Hybrid QM/MM and Related Electronic Structure Methods: Lecture 7

Size: px
Start display at page:

Download "Hybrid QM/MM and Related Electronic Structure Methods: Lecture 7"

Transcription

1 Hybrid QM/MM and Related Electronic Structure Methods: Lecture 7 Jeremy Harvey Winter School in Multiscale Modeling December , KTH Stockholm

2 VI. TS Problems Reaction path optimization In QM/MM can be full of pitfallls Comparison of QM-only and QM/MM models for the mechanism of tyrosinase, T. Borowski and P. E. M. Siegbahn, Faraday Discuss. 2011, 148, 109. unsolved problems for the mechanism of tyrosinase. Recently, another attempt was made to attack the mechanism of tyrosinase 14 with the new X-ray structure as starting point using the the ONIOM version 15 of QM/ MM. In that study a mechanism was found with a low barrier of 16 kcal mol 1, and without the necessity of a nearby base. Rather surprisingly, the mechanism for O O cleavage was exactly the same as one discarded in the previous QM study discussed above. 12 The O O bond was cleaved for an O 2 H ligand bound between the JNH / Lecture 1 2

3 TS Problems Previous QM/MM studypresent QM/MM study Species QM QM/MM QM, BS1 QM/MM, BS1 QM, BS2 QM/MM, BS2 React React (0.0) 0.0 React (1.4) a TS (16.3) a Why the big discrepancy? JNH / Lecture 1 3

4 The TS and Reactant Strcutures found are not Correlated JNH / Lecture 1 4 0

5 Conclusions Calculations have been carried out to clarify the discrepancy between previous QMonly and QM/MM studies on the mechanism of tyrosinase. The QM-only study used a rather small model, while in the QM/MM study the entire enzyme was included. Two important conclusions can be drawn from the results reported here. First, the most likely explanation for the discrepancy between the previous QM and QM/MM results is that the previous QM/MM geometry optimization has converged to an incorrect reactant state. A contributing factor to the discrepancy is also that quite different local minima, with very different energies, were obtained for the points along the reaction pathway. The second conclusion is that the effects of the enzyme outside the QM-model are negligible once the correct calculations have been carried out. With the present result, the mechanism where an O 2 H ligand is ho- JNH / Lecture 1 5

6 QM/MM and Other MultiScale Methods: A Summary Scientific Background on the Nobel Prize in Chemistry 2013 DEVELOPMENT OF MULTISCALE MODELS FOR COMPLEX CHEMICAL SYSTEMS

7 QM/MM JNH / Lecture 1 7

8 σ and π JNH / Lecture 1 8

9 Coarse Grains JNH / Lecture 1 9

10 Other Hybrid Methods There is an increasing tendency to use more sophisticated hybrid methods, broadly characterizable as QM/QM methods In these approaches, the core and environment interact in a more rigorous QM way with one another One example: embedding methods JNH / Lecture 1 10

11 Chemistry Models Models of chemistry are pretty much always multiscale in one sense: they include atomistic-level aspects and macroscopic ones Often these two (or more) levels are integrated conceptually but not within a single computational framework The overhead in computational complexity involved in making models that do carry out the latter integration is considerable But sometimes it is needed and it is also good fun!

12 Thank You!

Example questions for Molecular modelling (Level 4) Dr. Adrian Mulholland

Example questions for Molecular modelling (Level 4) Dr. Adrian Mulholland Example questions for Molecular modelling (Level 4) Dr. Adrian Mulholland 1) Question. Two methods which are widely used for the optimization of molecular geometies are the Steepest descents and Newton-Raphson

More information

Multiscale Materials Modeling

Multiscale Materials Modeling Multiscale Materials Modeling Lecture 09 Quantum Mechanics/Molecular Mechanics (QM/MM) Techniques Fundamentals of Sustainable Technology These notes created by David Keffer, University of Tennessee, Knoxville,

More information

EXAM 2 Free Response. K c. C. Calculate Q and indicate which direction the reaction will proceed as it moves towards equilibrium (2 points)

EXAM 2 Free Response. K c. C. Calculate Q and indicate which direction the reaction will proceed as it moves towards equilibrium (2 points) Put the first three letters of your LASTNAME in the boxes EXAM 2 Free Response Name: Sparks EID: CH302 Spring 2014 Version Number: Answers must appear on this paper in the space provided. You should show

More information

Janice Gorzynski Smith University of Hawai i. Chapter 6. Modified by Dr. Juliet Hahn

Janice Gorzynski Smith University of Hawai i. Chapter 6. Modified by Dr. Juliet Hahn Organic Chemistry, Fifth Edition Janice Gorzynski Smith University of Hawai i Chapter 6 Modified by Dr. Juliet Hahn Copyright 2017 McGraw-Hill Education. All rights reserved. No reproduction or distribution

More information

Computational Studies of [NiFe] and [FeFe] Hydrogenases

Computational Studies of [NiFe] and [FeFe] Hydrogenases 4414 Chem. Rev. 2007, 107, 4414 4435 Computational Studies of [NiFe] and [FeFe] Hydrogenases Per E. M. Siegbahn* Department of Biophysics, Arrhenius Laboratory, Stockholm University, SE-106 91, Stockholm,

More information

Making Sugars. Carbon Dioxide. Properties of Carbon Dioxide

Making Sugars. Carbon Dioxide. Properties of Carbon Dioxide Making Sugars The reactions that take carbon dioxide to sugar involve nucleophilic attack at the carbon of carbon dioxide and reduction. The reducing equivalents come from NADPH. Energy is transmitted

More information

The Curtin-Hammett Principle

The Curtin-Hammett Principle [B 2 ] G TS2 - G TS1 t [B 1 ] t = ( (G TS2 - G TS1 ) ) e RT ΔG 1 ΔG 21 ΔG 2 So, relative reaction rates depend only on relative transition-state energies, and not on starting-material ground-state energies.

