Workshop 9.3a: Randomized block designs

Size: px
Start display at page:

Download "Workshop 9.3a: Randomized block designs"

Transcription

1 -1- Workshop 93a: Randomized block designs Murray Logan November 23, 16 Table of contents 1 Randomized Block (RCB) designs 1 2 Worked Examples 12 1 Randomized Block (RCB) designs 11 RCB design Simple Randomized block design 12 RCB design y ij = µ + β i + α j + ε ij µ - the mean of the first treatment group

2 -2- β - the random (Block) effect α - the main within Block effect eg abundance = base + block + treatment 13 Repeated measures designs 0 0 T T T T Assumptions Normality, homogeneity of variance No Block by within-block interaction

3 -3- Q4 Q1 Q4 Q1 Q3 Q3 Q4 Q3 Q2 Q2 Q1 Q T0 T Q4 Q3 Q1 Q2 Q3 Q4 Q1 Q2 Q4 Q2 Q1 Q T0 T Assumptions Normality, homogeneity of variance No Block by within-block interaction Independence (variance-covariance structure) 16 Var-cov structure T1 T2 T3 T4 T T T T T1 T2 T3 T4 Block B Block A T1 T2 T3 T4 Block D Block C T1 T2 T3 T4 T T T T Subject C Subject B Subject A T1 T2 T3 T4 T T T T Time (mins)

4 -4-17 Assumptions Normality, homogeneity of variance No Block by within-block interaction Independence (variance-covariance structure) RCB - usually met Repeated measures - rarely met 18 Example > datarcb1 <- readcsv('/data/datarcb1csv', stripwhite=true) > head(datarcb1) y A Block A B B B C B A B B B C B2 19 Exploratory data analysis Normality and homogeneity of variance > boxplot(y~a, datarcb1) A B C 110 Exploratory data analysis No block by within-block interaction

5 -5- > library(ggplot2) > ggplot(datarcb1, aes(y=y, x=a, group=block,color=block)) + + geom_line() + + guides(color=guide_legend(ncol=3)) 100 Block B1 B B31 B10 B21 B32 80 B11 B12 B22 B23 B33 B34 B13 B24 B35 y B14 B25 B4 60 B15 B16 B26 B27 B5 B6 B17 B28 B7 B18 B29 B8 40 B19 B2 B3 B30 B9 A B C A 111 Exploratory data analysis No block by within-block interaction > library(car) > residualplots(lm(y~block+a, datarcb1)) Pearson residuals Pearson residuals B1 B14 B19 B23 B28 B32 B5 B9 Block A B C A Pearson residuals Fitted values Test stat Pr(> t ) Block NA NA A NA NA Tukey test

6 Sphericity > library(nlme) > datarcb1lme <- lme(y~a, random=~1 Block, + data=datarcb1) > acf(resid(datarcb1lme)) Series resid(datarcb1lme) ACF Lag 113 Model fitting > #Assuming sphericity > datarcb1lme <- lme(y~a, random=~1 Block, data=datarcb1, + method='reml') > datarcb1lme1 <- lme(y~a, random=~a Block, data=datarcb1, + method='reml') > AIC(datarcb1lme, datarcb1lme1) df AIC datarcb1lme datarcb1lme > anova(datarcb1lme, datarcb1lme1) Model df AIC BIC loglik Test LRatio p-value datarcb1lme datarcb1lme vs Model fitting > #Assuming sphericity > datarcb1lmear1 <- lme(y~a, random=~1 Block, data=datarcb1, + correlation=corar1(),method='reml') > datarcb1lme1ar1 <- lme(y~a, random=~a Block, data=datarcb1, + correlation=corar1(),method='reml') > AIC(datarcb1lme, datarcb1lme1,datarcb1lmear1, datarcb1lme1ar1)

7 -7- df AIC datarcb1lme datarcb1lme datarcb1lmear datarcb1lme1ar > anova(datarcb1lme, datarcb1lme1,datarcb1lmear1, datarcb1lme1ar1) Model df AIC BIC loglik Test LRatio p-value datarcb1lme datarcb1lme vs datarcb1lmear vs datarcb1lme1ar vs Model validation > plot(datarcb1lme) 2 Standardized residuals Fitted values > plot(resid(datarcb1lme, type='normalized') ~ + datarcb1$a) resid(datarcb1lme, type = "normalized") A B C datarcb1$a 116 Effects plots > library(effects) > plot(effect('a',datarcb1lme))

8 -8- A effect plot y A B C A 117 Parameter estimates > summary(datarcb1lme) Linear mixed-effects model fit by REML Data: datarcb1 AIC BIC loglik Random effects: Formula: ~1 Block (Intercept) Residual StdDev: Fixed effects: y ~ A Value StdError DF t-value p-value (Intercept) AB AC Correlation: (Intr) AB AB AC Standardized Within-Group Residuals: Min Q1 Med Q3 Max Number of Observations: 105 Number of Groups: 35

9 Parameter estimates > intervals(datarcb1lme) Approximate 95% confidence intervals Fixed effects: lower est upper (Intercept) AB AC attr(,"label") [1] "Fixed effects:" Random Effects: Level: Block lower est upper sd((intercept)) Within-group standard error: lower est upper Parameter estimates > VarCorr(datarcb1lme) Block = pdlogchol(1) Variance StdDev (Intercept) Residual ANOVA table > anova(datarcb1lme) numdf dendf F-value p-value (Intercept) <0001 A < R 2 [1] [1] [1] [1]

