v AB + C à AC + B Ø Bonds breaking

Size: px
Start display at page:

Download "v AB + C à AC + B Ø Bonds breaking"

Transcription

1 Chemistry Study Guide 3 v Kinetics reaction rates Ø Catalyst Ø Temperature Ø Concentration Ø Bonds Ø Surface area v Kinetics Ø Kinetic energy is directly proportional to the temperature Ø Gasses will react when Enough energy Collisions Right orientation v Reactants Ø Catalysts lower activation energy Ø Temperature proportional to KE Ø Concentration Ø Nature of reactants Surface area (solid) Reactivity (bond strength) S < l < g Aqueous Ø AB + C à AC+ B Ø No effect on rate Inert (non- reactive) gas v Maxwell Boltzmann distribution v AB + C à AC + B Ø Bonds breaking

2 Ø New bonds forming Ø Activated complex/transition state Same Ø Highest point new bonds formed old bonds break Very unstable v Collision theory of kinetics Ø For most reactants for a reaction to take place the reacting molecules must collide with each other On average about 10 9 collisions per second Ø Once molecules collide they may react together or they may not depending on two factors Whether the collision has enough energy to break the bonds holding reactant molecules together Whether the reacting molecules collide in the proper orientation for new bonds to form v Effective collisions kinetic energy factor Ø For a collision to lead to overcoming the energy barrier the reacting molecules must have sufficient kinetic energy so that when they collide the activated complex can form v Effective collisions Ø Collisions in which these two conditions are met (and therefore lead to a reaction) are called effective collision Ø The higher the frequency of the effective collisions the faster the reaction rate Ø When two molecules have an effective collision a temporary high energy (unstable) chemical species is formed the activated complex v Catalysts Ø Homogeneous catalysts are in the same phase as the reactant particles Ø Heterogeneous catalysts are in a different phase than the reactant particles Solid catalytic converter in the cars exhaust system v Enzymes Ø Because many of the molecules are large and complex most biological reactions require a catalyst to proceed at a reasonable rate Ø Protein molecules that catalyze biological reactions are called enzymes Ø Enzymes work by absorbing the substrate reactant onto an active site that orients the substrate for reaction Enzyme + substrate ß à enzyme substrate fast Enzyme substrate à enzyme + product v Collision theory and the frequency factor of the Arrhenius equation Ø The Arrhenius equation includes a term A called the frequency factor Ø The frequency factor can be broken into two terms that relate to the two factors that determine whether a collision will be effective v Collision Frequency Ø The collision frequency is the number of collisions that happen per second Ø The more collisions per second there are the more collisions can be effective and lead to product formation

3 v Orientation factor Ø The orientation factor p is a statistical term relating the frequency factor to the collision frequency Ø For most reactions p < 1 Ø Generally the more complex the reactant molecules the smaller the value of p Ø For reactions involving atoms colliding p ~ 1 because of the spherical nature of the atoms Ø Some reactions actually can have a p > 1 Generally involve electron transfer Ø The proper orientation results when the atoms are align in such a way that the old bonds can break and the new bonds can form Ø The more complex the reactant molecules the less frequently they will collide with the proper orientation Reactions when symmetry results in multiple orientations leading to reaction have a p slightly less than 1 Ø For most reactions the orientation factor is less than 1 v Molecular interpretation of factors affecting rate reactant nature Ø Reactions generally occur faster in solution than in pure substances Mixing gives more particle contact Particles separated allowing more effective collisions per second Forming some solutions breaks bonds that need to be broken Ø Some materials undergo similar reactions at different rates either because they have

4 A higher initial potential energy and are therefore closer in energy to the activated complex Because their reaction has a lower activation energy v Molecular interpretation of factors affecting rate temperature Ø Increasing the temperature raises the average kinetic energy of the reactant molecules Ø There is a minimum amount of kinetic energy needed for the collision to be converted into enough potential energy to from the activated complex Ø Increasing the temperature increases the number of molecules with sufficient kinetic energy to overcome the activation energy v Molecular interpretation of factors affecting rate concentration Ø Reaction rate generally increases as the concentration or partial pressure of reactant molecules increases Except for zero order reactions Ø More molecules leads to more molecules with sufficient kinetic energy for effective collision Distribution the same just bigger curve v Factors affecting reaction rate: nature of the reactants Ø Nature of the reactants means what kind of reactant molecules and what physical condition they are in Small molecules tend to react faster than large molecules Gasses tend to react faster than liquids which react faster than solids Powdered solids are more reactive than blocks More surface area for contact with other reactants Certain types of chemicals are more reactive than others Ex: potassium metal is more reactive than sodium Ions react faster than molecules No bonds need to be broken v Factors affecting reaction rates: temperature Ø Increasing temperature increases reaction rate Chemists rule of thumb for each 10 degree C rise in temperature the speed of the reaction doubles For many reactions Ø There is a mathematical relationship between the absolute temperature and the speed of a reaction discovered by Svante Arrhenius v Factors affecting reaction rate: catalysts Ø Catalysts are substances that affect the speed of a reaction without being consumed Ø Most catalysts are used to speed up a reaction these are called positive catalysts Catalysts used to slow a reaction are called negative catalysts Ø Homogeneous = present in same phase Ø Heterogeneous = present in different phase v Factors affecting reaction rate: reactant concentration

5 Ø Generally the larger the concentration of reactant molecules the faster the reaction Increase the frequency of reactant molecule contact Concentration of gases depends on the partial pressure of the gas Higher pressure = higher concentration Ø Concentrations of solutions depend on the solute to solution ratio molarity v Chemical kinetics Ø The study of the actors that effect the rates of chemical reactions Such as temperature Ø Lizards and other cold blooded creatures are ectotherms animals whose body temperature matches their environments temperature Ø When a lizards body temperature drops the chemical reactions that occur in the body slow down as do all chemical reactions when cooled) Ø This causes the lizard to become lethargic and to slow down Ø The speed of the chemical reaction is called its reaction rate Ø The rate of a reaction is a measure of how fast the reaction makes products Or uses reactants Ø The ability to control the speed of a chemical reaction is important v Defining rate Ø Rate is how much a quantity changes in a given period of time Ø The speed you drive your car is a rate the distance your car travels (miles) in a given period of time (1 hour) So the rate of your car has units in mi/hr Ø Speed = change in distance/change in time Ø The rate of a chemical reaction is generally measured in terms of how much the concentration of a reactant decreases in a given period of time Or product increases Ø For reactants a negative sign is placed in front of the definition Ø Rate = change in concentration/change in time Ø Fate = change in product/change in time = - change in reactant/change in time v Reaction rate changes over time Ø As time goes on the rate of a reaction generally slows down Because the concentration of the reactants dereases Ø At some time the reaction stops either because the reactants run out or because the system has reached equilibrium v Reaction rate and stoichiometry Ø In most reactions the coefficients of the balanced equation are not all the same Ø For these reactions the change in the number of molecules of one substance is a multiple of the change in the number of molecules of another Ø To be consistent the change in concentration of each substance is multiplies by 1/coefficient v Average rate Ø The average rate is the change in measure concentrations in any particular time period