More information

An introduction to Molecular Dynamics. EMBO, June 2016

An introduction to Molecular Dynamics. EMBO, June 2016 An introduction to Molecular Dynamics EMBO, June 2016 What is MD? everything that living things do can be understood in terms of the jiggling and wiggling of atoms. The Feynman Lectures in Physics vol.

More information

6.1 Collision Theory & Rates of Reaction IB SL CHEMISTRY MRS. PAGE

6.1 Collision Theory & Rates of Reaction IB SL CHEMISTRY MRS. PAGE 6.1 Collision Theory & Rates of Reaction IB SL CHEMISTRY MRS. PAGE Understandings: Species react as a result of collisions of sufficient energy and proper orientation. The rate of reaction is expressed

More information

WELCOME TO MODERN ORGANIC CHEMISTRY

WELCOME TO MODERN ORGANIC CHEMISTRY WELCOME TO MODERN ORGANIC CEMISTRY Organic Chemistry, 5 th Edition L. G. Wade, Jr. Chapter 4 The Study of Chemical Reactions WAT IS A REACTION MECANISM A DESCRIPTION OF STRUCTURES AN ENERGIES OF STARTING

More information

Chemical Reactions and Enzymes. (Pages 49-59)

Chemical Reactions and Enzymes. (Pages 49-59) Chemical Reactions and Enzymes (Pages 49-59) Chemical Reactions Chemistry of Life Not just what life is made of. What life does! Chemical Reactions Chemistry of Life Not just what life is made of. What

More information

Modelling of Reaction Mechanisms KJE-3102

Modelling of Reaction Mechanisms KJE-3102 Modelling of Reaction Mechanisms KJE-3102 Kathrin H. Hopmann Kathrin.hopmann@uit.no Outline Potential energy surfaces Transition state optimization Reaction coordinates Imaginary frequencies Verification

More information

Catalysis. Catalytic nanoparticles have been used for centuries to facilitate desirable chemical reactions and to suppress unwanted byproducts.

Catalysis. Catalytic nanoparticles have been used for centuries to facilitate desirable chemical reactions and to suppress unwanted byproducts. Catalysis Catalytic nanoparticles have been used for centuries to facilitate desirable chemical reactions and to suppress unwanted byproducts. Gerhard Ertl received the 2007 Chemistry Nobel Prize for converting

More information

Multiscale Materials Modeling

Multiscale Materials Modeling Multiscale Materials Modeling Lecture 10 Adaptive Resolution Fundamentals of Sustainable Technology These notes created by David Keffer, University of Tennessee, Knoxville, 2012. Reminder In the previous

More information

5.62 Physical Chemistry II Spring 2008

5.62 Physical Chemistry II Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 5.62 Physical Chemistry II Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 5.62 Spring 2007 Lecture

More information

Mechanisms for peptide S-S and N-C bond cleavage in ECD/ETD mass spectroscopy- Anions in Disguise. Jack Simons University of Utah

Mechanisms for peptide S-S and N-C bond cleavage in ECD/ETD mass spectroscopy- Anions in Disguise. Jack Simons University of Utah Mechanisms for peptide - and - bond cleavage in ED/ETD mass spectroscopy- Anions in Disguise Jack imons University of Utah Funding: F Analytical and urface hemistry My main collaborators: P. kurski, M.

More information

Citation for the original published paper (version of record):

Citation for the original published paper (version of record): http://www.diva-portal.org Postprint This is the accepted version of a paper published in Journal of Computational Chemistry. This paper has been peer-reviewed but does not include the final publisher

More information

Answer Key, Problem Set 9

Answer Key, Problem Set 9 Chemistry 122 Mines, Spring 2018 Answer Key, Problem Set 9 1. 19.44(c) (Also indicate the sign on each electrode, and show the flow of ions in the salt bridge.); 2. 19.46 (do this for all cells in 19.44);

More information

Citation for the original published paper (version of record):

Citation for the original published paper (version of record): http://www.diva-portal.org Postprint This is the accepted version of a paper published in Journal of Chemical Theory and Computation. This paper has been peer-reviewed but does not include the final publisher

More information

with increased Lecture Summary #33 Wednesday, December 3, 2014

with increased Lecture Summary #33 Wednesday, December 3, 2014 5. Lecture Summary #33 Wednesday, December 3, 204 Reading for Today: 4.-4.3 in 5 th ed and 3.-3.3 in 4 th ed Reading for Lecture #34: 4.4 & 4.6 in 5 th ed and 3.4 & 3.6 in 4 th ed Topic: Kinetics I. Effect

