW Baryogenesis and Dimensional Reduction in SM extensions

EW Baryogenesis and Dimensional Reduction in SM extensions EW Baryogenesis and Dimensional Reduction in SM extensions Tuomas V.I. Tenkanen In collaboration with: T. Brauner, A. Tranberg, A. Vuorinen and D. J. Weir (SM+real singlet) J. O. Anderssen, T. Gorda, L.

More information

Testing the Electroweak Baryogenesis at the LHC and CEPC

Testing the Electroweak Baryogenesis at the LHC and CEPC Testing the Electroweak Baryogenesis at the LHC and CEPC Fa Peng Huang based on the works of arxiv : 1511.xxxxx with Xinmin Zhang, Xiaojun Bi, PeiHong Gu and PengFei Yin and Phy.Rev.D92, 075014(2015)(arXiv

More information

An Introduction to Cosmology Lecture 2. (University of Wisconsin Madison)

An Introduction to Cosmology Lecture 2. (University of Wisconsin Madison) An Introduction to Cosmology Lecture 2 Daniel Chung (University of Wisconsin Madison) Outline of lecture 2 Quantitative elements of EW bgenesis number Explain transport eqs. for electroweak baryogenesis

More information

EW phase transition in a hierarchical 2HDM

EW phase transition in a hierarchical 2HDM EW phase transition in a hierarchical 2HDM G. Dorsch, S. Huber, K. Mimasu, J. M. No ACFI workshop, UMass Amherst Phys. Rev. Lett. 113 (2014) 211802 [arxiv:1405.5537] September 18th, 2015 1 Introduction

More information

Physics at TeV Energy Scale

Physics at TeV Energy Scale Physics at TeV Energy Scale Yu-Ping Kuang (Tsinghua University) HEP Society Conference, April 26, 2008, Nanjing I. Why TeV Scale Is Specially Important? SM is SU(3) c SU(2) U(1) gauge theory. M g, M γ

More information

Higgs Signals and Implications for MSSM

Higgs Signals and Implications for MSSM Higgs Signals and Implications for MSSM Shaaban Khalil Center for Theoretical Physics Zewail City of Science and Technology SM Higgs at the LHC In the SM there is a single neutral Higgs boson, a weak isospin

More information

Buried Higgs Csaba Csáki (Cornell) with Brando Bellazzini (Cornell) Adam Falkowski (Rutgers) Andi Weiler (CERN)

Buried Higgs Csaba Csáki (Cornell) with Brando Bellazzini (Cornell) Adam Falkowski (Rutgers) Andi Weiler (CERN) Buried Higgs Csaba Csáki (Cornell) with Brando Bellazzini (Cornell) Adam Falkowski (Rutgers) Andi Weiler (CERN) Rutgers University, December 8, 2009 Preview Found a SUSY model, where: Weird higgs decays

More information

Electroweak Phase Transition, Scalar Dark Matter, & the LHC. M.J. Ramsey-Musolf

Electroweak Phase Transition, Scalar Dark Matter, & the LHC. M.J. Ramsey-Musolf Electroweak Phase Transition, Scalar Dark Matter, & the LHC M.J. Ramsey-Musolf Wisconsin-Madison NPAC Theoretical Nuclear, Particle, Astrophysics & Cosmology http://www.physics.wisc.edu/groups/particle-theory/

More information

Precision Top Quark Measurements at Linear Colliders. M. E. Peskin LCWS 2015 November 2015

Precision Top Quark Measurements at Linear Colliders. M. E. Peskin LCWS 2015 November 2015 Precision Top Quark Measurements at Linear Colliders M. E. Peskin LCWS 2015 November 2015 In discussion of the physics case for future e+e- colliders, the top quark is often unappreciated. Some people

More information

The mass of the Higgs boson

The mass of the Higgs boson The mass of the Higgs boson LHC : Higgs particle observation CMS 2011/12 ATLAS 2011/12 a prediction Higgs boson found standard model Higgs boson T.Plehn, M.Rauch Spontaneous symmetry breaking confirmed

More information

Measurement of Higgs properties: sensitivity of present and future facilities

Measurement of Higgs properties: sensitivity of present and future facilities EP/TH Faculty Meeting, 1 June 2018 Measurement of Higgs properties: sensitivity of present and future facilities G.F. Giudice Traditionally, Faculty Meetings were reserved to Senior Staff Series of Faculty

More information

The Dilaton/Radion and the 125 GeV Resonance

The Dilaton/Radion and the 125 GeV Resonance The Dilaton/Radion and the 125 GeV Resonance Zackaria Chacko University of Maryland, College Park Introduction The discovery of a new Higgs-like particle with mass close to 125 GeV is a watershed in high

More information

arxiv:hep-ph/ v1 10 Oct 1995

arxiv:hep-ph/ v1 10 Oct 1995 UCL-IPT-95-16 Symmetry breaking induced by top quark loops from a model without scalar mass. arxiv:hep-ph/9510266v1 10 Oct 1995 T. Hambye Institut de Physique Théorique UCL B-1348 Louvain-la-Neuve, Belgium.