6 Linear approximation of a curve Ø The larger the time interval the more the average rate deviates form the instantaneous rate v Instantaneous rate Ø The instantaneous rate is the change in concentration at any one particular time Slope at one point in the curve Ø Determined by taking the slope of a line tangent to the curve at the particular point First derivative of the function v Measuring reaction rate Ø To measure the reaction rate you need to be able to measure the concentration of at least one component in the mixture at many points in time Ø There are two ways of approaching the problem For reactions that are complete in less than 1 hour it is best to use continuous monitoring of the concentration For reactions that happen over a very long period of time sampling of the mixture at various points in time can be used When sampling is used often the reaction in the sample is stopped by a quenching technique v Continuous monitoring Ø Polarimetry measuring the change in the degree of rotation of plane- polarized light caused by one of the components over time Ø Spectrophotometry measuring the amount of light of a particular wavelength absorbed by one component over time The component absorbs the complementary color Ø Total pressure the total pressure of a gas mixture is stochiometrically related to partial pressures of the gasses in the reaction v Sampling the reaction mixture at specific times Ø At specific times during the reaction drawing off aliquots (samples from the reaction mixture) and doing quantitative analysis Titration of one of the components Gravimetric analysis Ø Gas chromatography can measure the concentrations of carious components in a mixture For samples that have volatile components Separates mixture by adherence to surface v Factors affecting reaction rate: nature of reactants Ø Nature of the reactants means what kind of reactant molecules and what physical condition they are in Small molecules tend to react faster than large molecules Gases tend to react faster than liquids which react faster than solids Powdered solids are more reactive than blocks More surface area for contact with other reactants

7 Certain types of chemicals are more reactive than others K more reactive than Na Ions react faster than molecules No bonds need to be broken v The rate law Ø The rate law of a reaction is the mathematical relationship between the rate of the reaction and the concentrations of the reactant And homogeneous catalysts as well Ø The rate law must be determined exponentially Ø The rate of a reaction is directly proportional to the concentration of each reactant raised to a power Ø For the reaction aa + bb à products the rate law would have the form given below n and m are called orders for each reactant k is called the rate constant Ø Rate = k[a] n [B] m v Reaction order Ø The exponent on each reactant in the rate law is called the order with respect to the reactant Ø The sum of the exponents on the reactants is called the order of the reaction v Finding the rate law the initial rate method Ø The rate law must be determined experimentally Ø The rate law shows how the rate of a reaction depends on the concentration of the reactants Ø Changing the initial concentration of the reactant will therefore affect the initial rate of the reaction v Rate = k[a] n Ø If a reaction is zero order the rate of the reaction is always the same Doubling [A] will have no effect on the reaction rate Ø If a reaction is a first order the rate is directly proportional to the reactant concentration Doubling [A] will double the rate of reaction Ø If a reaction is second order the rate is directly proportional to the square of the reactant concentration Doubling [A] will quadruple the rate of reaction v Determining the rate law when there are multiple reactants Ø Changing each reactant will effect the overall rate of the reaction Ø By changing the initial concentration of one reactant at a time the effect of each reactant s concentration on the rate can be determined Ø In examining results we compare differences in rate for reactions that only differ in the concentration of one reactant v Finding the rate law graphical methods Ø The rate law must be determined experimentally Ø A graph of concentration of reactant vs. time can be used to determine the effect of concentration on the rate of a reaction

8 Ø This involves using calculus to determine the area under the curve v Integrated rate laws Ø For each reaction A à products the rate law depends o the concentration of A Ø Applying calculus to integrate rate law gives another equation showing the relationship between the concentration of A and the time of the reaction this is called the integrated rate law v Half life Ø The half life t1/2 of a reaction if the length of time it takes for the concentration of the reactant to fall to ½ of its initial value Ø The half life of the reaction depends on the order of the reaction v Zero order reactions Ø Rate = k[a] 0 = k Constant rate reactions Ø [A] = - kt + [A]initial Ø Graph of [A] vs. time is straight line with slope = - k ad y- intercept = [A] initial Ø t1/2 = [Ainitial] /2k Ø When rate = M/sec, k = M/sec v First order reactions Ø Rate = k[a] 1 = k[a] Ø In[A] = - kt + in[a]initial Ø Graph In[A] vs. time gives straight line with slope = - k and y- intercept = in[a]initial Used to determine the rate constant Ø t1/2 = 0.693/k Ø The half life of a first order reaction is constant Ø When rate = M/sec, k = s - 1

9 v Second order reactions Ø Rate = k[a] 2 Ø 1/[A] = kt + 1/[A]initial Ø Graph 1/[A] vs. time gives straight line with slope = k and y- intercept = 1/[A]initial Used to determine rate constant Ø t1/2 = 1/(k[A]0]) Ø when rate = M/sec, k = M - 1 *s - 1

10 v Rate law Ø k = rate constant Ø A à product Ø A + B à product Ø n, m = order of reaction Ø Rate = k[a] m [B] n Ø Overall order of reaction = add exponents Ø Order of reaction with respect to concentration of [A] means only A v Zero order reaction Ø Rate = k[a] 0 = k Ø M/s Molarity per second Ø Concentration doesn t affect rate v First order reaction Ø Rate = k[a] Ø Rate is directly proportional to the concentration v 2 nd order reaction Ø Rate = k[a] 2 Ø Rate is proportional to [ ] 2 Concentration to 2 nd power v Rate constant Ø K is temperature dependent Ø K directly related to temperature Ø t1/2 = 0.693/k

Chapter 13 Lecture Lecture Presentation. Chapter 13. Chemical Kinetics. Sherril Soman Grand Valley State University Pearson Education, Inc.

