CHAPTER 13 (MOORE) CHEMICAL KINETICS: RATES AND MECHANISMS OF CHEMICAL REACTIONS

Size: px
Start display at page:

Download "CHAPTER 13 (MOORE) CHEMICAL KINETICS: RATES AND MECHANISMS OF CHEMICAL REACTIONS"

Transcription

1 CHAPTER 13 (MOORE) CHEMICAL KINETICS: RATES AND MECHANISMS OF CHEMICAL REACTIONS This chapter deals with reaction rates, or how fast chemical reactions occur. Reaction rates vary greatly some are very fast and some are very slow. Chemical kinetics is the study of the rates of chemical reactions, as well as the factors that affect these rates, and the reaction mechanisms by which reactions occur. Factors That Affect Reaction Rate 1. nature of the reactants (relative reactivity) 2. concentration(s) of the reactants 3. temperature 4. presence of catalyst(s) We will begin by considering the meaning of the term, reaction rate. We can think of reaction rate as being similar to speed. A car travels at 65 miles per hour. Note the units: distance/time. What about reaction rates? Since they relate to chemical equations, we can express their rates as changes in reactant (or product) concentrations per unit time: where Δ = change in. rate (disappearance) = Δ[reactant]/Δt here, [ ] means concentration in mol/l Thus, the rate of a reaction is the change in concentration of a species per unit of time. We can graph changes in reactant (or product) concentrations with time Expressing Reaction Rates (see also Table 13.1, Moore, p. 610) The rate of reaction can be expressed as moles per liter per unit time (mol L 1 s 1 or M s 1 ) General reaction rates are calculated by dividing rate expressions by stoichiometric coefficients. Consider: 2 H 2 O 2 2 H 2 O + O 2, where we can write H 2O2 ] Δ[ O2 ] Rate = = 2 Δ t Δ t In general, for a reaction where aa + bb cc + dd, A] B] 1Δ[ C] D] Rate= = = = a Δt b Δt c Δt d Δt Rate is also viewed as the negative of the change in concentration of a reactant per unit of time (rate of disappearance of reactant). Thus, rate = - ½ Δ[H 2 O 2 ]/Δt for 2 H 2 O 2 2 H 2 O + O 2 Problem-Solving Practice 13.2 Consider the reaction 4 NO 2 (g) + O 2 (g) 2 N 2 O 5 (g) (a) express the rate of formation of N 2 O 5 in terms of the rate of disappearance of O 2 (b) if the rate of disappearance of O 2 (g) is mol L 1 s 1, what is the rate of disappearance of NO 2?

2 Solution. (a) Average and Instantaneous Rates (see Figure 13.3, Moore, p. 613) The Rate Law of A Chemical Reaction - Reaction Rates and Rate "Laws" The rate law for a chemical reaction relates the rate of reaction to the concentrations of reactants. Consider the reaction in which aa + bb + cc Products rate = k[a] n [B] m [C] p for n, m and p = 0, 1, 2 or 3 Important! Note that the exponents (m, n, p ) are determined by experiment. Rate Laws and Rate Constants The rate constant remains constant throughout a reaction, regardless of the initial concentrations of the reactants. The rate of a reaction is the change in concentration with time, whereas the rate constant is the proportionality constant relating reaction rate to the concentrations of reactants, e.g. Rate [A] x [B] y Exponents are not derived from the coefficients in the balanced chemical equation, though in some instances the exponents and the coefficients may be the same. The value of an exponent in a rate law is the order of the reaction with respect to the reactant in question. rate = k[a] n [B] m [C] p The proportionality constant, k, is the rate constant. Reaction "Order" If Rate = k[a] 1 = k[a] If Rate = k[a] 2 If Rate = k[a]3 reaction is first order in A reaction is second order in A Reaction is third order in A If we triple the concentration of A in a second-order reaction, the rate increases by a factor of. Answer: a factor of 9 (or, 9X) Determining Rate Laws From Data - The Method of Initial Rates - a method of establishing the rate law for a reaction finding the values of the exponents in the rate law, and the value of k A series of experiments is performed in which the initial concentration of one reactant is varied. Concentrations of the other reactants are held constant.

3 When we double the concentration of a reactant, A, - if there is no effect on the rate, the reaction is zero-order in A - if the rate doubles, the reaction is first-order in A - if the rate quadruples, the reaction is second-order in A - if the rate increases eight times, the reaction is third-order in A See Table 13.2 Initial Rates of Reaction for 2 NO(g) + Cl 2 (g) 2 NOCl(g) General rate equation: rate = k [NO] x [Cl 2 ] y Which two experiments are used to find the order of the reaction in NO? Why?? Which two experiments are used to find the order of the reaction in Cl 2? How do we find the value of k after obtaining the order of the reaction in NO and in Cl 2? See Example 13.3 For the reaction 2 NO(g) + Cl 2 (g) 2 NOCl(g) described in the text and in Table 13.2, (a) what is the initial rate for a hypothetical Experiment 4, which has [NO] = M and [Cl 2 ] = M? (b) What is the value of k for the reaction? (a) what is the initial rate for a hypothetical Experiment 4, which has [NO] = M and [Cl 2 ] = M? We have to see how values of concentrations change from Exp. 3 to Exp. 4 [NO] from M to M means doubling and [Cl 2 ] from to M stays constant we see that rate = = k [NO] 2 [Cl 2 ] 1 and that doubling [NO] quadruples rate (4X) while Cl 2 stays the same and has no effect. b) What is the value of k for the reaction? We can use values from any of the experiments to solve for k using rate = k [NO] 2 [Cl 2 ] 1. Let s use data from Exp. 2: [NO] = M and [Cl 2 ] = M so 4.55 x 10-5 M s -1 = k( M) 2 ( M) 1 k = (4.55 x 10-5 M s -1 )/{( M) 2 (0.0510) 1 M } k = 5.71 M -2 s -1 FIRST-ORDER RATE In a first-order reaction, the exponent in the rate law is 1. Rate = k[a]1 = k[a] Integrated rate law: ln {[A] 0 /[A] t } = kt ln [A] t ln [A] 0 = kt ln [A] t = kt + ln [A] 0 A straight line!! See Table 13.3, Hill, p Decomposition of H 2 O 2 Example 13.4, Hill, p. 540 For the first-order decomposition of H 2 O 2 (aq), given k = 3.66 x 10 3 s 1 and [H 2 O 2 ] 0 = M, determine (a) the time at which [H 2 O 2 ] = M and (b) [H 2 O 2 ] after 225 s.

