Chapter 14, Chemical Kinetics

Size: px
Start display at page:

Download "Chapter 14, Chemical Kinetics"

Transcription

1 Last wee we covered the following material: Review Vapor Pressure with two volatile components Chapter 14, Chemical Kinetics (continued) Quizzes next wee will be on Chap 14 through section Colloids Chapter 14 Hydrophilic and Hydrophobic Colloids Removal of Colloidal Particles Chemical Kinetics 14.1 Reaction Rates Rates in Terms of Concentrations Reaction Rates and Stoichiometry 14.2 The Dependence of Rate on Concentrations Reaction Order Units of Rate Constants Using Initial Rates to Determine Rate Laws Wee Five Chemical Kinetics (cont) 14.3 The Change of Concentration with Time First-Order Reactions Half-Life Second-Order Reactions 14.4 Temperature and Rate The Collision Model The Orientation Factor The Arrhenius Equation 14.5 Reaction Mechanisms Elementary Steps Multistep Mechanisms Rate Laws of Elementary Steps Rate Laws of Multistep Mechanisms Mechanisms with and Initial Fast Step Results for a reaction of A B C 4 H 9 Cl(aq) + H 2 O (l) C 4 H 9 OH (aq) + HCl (aq) [ C4H 9Cl] [ C4H 9OH ] Rate = = + t t Note the signs!

2 Consider the reaction 2 HI(g) H 2 (g) + I 2 (g) It s convenient to define the rate as HI] [ H 2] [ I 2] rate = = + = + 2 t t t And, in general for aa + bb cc + dd In fact, the instantaneous rate corresponds to d[a]/dt A] B] C] D] Rate = = = = a t b t c t d t Sample exercise 14.2 The decomposition of N2O5 proceeds according to the equation 2 N 2 O 5 (g) 4 NO 2 (g) + O 2 (g) If the rate of decomposition of of N 2 O 5 at a particular instant in a vessel is 4.2 X 10-7 M/s, what is the rate of appearance of (a) NO 2 ; (b) O 2? N2O5 ] NO2 ] O2 ] Rate = = + = + 2 t 4 t 1 t i.e. the rate of the reaction is 2.1 x 10-7 M/s the rate of appearance of NO 2 is 8.4 x 10-7 M/s and the rate of appearance of O 2 is 2.1 x 10-7 M/s 2 N 2 O 5 = 4 NO 2 + O 2 (g) at T = 45 o C in carbon tetrachloride as a solvent Time t {N 2 O 5 ] [N2O5] - [N2O5]/ t min min mol/l mol/l mol/l-min N 2 O 5 = 4 NO 2 + O 2 (g) at T = 45 o C in carbon tetrachloride as a solvent Time t {N 2 O 5 ] [N 2 O 5 ] - [N 2 O 5 ]/ t min min mol/l mol/l mol/l-min x x x x x x The information on the previous slide is a bit of a nuisance, since the instantaneous rate eeps changing and you now how much we lie constant values or linear relationships! So let s try something rather arbitrary at this point. Let s divide the instantaneous, average rate by [N 2 O 5 ] and/or [N 2 O 5 ] 2

3 2 N 2 O 5 = 4 NO 2 + O 2 (g) at T = 45 o C in carbon tetrachloride as a solvent {N 2 O 5 ] [N 2 O 5 ] [N 2 O 5 ] - [N 2 O 5 ]/ t Avg rate Avg rate mol/l avg mol/l mol/l-min /[N2O5] av /[N2O5] 2 av x x x x x x x x x x x x x x x x x x 10-4 Notice the nice constant value!!! It s convenient to write this result in symbolic form: Rate = [N 2 O 5 ] where the value of is about 6.2 x 10-4 so that when [N 2 O 5 ] = 0.221, Rate = (6.2 x 10-4 )(0.221) = 1.37 x 10-4 which is the average rate we started with In fact, we really should tae into account the 2 in front of the N 2 O 5, in accordance with the rule we developed earlier. This leads us to the general concept of Reaction Order When Rate = [reactant 1] m [reactant 2] n we say the reaction is m-th order in reactant 1 n-th order in reactant 2 and (m + n)-th order overall. Other reactions and their observed reaction orders 2 N 2 O 5 = 4 NO 2 + O 2 (g) Rate = [N 2 O 5 ]!!! CHCl 3 (g) + Cl 2 (g) CCl4 (g) + HCl(g) Rate = [CHCl 3 ][Cl 2 ] 1/2 H 2 (g) + I 2 (g) 2 HI (g) Rate = [H 2 ][I 2 ] Be careful because these orders are NOT related necessarily to the stoichiometry of the reaction!!! The order must be determined experimentally!!! We ll see later that it depends on the Reaction Mechanism, rather than the overall stoichiometry. Let s explore the results for the result Rate = [N 2 O 5 ] This can be expressed as Rate = - ( [N2O5] / t = - d[n 2 O 5 ] / dt = [N 2 O 5 ] An example of the plots of concentration vs time for a First-Order Reaction or, in general for A products Rate = - [A] / t = d[a] / dt = [A] rearrangement and integration some time = t and t =0 gives the result ln[a] t - ln[a] o = -t or ln [A] t = -t + ln [A] o or ln ([A] t /[A] o = - t This is the expression of concentration vs time for a First-Order Reaction

4 The Change of Concentration with Time Half-Life Half-life is the time taen for the concentration of a reactant to drop to half its original value. That is, half life, t 1/2 is the time taen for [A] 0 to reach ½[A] 0. Mathematically, ln t 2 1 = = 2 The Change of Concentration with Time For a First-Order Reaction The identical length of the first and second half-life is a SPECIFIC characteristic of First-Order reactions Consider now Second-Order Reactions Example of Second-Order Plots of conc vs time [ A] d[ A] Rate = = = [ A] t dt [ A] t d[ A] = [ A [ A] 2 0 ] 1 1 = t + [ A] t [ A t 0 ] 0 dt 2