Chapter 13 Lecture Lecture Presentation. Chapter 13. Chemical Kinetics. Sherril Soman Grand Valley State University Pearson Education, Inc. Chapter 13 Lecture Lecture Presentation Chapter 13 Chemical Kinetics Sherril Soman Grand Valley State University Ectotherms Lizards, and other cold-blooded creatures, are ectotherms animals whose body

More information

CHEMISTRY. Chapter 14 Chemical Kinetics

CHEMISTRY. Chapter 14 Chemical Kinetics CHEMISTRY The Central Science 8 th Edition Chapter 14 Kozet YAPSAKLI kinetics is the study of how rapidly chemical reactions occur. rate at which a chemical process occurs. Reaction rates depends on The

More information

Chapter 14 Chemical Kinetics

Chapter 14 Chemical Kinetics How fast do chemical processes occur? There is an enormous range of time scales. Chapter 14 Chemical Kinetics Kinetics also sheds light on the reaction mechanism (exactly how the reaction occurs). Why

More information

Chapter 14 Chemical Kinetics

Chapter 14 Chemical Kinetics Chapter 14 14.1 Factors that Affect Reaction Rates 14.2 Reaction Rates 14.3 Concentration and Rate Laws 14.4 The Change of Concentration with Time 14.5 Temperature and Rate 14.6 Reaction Mechanisms 14.7

More information

Factors That Affect Rates. Factors That Affect Rates. Factors That Affect Rates. Factors That Affect Rates

Factors That Affect Rates. Factors That Affect Rates. Factors That Affect Rates. Factors That Affect Rates KINETICS Kinetics Study of the speed or rate of a reaction under various conditions Thermodynamically favorable reactions DO NOT mean fast reactions Some reactions take fraction of a second (explosion)

More information

Ch 13 Rates of Reaction (Chemical Kinetics)

Ch 13 Rates of Reaction (Chemical Kinetics) Ch 13 Rates of Reaction (Chemical Kinetics) Reaction Rates and Kinetics - The reaction rate is how fast reactants are converted to products. - Chemical kinetics is the study of reaction rates. Kinetics

More information

Lecture Presentation. Chapter 14. Chemical Kinetics. John D. Bookstaver St. Charles Community College Cottleville, MO Pearson Education, Inc.

Lecture Presentation. Chapter 14. Chemical Kinetics. John D. Bookstaver St. Charles Community College Cottleville, MO Pearson Education, Inc. Lecture Presentation Chapter 14 John D. Bookstaver St. Charles Community College Cottleville, MO In kinetics we study the rate at which a chemical process occurs. Besides information about the speed at

More information

Chapter 13. Chemical Kinetics. Fu-Yin Hsu

Chapter 13. Chemical Kinetics. Fu-Yin Hsu Chapter 13 Chemical Kinetics Fu-Yin Hsu Ectotherms ( 冷血動物 ) ectotherms animals whose body temperature matches their environment s temperature. Ex: Lizards ( 蜥蝪 ) The drop in body temperature immobilizes

More information

Kinetics. Chapter 14. Chemical Kinetics

Kinetics. Chapter 14. Chemical Kinetics Lecture Presentation Chapter 14 Yonsei University In kinetics we study the rate at which a chemical process occurs. Besides information about the speed at which reactions occur, kinetics also sheds light

More information

Chemical Kinetics. Kinetics is the study of how fast chemical reactions occur. There are 4 important factors which affect rates of reactions:

Chemical Kinetics. Kinetics is the study of how fast chemical reactions occur. There are 4 important factors which affect rates of reactions: Chemical Kinetics Kinetics is the study of how fast chemical reactions occur. There are 4 important factors which affect rates of reactions: reactant concentration temperature action of catalysts surface

More information

CHAPTER 13 (MOORE) CHEMICAL KINETICS: RATES AND MECHANISMS OF CHEMICAL REACTIONS

CHAPTER 13 (MOORE) CHEMICAL KINETICS: RATES AND MECHANISMS OF CHEMICAL REACTIONS CHAPTER 13 (MOORE) CHEMICAL KINETICS: RATES AND MECHANISMS OF CHEMICAL REACTIONS This chapter deals with reaction rates, or how fast chemical reactions occur. Reaction rates vary greatly some are very

More information

6.1 Collision Theory & Rates of Reaction IB SL CHEMISTRY MRS. PAGE

6.1 Collision Theory & Rates of Reaction IB SL CHEMISTRY MRS. PAGE 6.1 Collision Theory & Rates of Reaction IB SL CHEMISTRY MRS. PAGE Understandings: Species react as a result of collisions of sufficient energy and proper orientation. The rate of reaction is expressed

More information

Outline: Kinetics. Reaction Rates. Rate Laws. Integrated Rate Laws. Half-life. Arrhenius Equation How rate constant changes with T.

Outline: Kinetics. Reaction Rates. Rate Laws. Integrated Rate Laws. Half-life. Arrhenius Equation How rate constant changes with T. Chemical Kinetics Kinetics Studies the rate at which a chemical process occurs. Besides information about the speed at which reactions occur, kinetics also sheds light on the reaction mechanism (exactly

More information

Chemical Kinetics and Equilibrium

Chemical Kinetics and Equilibrium Chemical Kinetics and Equilibrium Part 1: Kinetics David A. Katz Department of Chemistry Pima Community College Tucson, AZ USA Chemical Kinetics The study of the rates of chemical reactions and how they

More information

Chapter 14. Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten

Chapter 14. Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chapter 14 John D. Bookstaver St. Charles Community College St. Peters, MO 2006, Prentice Hall,

More information

Kinetics - Chapter 14. reactions are reactions that will happen - but we can t tell how fast. - the steps by which a reaction takes place.