4 Half-Life of a Reaction The half-life (t ½ ) of a reaction is the time required for one-half of the reactant originally present to be consumed. At t½, [A]t = ½[A] 0, and for a first order reaction: ln { [A] 0 /(½ [A] 0 )} = kt ½ ln 2 = = kt 1/2 t 1/2 = 0.693/k Thus, the half-life is a constant and depends only on the rate constant, k, and not on the concentration of reactant. Decomposition of N 2 O 5 at 67 C. Molecules remaining after 1 half-life; after 2 half-lives If k is known, t ½ can be calculated, and if t ½ is known, k can be calculated. Common applications include half-life of radioactive isotopes used in medicine, nuclear power generation and nuclear waste calculations. Zero-Order Reactions Rate has the same value at all points, and is independent of initial concentration. Second-Order Reactions A second-order reaction has a rate law with a sum of the exponents equal to 2 Rate = k[a][b] m + n = 2 Rate = k[a] 2 m = 2 The integrated rate law which expresses [A] as a function of time has the following form: 1/[A]t = kt + 1/[A] o Second-order half life is t½ = 1/k[A] o Second Order Reaction Plot Plot of 1/[A] vs. time is linear with a positive slope. Example 13.8 A Conceptual Example Shown here are graphs of [A] versus time for two different experiments dealing with the reaction A products. What is the order of this reaction? Collision Theory Before atoms, molecules, or ions can react, they must first come together, or collide. An effective collision between two molecules puts enough energy into key bonds to break them. Activation Energy The activation energy (E a ) is the minimum energy that must be supplied by collisions for a reaction to occur. The spatial orientations of the colliding species also affect the reaction rate. Transition State Theory The configuration of the atoms at the time of the collision is called the transition state. This transitory species is the activated complex.

5 Effect of Temperature on Rates Arrhenius proposed the following mathematical expression for the effect of temperature on the rate constant, k: k = A exp{ E a /(RT)} or, ln k = Ea/(RT) + ln A Think: y = m x + b where y = ln k and x = Ea/R Plot ln k vs. 1/T then, ln k = (Ea/R)(1/T) + ln A The Arrhenius Equation The constant A, called the frequency factor, is the product of the collision frequency and a probability factor that takes into account the orientation required for effective molecular collisions. exp(-e a /RT) represents the fraction of molecular collisions sufficiently energetic to produce a product molecule Reaction Mechanisms reaction mechanism: a series of simple steps that lead from the initial reactants to the final products in a reaction. An elementary reaction (or process) represents a single step in the progress of the overall reaction. The mechanism must be consistent with the experimentally determined rate law! Elementary Reactions The molecularity of an elementary reaction refers to the number of free reactant atoms, ions, or molecules that enter into the reaction. The rate-determining step is the slowest step in establishing the rate of the overall reaction. Effect of Catalysts on a Reaction A catalyst speeds up reaction rate by reducing the activation energy. Homogeneous Catalysis Reaction profile for the uncatalyzed and catalyzed decomposition of ozone. Heterogeneous Catalysis Many reactions are catalyzed by the surfaces of appropriate solids. Enzyme Catalysis Enzymes are high-molecular-mass proteins that usually catalyze one specific reaction or a set of quite similar reactions - but no others. Summary of Concepts Rates of reactions are based on the rate of disappearance of a reactant or formation of a product An integrated rate law relates concentration and time The half-life of a reaction is the time in which one-half of the reactant initially present is consumed Chemical reactions occur when sufficiently energetic molecules collide in the proper orientation Reactions generally go faster at higher temperatures or in the presence of a catalyst Reaction mechanisms provide a plausible explanation of how a reaction proceeds

Ch 13 Rates of Reaction (Chemical Kinetics)

Ch 13 Rates of Reaction (Chemical Kinetics) Ch 13 Rates of Reaction (Chemical Kinetics) Reaction Rates and Kinetics - The reaction rate is how fast reactants are converted to products. - Chemical kinetics is the study of reaction rates. Kinetics

More information

AP CHEMISTRY CHAPTER 12 KINETICS

AP CHEMISTRY CHAPTER 12 KINETICS AP CHEMISTRY CHAPTER 12 KINETICS Thermodynamics tells us if a reaction can occur. Kinetics tells us how quickly the reaction occurs. Some reactions that are thermodynamically feasible are kinetically so

More information

Chapter 12. Chemical Kinetics

Chapter 12. Chemical Kinetics Chapter 12 Chemical Kinetics Chapter 12 Table of Contents 12.1 Reaction Rates 12.2 Rate Laws: An Introduction 12.3 Determining the Form of the Rate Law 12.4 The Integrated Rate Law 12.5 Reaction Mechanisms

More information

Ch 13 Chemical Kinetics. Modified by Dr. Cheng-Yu Lai

Ch 13 Chemical Kinetics. Modified by Dr. Cheng-Yu Lai Ch 13 Chemical Kinetics Modified by Dr. Cheng-Yu Lai Outline 1. Meaning of reaction rate 2. Reaction rate and concentration 3. Writing a Rate Law 4. Reactant concentration and time 5. Reaction rate and

