Liquid lens based on electrowetting: a new adaptive component for imaging applications in consumer electronics

Size: px
Start display at page:

Download "Liquid lens based on electrowetting: a new adaptive component for imaging applications in consumer electronics"

Transcription

1 Liquid lens based on electrowetting: a new adaptive component for imaging applications in consumer electronics Jerome CRASSOUS **, Claude GABAY **, Gaetan LIOGIER *, Bruno BERGE *,** * Varioptic, 8B rue Hermann Frenkel, Lyon; France. ** ENS-Lyon, 46 allée d'italie, Lyon, France; ABSTRACT A new technology for focus variation with direct electric control without moving part will be presented. The technology relies on an interface between two non-miscible transparent liquids, which can be deformed by electrowetting. This technology has been developed since 10 years in the lab and starts to be available commercially, with the following characteristics: large amplitude of dioptric correction (20 dioptries for a 5mm pupil size), fast response, small power consumption and good transmission in the visible range, clear pupil 1-10mm diameter. This paper will show the basic principle, as well as the physical limitations and optical aberrations due to differential thermal expansion of the two liquids in the cell. Experimental measurements made with a Schack Hartmann wave front analyzer will be presented, as well as numerical simulations of the liquid-liquid interface. Applications will be discussed, mainly in consumer electronics. Keywords: Liquid lens, focus control, liquid actuator 1. INTRODUCTION Recently there has been a lot of effort to introduce new adaptive optical components for wavefront control and modifications. These actuators have been using several physical principles: among them the piezo effect to deform mirrors, or applying gradients of electric fields to induce refractive index gradients in liquid crystals slabs 1, etc Another way of approaching the problem has been recently demonstrated when using the liquid-liquid deformation using electrowetting principle 2,3 : two non miscible liquids with same densities form a natural liquid-liquid interface which can produce an efficient light refraction. Changing the shape of the liquid interface has been shown to be easy and reversible when using the principle of electrowetting 4-7 : the solid surface which realizes the supporting body for the fluid-fluid interface is made from an electrode with an insulator/hydrophobic layer. Applying a voltage displaces the liquid/liquid/solid line (perimeter of the drop) achieving the focus change through a meniscus curvature change. One of the key point of the technology relies on the fact that both liquids have the same density. In this paper we will consider the thermal effects due to differences in the coefficient of thermal expansion of the two liquids. This makes a strong physical limitation on the practical size of the lens which could be achieved with liquid/liquid interfaces. 2. THEORETICAL DESCRIPTION OF THE GRAVITY EFFECTS 1.2. Problem description The lens configuration which we are interested in this paper is described in the figure 1: a cone recess is made of a metallic material (usually stainless steel=ss). This cone is covered with an insulator/hydrophobic film, thickness e and

2 dielectric constant ε. One of the liquid (oil) is non-conducting, while the other one (water) is a conductor. The figure 1a shows the deformation of the interface due to the externally applied electric voltage. At low voltage the meniscus curvature is directed towards the cone large opening. The lens is then divergent. Applying voltage displaces the interface which becomes progressively convergent (see fig. 1). glass Stainless steel Water phase Oil phase h ξ Optical axis ~ V (a) (b) Figure 1: (a) principle of the liquid lens: two non miscible liquids are trapped between two glass windows. The liquid liquid interface moves from continuous (V=0) to the dotted line when voltage is applied. (b) influence of a density mismatch between the two liquids on the liquid-liquid interface: spherical when the liquids densities are matched (continuous line ). distorted mainly by a coma aberration when not matched (dotted line). In this paper we will analyse the effect of a mismatch of the two liquids densities. The experiments do not show a strong dependency of these thermal effects with voltage, such that we will not consider cross-talk between voltage-induced and temperature-induced deformations of the interface. We present here a 2D calculation, assuming an infinite geometry in the third dimension, before comparing with 3D calculations and experiments D-calculations This calculation assumes that the interface is displaced compared to the no-gravity case by ξ(h). A simple analysis of the Laplace pressure across the interface allows to calculate ξ the displacement of the meniscus as: ξ = 1/(6λ c2 ) h 3 ; Where λc=(γ/ ρg) 1/2 is the capillary length. ρ is the difference of the two fluids density, γ is the liquid-liquid interfacial tension and g if the gravitational acceleration. Assuming that the lens is vertical, which is the worse situation, then - Φ 0 /2 < h < Φ 0 /2, with Φ 0 the diameter of the lens pupil. From that expression one can estimate that an incident planar wave will experience a wave front error (wfe) produced by the distortion of the liquid-liquid interface, which is given by: wfe(h)= n/(6λ c2 ) h 3 ; The figure 2 shows the curve type wfe(h).

3 ξ Φ /2 Φ /2 h Figure 2: typical curve of a wavefront distorsion induced by a liquid-liquid density mismatch, as a function of the height for a vertically oriented lens. The dotted line represents the average tilt. The curve wfe(h) shows that the density mismatch induces a vertical tilt and a coma aberration. The tilt is given as the dotted line in Fig. 2 by minimizing the rms residual wave front error (wfe) after tilt removal. Angular tilt = 1/10 n (Φ 0 /2λ c ) 2. Residual wfe (rms)= 1/120 1/(7) 1/2 n Φ 03 /λ c2. Or if we replace the capillary length by its value: wfe (rms)= 1/120 1/(7) 1/2 n ρg/γ Φ 03. The angular tilt is the angle of the wave front to the vertical plane. One can verify that the tilt is well below 1 mrad, which is usually irrelevant. The residual wave front error is the rms value of the wave front error corrected from the tilt. In general the residual wave front error is the really important number to characterize the lens quality. It can be seen that the residual wave front error is mainly coma aberration. If we suppose that the density mismatch ρ is induced by a difference in the liquid volumic expansion coefficients α between the two liquids, when exploring a temperature range of T, the resulting residual wave front error will be given by: wfe (rms)= ρg/γ n α T Φ 03. This expression assumes that the density of the liquids has been matched at the middle of the range of temperature of interest. Then the maximum temperature difference to the isodensity point is T/2. 3. EXPERIMENTAL RESULTS The experiments we are showing are made using the configuration of Fig. 1. The cone is made of stainless steel (ss) covered with an insulator and hydrophobic material (here made from an FEP film applied on the ss part by hot-pressure). The insulator film results in a 20µm thick film, dielectric constant about ε=2. The first liquids is made of a water solution containing Na 2 SO 4 salt (less than 1%) and the oil phase is made from a mixture of commercial silicone oils.