5 Second-Order Reactions We can show that the half life t 1 = 2 1 [ A] 0 A reaction can have rate constant expression of the form rate = [A][B], i.e., is second order overall, but has first order dependence on A and B. t 1/2 = 0.693/0.4 = 1.73 sec t 1/2 = [(0.4)(0.5)] -1 = 5.0 sec t 1/2 = ([A] 0 ) -1 = [(0.4)(1.0)] -1 = 2.5 sec Wee Five Chemical Kinetics (cont) General Order of reaction First Order reactions Second Order reactions Integrated form of each Half lives of each 14.3 The Change of Concentration with Time First-Order Reactions Half-Life Second-Order Reactions 14.4 Temperature and Rate The Collision Model The Orientation Factor The Arrhenius Equation 14.5 Reaction Mechanisms Elementary Steps Multistep Mechanisms Rate Laws of Elementary Steps Rate Laws of Multistep Mechanisms Mechanisms with and Initial Fast Step MQ1 Results: If you would lie to be a part of one of OSU s greatest outreach programs, please join us at one of the Wonders of Our World volunteer meetings. Volunteers help elementary school students learn science through fun hands-on experiments. Only a few hours a month are needed and training, supplies and transportation are provided! Come to find out why so many people enjoy being a part of WOW and how you can too! February WOW Volunteer Meetings Sunday February 9th at 7pm in 2015 McPherson Tuesday February 11 th at 7pm in 2015 McPherson Hi 175/175 Lo 36/175 Mean: 125 (71.4 %) If you have questions or if you would lie more information, please or call Louise Van Wey at lvanwey@chemistry.ohio-state.edu or Thans!

6 Wee Five Chemical Kinetics (cont) Chapter 14, Chemical Kinetics (continued) 14.3 The Change of Concentration with Time First-Order Reactions Half-Life Second-Order Reactions 14.4 Temperature and Rate The Collision Model The Orientation Factor The Arrhenius Equation 14.5 Reaction Mechanisms Elementary Steps Multistep Mechanisms Rate Laws of Elementary Steps Rate Laws of Multistep Mechanisms Mechanisms with and Initial Fast Step Note the DRAMATIC effect of temperature on Temperature and Rate Collision Frequency The Collision Model eg H 2 + I 2 The Collision Model The greater the frequency of collision the faster the rate for a given concentration. Complication: not all collisions lead to products. In fact, only a small fraction of collisions lead to product. Add an Orientation Factor. The higher the temperature, the more energy available to the molecules and the faster the rate. In order for reaction to occur the reactant molecules must collide in the correct orientation and with enough energy to form products. Arrhenius: molecules must posses a minimum amount of energy to react. Why? In order to form products, bonds must be broen in the reactants. Bond breaage requires energy. Activation energy, E a, is the minimum energy required to initiate a chemical reaction.

7 Consider the rearrangement of acetonitrile: H 3 C N C N H 3 C H 3 C C N C In H 3 C-N C, the C-N C bond bends until the C-N bond breas and the N C portion is perpendicular to the H 3 C portion. This structure is called the activated complex or transition state. The energy required for the above twist and brea is the activation energy, E a. Once the C-N bond is broen, the N C portion can continue to rotate forming a C-C N bond. The change in energy for the reaction is the difference in energy between CH 3 NC and CH 3 CN. The activation energy is the difference in energy between reactants, CH 3 NC and transition state. The rate depends on E a. Notice that if a forward reaction is exothermic (CH 3 NC CH 3 CN), then the reverse reaction is endothermic (CH 3 CN CH 3 NC). Effective Collisions Consider the reaction between Cl and NOCl to produce Cl 2 and NO - maybe: If the Cl collides with the Cl of NOCl then the products are Cl 2 and NO. If the Cl collided with the O of NOCl then no products are formed. We need to quantify this effect. Effective & Ineffective Collisions

8 The Arrhenius Equation -- Finally Arrhenius discovered most reaction-rate data obeyed the Arrhenius equation: Ea = Ae RT is the rate constant, E a is the activation energy, R is the gas constant (8.314 J/K-mol) and T is the temperature in K. A is called the frequency factor, and is a measure of the probability of a favorable collision (including the collision frequency). Both A and E a are specific to a given reaction. = Ae E a RT The Arrhenius Equation If we have a lot of data, we can determine E a and A graphically by rearranging the Arrhenius equation: Ea ln = + ln A RT If we do not have a lot of data, or if we don t now A, then we can use Sample Exercise 14.8 For CH 3 NC CH 3 CN Temp. / o C / (s -1 ) x x x x10-5 ln 1 E = R 1 T2 T1 2 a 1 Sample Exercise 14.8 For CH 3 NC CH 3 CN Sample Exercise 14.8 For CH 3 NC CH 3 CN Temp. ( o C) T (K) 1/T (K -1 ) (s -1 ) ln x x x x10-5 Temp. ( o C) T (K) 1/T (K -1 x 10 3 ) (s -1 ) ln x x x x10-5

9 Sample Exercise 14.8 For CH 3 NC CH 3 CN Temp. ( o C) T (K) 1/T (K -1 x 10 3 ) (s -1 ) ln x x x x Fig For CH 3 NC CH 3 CN reaction From the graph we find the slope = -1.9 x 10 4 K But this is also equal to - E a /R Or E a = -(slope)(r) = -(-1.9x10 4 )(8.314 J mol -1 K -1 )(1 J / 1000 J) = 1.62 x 10 2 J/mol We can now use these results to calculate the rate constant at any temperature. ln 1 E = R 1 T2 T1 2 a 1 To calculate 1 for a temperature of K, mae substitutions for all other parameters, after choosing a starting point: or 162 J/mol 2 = 2.52 x 10-5 s -1 T 2 = K And T 1 = K to obtain 1 = 1.0 x 10-6 s -1 = Ae E a RT Catalysts serve to reduce the activation energy, thus increasing.