More information

Chapter 12. Chemical Kinetics

Chapter 12. Chemical Kinetics Chapter 12 Chemical Kinetics Section 12.1 Reaction Rates Reaction Rate Change in concentration of a reactant or product per unit time. Rate = concentration of A at time t t 2 1 2 1 concentration of A at

More information

Chapter 13 Kinetics: Rates and Mechanisms of Chemical Reactions

Chapter 13 Kinetics: Rates and Mechanisms of Chemical Reactions Chapter 13 Kinetics: Rates and Mechanisms of Chemical Reactions 14.1 Focusing on Reaction Rate 14.2 Expressing the Reaction Rate 14.3 The Rate Law and Its Components 14.4 Integrated Rate Laws: Concentration

More information

Chapter 12. Chemical Kinetics

Chapter 12. Chemical Kinetics Chapter 12 Chemical Kinetics Section 12.1 Reaction Rates Section 12.1 Reaction Rates Section 12.1 Reaction Rates Section 12.1 Reaction Rates Section 12.1 Reaction Rates Section 12.1 Reaction Rates Section

More information

Factors That Affect Rates. Factors That Affect Rates. Factors That Affect Rates. Factors That Affect Rates

Factors That Affect Rates. Factors That Affect Rates. Factors That Affect Rates. Factors That Affect Rates KINETICS Kinetics Study of the speed or rate of a reaction under various conditions Thermodynamically favorable reactions DO NOT mean fast reactions Some reactions take fraction of a second (explosion)

More information

3: Chemical Kinetics Name: HW 6: Review for Unit Test KEY Class: Date: A Products

3: Chemical Kinetics Name: HW 6: Review for Unit Test KEY Class: Date: A Products 3: Chemical Kinetics Name: HW 6: Review for Unit Test KEY Class: Date: Page 1 of 9 AP Multiple Choice Review Questions 1 16 1. The reaction rate is defined as the change in concentration of a reactant

More information

Chapter 14 Chemical Kinetics

Chapter 14 Chemical Kinetics Chapter 14 Chemical Kinetics Factors that Affect Reaction rates Reaction Rates Concentration and Rate The Change of Concentration with Time Temperature and Rate Reactions Mechanisms Catalysis Chemical

More information

Lecture Presentation. Chapter 14. Chemical Kinetics. John D. Bookstaver St. Charles Community College Cottleville, MO Pearson Education, Inc.

Lecture Presentation. Chapter 14. Chemical Kinetics. John D. Bookstaver St. Charles Community College Cottleville, MO Pearson Education, Inc. Lecture Presentation Chapter 14 John D. Bookstaver St. Charles Community College Cottleville, MO In kinetics we study the rate at which a chemical process occurs. Besides information about the speed at

More information

Chapter 13 Rates of Reactions

Chapter 13 Rates of Reactions Chapter 13 Rates of Reactions Chemical reactions require varying lengths of time for completion, depending on the characteristics of the reactants and products. The study of the rate, or speed, of a reaction

More information

Chemical Kinetics Ch t ap 1 er

Chemical Kinetics Ch t ap 1 er Chemical Kinetics Chapter 13 1 Chemical Kinetics Thermodynamics does a reaction take place? Kinetics how fast does a reaction proceed? Reaction rate is the change in the concentration of a reactant or

More information

CHAPTER 12 CHEMICAL KINETICS

CHAPTER 12 CHEMICAL KINETICS 5/9/202 CHAPTER 2 CHEMICAL KINETICS CHM52 GCC Kinetics Some chemical reactions occur almost instantaneously, while others are very slow. Chemical Kinetics - study of factors that affect how fast a reaction

More information

AP Chemistry - Notes - Chapter 12 - Kinetics Page 1 of 7 Chapter 12 outline : Chemical kinetics

AP Chemistry - Notes - Chapter 12 - Kinetics Page 1 of 7 Chapter 12 outline : Chemical kinetics AP Chemistry - Notes - Chapter 12 - Kinetics Page 1 of 7 Chapter 12 outline : Chemical kinetics A. Chemical Kinetics - chemistry of reaction rates 1. Reaction Rates a. Reaction rate- the change in concentration

More information

Chemical Kinetics. Kinetics is the study of how fast chemical reactions occur. There are 4 important factors which affect rates of reactions:

Chemical Kinetics. Kinetics is the study of how fast chemical reactions occur. There are 4 important factors which affect rates of reactions: Chemical Kinetics Kinetics is the study of how fast chemical reactions occur. There are 4 important factors which affect rates of reactions: reactant concentration temperature action of catalysts surface

More information

Unit #10. Chemical Kinetics

Unit #10. Chemical Kinetics Unit #10 Chemical Kinetics Zumdahl Chapter 12 College Board Performance Objectives: Express the rate of a reaction in terms of changes in the concentration of a reactant or a product per time. Understand

More information

Chapter 14 Chemical Kinetics

Chapter 14 Chemical Kinetics Chapter 14 Chemical Kinetics Learning goals and key skills: Understand the factors that affect the rate of chemical reactions Determine the rate of reaction given time and concentration Relate the rate

More information

Chemical Kinetics. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chemical Kinetics. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chemical Kinetics Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chemical Kinetics Thermodynamics does a reaction take place? Kinetics how fast does a reaction

More information

Chapter 12 - Chemical Kinetics

Chapter 12 - Chemical Kinetics Chapter 1 - Chemical Kinetics 1.1 Reaction Rates A. Chemical kinetics 1. Study of the speed with which reactants are converted to products B. Reaction Rate 1. The change in concentration of a reactant

More information

Chapter 14. Chemical Kinetics

Chapter 14. Chemical Kinetics Chapter 14. Chemical Kinetics Common Student Misconceptions It is possible for mathematics to get in the way of some students understanding of the chemistry of this chapter. Students often assume that

More information

Reaction Rate. Rate = Conc. of A at t 2 -Conc. of A at t 1. t 2 -t 1. Rate = Δ[A] Δt