10 What about lmer? > library(lme4) > datarcb1lmer <- lmer(y~a+(1 Block), data=datarcb1, REML=TRUE, + control=lmercontrol(checknobsvsnre="ignore")) > datarcb1lmer1 <- lmer(y~a+(a Block), data=datarcb1, REML=TRUE, + control=lmercontrol(checknobsvsnre="ignore")) > AIC(datarcb1lmer, datarcb1lmer1) df AIC datarcb1lmer datarcb1lmer > anova(datarcb1lmer, datarcb1lmer1) Data: datarcb1 Models: datarcb1lmer: y ~ A + (1 Block) datarcb1lmer1: y ~ A + (A Block) Df AIC BIC loglik deviance Chisq Chi Df Pr(>Chisq) datarcb1lmer datarcb1lmer What about lmer? > summary(datarcb1lmer) Linear mixed model fit by REML ['lmermod'] Formula: y ~ A + (1 Block) Data: datarcb1 Control: lmercontrol(checknobsvsnre = "ignore") REML criterion at convergence: 7121 Scaled residuals: Min 1Q Median 3Q Max Random effects: Groups Name Variance StdDev Block (Intercept) Residual Number of obs: 105, groups: Block, 35 Fixed effects: Estimate Std Error t value (Intercept) AB AC Correlation of Fixed Effects: (Intr) AB AB AC

11 What about lmer? > anova(datarcb1lmer) Analysis of Variance Table Df Sum Sq Mean Sq F value A What about lmer? > # Perform SAS-like p-value calculations (requires the lmertest and pbkrtest package) > library(lmertest) > datarcb1lmer <- update(datarcb1lmer) > summary(datarcb1lmer) Linear mixed model fit by REML t-tests use Satterthwaite approximations to degrees of freedom [ lmermod] Formula: y ~ A + (1 Block) Data: datarcb1 Control: lmercontrol(checknobsvsnre = "ignore") REML criterion at convergence: 7121 Scaled residuals: Min 1Q Median 3Q Max Random effects: Groups Name Variance StdDev Block (Intercept) Residual Number of obs: 105, groups: Block, 35 Fixed effects: Estimate Std Error df t value Pr(> t ) (Intercept) <2e-16 *** AB <2e-16 *** AC <2e-16 *** --- Signif codes: 0 '***' 0001 '**' 001 '*' 005 '' 01 ' ' 1 Correlation of Fixed Effects: (Intr) AB AB AC What about lmer? > anova(datarcb1lmer) # Satterthwaite denominator df method Analysis of Variance Table of type III with Satterthwaite approximation for degrees of freedom Sum Sq Mean Sq NumDF DenDF Fvalue Pr(>F) A < 22e-16 *** --- Signif codes: 0 '***' 0001 '**' 001 '*' 005 '' 01 ' ' 1

12 -12- > anova(datarcb1lmer,ddf="kenward-roger") # Kenward-Roger denominator df method Analysis of Variance Table Df Sum Sq Mean Sq F value A Worked Examples Worked Examples

Workshop 9.1: Mixed effects models

Workshop 9.1: Mixed effects models -1- Workshop 91: Mixed effects models Murray Logan October 10, 2016 Table of contents 1 Non-independence - part 2 1 1 Non-independence - part 2 11 Linear models Homogeneity of variance σ 2 0 0 y i = β

More information

Stat 5303 (Oehlert): Randomized Complete Blocks 1

Stat 5303 (Oehlert): Randomized Complete Blocks 1 Stat 5303 (Oehlert): Randomized Complete Blocks 1 > library(stat5303libs);library(cfcdae);library(lme4) > immer Loc Var Y1 Y2 1 UF M 81.0 80.7 2 UF S 105.4 82.3 3 UF V 119.7 80.4 4 UF T 109.7 87.2 5 UF

More information

Mixed Model: Split plot with two whole-plot factors, one split-plot factor, and CRD at the whole-plot level (e.g. fancier split-plot p.

Mixed Model: Split plot with two whole-plot factors, one split-plot factor, and CRD at the whole-plot level (e.g. fancier split-plot p. STAT:5201 Applied Statistic II Mixed Model: Split plot with two whole-plot factors, one split-plot factor, and CRD at the whole-plot level (e.g. fancier split-plot p.422 OLRT) Hamster example with three

More information

R Output for Linear Models using functions lm(), gls() & glm()

R Output for Linear Models using functions lm(), gls() & glm() LM 04 lm(), gls() &glm() 1 R Output for Linear Models using functions lm(), gls() & glm() Different kinds of output related to linear models can be obtained in R using function lm() {stats} in the base

More information

Repeated measures, part 2, advanced methods

Repeated measures, part 2, advanced methods enote 12 1 enote 12 Repeated measures, part 2, advanced methods enote 12 INDHOLD 2 Indhold 12 Repeated measures, part 2, advanced methods 1 12.1 Intro......................................... 3 12.2 A

More information

Hierarchical Random Effects

Hierarchical Random Effects enote 5 1 enote 5 Hierarchical Random Effects enote 5 INDHOLD 2 Indhold 5 Hierarchical Random Effects 1 5.1 Introduction.................................... 2 5.2 Main example: Lactase measurements in

More information

Introduction and Background to Multilevel Analysis

Introduction and Background to Multilevel Analysis Introduction and Background to Multilevel Analysis Dr. J. Kyle Roberts Southern Methodist University Simmons School of Education and Human Development Department of Teaching and Learning Background and

More information

These slides illustrate a few example R commands that can be useful for the analysis of repeated measures data.