More information

from exact asymptotic safety to physics beyond the Standard Model

from exact asymptotic safety to physics beyond the Standard Model from exact asymptotic safety to physics beyond the Standard Model Daniel F Litim Heidelberg, 9 Mar 2017 DF Litim 1102.4624 DF Litim, F Sannino, 1406.2337 AD Bond, DF Litim, 1608.00519 AD Bond, G Hiller,

More information

Phenomenology of a light singlet-like scalar in NMSSM

Phenomenology of a light singlet-like scalar in NMSSM Phenomenology of a light singlet-like scalar in NMSSM Institute of Theoretical Physics, University of Warsaw Corfu Summer Institute, 12 September 2014 based on: MB, M. Olechowski and S. Pokorski, JHEP

More information

Who is afraid of quadratic divergences? (Hierarchy problem) & Why is the Higgs mass 125 GeV? (Stability of Higgs potential)

Who is afraid of quadratic divergences? (Hierarchy problem) & Why is the Higgs mass 125 GeV? (Stability of Higgs potential) Who is afraid of quadratic divergences? (Hierarchy problem) & Why is the Higgs mass 125 GeV? (Stability of Higgs potential) Satoshi Iso (KEK, Sokendai) Based on collaborations with H.Aoki (Saga) arxiv:1201.0857

More information

Dynamic Instability of the Standard Model and the Fine-Tuning Problem. Ervin Goldfain

Dynamic Instability of the Standard Model and the Fine-Tuning Problem. Ervin Goldfain Dynamic Instability of the Standard Model and the Fine-Tuning Problem Ervin Goldfain Photonics CoE, Welch Allyn Inc., Skaneateles Falls, NY 13153, USA Email: ervingoldfain@gmail.com Abstract The Standard

More information

Properties of the Higgs Boson, and its interpretation in Supersymmetry

Properties of the Higgs Boson, and its interpretation in Supersymmetry Properties of the Higgs Boson, and its interpretation in Supersymmetry U. Ellwanger, LPT Orsay The quartic Higgs self coupling and Supersymmetry The Next-to-Minimal Supersymmetric Standard Model Higgs

More information

Patrick Kirchgaeßer 07. Januar 2016

Patrick Kirchgaeßer 07. Januar 2016 Patrick Kirchgaeßer 07. Januar 2016 INSTITUTE OF EXPERIMENTAL PARTICLE PHYSICS (IEKP) PHYSICS FACULTY KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

More information

New Phenomenology of Littlest Higgs Model with T-parity

New Phenomenology of Littlest Higgs Model with T-parity New Phenomenology of Littlest Higgs Model with T-parity Alexander Belyaev Michigan State University A.B., C.-R. Chen, K. Tobe, C.-P. Yuan hep-ph/0609179 A.B., A. Pukhov, C.-P. Yuan hep-ph/07xxxxx UW-Madison,

More information

Constraints from the renormalisation of the minimal dark matter model

Constraints from the renormalisation of the minimal dark matter model Constraints from the renormalisation of the minimal dark matter model James McKay Imperial College London in collaboration with Peter Athron and Pat Scott July 20, 2016 Outline 1. Minimal dark matter 2.

More information

Vacuum Energy and Effective Potentials

Vacuum Energy and Effective Potentials Vacuum Energy and Effective Potentials Quantum field theories have badly divergent vacuum energies. In perturbation theory, the leading term is the net zero-point energy E zeropoint = particle species

More information

Higgs Physics. Yasuhiro Okada (KEK) November 26, 2004, at KEK

Higgs Physics. Yasuhiro Okada (KEK) November 26, 2004, at KEK Higgs Physics Yasuhiro Okada (KEK) November 26, 2004, at KEK 1 Higgs mechanism One of two principles of the Standard Model. Gauge invariance and Higgs mechanism Origin of the weak scale. Why is the weak

