14.1 Factors That Affect Reaction Rates

Size: px
Start display at page:

Download "14.1 Factors That Affect Reaction Rates"

Transcription

1 14.1 Factors That Affect Reaction Rates 1) 2) 3) 4) 14.2 Reaction Rates How does increasing the partial pressures of the reactive components of a gaseous mixture affect the rate at which the compounds react with one another? **note this P [ ], used throughout this, and subsequent chapters! Sample Exercise 14.1 From the data in the figure above, calculate the average rate at which A disappears over the time interval from 20s to 40s. Practice Exercise 14.1 For the reaction in the figure above calculate the average rate of appearance of B over the time interval from 0 to 40s. (see at figure captions)

2 Sample Exercise 14.2 Use figure 14.4 to calculate the instantaneous rate of disappearance of C 4H 9Cl at t=0s. (the initial rate) Practice Exercises 14.2 Use figure 14.4 determine the instantaneous rate of disappearance of C 4H 9Cl at t=600s The figure above shows two triangles that are used to determine the slope of the curve at two different times. How do you determine how large a triangle to draw when determining the slope of a curve at a particular point?

3 Look at the reaction below: 2O 3(g) 3O 2(g) A) How is the rate at which the ozone disappears related to the rate at which oxygen appears in the reaction? B) If the rate at which O 2 appears, Δ[O 2]/ Δt, is 6.0x10-5 M/s at a particular instant, at what rate is O 3 disappearing at this same time, - Δ[O 3]/ Δt? 14.3 Concentration and Rate We will now look at the way in which the rate at the beginning of a reaction (the i r ) depends on s c. For a reaction: aa + bb cc + dd we can write an expression, called the rate law expression (or rate law equation) that looks like this: A) What is a rate law? B) What is the name of the quantity k in any rate law? C) True of False: A rate law can always be determined directly from the balanced chemical equation. The experimentally determined rate law for the reaction 2NO(g) + 2H 2(g) N 2(g) +2H 2O(g) is rate = k[no] 2 [H 2] A) What are the reaction orders in this rate law? B) Does doubling the concentration of NO have the same effect on the rate as doubling the concentration of H 2?

4 Consider a reaction A + B C for which the rate = k[a][b] 2. Each of the following boxes represents a reaction mixture in which A is as red spheres and B as purple ones. Rank these mixtures in increasing rate of reaction. Assume the rate = k[a][b], rank the mixtures represented in this sample exercise in order of increasing rate. Eq 1: 2N 2O 5(g) 4NO 2(g) + O 2(g) rate = k(n 2O 5] Eq 2: CHCl 3(g) + Cl 2(g) CCl 4(g) + HCl(g) rate = k[chcl 3][Cl 2] 1/2 Eq 3: H 2(g) + I 2(g) 2HI(g) rate = k[h 2][I 2] What are the overall reaction orders for the reactions described in equation 1 and 2? What are the units of the rate constant for the rate law for equation 1? What is the reaction order for the reactant H 2 in equation 3? What are the units for the rate constant for equation 3?

5 The initial rate of a reaction A+B C was measured for several different concentrations of A and B the results are below. Using the data determine A) the rate law of the reaction. B) the magnitude of the rate constant. C) the rate of the reaction when [A]=0.050M and [B]=0.100M. Experiment Number [A] (M) [B] (M) Initial Rate (M/s) x x x 10-5 The following data were measured for the reaction of nitric oxide with hydrogen: 2NO(g) + 2H2(g) N2(g) + 2H2O(g) Experiment Number [NO] (M) [H2] (M) Initial Rate (M/s) x x x 10-3 A) Determine the rate law for the reaction. B) Calculate the rate constant. C) Calculate the rate when [NO]=0.050M and when [H2]=0.150M.

6 14.4 Change of Concentration With Time: Integrated Rate Laws Rate Law Equation Zero Order First Order Second Order Integrated Rate Law Equation Half- Life Equation Graphically, what makes it relate as a straight- line? What is k for the equation, and what are k s units? The decomposition of a certain insecticide in water follows first- order kinetics with a rate constant of 1.445yr - 1 at 12 C. A quantity of this insecticide is washed into a lake on June 1, leading to a concentration of 5.0 x 10-7 g cm - 3. Assume that the average temperature of the lake is 12 C. A) What is the concentration of the insecticide on June 1 of the following year? B) How long will it take for the concentration of the insecticide to drop to 3.0 x 10-7 g cm - 3?

7 The decomposition of dimethyl ether, (CH 3) 2O, at 510 C is a first- order process with a rate constant of 6.8 x 10-4 s - 1 : (CH 3) 2O(g) CH 4(g) + H 2(g) + CO(g) If the initial pressure of (CH 3) 2O is 135 torr, what is its partial pressure after 1420 seconds? Look at the graphs below. What do the y- intercepts in the graphs (a) and (b) represent?

8 The following data were obtained for the gas- phase decomposition of nitrogen dioxide at 300 degrees Celsius, NO 2(g) NO(g)+ 1 / 2O 2(g): Time(s) [NO 2](M) Is the reaction zero, first or second order in NO 2? Some graphs to help: Consider again the decomposition of NO 2 discussed above. The reaction is second order in NO 2 with k=0.543 M - 1 s - 1. If the initial concentration of NO 2 in a closed vessel is M, what is the remaining concentration after h?

9 The reaction of C 4H 9Cl with water is a first- order reaction. The figure above shows how the concentration of C 4H 9Cl changes with time at a particular temperature. (a) From that graph, estimate the half- life for this reaction. (b) Use the half- life from (a) to calculate the rate constant. Using the 1 st - order half- life equation t 1/2 = 0.693/k

10 (a) calculate t 1/2 for the decomposition of the insecticide described in a sample exercise above. The insecticide follows first- order kinetics with a rate constant of 1.445yr - 1 at 12 C. A quantity of this insecticide is washed into a lake on June 1, leading to a concentration of 5.0 x 10-7 g cm - 3. (b) how long does it take for the concentration of the insecticide to reach one- quarter of the initial value. How does the half- life of a second order reaction change as the reaction proceeds? 14.5 Temperature and Rate What is the central Why isn t collision idea of the collision frequency the only model? factor affecting a reaction rate? This is called an E P Diagram. The vertical axis is E, and the horizontal axis is R P.