10 Reaction Mechanisms Involve Elementary Steps or Reactions When we now these, we CAN write down directly the rate expressions!!! Furthermore, these elementary steps represent fundamental molecular processes and lead to the term molecularity of the elementary reaction. Elementary Steps Elementary steps must add to give the balanced chemical equation. Intermediate: a species which appears in an elementary step which is not a reactant or product. Rate Laws of Elementary Steps The rate law of an elementary step is determined by its molecularity: Unimolecular processes are first order, Bimolecular processes are second order, and Termolecular processes are third order. Rate Laws of Multistep Mechanisms Rate-determining step: is the slowest of the elementary steps. Therefore, the rate-determining step governs the overall rate law for the reaction. Mechanisms with an Initial Fast Step It is possible for an intermediate to be a reactant. Consider 2NO(g) + Br 2 (g) 2NOBr(g) Reaction Mechanisms Mechanisms with an Initial Fast Step 2NO(g) + Br 2 (g) 2NOBr(g) The experimentally determined rate law is Rate = [NO] 2 [Br 2 ] Consider the following mechanism Step 1: NO(g) + Br 2 (g) Step 2: NOBr 2 (g) + NO(g) NOBr 2 (g) for which the rate law is (based on Step 2): NOBr(g) (fast) (slow) Mechanisms with an Initial Fast Step The rate law is (based on Step 2): Rate = 2 [NOBr 2 ][NO] The rate law should not depend on the concentration of an intermediate because intermediates are usually unstable. Assume NOBr 2 is unstable, so we express the concentration of NOBr 2 in terms of NOBr and Br 2 assuming there is an equilibrium in step 1 we have Mechanisms with an Initial Fast Step By definition of equilibrium (see Chap 15): 1 [NO][Br 2 ] = -1 [NOBr 2 ] Therefore, the overall rate law becomes Rate = 2 1 [NO] 2 [Br2 ] 1 Note the final rate law is consistent with the experimentally observed rate law. [ ] 1 [NO][Br ] NOBr2 = 2 1

Chapter 14. Chemical Kinetics

Chapter 14. Chemical Kinetics Chapter 14. Chemical Kinetics Common Student Misconceptions It is possible for mathematics to get in the way of some students understanding of the chemistry of this chapter. Students often assume that

More information

CHEMISTRY. Chapter 14 Chemical Kinetics

CHEMISTRY. Chapter 14 Chemical Kinetics CHEMISTRY The Central Science 8 th Edition Chapter 14 Kozet YAPSAKLI kinetics is the study of how rapidly chemical reactions occur. rate at which a chemical process occurs. Reaction rates depends on The

More information

Chapter 12. Kinetics. Factors That Affect Reaction Rates. Factors That Affect Reaction Rates. Chemical. Kinetics

Chapter 12. Kinetics. Factors That Affect Reaction Rates. Factors That Affect Reaction Rates. Chemical. Kinetics PowerPoint to accompany Kinetics Chapter 12 Chemical Kinetics Studies the rate at which a chemical process occurs. Besides information about the speed at which reactions occur, kinetics also sheds light

More information

Brown et al, Chemistry, 2nd ed (AUS), Ch. 12:

Brown et al, Chemistry, 2nd ed (AUS), Ch. 12: Kinetics: Contents Brown et al, Chemistry, 2 nd ed (AUS), Ch. 12: Why kinetics? What is kinetics? Factors that Affect Reaction Rates Reaction Rates Concentration and Reaction Rate The Change of Concentration

More information

Chapter 14. Chemical Kinetics

Chapter 14. Chemical Kinetics Chapter 14. Chemical Kinetics 14.1 Factors that Affect Reaction Rates The speed at which a chemical reaction occurs is the reaction rate. Chemical kinetics is the study of how fast chemical reactions occur.

More information

Lecture Presentation. Chapter 14. Chemical Kinetics. John D. Bookstaver St. Charles Community College Cottleville, MO Pearson Education, Inc.

Lecture Presentation. Chapter 14. Chemical Kinetics. John D. Bookstaver St. Charles Community College Cottleville, MO Pearson Education, Inc. Lecture Presentation Chapter 14 John D. Bookstaver St. Charles Community College Cottleville, MO In kinetics we study the rate at which a chemical process occurs. Besides information about the speed at

More information

Chemical Kinetics. Kinetics is the study of how fast chemical reactions occur. There are 4 important factors which affect rates of reactions:

Chemical Kinetics. Kinetics is the study of how fast chemical reactions occur. There are 4 important factors which affect rates of reactions: Chemical Kinetics Kinetics is the study of how fast chemical reactions occur. There are 4 important factors which affect rates of reactions: reactant concentration temperature action of catalysts surface

More information

Chemical Kinetics AP Chemistry Lecture Outline

Chemical Kinetics AP Chemistry Lecture Outline Chemical Kinetics AP Chemistry Lecture Outline Name: Factors that govern rates of reactions. Generally... (1)...as the concentration of reactants increases, rate (2)...as temperature increases, rate (3)...with

More information

Lecture Presentation. Chapter 14. James F. Kirby Quinnipiac University Hamden, CT. Chemical Kinetics Pearson Education, Inc.

Lecture Presentation. Chapter 14. James F. Kirby Quinnipiac University Hamden, CT. Chemical Kinetics Pearson Education, Inc. Lecture Presentation Chapter 14 James F. Kirby Quinnipiac University Hamden, CT In chemical kinetics we study the rate (or speed) at which a chemical process occurs. Besides information about the speed

More information

Chapter 14. Chemical Kinetics

Chapter 14. Chemical Kinetics Chapter 14. Chemical Kinetics Common Student Misconceptions It is possible for mathematics to get in the way of some students understanding of the chemistry of this chapter. Students often assume that

More information

Chapter 14 Chemical Kinetics

Chapter 14 Chemical Kinetics Chapter 14 Chemical Kinetics Factors that Affect Reaction rates Reaction Rates Concentration and Rate The Change of Concentration with Time Temperature and Rate Reactions Mechanisms Catalysis Chemical

More information

Kinetics. Chapter 14. Chemical Kinetics

Kinetics. Chapter 14. Chemical Kinetics Lecture Presentation Chapter 14 Yonsei University In kinetics we study the rate at which a chemical process occurs. Besides information about the speed at which reactions occur, kinetics also sheds light

More information

Chapter 12. Chemical Kinetics

Chapter 12. Chemical Kinetics Chapter 12 Chemical Kinetics Chapter 12 Table of Contents 12.1 Reaction Rates 12.2 Rate Laws: An Introduction 12.3 Determining the Form of the Rate Law 12.4 The Integrated Rate Law 12.5 Reaction Mechanisms

More information

Chemical Kinetics and Equilibrium

Chemical Kinetics and Equilibrium Chemical Kinetics and Equilibrium Part 1: Kinetics David A. Katz Department of Chemistry Pima Community College Tucson, AZ USA Chemical Kinetics The study of the rates of chemical reactions and how they

More information

How fast reactants turn into products. Usually measured in Molarity per second units. Kinetics

How fast reactants turn into products. Usually measured in Molarity per second units. Kinetics How fast reactants turn into products. Usually measured in Molarity per second units. Kinetics Reaction rated are fractions of a second for fireworks to explode. Reaction Rates takes years for a metal

More information

Outline: Kinetics. Reaction Rates. Rate Laws. Integrated Rate Laws. Half-life. Arrhenius Equation How rate constant changes with T.