4 The difference in the index of refractions is n=0,198; the difference of coefficients of thermal expansion is measured as α= K -1 ; the interfacial tension is measured γ=12,5mn/m and Φ 0 =5mm. The figure 3 shows the experimental results for the residual wave front error as a function of T, the difference of the temperature and T 0, the iso-density temperature. The iso-density temperature is the temperature at which the liquids were prepared at the same density (presumably in the middle of the working temperature range). The measurements were conducted using a Shack-Hartmann wavefront analyser (Imagine Optics, France). For details of how the measurements are done, see ref 8. The dotted line shows the result of the above calculation. 0,2 0,1 wfe rms ( µ m ) 0,0-0,1-0,2-0,3-0,4-0, T-T 0 (K) Figure 3: Wavefront error (mainly coma) coming from difference of the two liquids thermal expansion coeficients. Triangles are experiments, dotted line corresponds to the simple 2D theory (section 2), closed circles corresponds to a 3D simulation. The figure 3 shows also several points which correspond to a 3D simulation on a geometry which corresponds exactly to the lens. One can observe a quite good agreement between experiments and the two theoretical methods for estimating the lens optical aberration. This enables to validate the simple model produced in section 2 as an accurate description of the aberrations of the lens produced by thermal effects. 4. PHYSICAL LIMITATIONS TO THE SIZE OF LIQUID LENSES AND APPLICATION TO THE FIELD OF MINIATURE CAMERAS Using the above calculations and validation, one can build an application table, which makes possible to predict the size limitations that can be experienced with electrowetting liquid lenses, for a given application. There are 4 input parameters of such table: 1. clear pupil diameter (mm) 2. wfe (in micrometers): assessed as the maximum wave front error (rms) of the coma aberration that can be tolerated in the application: this parameter should come out from ray-trace analysis of the whole optical system. 3. T: Total temperature range where the full lens quality is needed. (K or C) 4. c: Optical power amplitude that is needed with varying the voltage ( c in dioptries or m -1 )

5 Alternatively, one can choose not to specify the dioptric range, but rather the index difference between the two liquids. The figure 4 is showing the results. In order to be visual, one can plot a composite merit parameter of the lens which is given by T/wfe. The higher the merit parameter, the better optical quality of the lens for a given temperature range, or the larger the temperature range where the lens will have the full specification quality continuous lines n= 0,2 0,1 0,05 0,02 Liquid lens not feasible T/wfe (K/µ m) Liquid lens feasible c= dioptries 100 dotted lines. pupil diameter (mm) Figure 4: application chart for assessing the feasibility of a liquid lens for a given size and merit parameter, in particular applications. The practical use of this table is demonstrated on a given case: lets suppose one wants to use the lens for an autofocus on a VGA miniature camera 9. The optical correction which is needed is the inverse of the nearest object distance. For an autofocus working with objects in the range 5cm-infinity, one should have at least c=20 dioptries. The temperature range for an outdoor application (mobile phone camera, camcorder etc ) would be at least -15 C to 50 C: T=65K. The maximum wavefront error which could be tolerated is of the order of 0,5µm. This means that the merit parameter of the lens should be at least T/wfe = 130. Considering the needed dioptric range, one can read from the table that the maximum lens diameter for this application would be of the order of 9mm, well above the existing lens diameters in this products. The figure above is clearly dependent of the physical/chemical parameters considered (interfacial tension, etc ) and it is possible to optimize further the merit parameter of liquid lenses. The conclusion dawn here should not be considered as a hard wall, rather a state of the art of what could be achieved with liquid lenses at the moment. 5. CONCLUSION

6 In this paper we have been interested in describing the behaviour of a liquid lens based on electrowetting, when the two liquids have not the same densities. We could show that a simple model of a 2D calculation can describe quite well the wave front aberration induced by the liquid-liquid interface deformation. This was shown by comparing the 2D calculation against 3D simulations and also against experimental measurements. The results could be transcribed into an application chart which enables to assess the feasibility of a liquid lens, regarding a given application. REFERENCES 1. A.F. Naumov, M.Y. Loktev, I.R. Guralnik, G. Vodkin, Liquid crystal adaptive lenses with modal control Opt. Lett. 23, (1998). 2. C. Gorman, H.A. Biebuyck, G. Whitesides, Control of the shape of liquid lenses on a modified gold surface using an applied electrical potential across a self-assembled monolayer Langmuir 11, , B. Berge, J. Peseux, Variable focal lens controlled by an external voltage: an application of electrowetting Eur. Phys. J. E. 3, , B. Berge, electrocapillarity and wetting of insulator films by water C.R. Acad Sci. Paris 317, , 1993 (including an English translation). 5. N.K. Sheridon, Electrocapillary imaging devices for display and data storage. Xerox Disclos. J. 4, , H.J.J. Verheijen, M.W.J. Prins, Contact angle and wetting velocity measured electrically Rev. Sci. Instrum. 70, , B. Janosha et al, Competitive electrowetting of polymer surfaces by water and decane Langmuir 16, , C. Gabay, B. Berge, G. Dovillaire and S. Bucourt, Dynamic study of a Varioptic variable focal lens SPIE proceedings vol 4767, , L. Saurei, G. Mathieu, B. Berge, Design of an autofocus lens for VGA 1/4" CCD and CMOS sensors Proceedings of SPIE vol 5249, , 2004.