More information

Light generations partners at the LHC

Light generations partners at the LHC Light generations partners at the LHC Giuliano Panico CERN IPNL Lyon 21 March 2014 based on C. Delaunay, T. Flacke, J. Gonzales, S. Lee, G. P. and G. Perez 1311.2072 [hep-ph] Introduction Introduction

More information

Radiative Generation of the Higgs Potential

Radiative Generation of the Higgs Potential Radiative Generation of the Higgs Potential 1 EUNG JIN CHUN Based on 1304.5815 with H.M.Lee and S. Jung Disclaimer LHC finds Nature is unnatural. 2 May entertain with Naturally unnatural ideas. EW scale

More information

Higgs Searches and Properties Measurement with ATLAS. Haijun Yang (on behalf of the ATLAS) Shanghai Jiao Tong University

Higgs Searches and Properties Measurement with ATLAS. Haijun Yang (on behalf of the ATLAS) Shanghai Jiao Tong University Higgs Searches and Properties Measurement with ATLAS Haijun Yang (on behalf of the ATLAS) Shanghai Jiao Tong University LHEP, Hainan, China, January 11-14, 2013 Outline Introduction of SM Higgs Searches

More information

The Standard Model and Beyond

The Standard Model and Beyond The Standard Model and Beyond Nobuchika Okada Department of Physics and Astronomy The University of Alabama 2011 BCVSPIN ADVANCED STUDY INSTITUTE IN PARTICLE PHYSICS AND COSMOLOGY Huê, Vietnam, 25-30,

More information

Status Report on Electroweak Baryogenesis

Status Report on Electroweak Baryogenesis Outline Status Report on Electroweak Baryogenesis Thomas Konstandin KTH Stockholm hep-ph/0410135, hep-ph/0505103, hep-ph/0606298 Outline Outline 1 Introduction Electroweak Baryogenesis Approaches to Transport

More information

ACCIDENTAL DARK MATTER: A CASE IN SCALE INVARIANT B-L MODEL

ACCIDENTAL DARK MATTER: A CASE IN SCALE INVARIANT B-L MODEL THE 4TH KIAS WORKSHOP ON PARTICLE PHYSICS AND COSMOLOGY ACCIDENTAL DARK MATTER: A CASE IN SCALE INVARIANT B-L MODEL ZHAOFENG KANG, KIAS, SEOUL, 10/31/2014 BASED ON AN UNBORN PAPER, WITH P. KO, Y. ORIKAS

More information

LHC resonance searches in tt Z final state

LHC resonance searches in tt Z final state LHC resonance searches in tt Z final state Bithika Jain Work in progress with Mihailo Backovic (CP3 Louvain), Thomas Flacke (IBS -CTPU), Seung Lee (Korea University) KIAS Workshop, 2016 1 The name of the

More information

Electroweak Baryogenesis

Electroweak Baryogenesis Electroweak Baryogenesis Eibun Senaha (KIAS) Feb. 13, 2013 HPNP2013 @U. of Toyama Outline Motivation Electroweak baryogenesis (EWBG) sphaleron decoupling condition strong 1 st order EW phase transition

More information

Lecture III: Higgs Mechanism

Lecture III: Higgs Mechanism ecture III: Higgs Mechanism Spontaneous Symmetry Breaking The Higgs Mechanism Mass Generation for eptons Quark Masses & Mixing III.1 Symmetry Breaking One example is the infinite ferromagnet the nearest

More information

Electroweak Baryogenesis and Higgs Signatures

Electroweak Baryogenesis and Higgs Signatures Timothy Cohen (SLAC) 1/27 Electroweak Baryogenesis and Higgs Signatures Timothy Cohen (SLAC) with Aaron Pierce arxiv:1110.0482 with David Morrissey and Aaron Pierce arxiv:1203.2924 Second MCTP Spring Symposium

More information

Electroweak and Higgs Physics

Electroweak and Higgs Physics Electroweak and Higgs Physics Lecture 2 : Higgs Mechanism in the Standard and Supersymmetric Models Alexei Raspereza DESY Summer Student Program Hamburg August 2017 Standard Model (Summary) Building blocks

More information

Higgs Couplings and Naturalness

Higgs Couplings and Naturalness Higgs Couplings and Naturalness Maxim Perelstein, Cornell PITT PACC Workshop, November 9, 3 Saturday, November 6, 3 Intro: Minimalist BSM Precision electroweak tests strongly suggest that physics remains

More information

Electroweak Symmetry Breaking via Strong Dynamics in the Precision Higgs Era: Extra Dimension and Composite Higgs.