More information

Catalysis Lectures W.H. Green 5.68J/10.652J Spring Handouts: Norskov et al., J. Catalysis Imbihl and Ertl, Chem. Rev. (partial) Homework

Catalysis Lectures W.H. Green 5.68J/10.652J Spring Handouts: Norskov et al., J. Catalysis Imbihl and Ertl, Chem. Rev. (partial) Homework Catalysis Lectures W.H. Green 5.68J/10.652J Spring 2003 Handouts: Norskov et al., J. Catalysis Imbihl and Ertl, Chem. Rev. (partial) Homework Major points: 1) Why reactions have barriers, and how catalysts

More information

Quantum Mechanics - Molecular Mechanics (QM/MM) CHEM 430

Quantum Mechanics - Molecular Mechanics (QM/MM) CHEM 430 Quantum Mechanics - Molecular Mechanics (QM/MM), CHEM 430 Quantum Mechanics In theory, a very accurate treatment of the system Largely ab initio, i.e. parameter-free Very expensive typically scales as

More information

5.111 Lecture Summary #35 Wednesday, December 10, 2014

5.111 Lecture Summary #35 Wednesday, December 10, 2014 5111 Lecture Summary #35 Wednesday, December 10, 2014 Topic: Applying Chemistry Knowledge: A Semester in Review A look back at the course objectives: My goal is for 5111 students to have a working knowledge

More information

Reaction Coordinates. Activation Energy. Catalysis

Reaction Coordinates. Activation Energy. Catalysis Today Reaction Coordinates Activation Energy Catalysis We have a balloon with H2 and O2 why is not reacting? 2H2(g) + O2(g) 2H2O(g) We have a balloon with H2 and O2 why is not reacting? 2H2(g) + O2(g)

More information

Lecture 15: Enzymes & Kinetics. Mechanisms ROLE OF THE TRANSITION STATE. H-O-H + Cl - H-O δ- H Cl δ- HO - + H-Cl. Margaret A. Daugherty.

Lecture 15: Enzymes & Kinetics. Mechanisms ROLE OF THE TRANSITION STATE. H-O-H + Cl - H-O δ- H Cl δ- HO - + H-Cl. Margaret A. Daugherty. Lecture 15: Enzymes & Kinetics Mechanisms Margaret A. Daugherty Fall 2004 ROLE OF THE TRANSITION STATE Consider the reaction: H-O-H + Cl - H-O δ- H Cl δ- HO - + H-Cl Reactants Transition state Products

More information

I. Multiple Choice 20

I. Multiple Choice 20 Name: Date: Chemistry 30 Rates of Reaction: Chemical Kinetics 50 I. Multiple Choice 20 1. The rate determining step for a complex reaction is the one which is A. fastest C. slowest B. last in the sequence

More information

From Friday s material

From Friday s material 5.111 Lecture 35 35.1 Kinetics Topic: Catalysis Chapter 13 (Section 13.14-13.15) From Friday s material Le Chatelier's Principle - when a stress is applied to a system in equilibrium, the equilibrium tends

More information

Lecture 2. Conformational Analysis of Acyclic Alkenes

Lecture 2. Conformational Analysis of Acyclic Alkenes Lecture 2 Conformational Analysis of Acyclic Alkenes Learning outcomes: by the end of this lecture after answering the associated problems, you will be able to: 1. draw low-energy conformations of acyclic

More information

Module 5: Combustion Technology. Lecture 32: Fundamentals of thermochemistry

Module 5: Combustion Technology. Lecture 32: Fundamentals of thermochemistry 1 P age Module 5: Combustion Technology Lecture 32: Fundamentals of thermochemistry 2 P age Keywords : Heat of formation, enthalpy change, stoichiometric coefficients, exothermic reaction. Thermochemistry

More information

The Innocent role of Sc 3+ on Non-Heme Fe catalyst in O 2 environment

The Innocent role of Sc 3+ on Non-Heme Fe catalyst in O 2 environment Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2014 Supporting Information For The Innocent role of Sc 3+ on Non-Heme Fe catalyst in O 2

More information

- 1 - Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Flemingovo náměstí 2, CZ, Praha, Czech Republic

- 1 - Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Flemingovo náměstí 2, CZ, Praha, Czech Republic Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2014-1 - The activation of N-glycosidic bond cleavage operated by base-excision repair enzyme hogg1;

More information

AP CHEMISTRY SCORING GUIDELINES

AP CHEMISTRY SCORING GUIDELINES Mean 5.64 out of 9 pts AP CHEMISTRY Question 1 CO(g) + 1 2 O 2 (g) CO 2 (g) 1. The combustion of carbon monoxide is represented by the equation above. (a) Determine the value of the standard enthalpy change,

More information

Pedro Alexandrino Fernandes Department of Chemistry and Biochemistry University of Porto Portugal

Pedro Alexandrino Fernandes Department of Chemistry and Biochemistry University of Porto Portugal edro Alexandrino Fernandes Department of Chemistry and Biochemistry University of orto ortugal L is a cofactor that plays a vital role in human physiology and has associated over 3% of all enzymes, comprising