11 Consider a series of reactions having the following energy profiles: Assuming that all three reactions have nearly the same frequency factors, rank the reactions from slowest to fastest. Imagine that these reactions are reversed. Rank these reverse reactions from slowest to fastest. Arrhenius noted that for most reactions the increase in the rate with increasing temperature is nonlinear. He developed an equation, the Arrhenius Equation, that related three factors that affect the rate of a reaction: a) b) c) When the natural log of both sides of the equation is taken, the result is: Note it is in the form of y=mx+b a line

12 The following table shows the rate constants for the rearrangement of methyl isonitrile at various temperatures: a) From these data, calculate the activation energy for the reaction b) What is the value of the rate constant at 430.0K? Help for answering (a): What is the sign of the slope of the line graphed above? What quantities are on the vertical and horizontal axes of the graph? What data was collected to determine the activation energy of the reaction?

13 14.6 Reaction Mechanisms Reactions that occur in a single event or step are called elementary reactions (or elementary processes). The number of molecules that participate as reactants in an elementary reaction defines the molecularity of the reaction. Three types of molecularity: a) b) c) The net change represented by a balanced chemical equation often occurs by a multistep mechanism, which consists of a sequence of elementary reactions. It has been proposed that the conversion of ozone into O 2 proceeds by a two- step mechanism: O 3(g) O 2(g) + O(g) O 3(g) + O(g) 2O 2(g) a) describe the molecularity of each elementary reaction in this mechanism. b) Write the equation for the overall reaction. c) Identify the intermediates. The proposed mechanism for a reaction is: Mo(CO) 6 Mo(CO) 5 + CO Mo(CO) 5 + P(CH 3) 3 Mo(CO) 5P(CH 3) 3 a) Write is the equation for the overall reaction? b) What is the molecularity of each step in the mechanism? c) Identify the intermediates. If we know that a reaction is an elementary reaction, then we know its rate law. Questions you answer, must TELL YOU that it is an elementary process or reaction otherwise you don t know.

14 If the follwing reaction occurs in a single elementary reaction, predict the rate law: H 2(g) + Br 2(g) 2HBr(g) Consider the following reaction: 2NO(g) + Br 2(g) 2NOBr(g) a) write the rate law for the reaction, assuming it involves a single elementary reaction. b) Is a single- step mechanism likely for this reaction? Justify your answer. Why can t the rate law for a reaction generally be deduced from the balanced chemical equation? The decomposition of nitrous oxide, N 2O, is believed to occur by a two- step mechanism: N 2O(g) N 2(g) + O(g) slow N 2O(g) + O(g) N 2(g) + O 2(g) fast a) write the equation for the overall reaction. b) write the rate law for the overall reaction. Ozone reacts with nitrogen dioxide to produce dinitrogen pentoxide and oxygen: O 3(g) + 2NO 2(g) N 2O 5(g) + O 2(g) The reaction is believed to occur in two steps: O 3(g) + NO 2(g) NO 3(g) + O 2(g) NO 3(g) + NO 2(g) N 2O 5(g) The experimental rate law is: Rate = k[o 3][NO 2] What can you say about the relative rates of the two steps of the mechanism (e.g., which step is fast and which step is slow )?

15 Show that the following mechanism for 2NO(g) + Br 2(g) 2NOBr(g) also produces a rate law consistent with the experimentally observed one: Step 1: NO(g) + NO(g) N 2O 2(g) (fast, equilibrium) Step 2: N 2O 2(g) + Br 2(g) 2NOBr(g) (slow) The first step of a mechanism involving the reaction of bromine is Br 2(g) 2Br(g) (fast, equilibrium) What is the expression relating the concentration of Br(g) to that of Br 2(g)? A reaction has a known multi-step mechanism of: (1) NO + NO N2O2 (fast, equilibrium) (2) N2O2 + O2 2NO2 (slow) a) Write the overall reaction b) Identify any intermediates in reaction steps c) Write the rate expression for the slow step of the reaction. d) Write the rate law for the overall reaction, eliminating any intermediates from the rate expression.

16 14.7 Catalysis homogeneous catalyst: heterogeneous catalyst: How does a catalyst increase the rate of a reaction? In the energy profile diagram above, label: a) the activation energy without a catalyst b) the activation energy with a catalyst c) the enthalpy of the overall reaction Determine the number of elementary steps (reactions) during the catalyzed reaction. Label them. Is the activation energy for the reverse of the uncatalyzed reaction greater, smaller or equal to the activation energy for the forward reaction? Justify your answer.

SAMPLE EXERCISE 14.3 Relating Rates at Which Products Appear and Reactants Disappear

SAMPLE EXERCISE 14.3 Relating Rates at Which Products Appear and Reactants Disappear SAMPLE EXERCISE 14.3 Relating Rates at Which Products Appear and Reactants Disappear (a) How is the rate at which ozone disappears related to the rate at which oxygen appears in the reaction (b) If the

More information

Brown et al, Chemistry, 2nd ed (AUS), Ch. 12:

Brown et al, Chemistry, 2nd ed (AUS), Ch. 12: Kinetics: Contents Brown et al, Chemistry, 2 nd ed (AUS), Ch. 12: Why kinetics? What is kinetics? Factors that Affect Reaction Rates Reaction Rates Concentration and Reaction Rate The Change of Concentration

More information

Chapter 14. Chemical Kinetics

Chapter 14. Chemical Kinetics Sample Exercise 14.1 (p. 578) For the reaction pictured at the bottom of the previous page, calculate the average rate at which A disappears over the time interval from 20 s to 40 s. (1.2 x 10-2 M/s) Practice

More information

Chapter 14. Chemical Kinetics

Chapter 14. Chemical Kinetics Chapter 14. Chemical Kinetics Common Student Misconceptions It is possible for mathematics to get in the way of some students understanding of the chemistry of this chapter. Students often assume that

More information

Kinetics. Chapter 14. Chemical Kinetics

Kinetics. Chapter 14. Chemical Kinetics Lecture Presentation Chapter 14 Yonsei University In kinetics we study the rate at which a chemical process occurs. Besides information about the speed at which reactions occur, kinetics also sheds light

More information

Chemical. Chapter 14. Kinetics. Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E.