These slides illustrate a few example R commands that can be useful for the analysis of repeated measures data. These slides illustrate a few example R commands that can be useful for the analysis of repeated measures data. We focus on the experiment designed to compare the effectiveness of three strength training

More information

Stat 5303 (Oehlert): Balanced Incomplete Block Designs 1

Stat 5303 (Oehlert): Balanced Incomplete Block Designs 1 Stat 5303 (Oehlert): Balanced Incomplete Block Designs 1 > library(stat5303libs);library(cfcdae);library(lme4) > weardata

More information

20. REML Estimation of Variance Components. Copyright c 2018 (Iowa State University) 20. Statistics / 36

20. REML Estimation of Variance Components. Copyright c 2018 (Iowa State University) 20. Statistics / 36 20. REML Estimation of Variance Components Copyright c 2018 (Iowa State University) 20. Statistics 510 1 / 36 Consider the General Linear Model y = Xβ + ɛ, where ɛ N(0, Σ) and Σ is an n n positive definite

More information

Mixed Model Theory, Part I

Mixed Model Theory, Part I enote 4 1 enote 4 Mixed Model Theory, Part I enote 4 INDHOLD 2 Indhold 4 Mixed Model Theory, Part I 1 4.1 Design matrix for a systematic linear model.................. 2 4.2 The mixed model.................................

More information

Exploring Hierarchical Linear Mixed Models

Exploring Hierarchical Linear Mixed Models Exploring Hierarchical Linear Mixed Models 1/49 Last time... A Greenhouse Experiment testing C:N Ratios Sam was testing how changing the C:N Ratio of soil affected plant leaf growth. He had 3 treatments.

More information

Outline. Mixed models in R using the lme4 package Part 3: Longitudinal data. Sleep deprivation data. Simple longitudinal data

Outline. Mixed models in R using the lme4 package Part 3: Longitudinal data. Sleep deprivation data. Simple longitudinal data Outline Mixed models in R using the lme4 package Part 3: Longitudinal data Douglas Bates Longitudinal data: sleepstudy A model with random effects for intercept and slope University of Wisconsin - Madison

More information

Hierarchical Linear Models (HLM) Using R Package nlme. Interpretation. 2 = ( x 2) u 0j. e ij

Hierarchical Linear Models (HLM) Using R Package nlme. Interpretation. 2 = ( x 2) u 0j. e ij Hierarchical Linear Models (HLM) Using R Package nlme Interpretation I. The Null Model Level 1 (student level) model is mathach ij = β 0j + e ij Level 2 (school level) model is β 0j = γ 00 + u 0j Combined

More information

lme4 Luke Chang Last Revised July 16, Fitting Linear Mixed Models with a Varying Intercept

lme4 Luke Chang Last Revised July 16, Fitting Linear Mixed Models with a Varying Intercept lme4 Luke Chang Last Revised July 16, 2010 1 Using lme4 1.1 Fitting Linear Mixed Models with a Varying Intercept We will now work through the same Ultimatum Game example from the regression section and

More information

Stat 579: Generalized Linear Models and Extensions

Stat 579: Generalized Linear Models and Extensions Stat 579: Generalized Linear Models and Extensions Linear Mixed Models for Longitudinal Data Yan Lu April, 2018, week 14 1 / 64 Data structure and Model t1 t2 tn i 1st subject y 11 y 12 y 1n1 2nd subject

More information

A Handbook of Statistical Analyses Using R 2nd Edition. Brian S. Everitt and Torsten Hothorn

A Handbook of Statistical Analyses Using R 2nd Edition. Brian S. Everitt and Torsten Hothorn A Handbook of Statistical Analyses Using R 2nd Edition Brian S. Everitt and Torsten Hothorn CHAPTER 12 Analysing Longitudinal Data I: Computerised Delivery of Cognitive Behavioural Therapy Beat the Blues

More information

Repeated measures, part 1, simple methods

Repeated measures, part 1, simple methods enote 11 1 enote 11 Repeated measures, part 1, simple methods enote 11 INDHOLD 2 Indhold 11 Repeated measures, part 1, simple methods 1 11.1 Intro......................................... 2 11.1.1 Main

More information

Subject-specific observed profiles of log(fev1) vs age First 50 subjects in Six Cities Study

Subject-specific observed profiles of log(fev1) vs age First 50 subjects in Six Cities Study Subject-specific observed profiles of log(fev1) vs age First 50 subjects in Six Cities Study 1.4 0.0-6 7 8 9 10 11 12 13 14 15 16 17 18 19 age Model 1: A simple broken stick model with knot at 14 fit with

More information

STAT3401: Advanced data analysis Week 10: Models for Clustered Longitudinal Data

STAT3401: Advanced data analysis Week 10: Models for Clustered Longitudinal Data STAT3401: Advanced data analysis Week 10: Models for Clustered Longitudinal Data Berwin Turlach School of Mathematics and Statistics Berwin.Turlach@gmail.com The University of Western Australia Models

More information

Correlated Data: Linear Mixed Models with Random Intercepts

Correlated Data: Linear Mixed Models with Random Intercepts 1 Correlated Data: Linear Mixed Models with Random Intercepts Mixed Effects Models This lecture introduces linear mixed effects models. Linear mixed models are a type of regression model, which generalise