Unique Fluid Ensemble including Silicone Oil for the Application Bull. Korean Chem. Soc. 2008, Vol. 29, No Articles

Unique Fluid Ensemble including Silicone Oil for the Application Bull. Korean Chem. Soc. 2008, Vol. 29, No Articles Unique Fluid Ensemble including Silicone Oil for the Application Bull. Korean Chem. Soc. 2008, Vol. 29, No. 4 731 Articles Unique Fluid Ensemble including Silicone Oil for the Application of Optical Liquid

More information

How Electrostatic Fields Change Contact Angle in Electrowetting

How Electrostatic Fields Change Contact Angle in Electrowetting 038 Langmuir 2002, 8, 038-0322 How Electrostatic Fields Change Contact Angle in Electrowetting Kwan Hyoung Kang* Department of Mechanical Engineering, Pohang University of Science and Technology, San 3,

More information

AOL Spring Wavefront Sensing. Figure 1: Principle of operation of the Shack-Hartmann wavefront sensor

AOL Spring Wavefront Sensing. Figure 1: Principle of operation of the Shack-Hartmann wavefront sensor AOL Spring Wavefront Sensing The Shack Hartmann Wavefront Sensor system provides accurate, high-speed measurements of the wavefront shape and intensity distribution of beams by analyzing the location and

More information

drops in motion Frieder Mugele the physics of electrowetting and its applications Physics of Complex Fluids University of Twente

drops in motion Frieder Mugele the physics of electrowetting and its applications Physics of Complex Fluids University of Twente drops in motion the physics of electrowetting and its applications Frieder Mugele Physics of Complex Fluids niversity of Twente 1 electrowetting: the switch on the wettability voltage outline q q q q q

More information

Optical/IR Observational Astronomy Telescopes I: Optical Principles. David Buckley, SAAO. 24 Feb 2012 NASSP OT1: Telescopes I-1

Optical/IR Observational Astronomy Telescopes I: Optical Principles. David Buckley, SAAO. 24 Feb 2012 NASSP OT1: Telescopes I-1 David Buckley, SAAO 24 Feb 2012 NASSP OT1: Telescopes I-1 1 What Do Telescopes Do? They collect light They form images of distant objects The images are analyzed by instruments The human eye Photographic

More information

Smart lens: tunable liquid lens for laser tracking

Smart lens: tunable liquid lens for laser tracking Smart lens: tunable liquid lens for laser tracking Fan-Yi Lin a, Li-Yu Chu b, Yu-Shan Juan a, Sih-Ting Pan b, Shih-Kang Fan* b a Institute of Photonics Technologies, Department of Electrical Engineering,

More information

Development of a cryogenic compact interferometric displacement sensor

Development of a cryogenic compact interferometric displacement sensor Development of a cryogenic compact interferometric displacement sensor Fabián E. Peña Arellano National Astronomical Observatory of Japan Outline of the presentation Motivation: local position sensor for

More information

Polarization independent blue-phase liquid crystal cylindrical lens with a resistive film

Polarization independent blue-phase liquid crystal cylindrical lens with a resistive film Polarization independent blue-phase liquid crystal cylindrical lens with a resistive film Yan Li, 1 Yifan Liu, 1 Qing Li, 2 and Shin-Tson Wu 1, * 1 CREOL, The College of Optics and Photonics, University

More information

Digital Holographic Measurement of Nanometric Optical Excitation on Soft Matter by Optical Pressure and Photothermal Interactions

Digital Holographic Measurement of Nanometric Optical Excitation on Soft Matter by Optical Pressure and Photothermal Interactions Ph.D. Dissertation Defense September 5, 2012 Digital Holographic Measurement of Nanometric Optical Excitation on Soft Matter by Optical Pressure and Photothermal Interactions David C. Clark Digital Holography

More information

Pupil matching of Zernike aberrations

Pupil matching of Zernike aberrations Pupil matching of Zernike aberrations C. E. Leroux, A. Tzschachmann, and J. C. Dainty Applied Optics Group, School of Physics, National University of Ireland, Galway charleleroux@yahoo.fr Abstract: The

More information

Michelson Interferometer. crucial role in Einstein s development of the Special Theory of Relativity.

Michelson Interferometer. crucial role in Einstein s development of the Special Theory of Relativity. Michelson Interferometer The interferometer Michelson experiment Interferometer of Michelson and Morley played 0 a crucial role in Einstein s development of the Special Theory of Relativity. Michelson

More information

Physics 3312 Lecture 7 February 6, 2019

Physics 3312 Lecture 7 February 6, 2019 Physics 3312 Lecture 7 February 6, 2019 LAST TIME: Reviewed thick lenses and lens systems, examples, chromatic aberration and its reduction, aberration function, spherical aberration How do we reduce spherical

More information

Wavefront Sensing using Polarization Shearing Interferometer. A report on the work done for my Ph.D. J.P.Lancelot

Wavefront Sensing using Polarization Shearing Interferometer. A report on the work done for my Ph.D. J.P.Lancelot Wavefront Sensing using Polarization Shearing Interferometer A report on the work done for my Ph.D J.P.Lancelot CONTENTS 1. Introduction 2. Imaging Through Atmospheric turbulence 2.1 The statistics of

More information

Electrowetting on dielectrics on lubricating fluid based slippery surfaces with negligible hysteresis

Electrowetting on dielectrics on lubricating fluid based slippery surfaces with negligible hysteresis Electrowetting on dielectrics on lubricating fluid based slippery surfaces with negligible hysteresis J. Barman a, A. K. Nagarajan b and K. Khare a* a Department of Physics, Indian Institute of Technology

More information

Wave-front generation of Zernike polynomial modes with a micromachined membrane deformable mirror

Wave-front generation of Zernike polynomial modes with a micromachined membrane deformable mirror Wave-front generation of Zernike polynomial modes with a micromachined membrane deformable mirror Lijun Zhu, Pang-Chen Sun, Dirk-Uwe Bartsch, William R. Freeman, and Yeshaiahu Fainman We investigate the

More information

Polarization Shearing Interferometer (PSI) Based Wavefront Sensor for Adaptive Optics Application. A.K.Saxena and J.P.Lancelot

Polarization Shearing Interferometer (PSI) Based Wavefront Sensor for Adaptive Optics Application. A.K.Saxena and J.P.Lancelot Polarization Shearing Interferometer (PSI) Based Wavefront Sensor for Adaptive Optics Application A.K.Saxena and J.P.Lancelot Adaptive Optics A Closed loop Optical system to compensate atmospheric turbulence

More information

Microfluidics 2 Surface tension, contact angle, capillary flow

Microfluidics 2 Surface tension, contact angle, capillary flow MT-0.6081 Microfluidics and BioMEMS Microfluidics 2 Surface tension, contact angle, capillary flow 28.1.2017 Ville Jokinen Surface tension & Surface energy Work required to create new surface = surface

More information

Course 2: Basic Technologies

Course 2: Basic Technologies Course 2: Basic Technologies Part II: X-ray optics What do you see here? Seite 2 wavefront distortion http://www.hyperiontelescopes.com/performance12.php http://astronomy.jawaid1.com/articles/spherical%20ab

More information

Astronomy 203 practice final examination

Astronomy 203 practice final examination Astronomy 203 practice final examination Fall 1999 If this were a real, in-class examination, you would be reminded here of the exam rules, which are as follows: You may consult only one page of formulas

More information

Designing a Computer Generated Hologram for Testing an Aspheric Surface

Designing a Computer Generated Hologram for Testing an Aspheric Surface Nasrin Ghanbari OPTI 521 Graduate Report 2 Designing a Computer Generated Hologram for Testing an Aspheric Surface 1. Introduction Aspheric surfaces offer numerous advantages in designing optical systems.