Kinetics - Chapter 14. reactions are reactions that will happen - but we can t tell how fast. - the steps by which a reaction takes place. The study of. Kinetics - Chapter 14 reactions are reactions that will happen - but we can t tell how fast. - the steps by which a reaction takes place. Factors that Affect Rx Rates 1. The more readily

More information

Lecture Presentation. Chapter 14. James F. Kirby Quinnipiac University Hamden, CT. Chemical Kinetics Pearson Education, Inc.

Lecture Presentation. Chapter 14. James F. Kirby Quinnipiac University Hamden, CT. Chemical Kinetics Pearson Education, Inc. Lecture Presentation Chapter 14 James F. Kirby Quinnipiac University Hamden, CT In chemical kinetics we study the rate (or speed) at which a chemical process occurs. Besides information about the speed

More information

Chapter Chemical Kinetics

Chapter Chemical Kinetics CHM 51 Chapter 13.5-13.7 Chemical Kinetics Graphical Determination of the Rate Law for A Product Plots of [A] versus time, ln[a] versus time, and 1/[A] versus time allow determination of whether a reaction

More information

Chapter 14 - Chemical Kinetics. Reaction Rates Rate Laws Rate Constants Effect of Concentration on Reaction Rate

Chapter 14 - Chemical Kinetics. Reaction Rates Rate Laws Rate Constants Effect of Concentration on Reaction Rate Chapter 14 - Chemical Kinetics Reaction Rates Rate Laws Rate Constants Effect of Concentration on Reaction Rate Kinetics The study of the factors that affect the speed of a reaction and the mechanism by

More information

AP CHEMISTRY CHAPTER 12 KINETICS

AP CHEMISTRY CHAPTER 12 KINETICS AP CHEMISTRY CHAPTER 12 KINETICS Thermodynamics tells us if a reaction can occur. Kinetics tells us how quickly the reaction occurs. Some reactions that are thermodynamically feasible are kinetically so

More information

Chapter 14 Chemical Kinetics

Chapter 14 Chemical Kinetics Chapter 14 Chemical Kinetics Factors that Affect Reaction rates Reaction Rates Concentration and Rate The Change of Concentration with Time Temperature and Rate Reactions Mechanisms Catalysis Chemical

More information

How fast reactants turn into products. Usually measured in Molarity per second units. Kinetics

How fast reactants turn into products. Usually measured in Molarity per second units. Kinetics How fast reactants turn into products. Usually measured in Molarity per second units. Kinetics Reaction rated are fractions of a second for fireworks to explode. Reaction Rates takes years for a metal

More information

Chapter 12. Kinetics. Factors That Affect Reaction Rates. Factors That Affect Reaction Rates. Chemical. Kinetics

Chapter 12. Kinetics. Factors That Affect Reaction Rates. Factors That Affect Reaction Rates. Chemical. Kinetics PowerPoint to accompany Kinetics Chapter 12 Chemical Kinetics Studies the rate at which a chemical process occurs. Besides information about the speed at which reactions occur, kinetics also sheds light

More information

Chapter 14 Chemical Kinetics

Chapter 14 Chemical Kinetics Chapter 14 Chemical Kinetics Learning goals and key skills: Understand the factors that affect the rate of chemical reactions Determine the rate of reaction given time and concentration Relate the rate

More information

Chapter 11: CHEMICAL KINETICS

Chapter 11: CHEMICAL KINETICS Chapter : CHEMICAL KINETICS Study of the rate of a chemical reaction. Reaction Rate (fast or slow?) Igniting gasoline? Making of oil? Iron rusting? We know about speed (miles/hr). Speed Rate = changes

More information

Chapter 12. Chemical Kinetics

Chapter 12. Chemical Kinetics Chapter 12 Chemical Kinetics Chapter 12 Table of Contents 12.1 Reaction Rates 12.2 Rate Laws: An Introduction 12.3 Determining the Form of the Rate Law 12.4 The Integrated Rate Law 12.5 Reaction Mechanisms

More information

6.1 Rates of Reaction

6.1 Rates of Reaction 6.1 Rates of Reaction 6.1.1 Define the term rate of reaction The change in concentration of reactants or products with time. In other words, how quickly the reactants are converted into products. These

More information

C H E M I C N E S C I

C H E M I C N E S C I C H E M I C A L K I N E T S C I 4. Chemical Kinetics Introduction Average and instantaneous Rate of a reaction Express the rate of a reaction in terms of change in concentration Elementary and Complex

More information

Chapter 13 - Chemical Kinetics II. Integrated Rate Laws Reaction Rates and Temperature

Chapter 13 - Chemical Kinetics II. Integrated Rate Laws Reaction Rates and Temperature Chapter 13 - Chemical Kinetics II Integrated Rate Laws Reaction Rates and Temperature Reaction Order - Graphical Picture A ->Products Integrated Rate Laws Zero Order Reactions Rate = k[a] 0 = k (constant

More information

Chapter 14: Chemical Kinetics II. Chem 102 Dr. Eloranta

Chapter 14: Chemical Kinetics II. Chem 102 Dr. Eloranta Chapter 14: Chemical Kinetics II Chem 102 Dr. Eloranta Rate Laws If you are familiar with calculus Experiments would allow you to determine the reaction order and rate constant, but what if you wanted

More information

Chemical Kinetics. Reaction Rate. Reaction Rate. Reaction Rate. Reaction Rate. Chemistry: The Molecular Science Moore, Stanitski and Jurs

Chemical Kinetics. Reaction Rate. Reaction Rate. Reaction Rate. Reaction Rate. Chemistry: The Molecular Science Moore, Stanitski and Jurs Chemical Kinetics Chemistry: The Molecular Science Moore, Stanitski and Jurs The study of speeds of reactions and the nanoscale pathways or rearrangements by which atoms and molecules are transformed to

More information

Chapter 11 Rate of Reaction

Chapter 11 Rate of Reaction William L Masterton Cecile N. Hurley http://academic.cengage.com/chemistry/masterton Chapter 11 Rate of Reaction Edward J. Neth University of Connecticut Outline 1. Meaning of reaction rate 2. Reaction

More information

Name: UNIT 5 KINETICS NOTES PACEKT #: KINETICS NOTES PART C

Name: UNIT 5 KINETICS NOTES PACEKT #: KINETICS NOTES PART C KINETICS NOTES PART C IV) Section 14.4 The Change of Concentration with Time A) Integrated Rate Law: shows how the concentration of the reactant(s) varies with time 1) [A]0 is the initial concentration