More information

Molecular Dynamics. A very brief introduction

Molecular Dynamics. A very brief introduction Molecular Dynamics A very brief introduction Sander Pronk Dept. of Theoretical Physics KTH Royal Institute of Technology & Science For Life Laboratory Stockholm, Sweden Why computer simulations? Two primary

More information

Computational Modeling of Protein-Ligand Interactions

Computational Modeling of Protein-Ligand Interactions Computational Modeling of Protein-Ligand Interactions Steven R. Gwaltney Department of Chemistry Mississippi State University Mississippi State, MS 39762 Auguste Comte, 1830 Every attempt to refer chemical

More information

Coupling ReaxFF and DREIDING to Model Enzymatic Reactions. Li Tao, Markus J. Buehler and William A. Goddard

Coupling ReaxFF and DREIDING to Model Enzymatic Reactions. Li Tao, Markus J. Buehler and William A. Goddard Coupling ReaxFF and DREIDING to Model Enzymatic Reactions Li Tao, Markus J. Buehler and William A. Goddard Motivation Find efficient computational method to model reactivity in large biological systems

More information

Multi-scale modelling of transition metal enzymes

Multi-scale modelling of transition metal enzymes Degree Project C in Chemistry, 15 c Multi-scale modelling of transition metal enzymes Nathalie Proos Vedin 18th June 2015 Supervisor: Marcus Lundberg Uppsala University Department of Chemistry Ångström

More information

Energy Barriers and Rates - Transition State Theory for Physicists

Energy Barriers and Rates - Transition State Theory for Physicists Energy Barriers and Rates - Transition State Theory for Physicists Daniel C. Elton October 12, 2013 Useful relations 1 cal = 4.184 J 1 kcal mole 1 = 0.0434 ev per particle 1 kj mole 1 = 0.0104 ev per particle

More information

Marcus Theory for Electron Transfer a short introduction

Marcus Theory for Electron Transfer a short introduction Marcus Theory for Electron Transfer a short introduction Minoia Andrea MPIP - Journal Club -Mainz - January 29, 2008 1 Contents 1 Intro 1 2 History and Concepts 2 2.1 Frank-Condon principle applied to

More information

Supporting Information. Chemical Feasibility of the General Acid/Base Mechanism of glms Ribozyme Self-Cleavage

Supporting Information. Chemical Feasibility of the General Acid/Base Mechanism of glms Ribozyme Self-Cleavage Supporting Information to Chemical Feasibility of the General Acid/Base Mechanism of glms Ribozyme Self-Cleavage Matúš Dubecký, 1 Nils G. Walter, 2 Jiří Šponer, 3,4 Michal Otyepka 1 and Pavel Banáš *,1,3

More information

Bond Energies - Chemistry LibreTexts 2H 2 O 2 H 2 + O 2 (1.1)

Bond Energies - Chemistry LibreTexts 2H 2 O 2 H 2 + O 2 (1.1) BOND ENERGIES Atoms bond together to form compounds because in doing so they attain lower energies than they possess as individual atoms. A quantity of energy, equal to the difference between the energies

More information

Energy Changes, Reaction Rates and Equilibrium. Thermodynamics: study of energy, work and heat. Kinetic energy: energy of motion

Energy Changes, Reaction Rates and Equilibrium. Thermodynamics: study of energy, work and heat. Kinetic energy: energy of motion Energy Changes, Reaction Rates and Equilibrium Thermodynamics: study of energy, work and heat Kinetic energy: energy of motion Potential energy: energy of position, stored energy Chemical reactions involve

More information

ENZYME SCIENCE AND ENGINEERING PROF. SUBHASH CHAND DEPARTMENT OF BIOCHEMICAL ENGINEERING AND BIOTECHNOLOGY IIT DELHI LECTURE 3

ENZYME SCIENCE AND ENGINEERING PROF. SUBHASH CHAND DEPARTMENT OF BIOCHEMICAL ENGINEERING AND BIOTECHNOLOGY IIT DELHI LECTURE 3 ENZYME SCIENCE AND ENGINEERING PROF. SUBHASH CHAND DEPARTMENT OF BIOCHEMICAL ENGINEERING AND BIOTECHNOLOGY IIT DELHI LECTURE 3 ENZYMES AS BIOCATALYSTS * CATALYTIC EFFICIENCY *SPECIFICITY Having discussed

More information

Computer Simulations of Biological Functions ; From Enzymes to Molecular Machines

Computer Simulations of Biological Functions ; From Enzymes to Molecular Machines Computer Simulations of Biological Functions ; From Enzymes to Molecular Machines Sending information (Signals) in the cell No Enzyme Enzyme How does that see! work? Aha! I 12 11 1 10 2 9 3 8 7 6 5 4

More information

2. Which of the following are nucleophiles and which are electrophiles?

2. Which of the following are nucleophiles and which are electrophiles? Life Sciences 1a ractice roblems 7 1. a) ow many intermediates are there in the reaction? b) ow many transition states are there? c) What is the fastest step in the reaction? d) Which is more stable, A

More information

Unit 7 Kinetics and Thermodynamics

Unit 7 Kinetics and Thermodynamics 17.1 The Flow of Energy Heat and Work Unit 7 Kinetics and Thermodynamics I. Energy Transformations A. Temperature 1. A measure of the average kinetic energy of the particles in a sample of matter B. Heat