Reaction Rate. Rate = Conc. of A at t 2 -Conc. of A at t 1. t 2 -t 1. Rate = Δ[A] Δt Kinetics The study of reaction rates. Spontaneous reactions are reactions that will happen - but we can t tell how fast. Diamond will spontaneously turn to graphite eventually. Reaction mechanism- the

More information

Part One: Reaction Rates. 1. Rates of chemical reactions. (how fast products are formed and/or reactants are used up)

Part One: Reaction Rates. 1. Rates of chemical reactions. (how fast products are formed and/or reactants are used up) A. Chemical Kinetics deals with: CHAPTER 13: RATES OF REACTION Part One: Reaction Rates 1. Rates of chemical reactions. (how fast products are formed and/or reactants are used up) 2. Mechanisms of chemical

More information

General Chemistry I Concepts

General Chemistry I Concepts Chemical Kinetics Chemical Kinetics The Rate of a Reaction (14.1) The Rate Law (14.2) Relation Between Reactant Concentration and Time (14.3) Activation Energy and Temperature Dependence of Rate Constants

More information

Chapter 12. Kinetics. Factors That Affect Reaction Rates. Factors That Affect Reaction Rates. Chemical. Kinetics

Chapter 12. Kinetics. Factors That Affect Reaction Rates. Factors That Affect Reaction Rates. Chemical. Kinetics PowerPoint to accompany Kinetics Chapter 12 Chemical Kinetics Studies the rate at which a chemical process occurs. Besides information about the speed at which reactions occur, kinetics also sheds light

More information

Chemical Kinetics. Rate = [B] t. Rate = [A] t. Chapter 12. Reaction Rates 01. Reaction Rates 02. Reaction Rates 03

Chemical Kinetics. Rate = [B] t. Rate = [A] t. Chapter 12. Reaction Rates 01. Reaction Rates 02. Reaction Rates 03 Chapter Chemical Kinetics Reaction Rates 0 Reaction Rate: The change in the concentration of a reactant or a product with time (M/s). Reactant Products aa bb Rate = [A] t Rate = [B] t Reaction Rates 0

More information

Kinetics. Chapter 14. Chemical Kinetics

Kinetics. Chapter 14. Chemical Kinetics Lecture Presentation Chapter 14 Yonsei University In kinetics we study the rate at which a chemical process occurs. Besides information about the speed at which reactions occur, kinetics also sheds light

More information

REACTION KINETICS. Catalysts substances that increase the rates of chemical reactions without being used up. e.g. enzymes.

REACTION KINETICS. Catalysts substances that increase the rates of chemical reactions without being used up. e.g. enzymes. REACTION KINETICS Study of reaction rates Why? Rates of chemical reactions are primarily controlled by 5 factors: the chemical nature of the reactants 2 the ability of the reactants to come in contact

More information

Chemical Kinetics. Chapter 13. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chemical Kinetics. Chapter 13. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chemical Kinetics Chapter 13 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chemical Kinetics Thermodynamics does a reaction take place? Kinetics how fast does

More information

How fast reactants turn into products. Usually measured in Molarity per second units. Kinetics

How fast reactants turn into products. Usually measured in Molarity per second units. Kinetics How fast reactants turn into products. Usually measured in Molarity per second units. Kinetics Reaction rated are fractions of a second for fireworks to explode. Reaction Rates takes years for a metal

More information

Chapter 14 Chemical Kinetics

Chapter 14 Chemical Kinetics 7/10/003 Chapter 14 Chemical Kinetics 14-1 Rates of Chemical Reactions 14- Reaction Rates and Concentrations 14-3 The Dependence of Concentrations on Time 14-4 Reaction Mechanisms 14-5 Reaction Mechanism

More information

Name AP CHEM / / Chapter 12 Outline Chemical Kinetics

Name AP CHEM / / Chapter 12 Outline Chemical Kinetics Name AP CHEM / / Chapter 12 Outline Chemical Kinetics The area of chemistry that deals with the rate at which reactions occur is called chemical kinetics. One of the goals of chemical kinetics is to understand

More information

CHEMISTRY. Chapter 14 Chemical Kinetics

CHEMISTRY. Chapter 14 Chemical Kinetics CHEMISTRY The Central Science 8 th Edition Chapter 14 Kozet YAPSAKLI kinetics is the study of how rapidly chemical reactions occur. rate at which a chemical process occurs. Reaction rates depends on The

More information

11/2/ and the not so familiar. Chemical kinetics is the study of how fast reactions take place.

11/2/ and the not so familiar. Chemical kinetics is the study of how fast reactions take place. Familiar Kinetics...and the not so familiar Reaction Rates Chemical kinetics is the study of how fast reactions take place. Some happen almost instantaneously, while others can take millions of years.

More information

Chemical Kinetics and Equilibrium

Chemical Kinetics and Equilibrium Chemical Kinetics and Equilibrium Part 1: Kinetics David A. Katz Department of Chemistry Pima Community College Tucson, AZ USA Chemical Kinetics The study of the rates of chemical reactions and how they

More information

Δx Δt. Any average rate can be determined between measurements at 2 points in time.

Δx Δt. Any average rate can be determined between measurements at 2 points in time. Chapter 13 Chemical Kinetics Some reaction are faster than others! Chem 210 Jasperse Ch. 13 Handouts 1 Three factors (in addition to the nature of the reacting chemicals themselves ) 1. Concentrations

More information

Chemical Kinetics -- Chapter 14

Chemical Kinetics -- Chapter 14 Chemical Kinetics -- Chapter 14 1. Factors that Affect Reaction Rate (a) Nature of the reactants: molecular structure, bond polarity, physical state, etc. heterogeneous reaction: homogeneous reaction:

More information

Chapter 14. Chemical Kinetics

Chapter 14. Chemical Kinetics Chapter 14. Chemical Kinetics 14.1 Factors that Affect Reaction Rates The speed at which a chemical reaction occurs is the reaction rate. Chemical kinetics is the study of how fast chemical reactions occur.