Chemical. Chapter 14. Kinetics. Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chapter 14 1 PDF Created with deskpdf PDF www.farq.xyz Writer - Trial :: http://www.docudesk.com

More information

Chapter 14 Chemical Kinetics

Chapter 14 Chemical Kinetics Chapter 14 14.1 Factors that Affect Reaction Rates 14.2 Reaction Rates 14.3 Concentration and Rate Laws 14.4 The Change of Concentration with Time 14.5 Temperature and Rate 14.6 Reaction Mechanisms 14.7

More information

Chapter 14. Chemical Kinetics

Chapter 14. Chemical Kinetics Common Student Misconceptions It is possible for mathematics to get in the way of some students understanding of the chemistry of this chapter. Students often assume that reaction orders may be determined

More information

Kinetics - Chapter 14. reactions are reactions that will happen - but we can t tell how fast. - the steps by which a reaction takes place.

Kinetics - Chapter 14. reactions are reactions that will happen - but we can t tell how fast. - the steps by which a reaction takes place. The study of. Kinetics - Chapter 14 reactions are reactions that will happen - but we can t tell how fast. - the steps by which a reaction takes place. Factors that Affect Rx Rates 1. The more readily

More information

Chapter 14. Chemical Kinetics

Chapter 14. Chemical Kinetics 14.1 Factors that Affect Reaction Rates Chemical kinetics = the study of how fast chemical reactions occur. Factors which affect rates of reactions: Physical state of the reactants. Concentration of the

More information

Unit #10. Chemical Kinetics

Unit #10. Chemical Kinetics Unit #10 Chemical Kinetics Zumdahl Chapter 12 College Board Performance Objectives: Express the rate of a reaction in terms of changes in the concentration of a reactant or a product per time. Understand

More information

How fast reactants turn into products. Usually measured in Molarity per second units. Kinetics

How fast reactants turn into products. Usually measured in Molarity per second units. Kinetics How fast reactants turn into products. Usually measured in Molarity per second units. Kinetics Reaction rated are fractions of a second for fireworks to explode. Reaction Rates takes years for a metal

More information

AP Chapter 13: Kinetics Name

AP Chapter 13: Kinetics Name AP Chapter 13: Kinetics Name Warm-Ups (Show your work for credit) Date 1. Date 2. Date 3. Date 4. Date 5. Date 6. Date 7. Date 8. AP Chapter 13: Kinetics 2 Warm-Ups (Show your work for credit) Date 1.

More information

Chemical Kinetics AP Chemistry Lecture Outline

Chemical Kinetics AP Chemistry Lecture Outline Chemical Kinetics AP Chemistry Lecture Outline Name: Factors that govern rates of reactions. Generally... (1)...as the concentration of reactants increases, rate (2)...as temperature increases, rate (3)...with

More information

11/2/ and the not so familiar. Chemical kinetics is the study of how fast reactions take place.

11/2/ and the not so familiar. Chemical kinetics is the study of how fast reactions take place. Familiar Kinetics...and the not so familiar Reaction Rates Chemical kinetics is the study of how fast reactions take place. Some happen almost instantaneously, while others can take millions of years.

More information

Lecture (3) 1. Reaction Rates. 2 NO 2 (g) 2 NO(g) + O 2 (g) Summary:

Lecture (3) 1. Reaction Rates. 2 NO 2 (g) 2 NO(g) + O 2 (g) Summary: Summary: Lecture (3) The expressions of rate of reaction and types of rates; Stoichiometric relationships between the rates of appearance or disappearance of components in a given reaction; Determination

More information

the following equilibrium constants. Label the thermodynamic and kinetic regions.

the following equilibrium constants. Label the thermodynamic and kinetic regions. REACTION RATES 1. Distinguish between kinetic and thermodynamic regions of a reaction. 2. How does an increase in pressure affect the rate of a gas-phase reaction? What effect on the rate would doubling

More information

Chapter 13 Kinetics: Rates and Mechanisms of Chemical Reactions

Chapter 13 Kinetics: Rates and Mechanisms of Chemical Reactions Chapter 13 Kinetics: Rates and Mechanisms of Chemical Reactions 14.1 Focusing on Reaction Rate 14.2 Expressing the Reaction Rate 14.3 The Rate Law and Its Components 14.4 Integrated Rate Laws: Concentration

More information

Lecture Presentation. Chapter 14. Chemical Kinetics. John D. Bookstaver St. Charles Community College Cottleville, MO Pearson Education, Inc.

Lecture Presentation. Chapter 14. Chemical Kinetics. John D. Bookstaver St. Charles Community College Cottleville, MO Pearson Education, Inc. Lecture Presentation Chapter 14 John D. Bookstaver St. Charles Community College Cottleville, MO In kinetics we study the rate at which a chemical process occurs. Besides information about the speed at

More information

AP Chem Chapter 14 Study Questions

AP Chem Chapter 14 Study Questions Class: Date: AP Chem Chapter 14 Study Questions 1. A burning splint will burn more vigorously in pure oxygen than in air because a. oxygen is a reactant in combustion and concentration of oxygen is higher

More information

Equilibrium & Reaction Rate

Equilibrium & Reaction Rate Equilibrium & Reaction Rate 1. One of the important reactions in coal gasification is the catalytic methanation reaction: CO(g) + H (g) H O(g) + CH 4 (g) H 06 kj a) Predict the direction in which this

More information

Chapter 12. Chemical Kinetics

Chapter 12. Chemical Kinetics Chapter 12 Chemical Kinetics Chapter 12 Table of Contents 12.1 Reaction Rates 12.2 Rate Laws: An Introduction 12.3 Determining the Form of the Rate Law 12.4 The Integrated Rate Law 12.5 Reaction Mechanisms

More information

Chapter 14 Chemical Kinetics

Chapter 14 Chemical Kinetics Chapter 14 Chemical Kinetics Factors that Affect Reaction rates Reaction Rates Concentration and Rate The Change of Concentration with Time Temperature and Rate Reactions Mechanisms Catalysis Chemical

More information

Kinetics. 1. Consider the following reaction: 3 A 2 B How is the average rate of appearance of B related to the average rate of disappearance of A?