More information

Lecture 14 (10/18/17) Lecture 14 (10/18/17)

Lecture 14 (10/18/17) Lecture 14 (10/18/17) Lecture 14 (10/18/17) Reading: Ch6; 190-191, 194-195, 197-198 Problems: Ch6 (text); 7, 24 Ch6 (study guide-facts); 4, 13 NEXT Reading: Ch6; 198-203 Ch6; Box 6-1 Problems: Ch6 (text); 8, 9, 10, 11, 12,

More information

Fondamenti di Chimica Farmaceutica. Computer Chemistry in Drug Research: Introduction

Fondamenti di Chimica Farmaceutica. Computer Chemistry in Drug Research: Introduction Fondamenti di Chimica Farmaceutica Computer Chemistry in Drug Research: Introduction Introduction Introduction Introduction Computer Chemistry in Drug Design Drug Discovery: Target identification Lead

More information

RELATIVISTIC QUANTUM MEASUREMENTS AND TUNNELLING

RELATIVISTIC QUANTUM MEASUREMENTS AND TUNNELLING RELATIVISTIC QUANTUM MEASUREMENTS AND TUNNELLING C. Anastopoulos Based on C.A. + N. Savvidou, (2012, in preparation) and Phys. Rev. A 86, 012111 (2012) Key points of the presentation We briefly present

More information

Formation and Reactivity of Nitrenes with Silver Catalysts for C-H H Bond Amination. Joseph Scanlon Ripon College

Formation and Reactivity of Nitrenes with Silver Catalysts for C-H H Bond Amination. Joseph Scanlon Ripon College Formation and Reactivity of Nitrenes with Silver Catalysts for C-H H Bond Amination Prasoon Saurabh, Kelcey Anderson, Joseph Scanlon Ripon College Why we want C-N C N bonds More chemically reactive than

More information

CHAPTER CHEMICAL KINETICS

CHAPTER CHEMICAL KINETICS 161 CHAPTER CHEMICAL KINETICS 1. volume force pressure conc. of reactants Ans: 6. In a reversible reaction the energy of activation of the forward reaction is 50 kcal. The energy of activation for the

More information

Two-Metal Ion Catalysis by Ribonuclease H

Two-Metal Ion Catalysis by Ribonuclease H Two-Metal Ion Catalysis by Ribonuclease H Edina Rosta Department of Chemistry King s College London Phosphate Groups as Building Blocks Biological importance: Reproduction: DNA and RNA hydrolysis, synthesis

More information

ASSC2006 (Spokane, Sept. 2006) LOCAL DEFECTS IN SOLIDS

ASSC2006 (Spokane, Sept. 2006) LOCAL DEFECTS IN SOLIDS ASSC2006 (Spokane, Sept. 2006) LOCAL FURIO CORA EPSRC-Advanced Research Fellow University College London, Chemistry and Davy-Faraday Research Laboratory The Royal Institution f.cora@ucl.ac.uk; furio@ri.ac.uk

More information

2013 W. H. Freeman and Company. 6 Enzymes

2013 W. H. Freeman and Company. 6 Enzymes 2013 W. H. Freeman and Company 6 Enzymes CHAPTER 6 Enzymes Key topics about enzyme function: Physiological significance of enzymes Origin of catalytic power of enzymes Chemical mechanisms of catalysis

More information

AS-LEVEL PAPER 1 PP2 MS

AS-LEVEL PAPER 1 PP2 MS AS-LEVEL PAPER PP2 MS. [8] 2. [8] Page 3. [6] 4. (a) Enthalpy change when mol of an (ionic) compound/lattice (under standard conditions) Allow heat energy change (b) Is dissociated/broken/separated into

More information

Lecture #8 9/21/01 Dr. Hirsh

Lecture #8 9/21/01 Dr. Hirsh Lecture #8 9/21/01 Dr. Hirsh Types of Energy Kinetic = energy of motion - force x distance Potential = stored energy In bonds, concentration gradients, electrical potential gradients, torsional tension

More information

The Study of Chemical Reactions. Mechanism: The complete, step by step description of exactly which bonds are broken, formed, and in which order.

The Study of Chemical Reactions. Mechanism: The complete, step by step description of exactly which bonds are broken, formed, and in which order. The Study of Chemical Reactions Mechanism: The complete, step by step description of exactly which bonds are broken, formed, and in which order. Thermodynamics: The study of the energy changes that accompany

More information

Many prominent proposals (e.g., see refs. 1 and 2) and

Many prominent proposals (e.g., see refs. 1 and 2) and How important are entropic contributions to enzyme catalysis? J. Villà, M.Štrajbl, T. M. Glennon, Y. Y. Sham, Z. T. Chu, and A. Warshel* Department of Chemistry, University of Southern California, Los

More information

1896 J. J. Thomson discovered. Measured effect of small E field on charge water droplets. Crude estimate of q

1896 J. J. Thomson discovered. Measured effect of small E field on charge water droplets. Crude estimate of q Robert Millikan Scientific Misconduct Erik Ylvisaker Early Experiments 1896 J. J. Thomson discovered electron showed q/m const. Measured effect of small E field on charge water droplets Crude estimate