More information

Chapter 11: CHEMICAL KINETICS

Chapter 11: CHEMICAL KINETICS Chapter : CHEMICAL KINETICS Study of the rate of a chemical reaction. Reaction Rate (fast or slow?) Igniting gasoline? Making of oil? Iron rusting? We know about speed (miles/hr). Speed Rate = changes

More information

Chapter 14 Chemical Kinetics

Chapter 14 Chemical Kinetics 4//004 Chapter 4 Chemical Kinetics 4- Rates of Chemical Reactions 4- Reaction Rates and Concentrations 4-3 The Dependence of Concentrations on Time 4-4 Reaction Mechanisms 4-5 Reaction Mechanism and Rate

More information

Kinetics CHAPTER IN THIS CHAPTER

Kinetics CHAPTER IN THIS CHAPTER CHAPTER 14 Kinetics IN THIS CHAPTER Summary: Thermodynamics often can be used to predict whether a reaction will occur spontaneously, but it gives very little information about the speed at which a reaction

More information

Chapter 11 Rate of Reaction

Chapter 11 Rate of Reaction William L Masterton Cecile N. Hurley http://academic.cengage.com/chemistry/masterton Chapter 11 Rate of Reaction Edward J. Neth University of Connecticut Outline 1. Meaning of reaction rate 2. Reaction

More information

Chapter 14 Chemical Kinetics

Chapter 14 Chemical Kinetics Chapter 14 14.1 Factors that Affect Reaction Rates 14.2 Reaction Rates 14.3 Concentration and Rate Laws 14.4 The Change of Concentration with Time 14.5 Temperature and Rate 14.6 Reaction Mechanisms 14.7

More information

Kinetics - Chapter 14. reactions are reactions that will happen - but we can t tell how fast. - the steps by which a reaction takes place.

Kinetics - Chapter 14. reactions are reactions that will happen - but we can t tell how fast. - the steps by which a reaction takes place. The study of. Kinetics - Chapter 14 reactions are reactions that will happen - but we can t tell how fast. - the steps by which a reaction takes place. Factors that Affect Rx Rates 1. The more readily

More information

Chapter 14. Chemical Kinetics

Chapter 14. Chemical Kinetics Chapter 14. Chemical Kinetics Common Student Misconceptions It is possible for mathematics to get in the way of some students understanding of the chemistry of this chapter. Students often assume that

More information

Chapter 14. Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten

Chapter 14. Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chapter 14 John D. Bookstaver St. Charles Community College St. Peters, MO 2006, Prentice Hall,

More information

Lecture (3) 1. Reaction Rates. 2 NO 2 (g) 2 NO(g) + O 2 (g) Summary:

Lecture (3) 1. Reaction Rates. 2 NO 2 (g) 2 NO(g) + O 2 (g) Summary: Summary: Lecture (3) The expressions of rate of reaction and types of rates; Stoichiometric relationships between the rates of appearance or disappearance of components in a given reaction; Determination

More information

Chemical Kinetics. What Influences Kinetics?

Chemical Kinetics. What Influences Kinetics? Chemical Kinetics Predictions of likelihood for a reaction to occur have been based on difference in energy between products and reactants: Thermodynamics only compares reactants to products, says nothing

More information

Part One: Reaction Rates. 1. Even though a reaction is thermodynamically favorable it may not occur at all if it is kinetically very slow.

Part One: Reaction Rates. 1. Even though a reaction is thermodynamically favorable it may not occur at all if it is kinetically very slow. CHAPTER 13: RATES OF REACTION Part One: Reaction Rates A. Chemical Kinetics deals with: 1. 2. B. Importance: 1. Even though a reaction is thermodynamically favorable it may not occur at all if it is kinetically

More information

Chemical Kinetics AP Chemistry Lecture Outline

Chemical Kinetics AP Chemistry Lecture Outline Chemical Kinetics AP Chemistry Lecture Outline Name: Factors that govern rates of reactions. Generally... (1)...as the concentration of reactants increases, rate (2)...as temperature increases, rate (3)...with

More information

Chapter 13 Lecture Lecture Presentation. Chapter 13. Chemical Kinetics. Sherril Soman Grand Valley State University Pearson Education, Inc.

Chapter 13 Lecture Lecture Presentation. Chapter 13. Chemical Kinetics. Sherril Soman Grand Valley State University Pearson Education, Inc. Chapter 13 Lecture Lecture Presentation Chapter 13 Chemical Kinetics Sherril Soman Grand Valley State University Ectotherms Lizards, and other cold-blooded creatures, are ectotherms animals whose body

More information

Chemistry 102 Chapter 14 CHEMICAL KINETICS. The study of the Rates of Chemical Reactions: how fast do chemical reactions proceed to form products

Chemistry 102 Chapter 14 CHEMICAL KINETICS. The study of the Rates of Chemical Reactions: how fast do chemical reactions proceed to form products CHEMICAL KINETICS Chemical Kinetics: The study of the Rates of Chemical Reactions: how fast do chemical reactions proceed to form products The study of Reaction Mechanisms: the steps involved in the change

More information

AP Chem Chapter 14 Study Questions

AP Chem Chapter 14 Study Questions Class: Date: AP Chem Chapter 14 Study Questions 1. A burning splint will burn more vigorously in pure oxygen than in air because a. oxygen is a reactant in combustion and concentration of oxygen is higher

More information

Chapter 14 Chemical Kinetics

Chapter 14 Chemical Kinetics Chapter 14 Chemical Kinetics Thermodynamics tells us what can happen and how far towards completion a reaction will proceed. Kinetics tells us how fast the reaction will go. Study of rates of reactions

More information

Examples of fast and slow reactions

Examples of fast and slow reactions 1 of 10 After completing this chapter, you should, at a minimum, be able to do the following. This information can be found in my lecture notes for this and other chapters and also in your text. Correctly

More information

CHEMISTRY - CLUTCH CH.13 - CHEMICAL KINETICS.