More information

Applications of the Abbe Sine Condition in Multi-Channel Imaging Systems

Applications of the Abbe Sine Condition in Multi-Channel Imaging Systems Applications of the Abbe Sine Condition in Multi-Channel Imaging Systems Barbara Kruse, University of Arizona, College of Optical Sciences May 6, 2016 Abstract Background In multi-channel imaging systems,

More information

College Physics 10th edition

College Physics 10th edition College Physics 10th edition Raymond A. Serway and Chris Vuille Publisher: Cengage Learning Table of Contents PHY101 covers chapters 1-8 PHY102 covers chapters 9-25 Chapter 1: Introduction 1.1: Standards

More information

OOFELIE::Multiphysics 2014

OOFELIE::Multiphysics 2014 OOFELIE::Multiphysics 2014 INDUSTRIAL MULTIPHYSICS DESIGN FOR OPTICAL DEVICES INTRODUCTION 2 High precision opto-mechanics A VERY HIGH ACCURACY IN THE PRODUCTION OF MIRRORS AND LENSES IS NOW VERY OFTEN

More information

Electrowetting. space and ε l the liquid dielectric constant, Eq. (1) can be written as. γ = ε 0ε l 2d V2. (2)

Electrowetting. space and ε l the liquid dielectric constant, Eq. (1) can be written as. γ = ε 0ε l 2d V2. (2) 600 Electrowetting and hence a reduced flow rate in the pressure-drop direction. This reduced flow rate seems to suggest that the liquid have an apparent higher viscosity. The apparent viscosity is called

More information

Homogeneity of optical glass

Homogeneity of optical glass 1 Version ebruary 2016 Introduction SCHOTT offers machined optical glasses with homogeneities up to H5 quality. I-Line glasses can even be offered in higher homogeneities. The achievable homogeneity depends

More information

Laser Optics-II. ME 677: Laser Material Processing Instructor: Ramesh Singh 1

Laser Optics-II. ME 677: Laser Material Processing Instructor: Ramesh Singh 1 Laser Optics-II 1 Outline Absorption Modes Irradiance Reflectivity/Absorption Absorption coefficient will vary with the same effects as the reflectivity For opaque materials: reflectivity = 1 - absorptivity

More information

2.71. Final examination. 3 hours (9am 12 noon) Total pages: 7 (seven) PLEASE DO NOT TURN OVER UNTIL EXAM STARTS PLEASE RETURN THIS BOOKLET

2.71. Final examination. 3 hours (9am 12 noon) Total pages: 7 (seven) PLEASE DO NOT TURN OVER UNTIL EXAM STARTS PLEASE RETURN THIS BOOKLET 2.71 Final examination 3 hours (9am 12 noon) Total pages: 7 (seven) PLEASE DO NOT TURN OVER UNTIL EXAM STARTS Name: PLEASE RETURN THIS BOOKLET WITH YOUR SOLUTION SHEET(S) MASSACHUSETTS INSTITUTE OF TECHNOLOGY

More information

Temperature coefficient of refractive index of sapphire substrate at cryogenic temperature for interferometric gravitational wave detectors

Temperature coefficient of refractive index of sapphire substrate at cryogenic temperature for interferometric gravitational wave detectors Temperature coefficient of refractive index of sapphire substrate at cryogenic temperature for interferometric gravitational wave detectors T. Tomaru, T. Uchiyama, C. T. Taylor, S. Miyoki, M. Ohashi, K.

More information

Resonant Oscillations of Liquid Marbles

Resonant Oscillations of Liquid Marbles Resonant Oscillations of Liquid Marbles Glen McHale*, Stephen J. Elliott*, Michael I. Newton*, Dale L. Herbertson* and Kadir Esmer $ *School of Science & Technology, Nottingham Trent University, UK $ Department

More information

IMPROVING BEAM QUALITY NEW TELESCOPE ALIGNMENT PROCEDURE

IMPROVING BEAM QUALITY NEW TELESCOPE ALIGNMENT PROCEDURE IMPROVING BEAM QUALITY NEW TELESCOPE ALIGNMENT PROCEDURE by Laszlo Sturmann Fiber coupled combiners and visual band observations are more sensitive to telescope alignment problems than bulk combiners in

More information

5. Aberration Theory

5. Aberration Theory 5. Aberration Theory Last lecture Matrix methods in paraxial optics matrix for a two-lens system, principal planes This lecture Wavefront aberrations Chromatic Aberration Third-order (Seidel) aberration

More information

Moonbows. Friday somebody asked if rainbows can be seen at night.

Moonbows. Friday somebody asked if rainbows can be seen at night. Moonbows Friday somebody asked if rainbows can be seen at night. Neil Alberding (SFU Physics) Physics 121: Optics, Electricity & Magnetism Spring 2010 1 / 25 Moonbows Friday somebody asked if rainbows

More information

Astronomy. Optics and Telescopes

Astronomy. Optics and Telescopes Astronomy A. Dayle Hancock adhancock@wm.edu Small 239 Office hours: MTWR 10-11am Optics and Telescopes - Refraction, lenses and refracting telescopes - Mirrors and reflecting telescopes - Diffraction limit,

More information

Lecture 2: Geometrical Optics 1. Spherical Waves. From Waves to Rays. Lenses. Chromatic Aberrations. Mirrors. Outline

Lecture 2: Geometrical Optics 1. Spherical Waves. From Waves to Rays. Lenses. Chromatic Aberrations. Mirrors. Outline Lecture 2: Geometrical Optics 1 Outline 1 Spherical Waves 2 From Waves to Rays 3 Lenses 4 Chromatic Aberrations 5 Mirrors Christoph U. Keller, Utrecht University, C.U.Keller@uu.nl Astronomical Telescopes

More information

Wavefront metrology and beam characterization in the EUV/soft X-ray spectral range

Wavefront metrology and beam characterization in the EUV/soft X-ray spectral range 2 nd Swedish-German Workshop on X-Ray Optics HZB Berlin-Adlershof, 28-30 April 2015 Wavefront metrology and beam characterization in the EUV/soft X-ray spectral range K. Mann J.O. Dette, J. Holburg, F.