Kinetics. 1. Consider the following reaction: 3 A 2 B How is the average rate of appearance of B related to the average rate of disappearance of A? Kinetics 1. Consider the following reaction: 3 A 2 B How is the average rate of appearance of B related to the average rate of disappearance of A? A. [A]/ t = [B]/ t B. [A]/ t = (2/3)( [B]/ t) C. [A]/

More information

Chemical Kinetics. Kinetics is the study of how fast chemical reactions occur. There are 4 important factors which affect rates of reactions:

Chemical Kinetics. Kinetics is the study of how fast chemical reactions occur. There are 4 important factors which affect rates of reactions: Chemical Kinetics Kinetics is the study of how fast chemical reactions occur. There are 4 important factors which affect rates of reactions: reactant concentration temperature action of catalysts surface

More information

Chapter 12. Kinetics. Factors That Affect Reaction Rates. Factors That Affect Reaction Rates. Chemical. Kinetics

Chapter 12. Kinetics. Factors That Affect Reaction Rates. Factors That Affect Reaction Rates. Chemical. Kinetics PowerPoint to accompany Kinetics Chapter 12 Chemical Kinetics Studies the rate at which a chemical process occurs. Besides information about the speed at which reactions occur, kinetics also sheds light

More information

Chemical Kinetics. Rate = [B] t. Rate = [A] t. Chapter 12. Reaction Rates 01. Reaction Rates 02. Reaction Rates 03

Chemical Kinetics. Rate = [B] t. Rate = [A] t. Chapter 12. Reaction Rates 01. Reaction Rates 02. Reaction Rates 03 Chapter Chemical Kinetics Reaction Rates 0 Reaction Rate: The change in the concentration of a reactant or a product with time (M/s). Reactant Products aa bb Rate = [A] t Rate = [B] t Reaction Rates 0

More information

Chapter: Chemical Kinetics

Chapter: Chemical Kinetics Chapter: Chemical Kinetics Rate of Chemical Reaction Question 1 Nitrogen pentaoxide decomposes according to equation: This first order reaction was allowed to proceed at 40 o C and the data below were

More information

CHEMISTRY. Chapter 14 Chemical Kinetics

CHEMISTRY. Chapter 14 Chemical Kinetics CHEMISTRY The Central Science 8 th Edition Chapter 14 Kozet YAPSAKLI kinetics is the study of how rapidly chemical reactions occur. rate at which a chemical process occurs. Reaction rates depends on The

More information

CHAPTER 13 (MOORE) CHEMICAL KINETICS: RATES AND MECHANISMS OF CHEMICAL REACTIONS

CHAPTER 13 (MOORE) CHEMICAL KINETICS: RATES AND MECHANISMS OF CHEMICAL REACTIONS CHAPTER 13 (MOORE) CHEMICAL KINETICS: RATES AND MECHANISMS OF CHEMICAL REACTIONS This chapter deals with reaction rates, or how fast chemical reactions occur. Reaction rates vary greatly some are very

More information

Ch 13 Rates of Reaction (Chemical Kinetics)

Ch 13 Rates of Reaction (Chemical Kinetics) Ch 13 Rates of Reaction (Chemical Kinetics) Reaction Rates and Kinetics - The reaction rate is how fast reactants are converted to products. - Chemical kinetics is the study of reaction rates. Kinetics

More information

Chapter 12. Chemical Kinetics

Chapter 12. Chemical Kinetics Chapter 12 Chemical Kinetics Section 12.1 Reaction Rates Reaction Rate Change in concentration of a reactant or product per unit time. Rate = concentration of A at time t t 2 1 2 1 concentration of A at

More information

11/9/2012 CHEMICAL REACTIONS. 1. Will the reaction occur? 2. How far will the reaction proceed? 3. How fast will the reaction occur?

11/9/2012 CHEMICAL REACTIONS. 1. Will the reaction occur? 2. How far will the reaction proceed? 3. How fast will the reaction occur? CHEMICAL REACTIONS LECTURE 11: CHEMICAL KINETICS 1. Will the reaction occur? 2. How far will the reaction proceed? 3. How fast will the reaction occur? CHEMICAL REACTIONS C(s, diamond) C(s, graphite) G

More information

2/23/2018. Familiar Kinetics. ...and the not so familiar. Chemical kinetics is the study of how fast reactions take place.

2/23/2018. Familiar Kinetics. ...and the not so familiar. Chemical kinetics is the study of how fast reactions take place. CHEMICAL KINETICS & REACTION MECHANISMS Readings, Examples & Problems Petrucci, et al., th ed. Chapter 20 Petrucci, et al., 0 th ed. Chapter 4 Familiar Kinetics...and the not so familiar Reaction Rates

More information

Ch part 2.notebook. November 30, Ch 12 Kinetics Notes part 2

Ch part 2.notebook. November 30, Ch 12 Kinetics Notes part 2 Ch 12 Kinetics Notes part 2 IV. The Effect of Temperature on Reaction Rate Revisited A. According to the kinetic molecular theory of gases, the average kinetic energy of a collection of gas molecules is

More information

6. Which expression correctly describes the equilibrium constant for the following reaction? 4NH 3 (g) + 5O 2 (g) 4NO(g) + 6H 2 O(g)

6. Which expression correctly describes the equilibrium constant for the following reaction? 4NH 3 (g) + 5O 2 (g) 4NO(g) + 6H 2 O(g) 1. Which of the following can we predict from an equilibrium constant for a reaction? 1. The extent of a reaction 2. Whether the reaction is fast or slow 3. Whether a reaction is exothermic or endothermic

More information

Chapter 14 Chemical Kinetics

Chapter 14 Chemical Kinetics 7/10/003 Chapter 14 Chemical Kinetics 14-1 Rates of Chemical Reactions 14- Reaction Rates and Concentrations 14-3 The Dependence of Concentrations on Time 14-4 Reaction Mechanisms 14-5 Reaction Mechanism