CHEMISTRY - CLUTCH CH.13 - CHEMICAL KINETICS. !! www.clutchprep.com CONCEPT: RATES OF CHEMICAL REACTIONS is the study of reaction rates, and tells us the change in concentrations of reactants or products over a period of time. Although a chemical

More information

Brown et al, Chemistry, 2nd ed (AUS), Ch. 12:

Brown et al, Chemistry, 2nd ed (AUS), Ch. 12: Kinetics: Contents Brown et al, Chemistry, 2 nd ed (AUS), Ch. 12: Why kinetics? What is kinetics? Factors that Affect Reaction Rates Reaction Rates Concentration and Reaction Rate The Change of Concentration

More information

2/23/2018. Familiar Kinetics. ...and the not so familiar. Chemical kinetics is the study of how fast reactions take place.

2/23/2018. Familiar Kinetics. ...and the not so familiar. Chemical kinetics is the study of how fast reactions take place. CHEMICAL KINETICS & REACTION MECHANISMS Readings, Examples & Problems Petrucci, et al., th ed. Chapter 20 Petrucci, et al., 0 th ed. Chapter 4 Familiar Kinetics...and the not so familiar Reaction Rates

More information

What we learn from Chap. 15

What we learn from Chap. 15 Chemical Kinetics Chapter 15 What we learn from Chap. 15 15. The focus of this chapter is the rates and mechanisms of chemical reactions. The applications center around pesticides, beginning with the opening

More information

C H E M I C N E S C I

C H E M I C N E S C I C H E M I C A L K I N E T S C I 4. Chemical Kinetics Introduction Average and instantaneous Rate of a reaction Express the rate of a reaction in terms of change in concentration Elementary and Complex

More information

Chapter 14 Chemical Kinetics

Chapter 14 Chemical Kinetics How fast do chemical processes occur? There is an enormous range of time scales. Chapter 14 Chemical Kinetics Kinetics also sheds light on the reaction mechanism (exactly how the reaction occurs). Why

More information

Outline: Kinetics. Reaction Rates. Rate Laws. Integrated Rate Laws. Half-life. Arrhenius Equation How rate constant changes with T.

Outline: Kinetics. Reaction Rates. Rate Laws. Integrated Rate Laws. Half-life. Arrhenius Equation How rate constant changes with T. Chemical Kinetics Kinetics Studies the rate at which a chemical process occurs. Besides information about the speed at which reactions occur, kinetics also sheds light on the reaction mechanism (exactly

More information

CHEM Chapter 14. Chemical Kinetics (Homework) Ky40

CHEM Chapter 14. Chemical Kinetics (Homework) Ky40 CHEM 1412. Chapter 14. Chemical Kinetics (Homework) Ky40 1. Chlorine dioxide reacts in basic water to form chlorite and chlorate according to the following chemical equation: 2ClO 2 (aq) + 2OH (aq) ClO

More information

Calculating Rates of Substances. Rates of Substances. Ch. 12: Kinetics 12/14/2017. Creative Commons License

Calculating Rates of Substances. Rates of Substances. Ch. 12: Kinetics 12/14/2017. Creative Commons License Ch. 2: Kinetics An agama lizard basks in the sun. As its body warms, the chemical reactions of its metabolism speed up. Chemistry: OpenStax Creative Commons License Images and tables in this file have

More information

Chapter 14: Chemical Kinetics

Chapter 14: Chemical Kinetics Chapter 14: Chemical Kinetics NOTE THIS CHAPTER IS #2 TOP TOPICS ON AP EXAM!!! NOT ONLY DO YOU NEED TO FOCUS ON THEORY (and lots of MATH) BUT YOU MUST READ THE FIGURES TOO!!! Ch 14.1 ~ Factors that Affect

More information

Rates of Chemical Reactions

Rates of Chemical Reactions Rates of Chemical Reactions Jim Birk 12-1 Questions for Consideration 1. What conditions affect reaction rates? 2. How do molecular collisions explain chemical reactions? 3. How do concentration, temperature,

More information

Properties of Solutions and Kinetics. Unit 8 Chapters 4.5, 13 and 14

Properties of Solutions and Kinetics. Unit 8 Chapters 4.5, 13 and 14 Properties of Solutions and Kinetics Unit 8 Chapters 4.5, 13 and 14 Unit 8.1: Solutions Chapters 4.5, 13.1-13.4 Classification of Matter Solutions are homogeneous mixtures Solute A solute is the dissolved

More information

CHAPTER 10 CHEMICAL KINETICS

CHAPTER 10 CHEMICAL KINETICS CHAPTER 10 CHEMICAL KINETICS Introduction To this point in our study of chemistry, we have been concerned only with the composition of the equilibrium mixture, not the length of time required to obtain

More information

Chemical. Chapter 14. Kinetics. Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E.

Chemical. Chapter 14. Kinetics. Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chapter 14 1 PDF Created with deskpdf PDF www.farq.xyz Writer - Trial :: http://www.docudesk.com

More information

14.1 Factors That Affect Reaction Rates

14.1 Factors That Affect Reaction Rates 14.1 Factors That Affect Reaction Rates 1) 2) 3) 4) 14.2 Reaction Rates How does increasing the partial pressures of the reactive components of a gaseous mixture affect the rate at which the compounds

More information

Yes. Yes. Yes. Experimental data: the concentration of a reactant or product measured as a function of time. Graph of conc. vs.

Yes. Yes. Yes. Experimental data: the concentration of a reactant or product measured as a function of time. Graph of conc. vs. Experimental data: the concentration of a reactant or product measured as a function of time Graph of conc. vs. time Is graph a straigh t line? No Graph of ln[conc.] vs. time Yes System is zero order Is

More information

11/9/2012 CHEMICAL REACTIONS. 1. Will the reaction occur? 2. How far will the reaction proceed? 3. How fast will the reaction occur?