More information

CO2 Handout. t(cbind(co2$type,co2$treatment,model.matrix(~type*treatment,data=co2)))

CO2 Handout. t(cbind(co2$type,co2$treatment,model.matrix(~type*treatment,data=co2))) CO2 Handout CO2.R: library(nlme) CO2[1:5,] plot(co2,outer=~treatment*type,layout=c(4,1)) m1co2.lis

More information

Outline. Statistical inference for linear mixed models. One-way ANOVA in matrix-vector form

Outline. Statistical inference for linear mixed models. One-way ANOVA in matrix-vector form Outline Statistical inference for linear mixed models Rasmus Waagepetersen Department of Mathematics Aalborg University Denmark general form of linear mixed models examples of analyses using linear mixed

More information

Mixed effects models

Mixed effects models Mixed effects models The basic theory and application in R Mitchel van Loon Research Paper Business Analytics Mixed effects models The basic theory and application in R Author: Mitchel van Loon Research

More information

A brief introduction to mixed models

A brief introduction to mixed models A brief introduction to mixed models University of Gothenburg Gothenburg April 6, 2017 Outline An introduction to mixed models based on a few examples: Definition of standard mixed models. Parameter estimation.

More information

Random and Mixed Effects Models - Part II

Random and Mixed Effects Models - Part II Random and Mixed Effects Models - Part II Statistics 149 Spring 2006 Copyright 2006 by Mark E. Irwin Two-Factor Random Effects Model Example: Miles per Gallon (Neter, Kutner, Nachtsheim, & Wasserman, problem

More information

A Handbook of Statistical Analyses Using R 2nd Edition. Brian S. Everitt and Torsten Hothorn

A Handbook of Statistical Analyses Using R 2nd Edition. Brian S. Everitt and Torsten Hothorn A Handbook of Statistical Analyses Using R 2nd Edition Brian S. Everitt and Torsten Hothorn CHAPTER 12 Analysing Longitudinal Data I: Computerised Delivery of Cognitive Behavioural Therapy Beat the Blues

More information

Lecture 9 STK3100/4100

Lecture 9 STK3100/4100 Lecture 9 STK3100/4100 27. October 2014 Plan for lecture: 1. Linear mixed models cont. Models accounting for time dependencies (Ch. 6.1) 2. Generalized linear mixed models (GLMM, Ch. 13.1-13.3) Examples

More information

Workshop 7.4a: Single factor ANOVA

Workshop 7.4a: Single factor ANOVA -1- Workshop 7.4a: Single factor ANOVA Murray Logan November 23, 2016 Table of contents 1 Revision 1 2 Anova Parameterization 2 3 Partitioning of variance (ANOVA) 10 4 Worked Examples 13 1. Revision 1.1.

More information

Random and Mixed Effects Models - Part III

Random and Mixed Effects Models - Part III Random and Mixed Effects Models - Part III Statistics 149 Spring 2006 Copyright 2006 by Mark E. Irwin Quasi-F Tests When we get to more than two categorical factors, some times there are not nice F tests

More information

Mixed models in R using the lme4 package Part 2: Longitudinal data, modeling interactions

Mixed models in R using the lme4 package Part 2: Longitudinal data, modeling interactions Mixed models in R using the lme4 package Part 2: Longitudinal data, modeling interactions Douglas Bates Department of Statistics University of Wisconsin - Madison Madison January 11, 2011

More information

SPH 247 Statistical Analysis of Laboratory Data

SPH 247 Statistical Analysis of Laboratory Data SPH 247 Statistical Analysis of Laboratory Data March 31, 2015 SPH 247 Statistical Analysis of Laboratory Data 1 ANOVA Fixed and Random Effects We will review the analysis of variance (ANOVA) and then

More information

Solution pigs exercise

Solution pigs exercise Solution pigs exercise Course repeated measurements - R exercise class 2 November 24, 2017 Contents 1 Question 1: Import data 3 1.1 Data management..................................... 3 1.2 Inspection

More information

A Handbook of Statistical Analyses Using R. Brian S. Everitt and Torsten Hothorn

A Handbook of Statistical Analyses Using R. Brian S. Everitt and Torsten Hothorn A Handbook of Statistical Analyses Using R Brian S. Everitt and Torsten Hothorn CHAPTER 10 Analysing Longitudinal Data I: Computerised Delivery of Cognitive Behavioural Therapy Beat the Blues 10.1 Introduction

More information

Statistical Analysis of Hierarchical Data. David Zucker Hebrew University, Jerusalem, Israel

Statistical Analysis of Hierarchical Data. David Zucker Hebrew University, Jerusalem, Israel Statistical Analysis of Hierarchical Data David Zucker Hebrew University, Jerusalem, Israel Unit 1 Linear Mixed Models 1 Examples of Hierarchical Data Hierarchical data = subunits within units Students

More information

Analysis of binary repeated measures data with R

Analysis of binary repeated measures data with R Analysis of binary repeated measures data with R Right-handed basketball players take right and left-handed shots from 3 locations in a different random order for each player. Hit or miss is recorded.