More information

Answer Marks Guidance

Answer Marks Guidance Question number (a) molecular formula: C 4 H 8 Answer Marks Guidance empirical formula: CH 2 This is a revision of earlier chapters. (b) (i) name of mechanism: electrophilic addition Remember that reactions

More information

Exercise 7: Reaction Mechanisms

Exercise 7: Reaction Mechanisms Exercise 7: Reaction Mechanisms In this exercise, a simple S N 2 reaction is studied using quantum chemical methods: F C Cl F C Cl F C Cl + Reactant Transition State Product The goal is to determine the

More information

TECHNIQUES TO LOCATE A TRANSITION STATE

TECHNIQUES TO LOCATE A TRANSITION STATE 32 III. TECHNIQUES TO LOCATE A TRANSITION STATE In addition to the location of minima, the calculation of transition states and reaction pathways is an interesting task for Quantum Chemistry (QC). The

More information

CHEM 203. Topics Discussed on Sept. 16

CHEM 203. Topics Discussed on Sept. 16 EM 203 Topics Discussed on Sept. 16 Special case of Lewis acid-base reactions: proton transfer ( protonation) reactions, i.e. Bronsted acid-base reactions. Example: N large lobe of σ* small lobe of σ*

More information

2 4 Chemical Reactions and Enzymes Slide 1 of 34

2 4 Chemical Reactions and Enzymes Slide 1 of 34 2 4 Chemical Reactions and Enzymes 1 of 34 Chemical Reactions Chemical Reactions A chemical reaction is a process that changes one set of chemicals into another set of chemicals. Some chemical reactions

More information

C H activation of aliphatic amines without unnecessary mask M2 Takaya Togo

C H activation of aliphatic amines without unnecessary mask M2 Takaya Togo C H activation of aliphatic amines without unnecessary mask 2017.11.25 M2 Takaya Togo 1 Outline 1.Introduction 2.Free amines as DG Discovery of new activation mode Mechanistic studies Application of the

More information

Supporting Information for

Supporting Information for Supporting Information for Factors Controlling the Reactivity and Chemoselectivity of Resonance Destabilized Amides in Ni-catalyzed Decarbonylative and Non-decarbonylative Suzuki-Miyaura Coupling Chong-Lei

More information

Suggested Answers to Chemical Kinetics Revision Exercise. The results of some investigations of the rate of this reaction are shown below.

Suggested Answers to Chemical Kinetics Revision Exercise. The results of some investigations of the rate of this reaction are shown below. Suggested Answers to Chemical Kinetics Revision Exercise 1 At 973K, nitrogen monoxide and hydrogen react as follows: 2NO(g) + 2H 2 (g) N 2 (g) + 2H 2 O(g) The results of some investigations of the rate

More information

Titanium Phosphinimide Polymerization Catalysts

Titanium Phosphinimide Polymerization Catalysts tanium Phosphinimide Polymerization atalysts Motivation We are all familiar with the importance of Ziegler-atta catalysis [l 4 and cocatalyst Et 3 Al], and the polymerisation of olefins which represents

More information

Chemistry Notes for class 12 Chapter 4 Chemical Kinetics

Chemistry Notes for class 12 Chapter 4 Chemical Kinetics 1 P a g e Chemistry Notes for class 12 Chapter 4 Chemical Kinetics The branch of chemistry, which deals with the rate of chemical reactions. the factors affecting the rate of reactions and the mechanism

More information

Multiscale Model for a Metal-Organic Framework: High-Spin Rebound Mechanism in the Reaction of the Oxoiron(IV) Species of Fe-MOF-74 Contents

Multiscale Model for a Metal-Organic Framework: High-Spin Rebound Mechanism in the Reaction of the Oxoiron(IV) Species of Fe-MOF-74 Contents Supporting Information Multiscale Model for a Metal-Organic Framework: High-Spin Rebound Mechanism in the Reaction of the Oxoiron(IV) Species of Fe-MOF-74 Hajime Hirao*, Wilson Kwok Hung Ng, Adhitya Mangala

More information

CHEM 1A: Exam 2 Practice Problems:

CHEM 1A: Exam 2 Practice Problems: CHEM 1A: Exam 2 Practice Problems: These practice problems are not a comprehensive list of all questions to be asked on the exam. Refer to the suggested textbook HW, other practice problems on the review

More information

General Chemistry I Concepts

General Chemistry I Concepts Chemical Kinetics Chemical Kinetics The Rate of a Reaction (14.1) The Rate Law (14.2) Relation Between Reactant Concentration and Time (14.3) Activation Energy and Temperature Dependence of Rate Constants

More information

Limiting Reactants. In other words once the reactant that is present in the smallest amount is completely consumed the reaction will stop.