More information

Electrodynamics Qualifier Examination

Electrodynamics Qualifier Examination Electrodynamics Qualifier Examination August 15, 2007 General Instructions: In all cases, be sure to state your system of units. Show all your work, write only on one side of the designated paper, and

More information

Lens Design II. Lecture 1: Aberrations and optimization Herbert Gross. Winter term

Lens Design II. Lecture 1: Aberrations and optimization Herbert Gross. Winter term Lens Design II Lecture 1: Aberrations and optimization 18-1-17 Herbert Gross Winter term 18 www.iap.uni-jena.de Preliminary Schedule Lens Design II 18 1 17.1. Aberrations and optimization Repetition 4.1.

More information

Using 50-mm electrostatic membrane deformable mirror in astronomical adaptive optics

Using 50-mm electrostatic membrane deformable mirror in astronomical adaptive optics Using 50-mm electrostatic membrane deformable mirror in astronomical adaptive optics Andrei Tokovinin a, Sandrine Thomas a, Gleb Vdovin b a Cerro Tololo Inter-American Observatory, Casilla 603, La Serena,

More information

20. Aberration Theory

20. Aberration Theory 0. Aberration Theory Wavefront aberrations ( 파면수차 ) Chromatic Aberration ( 색수차 ) Third-order (Seidel) aberration theory Spherical aberrations Coma Astigmatism Curvature of Field Distortion Aberrations

More information

Design of polarization-insensitive multi-electrode GRIN lens with a blue-phase liquid crystal

Design of polarization-insensitive multi-electrode GRIN lens with a blue-phase liquid crystal Design of polarization-insensitive multi-electrode GRIN lens with a blue-phase liquid crystal Chao-Te Lee, 1,2 Yan Li, 1 Hoang-Yan Lin, 2 and Shin-Tson Wu 1,* 1 College of Optics and Photonics, University

More information

Optics for Engineers Chapter 3

Optics for Engineers Chapter 3 Optics for Engineers Chapter 3 Charles A. DiMarzio Northeastern University July 2012 Compound Lens and Ray Definitions Correct Ray Ray Definition Vertex Planes Translation Matrix Optics Ray Refraction

More information

Ray Optics. 30 teaching hours (every wednesday 9-12am) labs as possible, tutoring (see NW s homepage on atomoptic.

Ray Optics. 30 teaching hours (every wednesday 9-12am) labs as possible, tutoring (see NW s homepage on  atomoptic. Erasmus Mundus Mundus OptSciTech Nathalie Westbrook Ray Optics 30 teaching hours (every wednesday 9-12am) including lectures, problems in class and regular assignments,, as many labs as possible, tutoring

More information

TIE-43: Optical Properties of ZERODUR

TIE-43: Optical Properties of ZERODUR PAGE 1/12 0 Introduction ZERODUR is a glass-ceramic material exhibiting a very low coefficient of thermal expansion The material is therefore used as a mirror substrate for astronomical telescopes or as

More information

New Die Attach Adhesives Enable Low-Stress MEMS Packaging

New Die Attach Adhesives Enable Low-Stress MEMS Packaging New Die Attach Adhesives Enable Low-Stress MEMS Packaging Dr. Tobias Königer DELO Industrial Adhesives DELO-Allee 1; 86949 Windach; Germany Tobias.Koeniger@DELO.de Phone +49 8193 9900 365 Abstract High

More information

Speckles and adaptive optics

Speckles and adaptive optics Chapter 9 Speckles and adaptive optics A better understanding of the atmospheric seeing and the properties of speckles is important for finding techniques to reduce the disturbing effects or to correct

More information

Interfacial Flows of Contact Line Dynamics and Liquid Displacement in a Circular Microchannel

Interfacial Flows of Contact Line Dynamics and Liquid Displacement in a Circular Microchannel Proceedings of the 3 rd World Congress on Mechanical, Chemical, and Material Engineering (MCM'17) Rome, Italy June 8 10, 2017 Paper No. HTFF 159 ISSN: 2369-8136 DOI: 10.11159/htff17.159 Interfacial Flows

More information

Physics 208 Exam 1 Oct. 3, 2007

Physics 208 Exam 1 Oct. 3, 2007 1 Name: Student ID: Section #: Physics 208 Exam 1 Oct. 3, 2007 Print your name and section clearly above. If you do not know your section number, write your TA s name. Your final answer must be placed

More information

Measuring tilt and focus for sodium beacon adaptive optics on the Starfire 3.5 meter telescope -- Conference Proceedings (Preprint)

Measuring tilt and focus for sodium beacon adaptive optics on the Starfire 3.5 meter telescope -- Conference Proceedings (Preprint) AFRL-RD-PS-TP-2008-1008 AFRL-RD-PS-TP-2008-1008 Measuring tilt and focus for sodium beacon adaptive optics on the Starfire 3.5 meter telescope -- Conference Proceedings (Preprint) Robert Johnson 1 September

More information

Lobster-Eye Hard X-Ray Telescope Mirrors

Lobster-Eye Hard X-Ray Telescope Mirrors Lobster-Eye Hard X-Ray Telescope Mirrors Victor Grubsky, Michael Gertsenshteyn, Keith Shoemaker, Igor Mariyenko, and Tomasz Jannson Physical Optics Corporation, Torrance, CA Mirror Technology Days 007

More information

n The visual examination of the image of a point source is one of the most basic and important tests that can be performed.

n The visual examination of the image of a point source is one of the most basic and important tests that can be performed. 8.2.11 Star Test n The visual examination of the image of a point source is one of the most basic and important tests that can be performed. Interpretation of the image is to a large degree a matter of