11/9/2012 CHEMICAL REACTIONS. 1. Will the reaction occur? 2. How far will the reaction proceed? 3. How fast will the reaction occur? CHEMICAL REACTIONS LECTURE 11: CHEMICAL KINETICS 1. Will the reaction occur? 2. How far will the reaction proceed? 3. How fast will the reaction occur? CHEMICAL REACTIONS C(s, diamond) C(s, graphite) G

More information

v AB + C à AC + B Ø Bonds breaking

v AB + C à AC + B Ø Bonds breaking Chemistry Study Guide 3 v Kinetics reaction rates Ø Catalyst Ø Temperature Ø Concentration Ø Bonds Ø Surface area v Kinetics Ø Kinetic energy is directly proportional to the temperature Ø Gasses will react

More information

Chapter 16. Rate Laws. The rate law describes the way in which reactant concentration affects reaction rate.

Chapter 16. Rate Laws. The rate law describes the way in which reactant concentration affects reaction rate. Rate Laws The rate law describes the way in which reactant concentration affects reaction rate. A rate law is the expression that shows how the rate of formation of product depends on the concentration

More information

AP CHEMISTRY NOTES 7-1 KINETICS AND RATE LAW AN INTRODUCTION

AP CHEMISTRY NOTES 7-1 KINETICS AND RATE LAW AN INTRODUCTION AP CHEMISTRY NOTES 7-1 KINETICS AND RATE LAW AN INTRODUCTION CHEMICAL KINETICS the study of rates of chemical reactions and the mechanisms by which they occur FACTORS WHICH AFFECT REACTION RATES 1. Nature

More information

Understanding Organic Reactions

Understanding Organic Reactions Understanding Organic Reactions Energy Diagrams For the general reaction: The energy diagram would be shown as: Understanding Organic Reactions Energy Diagrams Energy Diagrams Understanding Organic Reactions

More information

Kinetics. 1. Consider the following reaction: 3 A 2 B How is the average rate of appearance of B related to the average rate of disappearance of A?

Kinetics. 1. Consider the following reaction: 3 A 2 B How is the average rate of appearance of B related to the average rate of disappearance of A? Kinetics 1. Consider the following reaction: 3 A 2 B How is the average rate of appearance of B related to the average rate of disappearance of A? A. [A]/ t = [B]/ t B. [A]/ t = (2/3)( [B]/ t) C. [A]/

More information

Kinetics. Mary J. Bojan Chem Rate: change that occurs in a given interval of time.

Kinetics. Mary J. Bojan Chem Rate: change that occurs in a given interval of time. Kinetics Rates of reaction average rates instantaneous rates Dependence of rate on concentration rate constant rate laws order of the reaction Dependence of rate on time First order Second order Half-life

More information

Homework #4 Chapter 15 Chemical Kinetics. Therefore, k depends only on temperature. The rate of the reaction depends on all of these items (a d).

Homework #4 Chapter 15 Chemical Kinetics. Therefore, k depends only on temperature. The rate of the reaction depends on all of these items (a d). Homework #4 Chapter 5 Chemical Kinetics 8. Arrhenius Equation Therefore, k depends only on temperature. The rate of the reaction depends on all of these items (a d). 4. a) d) b) c) e) 5. Rate has units

More information

, but bursts into flames in pure oxygen.

, but bursts into flames in pure oxygen. Chemical Kinetics Chemical kinetics is concerned with the speeds, or rates of chemical reactions Chemical kinetics is a subject of broad importance. How quickly a medicine can work The balance of ozone

More information

Unit 12: Chemical Kinetics

Unit 12: Chemical Kinetics Unit 12: Chemical Kinetics Author: S. Michalek Introductory Resources: Zumdahl v. 5 Chapter 12 Main Ideas: Integrated rate laws Half life reactions Reaction Mechanisms Model for chemical kinetics Catalysis

More information

Unit - 4 CHEMICAL KINETICS VSA QUESTIONS (1 - MARK QUESTIONS) (aq) as product for the reaction : 5 Br (aq) + Br(aq) + 6H + (aq) 3 Br 2

Unit - 4 CHEMICAL KINETICS VSA QUESTIONS (1 - MARK QUESTIONS) (aq) as product for the reaction : 5 Br (aq) + Br(aq) + 6H + (aq) 3 Br 2 Unit - 4 CHEMICAL KINETICS VSA QUESTIONS (1 - MARK QUESTIONS) 1. Define the term rate of reaction. 2. Mention the units of rate of reaction. 3. Express the rate of reaction in terms of Br (aq) as reactant

More information

Chapter 14: Chemical Kinetics

Chapter 14: Chemical Kinetics C h e m i c a l K i n e t i c s P a g e 1 Chapter 14: Chemical Kinetics Homework: Read Chapter 14 Work out sample/practice exercises in the sections, Check for the MasteringChemistry.com assignment and

More information

The first aspects forms the subject matter of chemical equilibrium. The second aspects forms the subject matter of chemical kinetics.

The first aspects forms the subject matter of chemical equilibrium. The second aspects forms the subject matter of chemical kinetics. Chemical Kinetics Introduction In a chemical reaction two important aspects are: (a) How far the reaction will go? and (b) How fast the reaction will occur? The first aspects forms the subject matter of

More information

Chapter 13. Chemical Kinetics. Fu-Yin Hsu

Chapter 13. Chemical Kinetics. Fu-Yin Hsu Chapter 13 Chemical Kinetics Fu-Yin Hsu Ectotherms ( 冷血動物 ) ectotherms animals whose body temperature matches their environment s temperature. Ex: Lizards ( 蜥蝪 ) The drop in body temperature immobilizes

More information

It must be determined from experimental data, which is presented in table form.