Electroweak Symmetry Breaking via Strong Dynamics in the Precision Higgs Era: Extra Dimension and Composite Higgs. Electroweak Symmetry Breaking via Strong Dynamics in the Precision Higgs Era: Extra Dimension and Composite Higgs Tirtha Sankar Ray XXI DAE-BRNS HEP Symposium, 8-12 December, 2014 The Standard Model All

More information

THE STATUS OF NEUTRALINO DARK MATTER

THE STATUS OF NEUTRALINO DARK MATTER THE STATUS OF NEUTRALINO DARK MATTER BIBHUSHAN SHAKYA CORNELL UNIVERSITY CETUP 2013 Workshop June 25, 2013 Based on hep-ph 1208.0833, 1107.5048 with Maxim Perelstein, hep-ph 1209.2427 The favorite / most

More information

Precision (B)SM Higgs future colliders

Precision (B)SM Higgs future colliders Flavor and top physics @ 100 TeV Workshop, IHEP/CAS, MARCH 5, 2015 Seung J. Lee (KAIST) Precision (B)SM Higgs Studies @ future colliders 1. Study of SM Higgs boson partial widths and branching fractions

More information

The Higgs discovery - a portal to new physics

The Higgs discovery - a portal to new physics The Higgs discovery - a portal to new physics Department of astronomy and theoretical physics, 2012-10-17 1 / 1 The Higgs discovery 2 / 1 July 4th 2012 - a historic day in many ways... 3 / 1 July 4th 2012

More information

Big Bang Nucleosynthesis

Big Bang Nucleosynthesis Big Bang Nucleosynthesis George Gamow (1904-1968) 5 t dec ~10 yr T dec 0.26 ev Neutrons-protons inter-converting processes At the equilibrium: Equilibrium holds until 0 t ~14 Gyr Freeze-out temperature

More information

Gauge-Higgs Unification on Flat Space Revised

Gauge-Higgs Unification on Flat Space Revised Outline Gauge-Higgs Unification on Flat Space Revised Giuliano Panico ISAS-SISSA Trieste, Italy The 14th International Conference on Supersymmetry and the Unification of Fundamental Interactions Irvine,

More information

Probing the Electroweak Phase Transition with Higgs Factories and Gravitational Waves

Probing the Electroweak Phase Transition with Higgs Factories and Gravitational Waves Probing the Electroweak Phase Transition with Higgs Factories and Gravitational Waves arxiv:1608.06619v [hep-ph] 15 May 017 Peisi Huang, a,b Andrew J. Long, c and Lian-Tao Wang a,c a Enrico Fermi Institute,

More information

Scale invariance and the electroweak symmetry breaking

Scale invariance and the electroweak symmetry breaking Scale invariance and the electroweak symmetry breaking Archil Kobakhidze School of Physics, University of Melbourne R. Foot, A.K., R.R. Volkas, Phys. Lett. B 655,156-161,2007 R. Foot, A.K., K.L. Mcdonald,

More information

Kaluza-Klein Masses and Couplings: Radiative Corrections to Tree-Level Relations

Kaluza-Klein Masses and Couplings: Radiative Corrections to Tree-Level Relations Kaluza-Klein Masses and Couplings: Radiative Corrections to Tree-Level Relations Sky Bauman Work in collaboration with Keith Dienes Phys. Rev. D 77, 125005 (2008) [arxiv:0712.3532 [hep-th]] Phys. Rev.

More information

STANDARD MODEL and BEYOND: SUCCESSES and FAILURES of QFT. (Two lectures)

STANDARD MODEL and BEYOND: SUCCESSES and FAILURES of QFT. (Two lectures) STANDARD MODEL and BEYOND: SUCCESSES and FAILURES of QFT (Two lectures) Lecture 1: Mass scales in particle physics - naturalness in QFT Lecture 2: Renormalisable or non-renormalisable effective electroweak

More information

Physics 662. Particle Physics Phenomenology. February 21, Physics 662, lecture 13 1

Physics 662. Particle Physics Phenomenology. February 21, Physics 662, lecture 13 1 Physics 662 Particle Physics Phenomenology February 21, 2002 Physics 662, lecture 13 1 Physics Beyond the Standard Model Supersymmetry Grand Unified Theories: the SU(5) GUT Unification energy and weak