More information

Name AP CHEM / / Chapter 12 Outline Chemical Kinetics

Name AP CHEM / / Chapter 12 Outline Chemical Kinetics Name AP CHEM / / Chapter 12 Outline Chemical Kinetics The area of chemistry that deals with the rate at which reactions occur is called chemical kinetics. One of the goals of chemical kinetics is to understand

More information

6.4 and 6.5 FACTORS AFFECTING REACTION RATES. Factors Affecting the Rate of a Homogenous or Heterogeneous Reaction:

6.4 and 6.5 FACTORS AFFECTING REACTION RATES. Factors Affecting the Rate of a Homogenous or Heterogeneous Reaction: 6.4 and 6.5 FACTORS AFFECTING REACTION RATES Homogeneous reactions Heterogeneous reactions Factors Affecting the Rate of a Homogenous or Heterogeneous Reaction: 1. Temperature Maxwell-Boltzmann Distribution

More information

Ch 13 Chemical Kinetics. Modified by Dr. Cheng-Yu Lai

Ch 13 Chemical Kinetics. Modified by Dr. Cheng-Yu Lai Ch 13 Chemical Kinetics Modified by Dr. Cheng-Yu Lai Outline 1. Meaning of reaction rate 2. Reaction rate and concentration 3. Writing a Rate Law 4. Reactant concentration and time 5. Reaction rate and

More information

CFC: chlorofluorocarbons

CFC: chlorofluorocarbons The rate of reaction is markedly affected by temperature. Chemical Kinetics & k versus T Two theories were developed to explain the temperature effects. 1. 2. 2 UV radiation strikes a CFC molecule causing

More information

Chapter 12. Chemical Kinetics

Chapter 12. Chemical Kinetics Chapter 12 Chemical Kinetics Section 12.1 Reaction Rates Reaction Rate Change in concentration of a reactant or product per unit time. Rate = concentration of A at time t t 2 1 2 1 concentration of A at

More information

CHAPTER 12 CHEMICAL KINETICS

CHAPTER 12 CHEMICAL KINETICS 5/9/202 CHAPTER 2 CHEMICAL KINETICS CHM52 GCC Kinetics Some chemical reactions occur almost instantaneously, while others are very slow. Chemical Kinetics - study of factors that affect how fast a reaction

More information

REACTION KINETICS. Catalysts substances that increase the rates of chemical reactions without being used up. e.g. enzymes.

REACTION KINETICS. Catalysts substances that increase the rates of chemical reactions without being used up. e.g. enzymes. REACTION KINETICS Study of reaction rates Why? Rates of chemical reactions are primarily controlled by 5 factors: the chemical nature of the reactants 2 the ability of the reactants to come in contact

More information

Chemistry Notes for class 12 Chapter 4 Chemical Kinetics

Chemistry Notes for class 12 Chapter 4 Chemical Kinetics 1 P a g e Chemistry Notes for class 12 Chapter 4 Chemical Kinetics The branch of chemistry, which deals with the rate of chemical reactions. the factors affecting the rate of reactions and the mechanism

More information

Collision Theory. and I 2

Collision Theory. and I 2 Collision Theory To explain why chemical reactions occur, chemists have proposed a model, known as collision theory, which states that molecules must collide in order to react. These collisions can involve

More information

Chapter 13 Kinetics: Rates and Mechanisms of Chemical Reactions

Chapter 13 Kinetics: Rates and Mechanisms of Chemical Reactions Chapter 13 Kinetics: Rates and Mechanisms of Chemical Reactions 14.1 Focusing on Reaction Rate 14.2 Expressing the Reaction Rate 14.3 The Rate Law and Its Components 14.4 Integrated Rate Laws: Concentration

More information

Calculating Rates of Substances. Rates of Substances. Ch. 12: Kinetics 12/14/2017. Creative Commons License

Calculating Rates of Substances. Rates of Substances. Ch. 12: Kinetics 12/14/2017. Creative Commons License Ch. 2: Kinetics An agama lizard basks in the sun. As its body warms, the chemical reactions of its metabolism speed up. Chemistry: OpenStax Creative Commons License Images and tables in this file have

More information

CHM 111 An introduction to kinetics (r15) 2015 Charles Taylor 1/7

CHM 111 An introduction to kinetics (r15) 2015 Charles Taylor 1/7 CHM 111 An introduction to kinetics (r15) 2015 Charles Taylor 1/7 Introduction We've talked about chemical reactions many, many times in the past. Up to this point, we've focused on the ingredients you

More information

3: Chemical Kinetics Name: HW 6: Review for Unit Test KEY Class: Date: A Products

3: Chemical Kinetics Name: HW 6: Review for Unit Test KEY Class: Date: A Products 3: Chemical Kinetics Name: HW 6: Review for Unit Test KEY Class: Date: Page 1 of 9 AP Multiple Choice Review Questions 1 16 1. The reaction rate is defined as the change in concentration of a reactant

More information

Rates of Reaction HL

Rates of Reaction HL Name: Rates of Reaction Objectives 16. Rates of Reaction -define rate of reaction -define catalysis -monitor the rate of production of oxygen from hydrogen peroxide, using manganese dioxide as a catalyst

More information

Chapter 14. Chemical Kinetics

Chapter 14. Chemical Kinetics Chapter 14. Chemical Kinetics 14.1 Factors that Affect Reaction Rates The speed at which a chemical reaction occurs is the reaction rate. Chemical kinetics is the study of how fast chemical reactions occur.

More information

How fast or slow will a reaction be? How can the reaction rate may be changed?