Outline: Kinetics. Reaction Rates. Rate Laws. Integrated Rate Laws. Half-life. Arrhenius Equation How rate constant changes with T. Chemical Kinetics Kinetics Studies the rate at which a chemical process occurs. Besides information about the speed at which reactions occur, kinetics also sheds light on the reaction mechanism (exactly

More information

Chapter 11: CHEMICAL KINETICS

Chapter 11: CHEMICAL KINETICS Chapter : CHEMICAL KINETICS Study of the rate of a chemical reaction. Reaction Rate (fast or slow?) Igniting gasoline? Making of oil? Iron rusting? We know about speed (miles/hr). Speed Rate = changes

More information

Chapter 12. Chemical Kinetics

Chapter 12. Chemical Kinetics Chapter 12 Chemical Kinetics Section 12.1 Reaction Rates Section 12.1 Reaction Rates Section 12.1 Reaction Rates Section 12.1 Reaction Rates Section 12.1 Reaction Rates Section 12.1 Reaction Rates Section

More information

Chapter 12. Chemical Kinetics

Chapter 12. Chemical Kinetics Chapter 12 Chemical Kinetics Section 12.1 Reaction Rates Reaction Rate Change in concentration of a reactant or product per unit time. Rate = concentration of A at time t t 2 1 2 1 concentration of A at

More information

Chemical. Chapter 14. Kinetics. Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E.

Chemical. Chapter 14. Kinetics. Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chapter 14 1 PDF Created with deskpdf PDF www.farq.xyz Writer - Trial :: http://www.docudesk.com

More information

Unit #10. Chemical Kinetics

Unit #10. Chemical Kinetics Unit #10 Chemical Kinetics Zumdahl Chapter 12 College Board Performance Objectives: Express the rate of a reaction in terms of changes in the concentration of a reactant or a product per time. Understand

More information

Chapter 14. Chemical Kinetics

Chapter 14. Chemical Kinetics 14.1 Factors that Affect Reaction Rates Chemical kinetics = the study of how fast chemical reactions occur. Factors which affect rates of reactions: Physical state of the reactants. Concentration of the

More information

Kinetics - Chapter 14. reactions are reactions that will happen - but we can t tell how fast. - the steps by which a reaction takes place.

Kinetics - Chapter 14. reactions are reactions that will happen - but we can t tell how fast. - the steps by which a reaction takes place. The study of. Kinetics - Chapter 14 reactions are reactions that will happen - but we can t tell how fast. - the steps by which a reaction takes place. Factors that Affect Rx Rates 1. The more readily

More information

Chapter 14 Chemical Kinetics

Chapter 14 Chemical Kinetics Chapter 14 Chemical Kinetics Learning goals and key skills: Understand the factors that affect the rate of chemical reactions Determine the rate of reaction given time and concentration Relate the rate

More information

Ch 13 Rates of Reaction (Chemical Kinetics)

Ch 13 Rates of Reaction (Chemical Kinetics) Ch 13 Rates of Reaction (Chemical Kinetics) Reaction Rates and Kinetics - The reaction rate is how fast reactants are converted to products. - Chemical kinetics is the study of reaction rates. Kinetics

More information

Factors That Affect Rates. Factors That Affect Rates. Factors That Affect Rates. Factors That Affect Rates

Factors That Affect Rates. Factors That Affect Rates. Factors That Affect Rates. Factors That Affect Rates KINETICS Kinetics Study of the speed or rate of a reaction under various conditions Thermodynamically favorable reactions DO NOT mean fast reactions Some reactions take fraction of a second (explosion)

More information

11/9/2012 CHEMICAL REACTIONS. 1. Will the reaction occur? 2. How far will the reaction proceed? 3. How fast will the reaction occur?

11/9/2012 CHEMICAL REACTIONS. 1. Will the reaction occur? 2. How far will the reaction proceed? 3. How fast will the reaction occur? CHEMICAL REACTIONS LECTURE 11: CHEMICAL KINETICS 1. Will the reaction occur? 2. How far will the reaction proceed? 3. How fast will the reaction occur? CHEMICAL REACTIONS C(s, diamond) C(s, graphite) G

More information

Chapter 14: Chemical Kinetics

Chapter 14: Chemical Kinetics Chapter 14: Chemical Kinetics NOTE THIS CHAPTER IS #2 TOP TOPICS ON AP EXAM!!! NOT ONLY DO YOU NEED TO FOCUS ON THEORY (and lots of MATH) BUT YOU MUST READ THE FIGURES TOO!!! Ch 14.1 ~ Factors that Affect

More information

Chapter 14. Chemical Kinetics

Chapter 14. Chemical Kinetics Common Student Misconceptions It is possible for mathematics to get in the way of some students understanding of the chemistry of this chapter. Students often assume that reaction orders may be determined

More information

11/2/ and the not so familiar. Chemical kinetics is the study of how fast reactions take place.

11/2/ and the not so familiar. Chemical kinetics is the study of how fast reactions take place. Familiar Kinetics...and the not so familiar Reaction Rates Chemical kinetics is the study of how fast reactions take place. Some happen almost instantaneously, while others can take millions of years.