More information

Simulation and Analysis of Data from a Classic Split Plot Experimental Design

Simulation and Analysis of Data from a Classic Split Plot Experimental Design Simulation and Analysis of Data from a Classic Split Plot Experimental Design 1 Split-Plot Experimental Designs Field Plot Block 1 Block 2 Block 3 Block 4 Genotype C Genotype B Genotype A Genotype B Genotype

More information

Value Added Modeling

Value Added Modeling Value Added Modeling Dr. J. Kyle Roberts Southern Methodist University Simmons School of Education and Human Development Department of Teaching and Learning Background for VAMs Recall from previous lectures

More information

#Alternatively we could fit a model where the rail values are levels of a factor with fixed effects

#Alternatively we could fit a model where the rail values are levels of a factor with fixed effects examples-lme.r Tue Nov 25 12:32:20 2008 1 library(nlme) # The following data shows the results of tests carried over 6 rails. The response # indicated the time needed for a an ultrasonic wave to travel

More information

Introduction to the Analysis of Hierarchical and Longitudinal Data

Introduction to the Analysis of Hierarchical and Longitudinal Data Introduction to the Analysis of Hierarchical and Longitudinal Data Georges Monette, York University with Ye Sun SPIDA June 7, 2004 1 Graphical overview of selected concepts Nature of hierarchical models

More information

Multi-factor analysis of variance

Multi-factor analysis of variance Faculty of Health Sciences Outline Multi-factor analysis of variance Basic statistics for experimental researchers 2016 Two-way ANOVA and interaction Matched samples ANOVA Random vs systematic variation

More information

13. October p. 1

13. October p. 1 Lecture 8 STK3100/4100 Linear mixed models 13. October 2014 Plan for lecture: 1. The lme function in the nlme library 2. Induced correlation structure 3. Marginal models 4. Estimation - ML and REML 5.

More information

over Time line for the means). Specifically, & covariances) just a fixed variance instead. PROC MIXED: to 1000 is default) list models with TYPE=VC */

over Time line for the means). Specifically, & covariances) just a fixed variance instead. PROC MIXED: to 1000 is default) list models with TYPE=VC */ CLP 944 Example 4 page 1 Within-Personn Fluctuation in Symptom Severity over Time These data come from a study of weekly fluctuation in psoriasis severity. There was no intervention and no real reason

More information

STK4900/ Lecture 10. Program

STK4900/ Lecture 10. Program STK4900/9900 - Lecture 10 Program 1. Repeated measures and longitudinal data 2. Simple analysis approaches 3. Random effects models 4. Generalized estimating equations (GEE) 5. GEE for binary data (and

More information

Week 8, Lectures 1 & 2: Fixed-, Random-, and Mixed-Effects models

Week 8, Lectures 1 & 2: Fixed-, Random-, and Mixed-Effects models Week 8, Lectures 1 & 2: Fixed-, Random-, and Mixed-Effects models 1. The repeated measures design, where each of n Ss is measured k times, is a popular one in Psych. We approach this design in 2 ways:

More information

Multiple Predictor Variables: ANOVA

Multiple Predictor Variables: ANOVA Multiple Predictor Variables: ANOVA 1/32 Linear Models with Many Predictors Multiple regression has many predictors BUT - so did 1-way ANOVA if treatments had 2 levels What if there are multiple treatment

More information

dm'log;clear;output;clear'; options ps=512 ls=99 nocenter nodate nonumber nolabel FORMCHAR=" = -/\<>*"; ODS LISTING;

dm'log;clear;output;clear'; options ps=512 ls=99 nocenter nodate nonumber nolabel FORMCHAR= = -/\<>*; ODS LISTING; dm'log;clear;output;clear'; options ps=512 ls=99 nocenter nodate nonumber nolabel FORMCHAR=" ---- + ---+= -/\*"; ODS LISTING; *** Table 23.2 ********************************************; *** Moore, David

More information

Non-Gaussian Response Variables

Non-Gaussian Response Variables Non-Gaussian Response Variables What is the Generalized Model Doing? The fixed effects are like the factors in a traditional analysis of variance or linear model The random effects are different A generalized

More information

Odor attraction CRD Page 1

Odor attraction CRD Page 1 Odor attraction CRD Page 1 dm'log;clear;output;clear'; options ps=512 ls=99 nocenter nodate nonumber nolabel FORMCHAR=" ---- + ---+= -/\*"; ODS LISTING; *** Table 23.2 ********************************************;

More information

STAT 572 Assignment 5 - Answers Due: March 2, 2007

STAT 572 Assignment 5 - Answers Due: March 2, 2007 1. The file glue.txt contains a data set with the results of an experiment on the dry sheer strength (in pounds per square inch) of birch plywood, bonded with 5 different resin glues A, B, C, D, and E.

More information

Coping with Additional Sources of Variation: ANCOVA and Random Effects

Coping with Additional Sources of Variation: ANCOVA and Random Effects Coping with Additional Sources of Variation: ANCOVA and Random Effects 1/49 More Noise in Experiments & Observations Your fixed coefficients are not always so fixed Continuous variation between samples

More information

Lecture 22 Mixed Effects Models III Nested designs

Lecture 22 Mixed Effects Models III Nested designs Lecture 22 Mixed Effects Models III Nested designs 94 Introduction: Crossed Designs The two-factor designs considered so far involve every level of the first factor occurring with every level of the second

More information

Temporal Learning: IS50 prior RT

Temporal Learning: IS50 prior RT Temporal Learning: IS50 prior RT Loading required package: Matrix Jihyun Suh 1/27/2016 This data.table install has not detected OpenMP support. It will work but slower in single threaded m Attaching package:

More information

Introduction to SAS proc mixed

Introduction to SAS proc mixed Faculty of Health Sciences Introduction to SAS proc mixed Analysis of repeated measurements, 2017 Julie Forman Department of Biostatistics, University of Copenhagen 2 / 28 Preparing data for analysis The

More information

Topic 17 - Single Factor Analysis of Variance. Outline. One-way ANOVA. The Data / Notation. One way ANOVA Cell means model Factor effects model

Topic 17 - Single Factor Analysis of Variance. Outline. One-way ANOVA. The Data / Notation. One way ANOVA Cell means model Factor effects model Topic 17 - Single Factor Analysis of Variance - Fall 2013 One way ANOVA Cell means model Factor effects model Outline Topic 17 2 One-way ANOVA Response variable Y is continuous Explanatory variable is

More information

Power analysis examples using R

Power analysis examples using R Power analysis examples using R Code The pwr package can be used to analytically compute power for various designs. The pwr examples below are adapted from the pwr package vignette, which is available

More information

Randomized Block Designs with Replicates

Randomized Block Designs with Replicates LMM 021 Randomized Block ANOVA with Replicates 1 ORIGIN := 0 Randomized Block Designs with Replicates prepared by Wm Stein Randomized Block Designs with Replicates extends the use of one or more random

More information

Homework 3 - Solution

Homework 3 - Solution STAT 526 - Spring 2011 Homework 3 - Solution Olga Vitek Each part of the problems 5 points 1. KNNL 25.17 (Note: you can choose either the restricted or the unrestricted version of the model. Please state

More information

Outline. Example and Model ANOVA table F tests Pairwise treatment comparisons with LSD Sample and subsample size determination

Outline. Example and Model ANOVA table F tests Pairwise treatment comparisons with LSD Sample and subsample size determination Outline 1 The traditional approach 2 The Mean Squares approach for the Completely randomized design (CRD) CRD and one-way ANOVA Variance components and the F test Inference about the intercept Sample vs.

More information

Analysis of Covariance

Analysis of Covariance Analysis of Covariance Using categorical and continuous predictor variables Example An experiment is set up to look at the effects of watering on Oak Seedling establishment Three levels of watering: (no

More information

Introduction to SAS proc mixed

Introduction to SAS proc mixed Faculty of Health Sciences Introduction to SAS proc mixed Analysis of repeated measurements, 2017 Julie Forman Department of Biostatistics, University of Copenhagen Outline Data in wide and long format

More information

Non-independence due to Time Correlation (Chapter 14)

Non-independence due to Time Correlation (Chapter 14) Non-independence due to Time Correlation (Chapter 14) When we model the mean structure with ordinary least squares, the mean structure explains the general trends in the data with respect to our dependent

More information

Intruction to General and Generalized Linear Models

Intruction to General and Generalized Linear Models Intruction to General and Generalized Linear Models Mixed Effects Models IV Henrik Madsen Anna Helga Jónsdóttir hm@imm.dtu.dk April 30, 2012 Henrik Madsen Anna Helga Jónsdóttir (hm@imm.dtu.dk) Intruction

More information

Time-Series Regression and Generalized Least Squares in R*

Time-Series Regression and Generalized Least Squares in R* Time-Series Regression and Generalized Least Squares in R* An Appendix to An R Companion to Applied Regression, third edition John Fox & Sanford Weisberg last revision: 2018-09-26 Abstract Generalized

More information

Multiple Regression: Example

Multiple Regression: Example Multiple Regression: Example Cobb-Douglas Production Function The Cobb-Douglas production function for observed economic data i = 1,..., n may be expressed as where O i is output l i is labour input c

More information

Outline for today. Two-way analysis of variance with random effects

Outline for today. Two-way analysis of variance with random effects Outline for today Two-way analysis of variance with random effects Rasmus Waagepetersen Department of Mathematics Aalborg University Denmark Two-way ANOVA using orthogonal projections March 4, 2018 1 /

More information

Simple Linear Regression

Simple Linear Regression Simple Linear Regression MATH 282A Introduction to Computational Statistics University of California, San Diego Instructor: Ery Arias-Castro http://math.ucsd.edu/ eariasca/math282a.html MATH 282A University

More information

ST430 Exam 2 Solutions

ST430 Exam 2 Solutions ST430 Exam 2 Solutions Date: November 9, 2015 Name: Guideline: You may use one-page (front and back of a standard A4 paper) of notes. No laptop or textbook are permitted but you may use a calculator. Giving

More information

PAPER 206 APPLIED STATISTICS

PAPER 206 APPLIED STATISTICS MATHEMATICAL TRIPOS Part III Thursday, 1 June, 2017 9:00 am to 12:00 pm PAPER 206 APPLIED STATISTICS Attempt no more than FOUR questions. There are SIX questions in total. The questions carry equal weight.