How fast or slow will a reaction be? How can the reaction rate may be changed? Part I. 1.1 Introduction to Chemical Kinetics How fast or slow will a reaction be? How can the reaction rate may be changed? *In order to understand how these factors affect reaction rates, you will also

More information

Chemical Reactions and Enzymes. (Pages 49-59)

Chemical Reactions and Enzymes. (Pages 49-59) Chemical Reactions and Enzymes (Pages 49-59) Chemical Reactions Chemistry of Life Not just what life is made of. What life does! Chemical Reactions Chemistry of Life Not just what life is made of. What

More information

21-Jan-2018 Chemsheets A Page 1

21-Jan-2018 Chemsheets A Page 1 www.chemsheets.co.uk 21-Jan-2018 Chemsheets A2 1001 Page 1 SECTION 1 Recap of AS Kinetics What is reaction rate? The rate of a chemical reaction is a measure of how fast a reaction takes place. It is defined

More information

Chapter 8 Reaction Rates and Equilibrium

Chapter 8 Reaction Rates and Equilibrium Spencer L. Seager Michael R. Slabaugh www.cengage.com/chemistry/seager Chapter 8 Reaction Rates and Equilibrium SPONTANEOUS PROCESSES Spontaneous processes are processes that take place naturally with

More information

, but bursts into flames in pure oxygen.

, but bursts into flames in pure oxygen. Chemical Kinetics Chemical kinetics is concerned with the speeds, or rates of chemical reactions Chemical kinetics is a subject of broad importance. How quickly a medicine can work The balance of ozone

More information

Chapter 12. Chemical Kinetics

Chapter 12. Chemical Kinetics Chapter 12 Chemical Kinetics Section 12.1 Reaction Rates Section 12.1 Reaction Rates Section 12.1 Reaction Rates Section 12.1 Reaction Rates Section 12.1 Reaction Rates Section 12.1 Reaction Rates Section

More information

Unit I: Reaction Kinetics Introduction:

Unit I: Reaction Kinetics Introduction: Chemistry 12 Unit I: Reaction Kinetics Introduction: Kinetics Definition: All reactions occur at different rates Examples: Slow Reactions Fast Reactions Chemists need to understand kinetics because sometimes

More information

Part One: Reaction Rates. 1. Rates of chemical reactions. (how fast products are formed and/or reactants are used up)

Part One: Reaction Rates. 1. Rates of chemical reactions. (how fast products are formed and/or reactants are used up) A. Chemical Kinetics deals with: CHAPTER 13: RATES OF REACTION Part One: Reaction Rates 1. Rates of chemical reactions. (how fast products are formed and/or reactants are used up) 2. Mechanisms of chemical

More information

Chemistry 40S Chemical Kinetics (This unit has been adapted from

Chemistry 40S Chemical Kinetics (This unit has been adapted from Chemistry 40S Chemical Kinetics (This unit has been adapted from https://bblearn.merlin.mb.ca) Name: 1 2 Lesson 1: Introduction to Kinetics Goals: Identify variables used to monitor reaction rate. Formulate

More information

Chemistry 201: General Chemistry II - Lecture

Chemistry 201: General Chemistry II - Lecture Chemistry 20: General Chemistry II - Lecture Dr. Namphol Sinkaset Chapter 5 Study Guide Concepts. rate of reaction: the speed at which reactants disappear and products form. 2. There can only be one numerical

More information

CHEM Chemical Kinetics. & Transition State Theory

CHEM Chemical Kinetics. & Transition State Theory Chemical Kinetics Collision Theory Collision Theory & Transition State Theory The rate of reaction is markedly affected by temperature. k versus T Ae E a k RT Two theories were developed to explain the

More information

The Collision Theory and Rates of Reactions. Explaining how and why factors affect reaction rates

The Collision Theory and Rates of Reactions. Explaining how and why factors affect reaction rates The Collision Theory and Rates of Reactions Explaining how and why factors affect reaction rates Elephant toothpaste We are going to look at a reaction named after elephant toothpaste and you ll see why

More information

The first aspects forms the subject matter of chemical equilibrium. The second aspects forms the subject matter of chemical kinetics.

The first aspects forms the subject matter of chemical equilibrium. The second aspects forms the subject matter of chemical kinetics. Chemical Kinetics Introduction In a chemical reaction two important aspects are: (a) How far the reaction will go? and (b) How fast the reaction will occur? The first aspects forms the subject matter of

More information

Brown et al, Chemistry, 2nd ed (AUS), Ch. 12:

Brown et al, Chemistry, 2nd ed (AUS), Ch. 12: Kinetics: Contents Brown et al, Chemistry, 2 nd ed (AUS), Ch. 12: Why kinetics? What is kinetics? Factors that Affect Reaction Rates Reaction Rates Concentration and Reaction Rate The Change of Concentration

More information

Chapter 13 Rates of Reactions

Chapter 13 Rates of Reactions Chapter 13 Rates of Reactions Chemical reactions require varying lengths of time for completion, depending on the characteristics of the reactants and products. The study of the rate, or speed, of a reaction

More information

Temperature: An increase in temperature increases the rate of reaction.

Temperature: An increase in temperature increases the rate of reaction. 9 Kinetics I Factors affecting the rate of reaction Temperature: An increase in temperature increases the rate of reaction. Concentration: An increase in the concentration of a solution of reactants increases

More information

Chapter 8: Reaction Rates and Equilibrium

Chapter 8: Reaction Rates and Equilibrium Chapter 8: Reaction Rates and Equilibrium ACTIVATION ENERGY In some reaction mixtures, the average total energy of the molecules is too low at the prevailing temperature for a reaction to take place at

More information

AP Chemistry - Notes - Chapter 12 - Kinetics Page 1 of 7 Chapter 12 outline : Chemical kinetics

AP Chemistry - Notes - Chapter 12 - Kinetics Page 1 of 7 Chapter 12 outline : Chemical kinetics AP Chemistry - Notes - Chapter 12 - Kinetics Page 1 of 7 Chapter 12 outline : Chemical kinetics A. Chemical Kinetics - chemistry of reaction rates 1. Reaction Rates a. Reaction rate- the change in concentration

More information

concentrations (molarity) rate constant, (k), depends on size, speed, kind of molecule, temperature, etc.

concentrations (molarity) rate constant, (k), depends on size, speed, kind of molecule, temperature, etc. #73 Notes Unit 9: Kinetics and Equilibrium Ch. Kinetics and Equilibriums I. Reaction Rates NO 2(g) + CO (g) NO (g) + CO 2(g) Rate is defined in terms of the rate of disappearance of one of the reactants,

More information

Chapter 16. Rate Laws. The rate law describes the way in which reactant concentration affects reaction rate.