More information

Chapter 12. Chemical Kinetics

Chapter 12. Chemical Kinetics Chapter 12 Chemical Kinetics Section 12.1 Reaction Rates Section 12.1 Reaction Rates Section 12.1 Reaction Rates Section 12.1 Reaction Rates Section 12.1 Reaction Rates Section 12.1 Reaction Rates Section

More information

Chapter 14 Chemical Kinetics

Chapter 14 Chemical Kinetics How fast do chemical processes occur? There is an enormous range of time scales. Chapter 14 Chemical Kinetics Kinetics also sheds light on the reaction mechanism (exactly how the reaction occurs). Why

More information

Chapter 13 Rates of Reactions

Chapter 13 Rates of Reactions Chapter 13 Rates of Reactions Chemical reactions require varying lengths of time for completion, depending on the characteristics of the reactants and products. The study of the rate, or speed, of a reaction

More information

Section 10. Rates of Reactions Goal: Learn how temperature, concentration, and catalysts affect the rate of reaction. Summary

Section 10. Rates of Reactions Goal: Learn how temperature, concentration, and catalysts affect the rate of reaction. Summary Chapter 10 Reaction Rates and Chemical Equilibrium Section 10. Rates of Reactions Goal: Learn how temperature, concentration, and catalysts affect the rate of reaction. Summary The rate of a reaction is

More information

CHEM Dr. Babb s Sections Lecture Problem Sheets

CHEM Dr. Babb s Sections Lecture Problem Sheets CHEM 116 - Dr. Babb s Sections Lecture Problem Sheets Kinetics: Integrated Form of Rate Law 61. Give the integrated form of a zeroth order reaction. Define the half-life and find the halflife for a general

More information

AP Questions: Kinetics

AP Questions: Kinetics AP Questions: Kinetics 1972 2 A + 2 B C + D The following data about the reaction above were obtained from three experiments: Rate of Formation of [A] [B] C (mole. liter -1 min -1 ) 1 0.60 0.15 6.3 10-3

More information

Chemical Kinetics and Equilibrium

Chemical Kinetics and Equilibrium Chemical Kinetics and Equilibrium Part 1: Kinetics David A. Katz Department of Chemistry Pima Community College Tucson, AZ USA Chemical Kinetics The study of the rates of chemical reactions and how they

More information

Kinetics CHAPTER IN THIS CHAPTER

Kinetics CHAPTER IN THIS CHAPTER CHAPTER 14 Kinetics IN THIS CHAPTER Summary: Thermodynamics often can be used to predict whether a reaction will occur spontaneously, but it gives very little information about the speed at which a reaction

More information

Part One: Reaction Rates. 1. Rates of chemical reactions. (how fast products are formed and/or reactants are used up)

Part One: Reaction Rates. 1. Rates of chemical reactions. (how fast products are formed and/or reactants are used up) A. Chemical Kinetics deals with: CHAPTER 13: RATES OF REACTION Part One: Reaction Rates 1. Rates of chemical reactions. (how fast products are formed and/or reactants are used up) 2. Mechanisms of chemical

More information

Theoretical Models for Chemical Kinetics

Theoretical Models for Chemical Kinetics Theoretical Models for Chemical Kinetics Thus far we have calculated rate laws, rate constants, reaction orders, etc. based on observations of macroscopic properties, but what is happening at the molecular

More information

Chapter 30. Chemical Kinetics. Copyright (c) 2011 by Michael A. Janusa, PhD. All rights reserved.

Chapter 30. Chemical Kinetics. Copyright (c) 2011 by Michael A. Janusa, PhD. All rights reserved. Chapter 30 Chemical Kinetics 1 Copyright (c) 2011 by Michael A. Janusa, PhD. All rights reserved. Chemists have three fundamental questions in mind when they study chemical reactions: 1.) What happens?

More information

Chapter 14 Chemical Kinetics

Chapter 14 Chemical Kinetics 4//004 Chapter 4 Chemical Kinetics 4- Rates of Chemical Reactions 4- Reaction Rates and Concentrations 4-3 The Dependence of Concentrations on Time 4-4 Reaction Mechanisms 4-5 Reaction Mechanism and Rate

More information

Name AP CHEM / / Chapter 12 Outline Chemical Kinetics

Name AP CHEM / / Chapter 12 Outline Chemical Kinetics Name AP CHEM / / Chapter 12 Outline Chemical Kinetics The area of chemistry that deals with the rate at which reactions occur is called chemical kinetics. One of the goals of chemical kinetics is to understand

More information

CHAPTER 10 CHEMICAL KINETICS

CHAPTER 10 CHEMICAL KINETICS CHAPTER 10 CHEMICAL KINETICS Introduction To this point in our study of chemistry, we have been concerned only with the composition of the equilibrium mixture, not the length of time required to obtain

More information

Chapter 14. Chemical Kinetics

Chapter 14. Chemical Kinetics Chapter 14. Chemical Kinetics 14.1 Factors that Affect Reaction Rates The speed at which a chemical reaction occurs is the reaction rate. Chemical kinetics is the study of how fast chemical reactions occur.

More information

Chapter 11 Rate of Reaction

Chapter 11 Rate of Reaction William L Masterton Cecile N. Hurley http://academic.cengage.com/chemistry/masterton Chapter 11 Rate of Reaction Edward J. Neth University of Connecticut Outline 1. Meaning of reaction rate 2. Reaction

More information

Reaction Rate. Products form rapidly. Products form over a long period of time. Precipitation reaction or explosion

Reaction Rate. Products form rapidly. Products form over a long period of time. Precipitation reaction or explosion Reaction Rate Products form rapidly Precipitation reaction or explosion Products form over a long period of time Corrosion or decay of organic material Chemical Kinetics Study of the rate at which a reaction

More information

Please pass in this completed answer sheet only on the day of the test.