Limiting Reactants. In other words once the reactant that is present in the smallest amount is completely consumed the reaction will stop. In any type of chemical reaction, the amount of product that can be produced is determined by the reactant which is in the smallest amount. In any type of chemical reaction, the amount of product that

More information

Session 6: LECTURE OUTLINE (SECTION M2 pp F88 - F90)

Session 6: LECTURE OUTLINE (SECTION M2 pp F88 - F90) Session 6: LECTURE OUTLINE (SECTION M2 pp F88 - F90) I. The Limiting Reagent a. Stoichiometric amounts b. Non-Stoichiometric amounts c. Limiting reagent (L.R) II. III. How Do We Determine Which Is The

More information

Activation of X-H and X-D Bonds (X = O, N, C) by alkaline-earth

Activation of X-H and X-D Bonds (X = O, N, C) by alkaline-earth Supplementary Information Activation of X-H and X-D Bonds (X = O, N, C) by alkaline-earth metal monoxide cations: experiment and theory Andrea Božović and Diethard K. Bohme* Department of Chemistry, Centre

More information

Course Goals for CHEM 202

Course Goals for CHEM 202 Course Goals for CHEM 202 Students will use their understanding of chemical bonding and energetics to predict and explain changes in enthalpy, entropy, and free energy for a variety of processes and reactions.

More information

Chemistry 12 June 2003 Provincial Examination

Chemistry 12 June 2003 Provincial Examination Chemistry 12 June 2003 Provincial Examination ANSWER KEY / SCORING GUIDE CURRICULUM: Organizers 1. Reaction Kinetics 2. Dynamic Equilibrium 3. Solubility Equilibria 4. Acids, Bases, and Salts 5. Oxidation

More information

CHEM 109A Organic Chemistry

CHEM 109A Organic Chemistry CHEM 109A Organic Chemistry https://labs.chem.ucsb.edu/zakarian/armen/courses.html Chapter 5 Alkene: Introduction Thermodynamics and Kinetics Midterm 2... Grades will be posted on Tuesday, Feb. 27 th.

More information

Big Idea 1: Structure of Matter Learning Objective Check List

Big Idea 1: Structure of Matter Learning Objective Check List Big Idea 1: Structure of Matter Learning Objective Check List Structure of Matter Mole Concept: Empirical Formula, Percent Composition, Stoichiometry Learning objective 1.1 The student can justify the

More information

2013 AP CHEMISTRY FREE-RESPONSE QUESTIONS

2013 AP CHEMISTRY FREE-RESPONSE QUESTIONS 2013 AP CHEMISTRY FREE-RESPONSE QUESTIONS 2. Answer the following questions involving the stoichiometry and thermodynamics of reactions containing aluminum species. 2 Al 2 O 3 (l) + 3 C(s) 4 Al(l) + 3

More information

Supporting Information

Supporting Information Supporting Information Formation of Ruthenium Carbenes by gem-hydrogen Transfer to Internal Alkynes: Implications for Alkyne trans-hydrogenation Markus Leutzsch, Larry M. Wolf, Puneet Gupta, Michael Fuchs,

More information

Mechanochemical Coupling in Myosin: A Theoretical Analysis with Molecular Dynamics and Combined QM/MM Reaction Path Calculations

Mechanochemical Coupling in Myosin: A Theoretical Analysis with Molecular Dynamics and Combined QM/MM Reaction Path Calculations 3342 J. Phys. Chem. B 2004, 108, 3342-3357 Mechanochemical Coupling in Myosin: A Theoretical Analysis with Molecular Dynamics and Combined QM/MM Reaction Path Calculations Guohui Li and Qiang Cui* Department

More information

Introduction to Solving the Time- Dependent Schrödinger Equation. Tom Penfold

Introduction to Solving the Time- Dependent Schrödinger Equation. Tom Penfold Introduction to Solving the Time- Dependent Schrödinger Equation Tom Penfold Outline 1 Introduction to Solving the Time-Dependent Schrödinger Equation What problems are we trying to solve? How can we use

More information

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007 Supporting Information Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2007 Formation of the Active Species of Cytochrome P450 Using Iodosylbenzene: A Case for Spin-Selective Reactivity Kyung-Bin

More information

Entropy and Free Energy. The Basis for Thermodynamics

Entropy and Free Energy. The Basis for Thermodynamics Entropy and Free Energy The Basis for Thermodynamics First law of thermodynamics: The change in the energy of a system U = q+ w is the sum of the heat and the work done by or on the system. the first law

More information

AP Chemistry - Problem Drill 15: Lewis Structures and VSEPR Theory

AP Chemistry - Problem Drill 15: Lewis Structures and VSEPR Theory AP Chemistry - Problem Drill 15: Lewis Structures and VSEPR Theory No. 1 of 10 1. Which shape would have sp 3 hybridization? (A) Linear (B) Bent (C) Tetrahedron (D) Trigonal planar (E) Octahedron C. Correct.