More information

Composite Higgs Phenomenology at the LHC and Future Colliders

Composite Higgs Phenomenology at the LHC and Future Colliders Composite Higgs Phenomenology at the LHC and Future Colliders Stefania De Curtis and Dept. of Physics and Astronomy, Florence University, Italy Based on: DC, Redi,Tesi, JHEP 1204,042 (2012); Barducci et

More information

Physics at e + e - Linear Colliders. 4. Supersymmetric particles. M. E. Peskin March, 2002

Physics at e + e - Linear Colliders. 4. Supersymmetric particles. M. E. Peskin March, 2002 Physics at e + e - Linear Colliders 4. Supersymmetric particles M. E. Peskin March, 2002 In this final lecture, I would like to discuss supersymmetry at the LC. Supersymmetry is not a part of the Standard

More information

Higgs Boson: from Collider Test to SUSY GUT Inflation

Higgs Boson: from Collider Test to SUSY GUT Inflation Higgs Boson: from Collider Test to SUSY GUT Inflation Hong-Jian He Tsinghua University String-2016, Tsinghua, Beijing, August 5, 2016 String Theory Supergravity,GUT Effective Theory: SM, + eff operators

More information

TeV-scale type-i+ii seesaw mechanism and its collider signatures at the LHC

TeV-scale type-i+ii seesaw mechanism and its collider signatures at the LHC TeV-scale type-i+ii seesaw mechanism and its collider signatures at the LHC Wei Chao (IHEP) Outline Brief overview of neutrino mass models. Introduction to a TeV-scale type-i+ii seesaw model. EW precision

More information

The Higgs Boson and Electroweak Symmetry Breaking

The Higgs Boson and Electroweak Symmetry Breaking The Higgs Boson and Electroweak Symmetry Breaking 1. Minimal Standard Model M. E. Peskin Chiemsee School September 2014 The Higgs boson has an odd position in the Standard Model of particle physics. On

More information

Zhong-Zhi Xianyu (CMSA Harvard) Tsinghua June 30, 2016

Zhong-Zhi Xianyu (CMSA Harvard) Tsinghua June 30, 2016 Zhong-Zhi Xianyu (CMSA Harvard) Tsinghua June 30, 2016 We are directly observing the history of the universe as we look deeply into the sky. JUN 30, 2016 ZZXianyu (CMSA) 2 At ~10 4 yrs the universe becomes

More information

Done Naturalness Desert Discovery Summary. Open Problems. Sourendu Gupta. Special Talk SERC School, Bhubaneshwar November 13, 2017

Done Naturalness Desert Discovery Summary. Open Problems. Sourendu Gupta. Special Talk SERC School, Bhubaneshwar November 13, 2017 Open Problems Special Talk SERC School, Bhubaneshwar November 13, 2017 1 What has been achieved? 2 Naturalness and hierarchy problems 3 The desert 4 Unexpected discoveries 5 Summary Outline 1 What has

More information

Hidden two-higgs doublet model

Hidden two-higgs doublet model Hidden two-higgs doublet model C, Uppsala and Lund University SUSY10, Bonn, 2010-08-26 1 Two Higgs doublet models () 2 3 4 Phenomenological consequences 5 Two Higgs doublet models () Work together with

More information

Topology of the Electroweak Vacua

Topology of the Electroweak Vacua Topology of the Electroweak Vacua Ben Gripaios Cambridge October 2016 BMG & Oscar Randal-Williams, 1610.05623 Every idiot knows that SU(2) U(1) gets broken to U(1) in vacuo... Every idiot knows that SU(2)

More information

Kaluza-Klein Theories - basic idea. Fig. from B. Greene, 00

Kaluza-Klein Theories - basic idea. Fig. from B. Greene, 00 Kaluza-Klein Theories - basic idea Fig. from B. Greene, 00 Kaluza-Klein Theories - basic idea mued mass spectrum Figure 3.2: (Taken from [46]). The full spectrum of the UED model at the first KK level,

More information

Triplet Higgs Scenarios

Triplet Higgs Scenarios Triplet Higgs Scenarios Jack Gunion U.C. Davis Grenoble Higgs Workshop, March 2, 203 Higgs-like LHC Signal Fits with MVA CMS suggest we are heading towards the SM, but it could simply be a decoupling limit

More information

Baryogenesis and dark matter in the nmssm

Baryogenesis and dark matter in the nmssm Baryogenesis and dark matter in the nmssm C.Balázs, M.Carena, A. Freitas, C.Wagner Phenomenology of the nmssm from colliders to cosmology arxiv:0705431 C. Balázs, Monash U Melbourne BG & DM in the nmssm

More information