Please pass in this completed answer sheet only on the day of the test. CHM-202 General Chemistry and Laboratory II Unit #2 Take Home Test Due March 14, 2019 Please pass in this completed answer sheet only on the day of the test. CHM-202 General Chemistry and Laboratory II

More information

Chapter 14, Chemical Kinetics

Chapter 14, Chemical Kinetics Last wee we covered the following material: Review Vapor Pressure with two volatile components Chapter 14, Chemical Kinetics (continued) Quizzes next wee will be on Chap 14 through section 14.5. 13.6 Colloids

More information

Chemical Kinetics -- Chapter 14

Chemical Kinetics -- Chapter 14 Chemical Kinetics -- Chapter 14 1. Factors that Affect Reaction Rate (a) Nature of the reactants: molecular structure, bond polarity, physical state, etc. heterogeneous reaction: homogeneous reaction:

More information

ELEMENTARY CHEMICAL KINETICS

ELEMENTARY CHEMICAL KINETICS ELEMENTARY CHEMICAL KINETICS EDR Chapter 25... a knowledge of the rate, or time dependence, of chemical change is of critical importance for the successful synthesis of new materials and for the utilization

More information

a. rate = k[no] 2 b. rate = k([no][o 2 ] c. rate = k[no 2 ] 2 [NO] -2 [O 2 ] -1/2 d. rate = k[no] 2 [O 2 ] 2 e. rate = k([no][o 2 ]) 2

a. rate = k[no] 2 b. rate = k([no][o 2 ] c. rate = k[no 2 ] 2 [NO] -2 [O 2 ] -1/2 d. rate = k[no] 2 [O 2 ] 2 e. rate = k([no][o 2 ]) 2 General Chemistry III 1046 E Exam 1 1. Cyclobutane, C 4 H 8, decomposes as shown: C 4 H 8 (g)! 2 C 2 H 4 (g). In the course of a study of this reaction, the rate of consumption of C 4 H 8 at a certain

More information

Calculating Rates of Substances. Rates of Substances. Ch. 12: Kinetics 12/14/2017. Creative Commons License

Calculating Rates of Substances. Rates of Substances. Ch. 12: Kinetics 12/14/2017. Creative Commons License Ch. 2: Kinetics An agama lizard basks in the sun. As its body warms, the chemical reactions of its metabolism speed up. Chemistry: OpenStax Creative Commons License Images and tables in this file have

More information

Reaction Rates. Let's assume that this reaction does not occur instantaneously, and therefore, it takes some time

Reaction Rates. Let's assume that this reaction does not occur instantaneously, and therefore, it takes some time Chemical Kinetics Reaction Rates Up to this point in the course our concern with chemical equations has focused upon understanding, reactants, products, stoichiometry, and states. We have also looked at

More information

CHAPTER 17 REVIEW. Reaction Kinetics. Answer the following questions in the space provided. Energy B A. Course of reaction

CHAPTER 17 REVIEW. Reaction Kinetics. Answer the following questions in the space provided. Energy B A. Course of reaction CHAPTER 17 REVIEW Reaction Kinetics SECTION 1 SHORT ANSWER Answer the following questions in the space provided. 1. Refer to the energy diagram below to answer the following questions. D Energy C d c d

More information

AP Chemistry - Notes - Chapter 12 - Kinetics Page 1 of 7 Chapter 12 outline : Chemical kinetics

AP Chemistry - Notes - Chapter 12 - Kinetics Page 1 of 7 Chapter 12 outline : Chemical kinetics AP Chemistry - Notes - Chapter 12 - Kinetics Page 1 of 7 Chapter 12 outline : Chemical kinetics A. Chemical Kinetics - chemistry of reaction rates 1. Reaction Rates a. Reaction rate- the change in concentration

More information

REACTION KINETICS. Catalysts substances that increase the rates of chemical reactions without being used up. e.g. enzymes.

REACTION KINETICS. Catalysts substances that increase the rates of chemical reactions without being used up. e.g. enzymes. REACTION KINETICS Study of reaction rates Why? Rates of chemical reactions are primarily controlled by 5 factors: the chemical nature of the reactants 2 the ability of the reactants to come in contact

More information

CHEM Chapter 14. Chemical Kinetics (Homework) Ky40

CHEM Chapter 14. Chemical Kinetics (Homework) Ky40 CHEM 1412. Chapter 14. Chemical Kinetics (Homework) Ky40 1. Chlorine dioxide reacts in basic water to form chlorite and chlorate according to the following chemical equation: 2ClO 2 (aq) + 2OH (aq) ClO

More information

Chapter 14 Chemical Kinetics

Chapter 14 Chemical Kinetics Chapter 14 Chemical Kinetics Learning goals and key skills: Understand the factors that affect the rate of chemical reactions Determine the rate of reaction given time and concentration Relate the rate

More information

CHEMISTRY. Chapter 13. Chapter Outline. Factors Affecting Rate

CHEMISTRY. Chapter 13. Chapter Outline. Factors Affecting Rate CHEMISTRY Fifth Edition Gilbert Kirss Foster Bretz Davies Chapter 3 Chemical Kinetics: Reactions in the Atmosphere Chemistry, 5 th Edition Copyright 207, W. W. Norton & Company Chapter Outline 3.4 Reaction

More information

Chemical Kinetics. What Influences Kinetics?

Chemical Kinetics. What Influences Kinetics? Chemical Kinetics Predictions of likelihood for a reaction to occur have been based on difference in energy between products and reactants: Thermodynamics only compares reactants to products, says nothing

More information

How can we use the Arrhenius equation?

How can we use the Arrhenius equation? How can we use the Arrhenius equation? k = Ae Ea RT Lab H 3 CNC(g) H 3 CCN(g) 1. Experiment to determine rate law 2. Experiment to determine Ea Temperature (K) k (s -1 ) 1/T ln k 462.9 2.52E-05 0.00216-10.589

More information

Part One: Reaction Rates. 1. Even though a reaction is thermodynamically favorable it may not occur at all if it is kinetically very slow.

Part One: Reaction Rates. 1. Even though a reaction is thermodynamically favorable it may not occur at all if it is kinetically very slow. CHAPTER 13: RATES OF REACTION Part One: Reaction Rates A. Chemical Kinetics deals with: 1. 2. B. Importance: 1. Even though a reaction is thermodynamically favorable it may not occur at all if it is kinetically

More information

Chapter 13 Lecture Lecture Presentation. Chapter 13. Chemical Kinetics. Sherril Soman Grand Valley State University Pearson Education, Inc.