More information

B L U E V A L L E Y D I S T R I C T C U R R I C U L U M Science AP Chemistry

B L U E V A L L E Y D I S T R I C T C U R R I C U L U M Science AP Chemistry B L U E V A L L E Y D I S T R I C T C U R R I C U L U M Science AP Chemistry ORGANIZING THEME/TOPIC UNIT 1: ATOMIC STRUCTURE Atomic Theory Electron configuration Periodic Trends Big Idea 1: The chemical

More information

is the Michaelis constant. It represents the apparent dissociation constant of ES to E and S.

is the Michaelis constant. It represents the apparent dissociation constant of ES to E and S. Lecture 35 Chapt 28, Sections 1-4 Bimolecular reactions in the gas phase Anouncements: Exam tomorrow 2:00 is the primary time. vdw 237 I have gotten several suggestions for lecture ideas, thanks and keep

More information

Scission of Dinitrogen by a Molybdenum(III) Xylidene Complex. CHM 5.33 Fall 2005

Scission of Dinitrogen by a Molybdenum(III) Xylidene Complex. CHM 5.33 Fall 2005 Scission of Dinitrogen by a Molybdenum(III) Xylidene Complex CHM 5.33 Fall 2005 Introduction The experiment is based on research performed in the laboratory of Professor Cummins during the early 90 s.

More information

Tutorial on rate constants and reorganization energies

Tutorial on rate constants and reorganization energies www.elsevier.nl/locate/jelechem Journal of Electroanalytical Chemistry 483 (2000) 2 6 Tutorial on rate constants reorganization energies R.A. Marcus * Noyes Laboratory of Chemical Physics, MC 127-72, California

More information

Survival Strategy: Photosynthesis

Survival Strategy: Photosynthesis Energy and Electron Transfer Survival Strategy: Photosynthesis Light Energy Harvested by Plants 6 CO 2 + 6 H 2 O + light energy C 6 H 12 O 6 + 6 O 2 Importance of Photosynthesis Provides energy for plants

More information

Metal / σ-bond interactions

Metal / σ-bond interactions Literature seminar 08.05.6 Suzuki Yuta (M2) Metal / σ-bond interactions toward an understanding of C-H activation Contents σ-complex (η 2 -R-H bonds)...2. Formation of σ-complex...2.2 Structure and Dynamics

More information

Energetics and Rates

Energetics and Rates Energetics and Rates Specification points Year 0 Energetics Energy transfer during exothermic and endothermic reactions - know that an exothermic reaction transfers energy to the surroundings so the surrounding

More information

Integrated Tools for Computational Chemical Dynamics

Integrated Tools for Computational Chemical Dynamics Integrated Tools for Computational Chemical Dynamics Research Tools Design Consortium Department of Chemistry, UM Chemical & Materials Sciences Div. and Environmental Molecular Sci. Lab Participants U

More information

Collision Theory. Reaction Rates A little review from our thermodynamics unit. 2. Collision with Incorrect Orientation. 1. Reactants Must Collide

Collision Theory. Reaction Rates A little review from our thermodynamics unit. 2. Collision with Incorrect Orientation. 1. Reactants Must Collide Reaction Rates A little review from our thermodynamics unit Collision Theory Higher Temp. Higher Speeds More high-energy collisions More collisions that break bonds Faster Reaction In order for a reaction

More information

CHAPTER 13 (MOORE) CHEMICAL KINETICS: RATES AND MECHANISMS OF CHEMICAL REACTIONS

CHAPTER 13 (MOORE) CHEMICAL KINETICS: RATES AND MECHANISMS OF CHEMICAL REACTIONS CHAPTER 13 (MOORE) CHEMICAL KINETICS: RATES AND MECHANISMS OF CHEMICAL REACTIONS This chapter deals with reaction rates, or how fast chemical reactions occur. Reaction rates vary greatly some are very

More information

Mechanistic Study of Ethylene Tri- and Tetramerisation with Cr/PNP

Mechanistic Study of Ethylene Tri- and Tetramerisation with Cr/PNP Electronic Supplementary Material (ESI) for atalysis Science & Technology. This journal is The Royal Society of hemistry 2016 Mechanistic Study of Ethylene Tri- and Tetramerisation with r/pnp atalysts:

More information

33-1. Energy Profiles. Energy Profiles Reactions will:- 1.Break or weaken bonds in reactants then form bonds in products.

33-1. Energy Profiles. Energy Profiles Reactions will:- 1.Break or weaken bonds in reactants then form bonds in products. Energy Profiles Energy Profiles Reactions will:- 1.Break or weaken bonds in reactants then form bonds in products. 2. Reactants pass over a Potential Energy Barrier on way to Products. Plot: NO 33-1 Energy

More information

DEVELOPMENT OF MULTISCALE MODELS FOR COMPLEX CHEMICAL SYSTEMS

DEVELOPMENT OF MULTISCALE MODELS FOR COMPLEX CHEMICAL SYSTEMS 9 OCTOBER 2013 Scientific Background on the Nobel Prize in Chemistry 2013 DEVELOPMENT OF MULTISCALE MODELS FOR COMPLEX CHEMICAL SYSTEMS THE ROYAL SWEDISH ACADEMY OF SCIENCES has as its aim to promote the

More information

Concentration 0. 5 M solutions 1. 0 M solutions. Rates Fast Slow. Which factor would account for the faster reaction rate in Experiment 1?

Concentration 0. 5 M solutions 1. 0 M solutions. Rates Fast Slow. Which factor would account for the faster reaction rate in Experiment 1? 72. Consider the following experimental results: Experiment 1 Experiment 2 2+ - - 4 2 2 4 aq Reactants Fe ( aq) + MnO4 ( aq) MnO ( aq) + H C O ( ) Temperature 20 C 40 C Concentration 0. 5 M solutions 1.

More information