Chapter 16. Rate Laws. The rate law describes the way in which reactant concentration affects reaction rate. Rate Laws The rate law describes the way in which reactant concentration affects reaction rate. A rate law is the expression that shows how the rate of formation of product depends on the concentration

More information

Lesmahagow High School CfE Higher Chemistry. Chemical Changes & Structure Controlling the Rate

Lesmahagow High School CfE Higher Chemistry. Chemical Changes & Structure Controlling the Rate Lesmahagow High School CfE Higher Chemistry Chemical Changes & Structure Controlling the Rate E a Page 1 of 18 Learning Outcomes Controlling the Rate Circle a face to show how much understanding you have

More information

Reaction Rate. Rate = Conc. of A at t 2 -Conc. of A at t 1. t 2 -t 1. Rate = Δ[A] Δt

Reaction Rate. Rate = Conc. of A at t 2 -Conc. of A at t 1. t 2 -t 1. Rate = Δ[A] Δt Kinetics The study of reaction rates. Spontaneous reactions are reactions that will happen - but we can t tell how fast. Diamond will spontaneously turn to graphite eventually. Reaction mechanism- the

More information

Chapter 14. Chemical Kinetics

Chapter 14. Chemical Kinetics Chapter 14. Chemical Kinetics Common Student Misconceptions It is possible for mathematics to get in the way of some students understanding of the chemistry of this chapter. Students often assume that

More information

Chapter 14 Chemical Kinetics

Chapter 14 Chemical Kinetics Chapter 14 Chemical Kinetics Thermodynamics tells us what can happen and how far towards completion a reaction will proceed. Kinetics tells us how fast the reaction will go. Study of rates of reactions

More information

Rates of reaction and collision theory ,'< ~ :I \ "" -,,...-- " :~V. ~ eo '" ~ u. Kinetics 35

Rates of reaction and collision theory ,'< ~ :I \  -,,...--  :~V. ~ eo ' ~ u. Kinetics 35 Rates of reaction and collision theory RATE OF REATION hemical kinetics is the study of the factors affecting the rate of a chemical reaction. The rate of a chemical reaction can be defined either as the

More information

Chapter 14. Chemical Kinetics

Chapter 14. Chemical Kinetics Chapter 14. Chemical Kinetics Common Student Misconceptions It is possible for mathematics to get in the way of some students understanding of the chemistry of this chapter. Students often assume that

More information

Unit #10. Chemical Kinetics

Unit #10. Chemical Kinetics Unit #10 Chemical Kinetics Zumdahl Chapter 12 College Board Performance Objectives: Express the rate of a reaction in terms of changes in the concentration of a reactant or a product per time. Understand

More information

Reaction Rate. Products form rapidly. Products form over a long period of time. Precipitation reaction or explosion

Reaction Rate. Products form rapidly. Products form over a long period of time. Precipitation reaction or explosion Reaction Rate Products form rapidly Precipitation reaction or explosion Products form over a long period of time Corrosion or decay of organic material Chemical Kinetics Study of the rate at which a reaction

More information

Chemistry 102 Chapter 14 CHEMICAL KINETICS. The study of the Rates of Chemical Reactions: how fast do chemical reactions proceed to form products

Chemistry 102 Chapter 14 CHEMICAL KINETICS. The study of the Rates of Chemical Reactions: how fast do chemical reactions proceed to form products CHEMICAL KINETICS Chemical Kinetics: The study of the Rates of Chemical Reactions: how fast do chemical reactions proceed to form products The study of Reaction Mechanisms: the steps involved in the change

More information

Chemistry 6A F2007. Dr. J.A. Mack 11/19/07. Chemical Kinetics measure the rate of appearance of products or the rate of disappearance of reactants.

Chemistry 6A F2007. Dr. J.A. Mack 11/19/07. Chemical Kinetics measure the rate of appearance of products or the rate of disappearance of reactants. Chemistry 6A F2007 Dr. J.A. Mack Chemical Kinetics measure the rate of appearance of products or the rate of disappearance of reactants. Reactants Products Reactants go away with time. Products appear

More information

How many grams of ethylene glycol must be added to 6.00 kg of water to lower its freezing point to C? ETHYLENE GLYCOL:

How many grams of ethylene glycol must be added to 6.00 kg of water to lower its freezing point to C? ETHYLENE GLYCOL: How many grams of ethylene glycol must be added to 6.00 kg of water to lower its freezing point to -11.0 C? ETHYLENE GLYCOL: 77 KINETICS - the study of the RATE of chemical reactions. Or, the study of

More information

Chapter Introduction Lesson 1 Understanding Chemical Reactions Lesson 2 Types of Chemical Reactions Lesson 3 Energy Changes and Chemical Reactions

Chapter Introduction Lesson 1 Understanding Chemical Reactions Lesson 2 Types of Chemical Reactions Lesson 3 Energy Changes and Chemical Reactions Chapter Introduction Lesson 1 Understanding Chemical Reactions Lesson 2 Types of Chemical Reactions Lesson 3 Energy Changes and Chemical Reactions Chapter Wrap-Up Changes in Matter A physical change does

More information

Chapter 14: Chemical Kinetics

Chapter 14: Chemical Kinetics Chapter 14: Chemical Kinetics NOTE THIS CHAPTER IS #2 TOP TOPICS ON AP EXAM!!! NOT ONLY DO YOU NEED TO FOCUS ON THEORY (and lots of MATH) BUT YOU MUST READ THE FIGURES TOO!!! Ch 14.1 ~ Factors that Affect

More information

Collision Theory of Reaction Rates

Collision Theory of Reaction Rates Collision Theory of Reaction Rates If you have two reactants, they can only react if they come into contact with each other i.e. if they collide Then, they MAY react Why May? Collision alone is not enough

More information

Factors Affecting Reaction Rate

Factors Affecting Reaction Rate Factors Affecting Reaction Rate Outcomes: Formulate an operational definition of reaction rate. State the collision theory. Perform a lab to identify factors that affect reaction rate. Describe, qualitatively,

More information

General Chemistry I Concepts

General Chemistry I Concepts Chemical Kinetics Chemical Kinetics The Rate of a Reaction (14.1) The Rate Law (14.2) Relation Between Reactant Concentration and Time (14.3) Activation Energy and Temperature Dependence of Rate Constants

More information

Since reactions want to minimize energy you would think that the reaction would be spontaneous like a ball rolling down a hill

Since reactions want to minimize energy you would think that the reaction would be spontaneous like a ball rolling down a hill Notes 1.1 Exothermic reactions give off heat 120 100 80 60 40 20 0 0 2 4 6 Heat Content Since reactions want to minimize energy you would think that the reaction would be spontaneous like a ball rolling

More information

HEAT, TEMPERATURE, & THERMAL ENERGY. Work - is done when an object is moved through a distance by a force acting on the object.