Chapter 13 Lecture Lecture Presentation. Chapter 13. Chemical Kinetics. Sherril Soman Grand Valley State University Pearson Education, Inc. Chapter 13 Lecture Lecture Presentation Chapter 13 Chemical Kinetics Sherril Soman Grand Valley State University Ectotherms Lizards, and other cold-blooded creatures, are ectotherms animals whose body

More information

AP CHEMISTRY CHAPTER 12 KINETICS

AP CHEMISTRY CHAPTER 12 KINETICS AP CHEMISTRY CHAPTER 12 KINETICS Thermodynamics tells us if a reaction can occur. Kinetics tells us how quickly the reaction occurs. Some reactions that are thermodynamically feasible are kinetically so

More information

Chemistry 102 Chapter 14 CHEMICAL KINETICS. The study of the Rates of Chemical Reactions: how fast do chemical reactions proceed to form products

Chemistry 102 Chapter 14 CHEMICAL KINETICS. The study of the Rates of Chemical Reactions: how fast do chemical reactions proceed to form products CHEMICAL KINETICS Chemical Kinetics: The study of the Rates of Chemical Reactions: how fast do chemical reactions proceed to form products The study of Reaction Mechanisms: the steps involved in the change

More information

Contents and Concepts. Learning Objectives. Reaction Rates 1. Definition of a Reaction Rate. 2. Experimental Determination of Rate

Contents and Concepts. Learning Objectives. Reaction Rates 1. Definition of a Reaction Rate. 2. Experimental Determination of Rate Contents and Concepts Reaction Rates 1. Definition of Reaction Rate. Experimental Determination of Rate 3. Dependence of Rate on Concentration 4. Change of Concentration with Time 5. Temperature and Rate;

More information

Examples of fast and slow reactions

Examples of fast and slow reactions 1 of 10 After completing this chapter, you should, at a minimum, be able to do the following. This information can be found in my lecture notes for this and other chapters and also in your text. Correctly

More information

B. The rate will increase by a factor of twelve. C. The rate will increase by a factor of twenty-four. D. The rate will decrease by a factor of six.

B. The rate will increase by a factor of twelve. C. The rate will increase by a factor of twenty-four. D. The rate will decrease by a factor of six. 1. If O 2 (g) disappears at a rate of 0.250 M/s at a particular moment in the reaction below, what is the rate of appearance of H 2 O(g) at the same time? C 3 H 8 (g) + 5 O 2 (g) 3 CO 2 (g) + 4 H 2 O(g)

More information

Chapter 14. Chemical Kinetics

Chapter 14. Chemical Kinetics Chapter 14. Chemical Kinetics Common Student Misconceptions It is possible for mathematics to get in the way of some students understanding of the chemistry of this chapter. Students often assume that

More information

Chapter 14. Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten

Chapter 14. Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chapter 14 John D. Bookstaver St. Charles Community College St. Peters, MO 2006, Prentice Hall,

More information

Collision Theory. Unit 12: Chapter 18. Reaction Rates. Activation Energy. Reversible Reactions. Reversible Reactions. Reaction Rates and Equilibrium

Collision Theory. Unit 12: Chapter 18. Reaction Rates. Activation Energy. Reversible Reactions. Reversible Reactions. Reaction Rates and Equilibrium Collision Theory For reactions to occur collisions between particles must have Unit 12: Chapter 18 Reaction Rates and Equilibrium the proper orientation enough kinetic energy See Both In Action 1 2 Activation

More information

Chapter 14: Chemical Kinetics

Chapter 14: Chemical Kinetics Chapter 14: Chemical Kinetics NOTE THIS CHAPTER IS #2 TOP TOPICS ON AP EXAM!!! NOT ONLY DO YOU NEED TO FOCUS ON THEORY (and lots of MATH) BUT YOU MUST READ THE FIGURES TOO!!! Ch 14.1 ~ Factors that Affect

More information

Equilibrium. Forward and Backward Reactions. Hydrogen reacts with iodine to make hydrogen iodide: H 2 (g) + I 2 (g) 2HI(g)

Equilibrium. Forward and Backward Reactions. Hydrogen reacts with iodine to make hydrogen iodide: H 2 (g) + I 2 (g) 2HI(g) Equilibrium Forward and Backward Reactions Hydrogen reacts with iodine to make hydrogen iodide: H 2 (g) + I 2 (g) 2HI(g) forward rate = k f [H 2 ][I 2 ] 2HI(g) H 2 (g) + I 2 (g) backward rate = k b [HI]

More information

Factors That Affect Rates. Factors That Affect Rates. Factors That Affect Rates. Factors That Affect Rates

Factors That Affect Rates. Factors That Affect Rates. Factors That Affect Rates. Factors That Affect Rates KINETICS Kinetics Study of the speed or rate of a reaction under various conditions Thermodynamically favorable reactions DO NOT mean fast reactions Some reactions take fraction of a second (explosion)

More information

33-1. Energy Profiles. Energy Profiles Reactions will:- 1.Break or weaken bonds in reactants then form bonds in products.

33-1. Energy Profiles. Energy Profiles Reactions will:- 1.Break or weaken bonds in reactants then form bonds in products. Energy Profiles Energy Profiles Reactions will:- 1.Break or weaken bonds in reactants then form bonds in products. 2. Reactants pass over a Potential Energy Barrier on way to Products. Plot: NO 33-1 Energy

More information

Reaction Rate. Rate = Conc. of A at t 2 -Conc. of A at t 1. t 2 -t 1. Rate = Δ[A] Δt

Reaction Rate. Rate = Conc. of A at t 2 -Conc. of A at t 1. t 2 -t 1. Rate = Δ[A] Δt Kinetics The study of reaction rates. Spontaneous reactions are reactions that will happen - but we can t tell how fast. Diamond will spontaneously turn to graphite eventually. Reaction mechanism- the

More information

Chapter 17. Preview. Lesson Starter Objectives Reaction Mechanisms Collision Theory Activation Energy The Activated Complex Sample Problem A

Chapter 17. Preview. Lesson Starter Objectives Reaction Mechanisms Collision Theory Activation Energy The Activated Complex Sample Problem A Preview Lesson Starter Objectives Reaction Mechanisms Collision Theory Activation Energy The Activated Complex Sample Problem A Section 1 The Reaction Process Lesson Starter The reaction H 2 + I 2 2HI