It must be determined from experimental data, which is presented in table form. Unit 10 Kinetics The rate law for a reaction describes the dependence of the initial rate of a reaction on the concentrations of its reactants. It includes the Arrhenius constant, k, which takes into account

More information

Reaction Rate. Products form rapidly. Products form over a long period of time. Precipitation reaction or explosion

Reaction Rate. Products form rapidly. Products form over a long period of time. Precipitation reaction or explosion Reaction Rate Products form rapidly Precipitation reaction or explosion Products form over a long period of time Corrosion or decay of organic material Chemical Kinetics Study of the rate at which a reaction

More information

Chapter 30. Chemical Kinetics. Copyright (c) 2011 by Michael A. Janusa, PhD. All rights reserved.

Chapter 30. Chemical Kinetics. Copyright (c) 2011 by Michael A. Janusa, PhD. All rights reserved. Chapter 30 Chemical Kinetics 1 Copyright (c) 2011 by Michael A. Janusa, PhD. All rights reserved. Chemists have three fundamental questions in mind when they study chemical reactions: 1.) What happens?

More information

Ch part 2.notebook. November 30, Ch 12 Kinetics Notes part 2

Ch part 2.notebook. November 30, Ch 12 Kinetics Notes part 2 Ch 12 Kinetics Notes part 2 IV. The Effect of Temperature on Reaction Rate Revisited A. According to the kinetic molecular theory of gases, the average kinetic energy of a collection of gas molecules is

More information

Shroud of Turin. Chemical Kinetics. Reaction Rates. Reaction Rates. Reaction Rates. Chemical Kinetics: The Rates of Chemical Reactions

Shroud of Turin. Chemical Kinetics. Reaction Rates. Reaction Rates. Reaction Rates. Chemical Kinetics: The Rates of Chemical Reactions Page III-12-1 / Chapter Twelve Lecture Notes Chemical Kinetics: The Rates of Chemical Reactions Chapter 12 Chemistry 222 Professor Michael Russell Shroud of Turin Shroud of Jesus?!? Fake or Real? Explored

More information

Chapter 14. Chemical Kinetics

Chapter 14. Chemical Kinetics Common Student Misconceptions It is possible for mathematics to get in the way of some students understanding of the chemistry of this chapter. Students often assume that reaction orders may be determined

More information

Chemical Kinetics. Reaction Rate. Reaction Rate. Reaction Rate. Reaction Rate. Chemistry: The Molecular Science Moore, Stanitski and Jurs

Chemical Kinetics. Reaction Rate. Reaction Rate. Reaction Rate. Reaction Rate. Chemistry: The Molecular Science Moore, Stanitski and Jurs Chemical Kinetics Chemistry: The Molecular Science Moore, Stanitski and Jurs The study of speeds of reactions and the nanoscale pathways or rearrangements by which atoms and molecules are transformed to

More information

Chapter Chemical Kinetics

Chapter Chemical Kinetics CHM 51 Chapter 13.5-13.7 Chemical Kinetics Graphical Determination of the Rate Law for A Product Plots of [A] versus time, ln[a] versus time, and 1/[A] versus time allow determination of whether a reaction

More information

TOPIC 6: Chemical kinetics

TOPIC 6: Chemical kinetics TOPIC 6: Chemical kinetics Reaction rates Reaction rate laws Integrated reaction rate laws Reaction mechanism Kinetic theories Arrhenius law Catalysis Enzimatic catalysis Fuente: Cedre http://loincognito.-iles.wordpress.com/202/04/titanic-

More information

Chapter 14. Chemical Kinetics

Chapter 14. Chemical Kinetics 14.1 Factors that Affect Reaction Rates Chemical kinetics = the study of how fast chemical reactions occur. Factors which affect rates of reactions: Physical state of the reactants. Concentration of the

More information

Name: UNIT 5 KINETICS NOTES PACEKT #: KINETICS NOTES PART C

Name: UNIT 5 KINETICS NOTES PACEKT #: KINETICS NOTES PART C KINETICS NOTES PART C IV) Section 14.4 The Change of Concentration with Time A) Integrated Rate Law: shows how the concentration of the reactant(s) varies with time 1) [A]0 is the initial concentration

More information

Theoretical Models for Chemical Kinetics

Theoretical Models for Chemical Kinetics Theoretical Models for Chemical Kinetics Thus far we have calculated rate laws, rate constants, reaction orders, etc. based on observations of macroscopic properties, but what is happening at the molecular

More information

Chemistry 40S Chemical Kinetics (This unit has been adapted from

Chemistry 40S Chemical Kinetics (This unit has been adapted from Chemistry 40S Chemical Kinetics (This unit has been adapted from https://bblearn.merlin.mb.ca) Name: 1 2 Lesson 1: Introduction to Kinetics Goals: Identify variables used to monitor reaction rate. Formulate

More information

Lecture Presentation. Chapter 14. James F. Kirby Quinnipiac University Hamden, CT. Chemical Kinetics Pearson Education, Inc.

Lecture Presentation. Chapter 14. James F. Kirby Quinnipiac University Hamden, CT. Chemical Kinetics Pearson Education, Inc. Lecture Presentation Chapter 14 James F. Kirby Quinnipiac University Hamden, CT In chemical kinetics we study the rate (or speed) at which a chemical process occurs. Besides information about the speed

More information

CHEM Exam 1 February 11, 2016 Constants and Equations: R = 8.31 J/mol-K. Beer-Lambert Law: A log bc. Michaelis-Menten Equation: v0 M

CHEM Exam 1 February 11, 2016 Constants and Equations: R = 8.31 J/mol-K. Beer-Lambert Law: A log bc. Michaelis-Menten Equation: v0 M CHEM 1423 - Exam 1 February 11, 2016 Constants and Equations: R = 8.31 J/mol-K Io Beer-Lambert Law: A log bc I Vm[ S] Michaelis-Menten Equation: v0 K [ S] M CHEM 1423 - Exam 1 February 11, 2016 Name (60)

More information