More information

A) n 1 > n 2 > n 3 B) n 1 > n 3 > n 2 C) n 2 > n 1 > n 3 D) n 2 > n 3 > n 1 E) n 3 > n 1 > n 2

A) n 1 > n 2 > n 3 B) n 1 > n 3 > n 2 C) n 2 > n 1 > n 3 D) n 2 > n 3 > n 1 E) n 3 > n 1 > n 2 55) The diagram shows the path of a light ray in three different materials. The index of refraction for each material is shown in the upper right portion of the material. What is the correct order for

More information

Astro 500 A500/L-7 1

Astro 500 A500/L-7 1 Astro 500 1 Telescopes & Optics Outline Defining the telescope & observatory Mounts Foci Optical designs Geometric optics Aberrations Conceptually separate Critical for understanding telescope and instrument

More information

Stray light analysis of an on-axis three-reflection space optical system

Stray light analysis of an on-axis three-reflection space optical system June 10, 2010 / Vol. 8, No. 6 / CHINESE OPTICS LETTERS 569 Stray light analysis of an on-axis three-reflection space optical system Baolin Du ( ), Lin Li ( ), and Yifan Huang ( ) School of Optoelectronics,

More information

Optics.

Optics. Optics www.optics.rochester.edu/classes/opt100/opt100page.html Course outline Light is a Ray (Geometrical Optics) 1. Nature of light 2. Production and measurement of light 3. Geometrical optics 4. Matrix

More information

Describe the forces and torques exerted on an electric dipole in a field.

Describe the forces and torques exerted on an electric dipole in a field. Learning Outcomes - PHYS 2015 Electric charges and forces: Describe the electrical nature of matter; Explain how an object can be charged; Distinguish between electrical conductors and insulators and the

More information

THERMOHYDRAULIC BEHAVIOUR OF HEII IN STRATIFIED CO-CURRENT TWO-PHASE FLOW AT HIGH VAPOR VELOCITIES

THERMOHYDRAULIC BEHAVIOUR OF HEII IN STRATIFIED CO-CURRENT TWO-PHASE FLOW AT HIGH VAPOR VELOCITIES EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH European Laboratory for Particle Physics Large Hadron Collider Project LHC Project Report 67 THERMOHYDRAULIC BEHAVIOUR OF HEII IN STRATIFIED CO-CURRENT TWO-PHASE

More information

LASER TRAPPING MICRO-PROBE FOR NANO-CMM

LASER TRAPPING MICRO-PROBE FOR NANO-CMM LASER TRAPPING MICRO-PROBE FOR NANO-CMM T. Miyoshi, Y. Takaya and S. Takahashi Division of Production and Measurement System Engineering Department of Mechanical Engineering and Systems Osaka University,

More information

Introduction to aberrations OPTI518 Lecture 5

Introduction to aberrations OPTI518 Lecture 5 Introduction to aberrations OPTI518 Lecture 5 Second-order terms 1 Second-order terms W H W W H W H W, cos 2 2 000 200 111 020 Piston Change of image location Change of magnification 2 Reference for OPD

More information

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : ,

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : , 1 O P T I C S 1. Define resolving power of a telescope & microscope and give the expression for its resolving power. 2. Explain briefly the formation of mirage in deserts. 3. The radii of curvature of

More information

Supplementary Information

Supplementary Information Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2015 Supplementary Information Visualization of equilibrium position of colloidal particles at fluid-water

More information

Deformable mirror fitting error by correcting the segmented wavefronts

Deformable mirror fitting error by correcting the segmented wavefronts 1st AO4ELT conference, 06008 (2010) DOI:10.1051/ao4elt/201006008 Owned by the authors, published by EDP Sciences, 2010 Deformable mirror fitting error by correcting the segmented wavefronts Natalia Yaitskova

More information

CHAPTER 3: SURFACE AND INTERFACIAL TENSION. To measure surface tension using both, the DuNouy ring and the capillary tube methods.

CHAPTER 3: SURFACE AND INTERFACIAL TENSION. To measure surface tension using both, the DuNouy ring and the capillary tube methods. CHAPTER 3: SURFACE AND INTERFACIAL TENSION Objective To measure surface tension using both, the DuNouy ring and the capillary tube methods. Introduction In a fluid system, the presence of two or more phases

More information

Simulation of specimen-induced aberrations for objects with

Simulation of specimen-induced aberrations for objects with Journal of Microscopy, Vol. 215, Pt 3 September 2004, pp. 271 280 Received 5 February 2004; accepted 27 April 2004 Simulation of specimen-induced aberrations for objects with Blackwell Publishing, Ltd.

More information

Fadei Komarov Alexander Kamyshan

Fadei Komarov Alexander Kamyshan Fadei Komarov Alexander Kamyshan Institute of Applied Physics Problems, Belarusian State University, Minsk, Belarus KomarovF@bsu.by Tasks and Objects 2 Introduction and motivation Experimental setup designed

More information

Magnifying Glass. Angular magnification (m): 25 cm/f < m < 25cm/f + 1. image at 25 cm (= normal near point) relaxed eye, image at (normal) far point

Magnifying Glass. Angular magnification (m): 25 cm/f < m < 25cm/f + 1. image at 25 cm (= normal near point) relaxed eye, image at (normal) far point Magnifying Glass Angular magnification (m): 25 cm/f < m < 25cm/f + 1 relaxed eye, image at (normal) far point image at 25 cm (= normal near point) For more magnification, first use a lens to form an enlarged

More information

Wavefront aberration analysis with a multi-order diffractive optical element

Wavefront aberration analysis with a multi-order diffractive optical element Wavefront aberration analysis with a multi-order diffractive optical element P.A. Khorin 1, S.A. Degtyarev 1,2 1 Samara National Research University, 34 Moskovskoe Shosse, 443086, Samara, Russia 2 Image

More information

Physics 1252 Sec.A Exam #1A

Physics 1252 Sec.A Exam #1A Physics 1252 Sec.A Exam #1A Instructions: This is a closed-book, closed-notes exam. You are allowed to use a clean print-out of your formula sheet, any scientific calculator, and a ruler. Do not write