More information

Statistical Inference: The Marginal Model

Statistical Inference: The Marginal Model Statistical Inference: The Marginal Model Edps/Psych/Stat 587 Carolyn J. Anderson Department of Educational Psychology c Board of Trustees, University of Illinois Fall 2017 Outline Inference for fixed

More information

unadjusted model for baseline cholesterol 22:31 Monday, April 19,

unadjusted model for baseline cholesterol 22:31 Monday, April 19, unadjusted model for baseline cholesterol 22:31 Monday, April 19, 2004 1 Class Level Information Class Levels Values TRETGRP 3 3 4 5 SEX 2 0 1 Number of observations 916 unadjusted model for baseline cholesterol

More information

MODELS WITHOUT AN INTERCEPT

MODELS WITHOUT AN INTERCEPT Consider the balanced two factor design MODELS WITHOUT AN INTERCEPT Factor A 3 levels, indexed j 0, 1, 2; Factor B 5 levels, indexed l 0, 1, 2, 3, 4; n jl 4 replicate observations for each factor level

More information

Aedes egg laying behavior Erika Mudrak, CSCU November 7, 2018

Aedes egg laying behavior Erika Mudrak, CSCU November 7, 2018 Aedes egg laying behavior Erika Mudrak, CSCU November 7, 2018 Introduction The current study investivates whether the mosquito species Aedes albopictus preferentially lays it s eggs in water in containers

More information

UNIVERSITY OF TORONTO. Faculty of Arts and Science APRIL 2010 EXAMINATIONS STA 303 H1S / STA 1002 HS. Duration - 3 hours. Aids Allowed: Calculator

UNIVERSITY OF TORONTO. Faculty of Arts and Science APRIL 2010 EXAMINATIONS STA 303 H1S / STA 1002 HS. Duration - 3 hours. Aids Allowed: Calculator UNIVERSITY OF TORONTO Faculty of Arts and Science APRIL 2010 EXAMINATIONS STA 303 H1S / STA 1002 HS Duration - 3 hours Aids Allowed: Calculator LAST NAME: FIRST NAME: STUDENT NUMBER: There are 27 pages

More information

Solution Anti-fungal treatment (R software)

Solution Anti-fungal treatment (R software) Contents Solution Anti-fungal treatment (R software) Question 1: Data import 2 Question 2: Compliance with the timetable 4 Question 3: population average model 5 Question 4: continuous time model 9 Question

More information

SAS Syntax and Output for Data Manipulation: CLDP 944 Example 3a page 1

SAS Syntax and Output for Data Manipulation: CLDP 944 Example 3a page 1 CLDP 944 Example 3a page 1 From Between-Person to Within-Person Models for Longitudinal Data The models for this example come from Hoffman (2015) chapter 3 example 3a. We will be examining the extent to

More information

Wheel for assessing spinal block study

Wheel for assessing spinal block study Wheel for assessing spinal block study Xue Han, xue.han@vanderbilt.edu Matt Shotwell, matt.shotwell@vanderbilt.edu Department of Biostatistics Vanderbilt University December 13, 2012 Contents 1 Preliminary

More information

Mixed models in R using the lme4 package Part 7: Generalized linear mixed models

Mixed models in R using the lme4 package Part 7: Generalized linear mixed models Mixed models in R using the lme4 package Part 7: Generalized linear mixed models Douglas Bates University of Wisconsin - Madison and R Development Core Team University of

More information

Multiple Predictor Variables: ANOVA

Multiple Predictor Variables: ANOVA What if you manipulate two factors? Multiple Predictor Variables: ANOVA Block 1 Block 2 Block 3 Block 4 A B C D B C D A C D A B D A B C Randomized Controlled Blocked Design: Design where each treatment

More information

SAS Syntax and Output for Data Manipulation:

SAS Syntax and Output for Data Manipulation: CLP 944 Example 5 page 1 Practice with Fixed and Random Effects of Time in Modeling Within-Person Change The models for this example come from Hoffman (2015) chapter 5. We will be examining the extent

More information

Longitudinal Data Analysis

Longitudinal Data Analysis Longitudinal Data Analysis Mike Allerhand This document has been produced for the CCACE short course: Longitudinal Data Analysis. No part of this document may be reproduced, in any form or by any means,

More information

Longitudinal Data Analysis. with Mixed Models

Longitudinal Data Analysis. with Mixed Models SPIDA 09 Mixed Models with R Longitudinal Data Analysis with Mixed Models Georges Monette 1 June 09 e-mail: georges@yorku.ca web page: http://wiki.math.yorku.ca/spida_09 1 with thanks to many contributors:

More information

17. Example SAS Commands for Analysis of a Classic Split-Plot Experiment 17. 1

17. Example SAS Commands for Analysis of a Classic Split-Plot Experiment 17. 1 17 Example SAS Commands for Analysis of a Classic SplitPlot Experiment 17 1 DELIMITED options nocenter nonumber nodate ls80; Format SCREEN OUTPUT proc import datafile"c:\data\simulatedsplitplotdatatxt"

More information

Fitting mixed models in R

Fitting mixed models in R Fitting mixed models in R Contents 1 Packages 2 2 Specifying the variance-covariance matrix (nlme package) 3 2.1 Illustration:.................................... 3 2.2 Technical point: why to use as.numeric(time)

More information

WITHIN-PARTICIPANT EXPERIMENTAL DESIGNS

WITHIN-PARTICIPANT EXPERIMENTAL DESIGNS 1 WITHIN-PARTICIPANT EXPERIMENTAL DESIGNS I. Single-factor designs: the model is: yij i j ij ij where: yij score for person j under treatment level i (i = 1,..., I; j = 1,..., n) overall mean βi treatment

More information

T-test: means of Spock's judge versus all other judges 1 12:10 Wednesday, January 5, judge1 N Mean Std Dev Std Err Minimum Maximum