More information

Chapter 13 Kinetics: Rates and Mechanisms of Chemical Reactions

Chapter 13 Kinetics: Rates and Mechanisms of Chemical Reactions Chapter 13 Kinetics: Rates and Mechanisms of Chemical Reactions 14.1 Focusing on Reaction Rate 14.2 Expressing the Reaction Rate 14.3 The Rate Law and Its Components 14.4 Integrated Rate Laws: Concentration

More information

Chapter 14. Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten

Chapter 14. Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chapter 14 John D. Bookstaver St. Charles Community College St. Peters, MO 2006, Prentice Hall,

More information

Chemical Kinetics. Rate = [B] t. Rate = [A] t. Chapter 12. Reaction Rates 01. Reaction Rates 02. Reaction Rates 03

Chemical Kinetics. Rate = [B] t. Rate = [A] t. Chapter 12. Reaction Rates 01. Reaction Rates 02. Reaction Rates 03 Chapter Chemical Kinetics Reaction Rates 0 Reaction Rate: The change in the concentration of a reactant or a product with time (M/s). Reactant Products aa bb Rate = [A] t Rate = [B] t Reaction Rates 0

More information

Chapter 13 Rates of Reactions

Chapter 13 Rates of Reactions Chapter 13 Rates of Reactions Chemical reactions require varying lengths of time for completion, depending on the characteristics of the reactants and products. The study of the rate, or speed, of a reaction

More information

Chapter 14 Chemical Kinetics

Chapter 14 Chemical Kinetics 7/10/003 Chapter 14 Chemical Kinetics 14-1 Rates of Chemical Reactions 14- Reaction Rates and Concentrations 14-3 The Dependence of Concentrations on Time 14-4 Reaction Mechanisms 14-5 Reaction Mechanism

More information

C H E M I C N E S C I

C H E M I C N E S C I C H E M I C A L K I N E T S C I 4. Chemical Kinetics Introduction Average and instantaneous Rate of a reaction Express the rate of a reaction in terms of change in concentration Elementary and Complex

More information

Chapter 14 Chemical Kinetics

Chapter 14 Chemical Kinetics 4//004 Chapter 4 Chemical Kinetics 4- Rates of Chemical Reactions 4- Reaction Rates and Concentrations 4-3 The Dependence of Concentrations on Time 4-4 Reaction Mechanisms 4-5 Reaction Mechanism and Rate

More information

CHEM Dr. Babb s Sections Lecture Problem Sheets

CHEM Dr. Babb s Sections Lecture Problem Sheets CHEM 116 - Dr. Babb s Sections Lecture Problem Sheets Kinetics: Integrated Form of Rate Law 61. Give the integrated form of a zeroth order reaction. Define the half-life and find the halflife for a general

More information

Reaction Mechanisms Dependence of rate on temperature Activation Energy E a Activated Complex Arrhenius Equation

Reaction Mechanisms Dependence of rate on temperature Activation Energy E a Activated Complex Arrhenius Equation Kinetics Dependence of rate on Concentration (RATE LAW) Reaction Mechanisms Dependence of rate on temperature Activation Energy E a Activated Complex Arrhenius Equation Mary J. Bojan Chem 112 1 A MECHANISM

More information

Chapter 14. Chemical Kinetics

Chapter 14. Chemical Kinetics Sample Exercise 14.1 (p. 578) For the reaction pictured at the bottom of the previous page, calculate the average rate at which A disappears over the time interval from 20 s to 40 s. (1.2 x 10-2 M/s) Practice

More information

Chemical Kinetics. Chapter 13. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chemical Kinetics. Chapter 13. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chemical Kinetics Chapter 13 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chemical Kinetics Thermodynamics does a reaction take place? Kinetics how fast does

More information

AP CHEMISTRY NOTES 7-1 KINETICS AND RATE LAW AN INTRODUCTION

AP CHEMISTRY NOTES 7-1 KINETICS AND RATE LAW AN INTRODUCTION AP CHEMISTRY NOTES 7-1 KINETICS AND RATE LAW AN INTRODUCTION CHEMICAL KINETICS the study of rates of chemical reactions and the mechanisms by which they occur FACTORS WHICH AFFECT REACTION RATES 1. Nature

More information

CHAPTER 12 CHEMICAL KINETICS

CHAPTER 12 CHEMICAL KINETICS 5/9/202 CHAPTER 2 CHEMICAL KINETICS CHM52 GCC Kinetics Some chemical reactions occur almost instantaneously, while others are very slow. Chemical Kinetics - study of factors that affect how fast a reaction

More information

AP Chem Chapter 14 Study Questions

AP Chem Chapter 14 Study Questions Class: Date: AP Chem Chapter 14 Study Questions 1. A burning splint will burn more vigorously in pure oxygen than in air because a. oxygen is a reactant in combustion and concentration of oxygen is higher

More information

Chapter 14 Chemical Kinetics

Chapter 14 Chemical Kinetics Chapter 14 14.1 Factors that Affect Reaction Rates 14.2 Reaction Rates 14.3 Concentration and Rate Laws 14.4 The Change of Concentration with Time 14.5 Temperature and Rate 14.6 Reaction Mechanisms 14.7

More information

Chapter 14 Chemical Kinetics

Chapter 14 Chemical Kinetics Chapter 14 Chemical Kinetics Thermodynamics tells us what can happen and how far towards completion a reaction will proceed. Kinetics tells us how fast the reaction will go. Study of rates of reactions

More information

CHEM 116 Collision Theory and Reaction Mechanisms

CHEM 116 Collision Theory and Reaction Mechanisms CHEM 116 Collision Theory and Reaction Mechanisms Lecture 13 Prof. Sevian Note: If there is anything we do not finish about reaction mechanisms today, that is where we will start on Tuesday with Lecture

More information

, but bursts into flames in pure oxygen.

, but bursts into flames in pure oxygen. Chemical Kinetics Chemical kinetics is concerned with the speeds, or rates of chemical reactions Chemical kinetics is a subject of broad importance. How quickly a medicine can work The balance of ozone

More information

14.1 Factors That Affect Reaction Rates

14.1 Factors That Affect Reaction Rates 14.1 Factors That Affect Reaction Rates 1) 2) 3) 4) 14.2 Reaction Rates How does increasing the partial pressures of the reactive components of a gaseous mixture affect the rate at which the compounds

More information

Chapter 14 Chemical Kinetics

Chapter 14 Chemical Kinetics How fast do chemical processes occur? There is an enormous range of time scales. Chapter 14 Chemical Kinetics Kinetics also sheds light on the reaction mechanism (exactly how the reaction occurs). Why

More information

General Chemistry I Concepts

General Chemistry I Concepts Chemical Kinetics Chemical Kinetics The Rate of a Reaction (14.1) The Rate Law (14.2) Relation Between Reactant Concentration and Time (14.3) Activation Energy and Temperature Dependence of Rate Constants

More information

Chemical Kinetics Ch t ap 1 er

Chemical Kinetics Ch t ap 1 er Chemical Kinetics Chapter 13 1 Chemical Kinetics Thermodynamics does a reaction take place? Kinetics how fast does a reaction proceed? Reaction rate is the change in the concentration of a reactant or

More information

Examples of fast and slow reactions

Examples of fast and slow reactions 1 of 10 After completing this chapter, you should, at a minimum, be able to do the following. This information can be found in my lecture notes for this and other chapters and also in your text. Correctly

More information

2/23/2018. Familiar Kinetics. ...and the not so familiar. Chemical kinetics is the study of how fast reactions take place.