More information

The IPIE Adaptive Optical System Application For LEO Observations

The IPIE Adaptive Optical System Application For LEO Observations The IPIE Adaptive Optical System Application For LEO Observations Eu. Grishin (1), V. Shargorodsky (1), P. Inshin (2), V. Vygon (1) and M. Sadovnikov (1) (1) Open Joint Stock Company Research-and-Production

More information

Opto-Mechanical I/F for ANSYS

Opto-Mechanical I/F for ANSYS Opto-Mechanical I/F for ANSYS Victor Genberg, Gregory Michels, Keith Doyle Sigmadyne, Inc. Abstract Thermal and structural output from ANSYS is not in a form useful for optical analysis software. Temperatures,

More information

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July ISSN

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July ISSN International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 96 Performance and Evaluation of Interferometric based Wavefront Sensors M.Mohamed Ismail1, M.Mohamed Sathik2 Research

More information

UNIT-5 EM WAVES UNIT-6 RAY OPTICS

UNIT-5 EM WAVES UNIT-6 RAY OPTICS UNIT-5 EM WAVES 2 Marks Question 1. To which regions of electromagnetic spectrum do the following wavelengths belong: (a) 250 nm (b) 1500 nm 2. State any one property which is common to all electromagnetic

More information

Optical Physics of Rifle Scopes

Optical Physics of Rifle Scopes Optical Physics of Rifle Scopes A Senior Project By Ryan Perry Advisor, Dr. Glen Gillen Department of Physics, California Polytechnic University SLO June 8, 207 Approval Page Title: Optical Analysis of

More information

Indicate whether each statement is true or false by circling your answer. No explanation for your choice is required. Each answer is worth 3 points.

Indicate whether each statement is true or false by circling your answer. No explanation for your choice is required. Each answer is worth 3 points. Physics 5B FINAL EXAM Winter 2009 PART I (15 points): True/False Indicate whether each statement is true or false by circling your answer. No explanation for your choice is required. Each answer is worth

More information

Part 1 - Basic Interferometers for Optical Testing

Part 1 - Basic Interferometers for Optical Testing Part 1 - Basic Interferometers for Optical Testing Two Beam Interference Fizeau and Twyman-Green interferometers Basic techniques for testing flat and spherical surfaces Mach-Zehnder Zehnder,, Scatterplate

More information

Self-assembled nanostructures for antireflection optical coatings

Self-assembled nanostructures for antireflection optical coatings Self-assembled nanostructures for antireflection optical coatings Yang Zhao 1, Guangzhao Mao 2, and Jinsong Wang 1 1. Deaprtment of Electrical and Computer Engineering 2. Departmentof Chemical Engineering

More information

Experimental and Theoretical Study of Motion of Drops on Horizontal Solid Surfaces with a Wettability Gradient Nadjoua Moumen

Experimental and Theoretical Study of Motion of Drops on Horizontal Solid Surfaces with a Wettability Gradient Nadjoua Moumen Experimental and Theoretical Study of Motion of Drops on Horizontal Solid Surfaces with a Wettability Gradient Nadjoua Moumen Department of Chemical and Biomolecular Engineering Clarkson University Outline

More information

JRE Group of Institutions ASSIGNMENT # 1 Special Theory of Relativity

JRE Group of Institutions ASSIGNMENT # 1 Special Theory of Relativity ASSIGNMENT # 1 Special Theory of Relativity 1. What was the objective of conducting the Michelson-Morley experiment? Describe the experiment. How is the negative result of the experiment interpreted? 2.

More information

Spatial Light Modulator for wavefront correction 1. INTRODUCTION

Spatial Light Modulator for wavefront correction 1. INTRODUCTION Spatial Light Modulator for wavefront correction A. Vyas 1, 2, M. B. Roopashree 1, Ravinder Kumar Banyal 1, B Raghavendra Prasad 1 1 Indian Institute of Astrophysics, Bangalore-560034, India 2 Indian Institute

More information

Chapter Ray Optics and Optical Instrument

Chapter Ray Optics and Optical Instrument Chapter Ray Optics and Optical Instrument Q1. Focal length of a convex lens of refractive index 1.5 is 2 cm. Focal length of the lens when immersed in a liquid of refractive index of 1.25 will be [1988]

More information

solar telescopes Solar Physics course lecture 5 Feb Frans Snik BBL 707

solar telescopes Solar Physics course lecture 5 Feb Frans Snik BBL 707 Solar Physics course lecture 5 Feb 19 2008 Frans Snik BBL 707 f.snik@astro.uu.nl www.astro.uu.nl/~snik solar vs. nighttime telescopes solar constant: 1.37 kw/m 2 destroys optics creates seeing solar vs.

More information

λ Fig. 2 Name: y direction. In what c) in the + y direction d) in the y direction e) in the x direction

λ Fig. 2 Name: y direction. In what c) in the + y direction d) in the y direction e) in the x direction Name: Exam #3 D#: Physics 140 Section #: hoose the best answer for each of Questions 1-19 below. Mark your answer on your scantron form using a # pencil. (5.6 pts each) 1. At a certain instant in time,

More information

Neutrons on a surface of liquid helium.

Neutrons on a surface of liquid helium. Neutrons on a surface of liquid helium. P. Grigoriev*, O. Zimmer**, A. Grigoriev +, and T. Ziman** * L. D. Landau Institute for Theoretical Physics, Chernogolovka, Russia; **Institute Laue-Laungevin, Grenoble,

More information

Physics 202 Final (Monday, December 12) Fall 2016 (Saslow) White Version

Physics 202 Final (Monday, December 12) Fall 2016 (Saslow) White Version Physics 202 Final (Monday, December 12) Fall 2016 (Saslow) White Version Name (printed) Lab Section(+2 pts) Name (signed as on ID) Show all work. Partial credit may be given. Answers should include the

More information

Focus-tunable low-power electrowetting lenses with thin parylene films

Focus-tunable low-power electrowetting lenses with thin parylene films 6224 Vol. 54, No. 20 / July 10 2015 / Applied Optics Research Article Focus-tunable low-power electrowetting lenses with thin parylene films ALEXANDER M. WATSON, 1, *KEVIN DEASE, 2 SORAYA TERRAB, 1 CHRISTOPHER

More information

Name (Please Print)...