HEAT, TEMPERATURE, & THERMAL ENERGY. Work - is done when an object is moved through a distance by a force acting on the object. HEAT, TEMPERATURE, & THERMAL ENERGY Energy A property of matter describing the ability to do work. Work - is done when an object is moved through a distance by a force acting on the object. Kinetic Energy

More information

Chapter 30. Chemical Kinetics. Copyright (c) 2011 by Michael A. Janusa, PhD. All rights reserved.

Chapter 30. Chemical Kinetics. Copyright (c) 2011 by Michael A. Janusa, PhD. All rights reserved. Chapter 30 Chemical Kinetics 1 Copyright (c) 2011 by Michael A. Janusa, PhD. All rights reserved. Chemists have three fundamental questions in mind when they study chemical reactions: 1.) What happens?

More information

Reactions Rates

Reactions Rates 3.2.2. Reactions Rates Collision theory Reactions can only occur when collisions take place between particles having sufficient energy. The energy is usually needed to break the relevant bonds in one or

More information

Chemical Kinetics. Rate = [B] t. Rate = [A] t. Chapter 12. Reaction Rates 01. Reaction Rates 02. Reaction Rates 03

Chemical Kinetics. Rate = [B] t. Rate = [A] t. Chapter 12. Reaction Rates 01. Reaction Rates 02. Reaction Rates 03 Chapter Chemical Kinetics Reaction Rates 0 Reaction Rate: The change in the concentration of a reactant or a product with time (M/s). Reactant Products aa bb Rate = [A] t Rate = [B] t Reaction Rates 0

More information

Chemical Kinetics. Reaction Rate. Reaction Rate. Reaction Rate. Reaction Rate. Chapter 13: Chemical Kinetics: Rates of Reactions

Chemical Kinetics. Reaction Rate. Reaction Rate. Reaction Rate. Reaction Rate. Chapter 13: Chemical Kinetics: Rates of Reactions Chemical Kinetics The study of speeds of reactions and the nanoscale pathways or rearrangements by which atoms and molecules are transformed to products Chapter 3: Chemical Kinetics: Rates of Reactions

More information

Chemical. Chapter 14. Kinetics. Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E.

Chemical. Chapter 14. Kinetics. Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chapter 14 1 PDF Created with deskpdf PDF www.farq.xyz Writer - Trial :: http://www.docudesk.com

More information

Δx Δt. Any average rate can be determined between measurements at 2 points in time.

Δx Δt. Any average rate can be determined between measurements at 2 points in time. Chapter 13 Chemical Kinetics Some reaction are faster than others! Chem 210 Jasperse Ch. 13 Handouts 1 Three factors (in addition to the nature of the reacting chemicals themselves ) 1. Concentrations

More information

CHEMICAL KINETICS (RATES OF REACTION)

CHEMICAL KINETICS (RATES OF REACTION) Kinetics F322 1 CHEMICAL KINETICS (RATES OF REACTION) Introduction Chemical kinetics is concerned with the dynamics of chemical reactions such as the way reactions take place and the rate (speed) of the

More information

Chemical Reac+ons and Enzymes. Lesson Overview. Lesson Overview. 2.4 Chemical Reactions and Enzymes

Chemical Reac+ons and Enzymes. Lesson Overview. Lesson Overview. 2.4 Chemical Reactions and Enzymes Lesson Overview Chemical Reac+ons and Enzymes Lesson Overview 2.4 Chemical Reactions and Enzymes THINK ABOUT IT Living things are made up of chemical compounds, but chemistry isn t just what life is made

More information

Chemical Kinetics -- Chapter 14

Chemical Kinetics -- Chapter 14 Chemical Kinetics -- Chapter 14 1. Factors that Affect Reaction Rate (a) Nature of the reactants: molecular structure, bond polarity, physical state, etc. heterogeneous reaction: homogeneous reaction:

More information

Factors that Affect Reaction Rates

Factors that Affect Reaction Rates Factors that Affect Reaction Rates Preface: There are 2 kinds of reactions: Homogeneous reactions - all reactants are in the same phase (don't consider products) eg.) 3H 2(g) + N 2(g) 2NH 3(g) Ag + (aq)

More information

Part One: Reaction Rates. 1. Even though a reaction is thermodynamically favorable it may not occur at all if it is kinetically very slow.

Part One: Reaction Rates. 1. Even though a reaction is thermodynamically favorable it may not occur at all if it is kinetically very slow. CHAPTER 13: RATES OF REACTION Part One: Reaction Rates A. Chemical Kinetics deals with: 1. 2. B. Importance: 1. Even though a reaction is thermodynamically favorable it may not occur at all if it is kinetically

More information

Chemical Kinetics. Kinetics. Factors That Affect Reaction Rates. Factors That Affect Reaction Rates. Factors That Affect Reaction Rates

Chemical Kinetics. Kinetics. Factors That Affect Reaction Rates. Factors That Affect Reaction Rates. Factors That Affect Reaction Rates Kinetics hemical Kinetics In kinetics we study the rate at which a chemical process occurs. esides information about the speed at which reactions occur, kinetics also sheds light on the reaction mechanism

More information

Calculations In Chemistry

Calculations In Chemistry Calculations In Chemistry Module 27 Kinetics: Rate Laws Module 27 Kinetics: Rate Laws...773 Lesson 27A: Kinetics Fundamentals...771 Lesson 27B: Rate Laws...778 Lesson 27C: Integrated Rate Law --Zero Order...787

More information

TOPIC 6: Chemical kinetics

TOPIC 6: Chemical kinetics TOPIC 6: Chemical kinetics Reaction rates Reaction rate laws Integrated reaction rate laws Reaction mechanism Kinetic theories Arrhenius law Catalysis Enzimatic catalysis Fuente: Cedre http://loincognito.-iles.wordpress.com/202/04/titanic-

More information