2/23/2018. Familiar Kinetics. ...and the not so familiar. Chemical kinetics is the study of how fast reactions take place. CHEMICAL KINETICS & REACTION MECHANISMS Readings, Examples & Problems Petrucci, et al., th ed. Chapter 20 Petrucci, et al., 0 th ed. Chapter 4 Familiar Kinetics...and the not so familiar Reaction Rates

More information

Chapter 11 Rate of Reaction

Chapter 11 Rate of Reaction William L Masterton Cecile N. Hurley http://academic.cengage.com/chemistry/masterton Chapter 11 Rate of Reaction Edward J. Neth University of Connecticut Outline 1. Meaning of reaction rate 2. Reaction

More information

AP CHEMISTRY CHAPTER 12 KINETICS

AP CHEMISTRY CHAPTER 12 KINETICS AP CHEMISTRY CHAPTER 12 KINETICS Thermodynamics tells us if a reaction can occur. Kinetics tells us how quickly the reaction occurs. Some reactions that are thermodynamically feasible are kinetically so

More information

Chapter 14: Chemical Kinetics

Chapter 14: Chemical Kinetics C h e m i c a l K i n e t i c s P a g e 1 Chapter 14: Chemical Kinetics Homework: Read Chapter 14 Work out sample/practice exercises in the sections, Check for the MasteringChemistry.com assignment and

More information

Calculating Rates of Substances. Rates of Substances. Ch. 12: Kinetics 12/14/2017. Creative Commons License

Calculating Rates of Substances. Rates of Substances. Ch. 12: Kinetics 12/14/2017. Creative Commons License Ch. 2: Kinetics An agama lizard basks in the sun. As its body warms, the chemical reactions of its metabolism speed up. Chemistry: OpenStax Creative Commons License Images and tables in this file have

More information

CHEM Chapter 14. Chemical Kinetics (Homework) Ky40

CHEM Chapter 14. Chemical Kinetics (Homework) Ky40 CHEM 1412. Chapter 14. Chemical Kinetics (Homework) Ky40 1. Chlorine dioxide reacts in basic water to form chlorite and chlorate according to the following chemical equation: 2ClO 2 (aq) + 2OH (aq) ClO

More information

Chapter 13 Lecture Lecture Presentation. Chapter 13. Chemical Kinetics. Sherril Soman Grand Valley State University Pearson Education, Inc.

Chapter 13 Lecture Lecture Presentation. Chapter 13. Chemical Kinetics. Sherril Soman Grand Valley State University Pearson Education, Inc. Chapter 13 Lecture Lecture Presentation Chapter 13 Chemical Kinetics Sherril Soman Grand Valley State University Ectotherms Lizards, and other cold-blooded creatures, are ectotherms animals whose body

More information

What we learn from Chap. 15

What we learn from Chap. 15 Chemical Kinetics Chapter 15 What we learn from Chap. 15 15. The focus of this chapter is the rates and mechanisms of chemical reactions. The applications center around pesticides, beginning with the opening

More information

Chem 116 POGIL Worksheet - Week 6 Kinetics - Concluded

Chem 116 POGIL Worksheet - Week 6 Kinetics - Concluded Chem 116 POGIL Worksheet - Week 6 Kinetics - Concluded Why? The half-life idea is most useful in conjunction with first-order kinetics, which include many chemical reactions and all nuclear decay processes.

More information

Chemical Kinetics. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chemical Kinetics. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chemical Kinetics Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chemical Kinetics Thermodynamics does a reaction take place? Kinetics how fast does a reaction

More information

Chemical Kinetics -- Chapter 14

Chemical Kinetics -- Chapter 14 Chemical Kinetics -- Chapter 14 1. Factors that Affect Reaction Rate (a) Nature of the reactants: molecular structure, bond polarity, physical state, etc. heterogeneous reaction: homogeneous reaction:

More information

AP Chemistry - Notes - Chapter 12 - Kinetics Page 1 of 7 Chapter 12 outline : Chemical kinetics

AP Chemistry - Notes - Chapter 12 - Kinetics Page 1 of 7 Chapter 12 outline : Chemical kinetics AP Chemistry - Notes - Chapter 12 - Kinetics Page 1 of 7 Chapter 12 outline : Chemical kinetics A. Chemical Kinetics - chemistry of reaction rates 1. Reaction Rates a. Reaction rate- the change in concentration

More information

Chemistry 1B, Fall 2016 Topic 23

Chemistry 1B, Fall 2016 Topic 23 Chemistry 1B, Fall 016 Topic 3 Chemistry 1B Fall 016 Topic 3 [more] Chemical Kinetics goals for topic 3 inetics and mechanism of chemical reaction energy profile and reaction coordinate activation energy

More information

Chapter 12, Chemical Kinetics

Chapter 12, Chemical Kinetics Chapter 12, Chemical Kinetics This chapter is about: 1. numerical descriptions of how fast rxns. occur 2. the intermediates that form during a rxn (re. mechanism) 3. applying thermodynamics & the kinetic

More information

Chemistry 1B, Fall 2016 Topic 23

Chemistry 1B, Fall 2016 Topic 23 Chemistry 1B Fall 016 [more] Chemical Kinetics 1 goals for topic 3 kinetics and mechanism of chemical reaction energy profile and reaction coordinate activation energy and temperature dependence of rate

More information

Chemistry 102 Chapter 14 CHEMICAL KINETICS. The study of the Rates of Chemical Reactions: how fast do chemical reactions proceed to form products

Chemistry 102 Chapter 14 CHEMICAL KINETICS. The study of the Rates of Chemical Reactions: how fast do chemical reactions proceed to form products CHEMICAL KINETICS Chemical Kinetics: The study of the Rates of Chemical Reactions: how fast do chemical reactions proceed to form products The study of Reaction Mechanisms: the steps involved in the change