Name (Please Print)... Prince Sultan University Department of Mathematics & Physics PHY205- Physics2 Final Exam First Semester, Term 161 Sunday 22/1/2017 Examination Time : 120 minutes Name (Please Print).............................

More information

Design and Development of Bimorph Deformable Mirrors for Defocus Correction

Design and Development of Bimorph Deformable Mirrors for Defocus Correction Design and Development of Bimorph Deformable Mirrors for Defocus Correction Kavita Rawal, Vijayeta Gambhir and D.P Ghai Laser Science and Technology Center, Metcalfe House, Old sectt, Delhi-110054, India.

More information

Core Concept. PowerPoint Lectures to accompany Physical Science, 8e. Chapter 7 Light. New Symbols for this Chapter 3/29/2011

Core Concept. PowerPoint Lectures to accompany Physical Science, 8e. Chapter 7 Light. New Symbols for this Chapter 3/29/2011 PowerPoint Lectures to accompany Physical Science, 8e Chapter 7 Light Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Core Concept Light is electromagnetic radiation

More information

The Nature of Light Student Question Sheet (Advanced)

The Nature of Light Student Question Sheet (Advanced) The Nature of Light Student Question Sheet (Advanced) Author: Sarah Roberts - Faulkes Telescope Project Introduction This worksheet contains questions and activities which will test your knowledge and

More information

Synopsis of Design of reflective projection lens with Zernike polynomials surfaces

Synopsis of Design of reflective projection lens with Zernike polynomials surfaces Synopsis of Design of reflective projection lens with Zernike polynomials surfaces Zhenrong Zheng, Xutao Sun, Xu liu, Peifu Gu Published in Science Direct, Display 29 (2008) 412-417 University of Arizona

More information

Sparse Multiwall Carbon Nanotube Electrode Arrays for Liquid-Crystal Photonic Devices**

Sparse Multiwall Carbon Nanotube Electrode Arrays for Liquid-Crystal Photonic Devices** DOI: 10.1002/adma.200701910 Sparse Multiwall Carbon Nanotube Electrode Arrays for Liquid-Crystal Photonic Devices** By Timothy D. Wilkinson,* Xiaozhi Wang, Ken B. K. Teo, and William I. Milne Multiwall

More information

Transmission Electron Microscopy

Transmission Electron Microscopy L. Reimer H. Kohl Transmission Electron Microscopy Physics of Image Formation Fifth Edition el Springer Contents 1 Introduction... 1 1.1 Transmission Electron Microscopy... 1 1.1.1 Conventional Transmission

More information

Name Final Exam May 1, 2017

Name Final Exam May 1, 2017 Name Final Exam May 1, 217 This test consists of five parts. Please note that in parts II through V, you can skip one question of those offered. Some possibly useful formulas appear below. Constants, etc.

More information

Numerical Modeling of 3D Electrowetting Droplet Actuation and Cooling of a Hotspot

Numerical Modeling of 3D Electrowetting Droplet Actuation and Cooling of a Hotspot Numerical Modeling of 3D Electrowetting Droplet Actuation and Cooling of a Hotspot Mun Mun Nahar, Govindraj Shreyas Bindiganavale, Jagath Nikapitiya and Hyejin Moon University of Texas at Arlington 10/20/2015

More information

An Introduction to. Adaptive Optics. Presented by. Julian C. Christou Gemini Observatory

An Introduction to. Adaptive Optics. Presented by. Julian C. Christou Gemini Observatory An Introduction to Adaptive Optics Presented by Julian C. Christou Gemini Observatory Gemini North in action Turbulence An AO Outline Atmospheric turbulence distorts plane wave from distant object. How

More information

Knowledge of basic math concepts is expected (conversions, units, trigonometry, vectors, etc.)

Knowledge of basic math concepts is expected (conversions, units, trigonometry, vectors, etc.) Topics for the Final Exam Knowledge of basic math concepts is expected (conversions, units, trigonometry, vectors, etc.) Chapter 2. displacement, velocity, acceleration motion in one dimension with constant

More information

UNIMORPH DEFORMABLE MIRROR FOR TELESCOPES AND LASER APPLICATIONS IN SPACE

UNIMORPH DEFORMABLE MIRROR FOR TELESCOPES AND LASER APPLICATIONS IN SPACE UNIMORPH DEFORMABLE MIRROR FOR TELESCOPES AND LASER APPLICATIONS IN SPACE S. Verpoort and U. Wittrock Photonics Laboratory, Münster University of Applied Sciences, Stegerwaldstrasse 39, 48565 Steinfurt,

More information

Introduction to Micro/Nanofluidics. Date: 2015/03/13. Dr. Yi-Chung Tung. Outline

Introduction to Micro/Nanofluidics. Date: 2015/03/13. Dr. Yi-Chung Tung. Outline Introduction to Micro/Nanofluidics Date: 2015/03/13 Dr. Yi-Chung Tung Outline Introduction to Microfluidics Basic Fluid Mechanics Concepts Equivalent Fluidic Circuit Model Conclusion What is Microfluidics

More information

Beyond the Geometric toward the Wave Optical Approach in the Design of Curved Crystal and Multilayer Optics for EDXAS

Beyond the Geometric toward the Wave Optical Approach in the Design of Curved Crystal and Multilayer Optics for EDXAS Beyond the Geometric toward the Wave Optical Approach in the Design of Curved Crystal and Multilayer Optics for EDXAS Vito Mocella CNR IMM Napoli Units, Italy In collaboration with C. Ferrero, C. Morawe,

More information

1. In Young s double slit experiment, when the illumination is white light, the higherorder fringes are in color.

1. In Young s double slit experiment, when the illumination is white light, the higherorder fringes are in color. TRUE-FALSE STATEMENTS: ELECTRICITY: 1. Electric field lines originate on negative charges. 2. The flux of the electric field over a closed surface is proportional to the net charge enclosed by the surface.

More information

Adaptive Optics for the Giant Magellan Telescope. Marcos van Dam Flat Wavefronts, Christchurch, New Zealand

Adaptive Optics for the Giant Magellan Telescope. Marcos van Dam Flat Wavefronts, Christchurch, New Zealand Adaptive Optics for the Giant Magellan Telescope Marcos van Dam Flat Wavefronts, Christchurch, New Zealand How big is your telescope? 15-cm refractor at Townsend Observatory. Talk outline Introduction

More information