More information

CHAPTER 12 CHEMICAL KINETICS

CHAPTER 12 CHEMICAL KINETICS 5/9/202 CHAPTER 2 CHEMICAL KINETICS CHM52 GCC Kinetics Some chemical reactions occur almost instantaneously, while others are very slow. Chemical Kinetics - study of factors that affect how fast a reaction

More information

Chapter 14: Chemical Kinetics

Chapter 14: Chemical Kinetics 1. Which one of the following units would not be an acceptable way to express reaction rate? A) M/s B) M min 1 C) L mol 1 s 1 D) mol L 1 s 1 E) mmhg/min 3. For the reaction BrO 3 + 5Br + 6H + 3Br 2 + 3H

More information

Chemistry 40S Chemical Kinetics (This unit has been adapted from

Chemistry 40S Chemical Kinetics (This unit has been adapted from Chemistry 40S Chemical Kinetics (This unit has been adapted from https://bblearn.merlin.mb.ca) Name: 1 2 Lesson 1: Introduction to Kinetics Goals: Identify variables used to monitor reaction rate. Formulate

More information

!n[a] =!n[a] o. " kt. Half lives. Half Life of a First Order Reaction! Pressure of methyl isonitrile as a function of time!

!n[a] =!n[a] o.  kt. Half lives. Half Life of a First Order Reaction! Pressure of methyl isonitrile as a function of time! Half lives Half life: t 1/2 t 1/2 is the time it takes for the concentration of a reactant to drop to half of its initial value. For the reaction A! products Half Life of a First Order Reaction! Pressure

More information

Rates of Chemical Reactions

Rates of Chemical Reactions Rates of Chemical Reactions Jim Birk 12-1 Questions for Consideration 1. What conditions affect reaction rates? 2. How do molecular collisions explain chemical reactions? 3. How do concentration, temperature,

More information

Ch 13 Chemical Kinetics. Modified by Dr. Cheng-Yu Lai

Ch 13 Chemical Kinetics. Modified by Dr. Cheng-Yu Lai Ch 13 Chemical Kinetics Modified by Dr. Cheng-Yu Lai Outline 1. Meaning of reaction rate 2. Reaction rate and concentration 3. Writing a Rate Law 4. Reactant concentration and time 5. Reaction rate and

More information

A. 2.5 B. 5.0 C. 10. D. 20 (Total 1 mark) 2. Consider the following reactions. N 2 (g) + O 2 (g) 2NO(g) 2NO 2 (g) 2NO(g) + O 2 (g)

A. 2.5 B. 5.0 C. 10. D. 20 (Total 1 mark) 2. Consider the following reactions. N 2 (g) + O 2 (g) 2NO(g) 2NO 2 (g) 2NO(g) + O 2 (g) 1. When 100 cm 3 of 1.0 mol dm 3 HCl is mixed with 100 cm 3 of 1.0 mol dm 3 NaOH, the temperature of the resulting solution increases by 5.0 C. What will be the temperature change, in C, when 50 cm 3 of

More information

Chapter 16. Rate Laws. The rate law describes the way in which reactant concentration affects reaction rate.

Chapter 16. Rate Laws. The rate law describes the way in which reactant concentration affects reaction rate. Rate Laws The rate law describes the way in which reactant concentration affects reaction rate. A rate law is the expression that shows how the rate of formation of product depends on the concentration

More information

Chem 112 PRACTICE EXAM 2 Adapted from Spring 2015 Kinetics, Thermo Part 1

Chem 112 PRACTICE EXAM 2 Adapted from Spring 2015 Kinetics, Thermo Part 1 Chem 112 PRACTICE EXAM 2 Adapted from Spring 2015 Kinetics, Thermo Part 1 1. When N 2 O 5 (g) decomposes as shown below at a fixed temperature, the rate of formation of NO 2 is 3.7 10 3 M/s. 2 N 2 O 5

More information

AP Chemistry Practice Problems Module 9: Kinetics and Equilibrium

AP Chemistry Practice Problems Module 9: Kinetics and Equilibrium AP Chemistry Practice Problems Module 9: Kinetics and Equilibrium The headings on these problems correspond to the headings on your content pages. You should work on these throughout the unit. Be sure

More information

AP CHEMISTRY NOTES 7-1 KINETICS AND RATE LAW AN INTRODUCTION

AP CHEMISTRY NOTES 7-1 KINETICS AND RATE LAW AN INTRODUCTION AP CHEMISTRY NOTES 7-1 KINETICS AND RATE LAW AN INTRODUCTION CHEMICAL KINETICS the study of rates of chemical reactions and the mechanisms by which they occur FACTORS WHICH AFFECT REACTION RATES 1. Nature

More information

Chapter 12 - Chemical Kinetics

Chapter 12 - Chemical Kinetics Chapter 1 - Chemical Kinetics 1.1 Reaction Rates A. Chemical kinetics 1. Study of the speed with which reactants are converted to products B. Reaction Rate 1. The change in concentration of a reactant

More information

, but bursts into flames in pure oxygen.

, but bursts into flames in pure oxygen. Chemical Kinetics Chemical kinetics is concerned with the speeds, or rates of chemical reactions Chemical kinetics is a subject of broad importance. How quickly a medicine can work The balance of ozone

More information

Outline: Kinetics. Reaction Rates. Rate Laws. Integrated Rate Laws. Half-life. Arrhenius Equation How rate constant changes with T.

Outline: Kinetics. Reaction Rates. Rate Laws. Integrated Rate Laws. Half-life. Arrhenius Equation How rate constant changes with T. Chemical Kinetics Kinetics Studies the rate at which a chemical process occurs. Besides information about the speed at which reactions occur, kinetics also sheds light on the reaction mechanism (exactly

More information

Advanced Higher Chemistry KINETICS. Learning Outcomes Questions & Answers

Advanced Higher Chemistry KINETICS. Learning Outcomes Questions & Answers Advanced Higher Chemistry Unit 2 - Chemical Reactions KINETICS Learning Outcomes Questions & Answers KHS Chemistry Dec 2006 page 1 6. KINETICS 2.128 The rate of a chemical reaction normally depends on

More information