More information

Chem 116 POGIL Worksheet - Week 6 Kinetics - Part 2

Chem 116 POGIL Worksheet - Week 6 Kinetics - Part 2 Chem 116 POGIL Worksheet - Week 6 Kinetics - Part 2 Why? A different form of the rate law for a reaction allows us to calculate amounts as a function of time. One variation on this gives us the concept

More information

Useful Information is Located at the End of the Exam. 1. An Elementary Step in a reaction mechanism tells us:

Useful Information is Located at the End of the Exam. 1. An Elementary Step in a reaction mechanism tells us: CHEM 122 General Chemistry Summer 2014 Name: Midterm Examination 2 Useful Information is Located at the End of the Exam. Multiple Choice Questions 1. An Elementary Step in a reaction mechanism tells us:

More information

Name: UNIT 5 KINETICS NOTES PACEKT #: KINETICS NOTES PART C

Name: UNIT 5 KINETICS NOTES PACEKT #: KINETICS NOTES PART C KINETICS NOTES PART C IV) Section 14.4 The Change of Concentration with Time A) Integrated Rate Law: shows how the concentration of the reactant(s) varies with time 1) [A]0 is the initial concentration

More information

on-line kinetics 3!!! Chemistry 1B Fall 2013

on-line kinetics 3!!! Chemistry 1B Fall 2013 on-line kinetics 3!!! Chemistry 1B Fall 2013 1 on-line kinetics 3!!! Chemistry 1B Fall 2013 Mechanism of a chemical reaction Elementary reactions Activation energy and reaction coordinate diagram 2 Chemistry

More information

REACTION KINETICS. Catalysts substances that increase the rates of chemical reactions without being used up. e.g. enzymes.

REACTION KINETICS. Catalysts substances that increase the rates of chemical reactions without being used up. e.g. enzymes. REACTION KINETICS Study of reaction rates Why? Rates of chemical reactions are primarily controlled by 5 factors: the chemical nature of the reactants 2 the ability of the reactants to come in contact

More information

Name AP CHEM / / Chapter 12 Outline Chemical Kinetics

Name AP CHEM / / Chapter 12 Outline Chemical Kinetics Name AP CHEM / / Chapter 12 Outline Chemical Kinetics The area of chemistry that deals with the rate at which reactions occur is called chemical kinetics. One of the goals of chemical kinetics is to understand

More information

Chemical Kinetics. What quantities do we study regarding chemical reactions? 15 Chemical Kinetics

Chemical Kinetics. What quantities do we study regarding chemical reactions? 15 Chemical Kinetics Chemical Kinetics Chemical kinetics: the study of reaction rate, a quantity conditions affecting it, the molecular events during a chemical reaction (mechanism), and presence of other components (catalysis).

More information

Reaction Rate. Rate = Conc. of A at t 2 -Conc. of A at t 1. t 2 -t 1. Rate = Δ[A] Δt

Reaction Rate. Rate = Conc. of A at t 2 -Conc. of A at t 1. t 2 -t 1. Rate = Δ[A] Δt Kinetics The study of reaction rates. Spontaneous reactions are reactions that will happen - but we can t tell how fast. Diamond will spontaneously turn to graphite eventually. Reaction mechanism- the

More information

CHEMISTRY NOTES CHEMICAL KINETICS

CHEMISTRY NOTES CHEMICAL KINETICS CHEMICAL KINETICS Rate of chemical reactions The rate of a reaction tells us how fast the reaction occurs. Let us consider a simple reaction. A + B C + D As the reaction proceeds, the concentration of

More information

Chemical Kinetics. Reaction Rate. Reaction Rate. Reaction Rate. Reaction Rate. Chemistry: The Molecular Science Moore, Stanitski and Jurs

Chemical Kinetics. Reaction Rate. Reaction Rate. Reaction Rate. Reaction Rate. Chemistry: The Molecular Science Moore, Stanitski and Jurs Chemical Kinetics Chemistry: The Molecular Science Moore, Stanitski and Jurs The study of speeds of reactions and the nanoscale pathways or rearrangements by which atoms and molecules are transformed to

More information

Reaction Rates. Let's assume that this reaction does not occur instantaneously, and therefore, it takes some time

Reaction Rates. Let's assume that this reaction does not occur instantaneously, and therefore, it takes some time Chemical Kinetics Reaction Rates Up to this point in the course our concern with chemical equations has focused upon understanding, reactants, products, stoichiometry, and states. We have also looked at

More information

Rate of a chemical reaction = Change in concentration Change in time

Rate of a chemical reaction = Change in concentration Change in time 1) 2) 1) The nature of reactants and products 2) The concentration of reacting species 3) Temperature 4) Catalyst [A] Rate of a chemical reaction = Change in concentration Change in time [B] Rate of disappearance

More information

Chemical Kinetics. Reaction Rate. Reaction Rate. Reaction Rate. Reaction Rate. Chapter 13: Chemical Kinetics: Rates of Reactions

Chemical Kinetics. Reaction Rate. Reaction Rate. Reaction Rate. Reaction Rate. Chapter 13: Chemical Kinetics: Rates of Reactions Chemical Kinetics The study of speeds of reactions and the nanoscale pathways or rearrangements by which atoms and molecules are transformed to products Chapter 3: Chemical Kinetics: Rates of Reactions

More information

Rates of Chemical Reactions

Rates of Chemical Reactions Rates of Chemical Reactions Jim Birk 12-1 Questions for Consideration 1. What conditions affect reaction rates? 2. How do molecular collisions explain chemical reactions? 3. How do concentration, temperature,

More information

Chapter 13 - Chemical Kinetics II. Integrated Rate Laws Reaction Rates and Temperature

Chapter 13 - Chemical Kinetics II. Integrated Rate Laws Reaction Rates and Temperature Chapter 13 - Chemical Kinetics II Integrated Rate Laws Reaction Rates and Temperature Reaction Order - Graphical Picture A ->Products Integrated Rate Laws Zero Order Reactions Rate = k[a] 0 = k (constant

More information

Chemistry 1B Fall 2016

Chemistry 1B Fall 2016 Chemistry 1B Fall 2016 Topic 23 [more] Chemical Kinetics 1 goals for topic 23 kinetics and mechanism of chemical reaction energy profile and reaction coordinate activation energy and temperature dependence

More information

Kinetics. 1. Consider the following reaction: 3 A 2 B How is the average rate of appearance of B related to the average rate of disappearance of A?