T-test: means of Spock's judge versus all other judges 1 12:10 Wednesday, January 5, judge1 N Mean Std Dev Std Err Minimum Maximum T-test: means of Spock's judge versus all other judges 1 The TTEST Procedure Variable: pcwomen judge1 N Mean Std Dev Std Err Minimum Maximum OTHER 37 29.4919 7.4308 1.2216 16.5000 48.9000 SPOCKS 9 14.6222

More information

Topic 20: Single Factor Analysis of Variance

Topic 20: Single Factor Analysis of Variance Topic 20: Single Factor Analysis of Variance Outline Single factor Analysis of Variance One set of treatments Cell means model Factor effects model Link to linear regression using indicator explanatory

More information

FACTORIAL DESIGNS and NESTED DESIGNS

FACTORIAL DESIGNS and NESTED DESIGNS Experimental Design and Statistical Methods Workshop FACTORIAL DESIGNS and NESTED DESIGNS Jesús Piedrafita Arilla jesus.piedrafita@uab.cat Departament de Ciència Animal i dels Aliments Items Factorial

More information

Answer to exercise: Blood pressure lowering drugs

Answer to exercise: Blood pressure lowering drugs Answer to exercise: Blood pressure lowering drugs The data set bloodpressure.txt contains data from a cross-over trial, involving three different formulations of a drug for lowering of blood pressure:

More information

The linear mixed model: introduction and the basic model

The linear mixed model: introduction and the basic model The linear mixed model: introduction and the basic model Analysis of Experimental Data AED The linear mixed model: introduction and the basic model of 39 Contents Data with non-independent observations

More information

Recall that a measure of fit is the sum of squared residuals: where. The F-test statistic may be written as:

Recall that a measure of fit is the sum of squared residuals: where. The F-test statistic may be written as: 1 Joint hypotheses The null and alternative hypotheses can usually be interpreted as a restricted model ( ) and an model ( ). In our example: Note that if the model fits significantly better than the restricted

More information

Stat 5102 Final Exam May 14, 2015

Stat 5102 Final Exam May 14, 2015 Stat 5102 Final Exam May 14, 2015 Name Student ID The exam is closed book and closed notes. You may use three 8 1 11 2 sheets of paper with formulas, etc. You may also use the handouts on brand name distributions

More information

Figure 1: The fitted line using the shipment route-number of ampules data. STAT5044: Regression and ANOVA The Solution of Homework #2 Inyoung Kim

Figure 1: The fitted line using the shipment route-number of ampules data. STAT5044: Regression and ANOVA The Solution of Homework #2 Inyoung Kim 0.0 1.0 1.5 2.0 2.5 3.0 8 10 12 14 16 18 20 22 y x Figure 1: The fitted line using the shipment route-number of ampules data STAT5044: Regression and ANOVA The Solution of Homework #2 Inyoung Kim Problem#

More information

36-463/663: Hierarchical Linear Models

36-463/663: Hierarchical Linear Models 36-463/663: Hierarchical Linear Models Lmer model selection and residuals Brian Junker 132E Baker Hall brian@stat.cmu.edu 1 Outline The London Schools Data (again!) A nice random-intercepts, random-slopes

More information

Mixed models in R using the lme4 package Part 5: Generalized linear mixed models

Mixed models in R using the lme4 package Part 5: Generalized linear mixed models Mixed models in R using the lme4 package Part 5: Generalized linear mixed models Douglas Bates Madison January 11, 2011 Contents 1 Definition 1 2 Links 2 3 Example 7 4 Model building 9 5 Conclusions 14

More information

Contrasting Marginal and Mixed Effects Models Recall: two approaches to handling dependence in Generalized Linear Models:

Contrasting Marginal and Mixed Effects Models Recall: two approaches to handling dependence in Generalized Linear Models: Contrasting Marginal and Mixed Effects Models Recall: two approaches to handling dependence in Generalized Linear Models: Marginal models: based on the consequences of dependence on estimating model parameters.

More information

ANOVA Longitudinal Models for the Practice Effects Data: via GLM

ANOVA Longitudinal Models for the Practice Effects Data: via GLM Psyc 943 Lecture 25 page 1 ANOVA Longitudinal Models for the Practice Effects Data: via GLM Model 1. Saturated Means Model for Session, E-only Variances Model (BP) Variances Model: NO correlation, EQUAL

More information

22s:152 Applied Linear Regression. Returning to a continuous response variable Y...

22s:152 Applied Linear Regression. Returning to a continuous response variable Y... 22s:152 Applied Linear Regression Generalized Least Squares Returning to a continuous response variable Y... Ordinary Least Squares Estimation The classical models we have fit so far with a continuous

More information

Booklet of Code and Output for STAC32 Final Exam

Booklet of Code and Output for STAC32 Final Exam Booklet of Code and Output for STAC32 Final Exam December 7, 2017 Figure captions are below the Figures they refer to. LowCalorie LowFat LowCarbo Control 8 2 3 2 9 4 5 2 6 3 4-1 7 5 2 0 3 1 3 3 Figure

More information

Multivariate Statistics in Ecology and Quantitative Genetics Summary

Multivariate Statistics in Ecology and Quantitative Genetics Summary Multivariate Statistics in Ecology and Quantitative Genetics Summary Dirk Metzler & Martin Hutzenthaler http://evol.bio.lmu.de/_statgen 5. August 2011 Contents Linear Models Generalized Linear Models Mixed-effects

More information