Kinetics. 1. Consider the following reaction: 3 A 2 B How is the average rate of appearance of B related to the average rate of disappearance of A? Kinetics 1. Consider the following reaction: 3 A 2 B How is the average rate of appearance of B related to the average rate of disappearance of A? A. [A]/ t = [B]/ t B. [A]/ t = (2/3)( [B]/ t) C. [A]/

More information

6. Which expression correctly describes the equilibrium constant for the following reaction? 4NH 3 (g) + 5O 2 (g) 4NO(g) + 6H 2 O(g)

6. Which expression correctly describes the equilibrium constant for the following reaction? 4NH 3 (g) + 5O 2 (g) 4NO(g) + 6H 2 O(g) 1. Which of the following can we predict from an equilibrium constant for a reaction? 1. The extent of a reaction 2. Whether the reaction is fast or slow 3. Whether a reaction is exothermic or endothermic

More information

CHAPTER 13 (MOORE) CHEMICAL KINETICS: RATES AND MECHANISMS OF CHEMICAL REACTIONS

CHAPTER 13 (MOORE) CHEMICAL KINETICS: RATES AND MECHANISMS OF CHEMICAL REACTIONS CHAPTER 13 (MOORE) CHEMICAL KINETICS: RATES AND MECHANISMS OF CHEMICAL REACTIONS This chapter deals with reaction rates, or how fast chemical reactions occur. Reaction rates vary greatly some are very

More information

Unit 12: Chemical Kinetics

Unit 12: Chemical Kinetics Unit 12: Chemical Kinetics Author: S. Michalek Introductory Resources: Zumdahl v. 5 Chapter 12 Main Ideas: Integrated rate laws Half life reactions Reaction Mechanisms Model for chemical kinetics Catalysis

More information

3: Chemical Kinetics Name: HW 6: Review for Unit Test KEY Class: Date: A Products

3: Chemical Kinetics Name: HW 6: Review for Unit Test KEY Class: Date: A Products 3: Chemical Kinetics Name: HW 6: Review for Unit Test KEY Class: Date: Page 1 of 9 AP Multiple Choice Review Questions 1 16 1. The reaction rate is defined as the change in concentration of a reactant

More information

Part One: Reaction Rates. 1. Rates of chemical reactions. (how fast products are formed and/or reactants are used up)

Part One: Reaction Rates. 1. Rates of chemical reactions. (how fast products are formed and/or reactants are used up) A. Chemical Kinetics deals with: CHAPTER 13: RATES OF REACTION Part One: Reaction Rates 1. Rates of chemical reactions. (how fast products are formed and/or reactants are used up) 2. Mechanisms of chemical

More information

Contents and Concepts. Learning Objectives. Reaction Rates 1. Definition of a Reaction Rate. 2. Experimental Determination of Rate

Contents and Concepts. Learning Objectives. Reaction Rates 1. Definition of a Reaction Rate. 2. Experimental Determination of Rate Contents and Concepts Reaction Rates 1. Definition of Reaction Rate. Experimental Determination of Rate 3. Dependence of Rate on Concentration 4. Change of Concentration with Time 5. Temperature and Rate;

More information

Shroud of Turin. Chemical Kinetics. Reaction Rates. Reaction Rates. Reaction Rates. Chemical Kinetics: The Rates of Chemical Reactions

Shroud of Turin. Chemical Kinetics. Reaction Rates. Reaction Rates. Reaction Rates. Chemical Kinetics: The Rates of Chemical Reactions Page III-12-1 / Chapter Twelve Lecture Notes Chemical Kinetics: The Rates of Chemical Reactions Chapter 12 Chemistry 222 Professor Michael Russell Shroud of Turin Shroud of Jesus?!? Fake or Real? Explored

More information

Physical Chemistry Chapter 6 Chemical Kinetics

Physical Chemistry Chapter 6 Chemical Kinetics Physical Chemistry Chapter 6 Chemical Kinetics by Azizul Helmi Sofian Faculty of Chemical & Natural Resources Engineering azizulh@ump.edu.my Chapter Description Aims To define rate laws accordingly To

More information

CHEMISTRY - CLUTCH CH.13 - CHEMICAL KINETICS.

CHEMISTRY - CLUTCH CH.13 - CHEMICAL KINETICS. !! www.clutchprep.com CONCEPT: RATES OF CHEMICAL REACTIONS is the study of reaction rates, and tells us the change in concentrations of reactants or products over a period of time. Although a chemical

More information

Section 10. Rates of Reactions Goal: Learn how temperature, concentration, and catalysts affect the rate of reaction. Summary

Section 10. Rates of Reactions Goal: Learn how temperature, concentration, and catalysts affect the rate of reaction. Summary Chapter 10 Reaction Rates and Chemical Equilibrium Section 10. Rates of Reactions Goal: Learn how temperature, concentration, and catalysts affect the rate of reaction. Summary The rate of a reaction is

More information

CHAPTER 10 CHEMICAL KINETICS

CHAPTER 10 CHEMICAL KINETICS CHAPTER 10 CHEMICAL KINETICS Introduction To this point in our study of chemistry, we have been concerned only with the composition of the equilibrium mixture, not the length of time required to obtain

More information

Homework 07. Kinetics

Homework 07. Kinetics HW07 - Kine!cs Started: Mar at 10:56am Quiz Instruc!ons Homework 07 Kinetics Question 1 Consider the reaction: O (g) 3O (g) rate = k[o ] [O ] 3 3 What is the overall order of the reaction and the order

More information

Any thoughts about the chemical reaction type in this video? A. Reaction Rates. Do speed analogy to understand rates in general.

Any thoughts about the chemical reaction type in this video? A. Reaction Rates. Do speed analogy to understand rates in general. Chemical Kinetics Read Chapter 5: p160-162 Problems: 5.81, 5.85, 5.87, 5.89 We will look at: 1. numerical descriptions of how fast reactions (rxns.) occur 2. the intermediates that form during a rxn (re.

More information

CHEM Chemical Kinetics. Reaction Mechanisms

CHEM Chemical Kinetics. Reaction Mechanisms Chemical Kinetics Deri ed Rate La s from Derived Rate Laws from Reaction Mechanisms Reaction Mechanism Determine the rate law by experiment Devise a reaction mechanism If the predicted and experimental

More information