unadjusted model for baseline cholesterol 22:31 Monday, April 19,

Size: px
Start display at page:

Download "unadjusted model for baseline cholesterol 22:31 Monday, April 19,"

Transcription

1 unadjusted model for baseline cholesterol 22:31 Monday, April 19, Class Level Information Class Levels Values TRETGRP SEX Number of observations 916

2 unadjusted model for baseline cholesterol 22:31 Monday, April 19, ependent Variable: CHOLEST Sum of Source DF Squares Mean Square F Value Pr > F Model <.0001 Error Corrected Total R-Square Coeff Var Root MSE CHOLEST Mean Source DF Type III SS Mean Square F Value Pr > F TRETGRP SEX <.0001 TRETGRP*SEX

3 unadjusted model for baseline cholesterol 22:31 Monday, April 19, Level of CHOLEST TRETGRP N Mean Std Dev Level of CHOLEST SEX N Mean Std Dev Level of Level of CHOLEST TRETGRP SEX N Mean Std Dev

4 unadjusted model for 6-month followup cholesterol 22:31 Monday, April 19, Class Level Information Class Levels Values TRETGRP SEX Number of observations 916 OTE: Due to missing values, only 902 observations can be used in this analysis.

5 unadjusted model for 6-month followup cholesterol 22:31 Monday, April 19, ependent Variable: CHOLEST6 Sum of Source DF Squares Mean Square F Value Pr > F Model <.0001 Error Corrected Total R-Square Coeff Var Root MSE CHOLEST6 Mean Source DF Type III SS Mean Square F Value Pr > F TRETGRP SEX <.0001 TRETGRP*SEX

6 unadjusted model for 6-month followup cholesterol 22:31 Monday, April 19, Level of CHOLEST TRETGRP N Mean Std Dev Level of CHOLEST SEX N Mean Std Dev Level of Level of CHOLEST TRETGRP SEX N Mean Std Dev

7 unadjusted model for baseline cholesterol - less interaction 7 22:31 Monday, April 19, 2004 Class Level Information Class Levels Values TRETGRP SEX Number of observations 916

8 unadjusted model for baseline cholesterol - less interaction 8 22:31 Monday, April 19, 2004 ependent Variable: CHOLEST Sum of Source DF Squares Mean Square F Value Pr > F Model <.0001 Error Corrected Total R-Square Coeff Var Root MSE CHOLEST Mean Source DF Type III SS Mean Square F Value Pr > F TRETGRP SEX <.0001

9 unadjusted model for baseline cholesterol - less interaction 9 22:31 Monday, April 19, 2004 Least Squares Means CHOLEST Standard LSMEAN TRETGRP LSMEAN Error Pr > t Number < < < Least Squares Means for effect TRETGRP Pr > t for H0: LSMean(i)=LSMean(j) Dependent Variable: CHOLEST i/j OTE: To ensure overall protection level, only probabilities associated with pre-planned comparisons should be used. H0:LSMean1= CHOLEST Standard H0:LSMEAN=0 LSMean2 SEX LSMEAN Error Pr > t Pr > t <.0001 < <.0001

10 unadjusted model for 6-month followup cholesterol - less interaction 10 22:31 Monday, April 19, 2004 Class Level Information Class Levels Values TRETGRP SEX Number of observations 916 OTE: Due to missing values, only 902 observations can be used in this analysis.

11 unadjusted model for 6-month followup cholesterol - less interaction 11 22:31 Monday, April 19, 2004 ependent Variable: CHOLEST6 Sum of Source DF Squares Mean Square F Value Pr > F Model <.0001 Error Corrected Total R-Square Coeff Var Root MSE CHOLEST6 Mean Source DF Type III SS Mean Square F Value Pr > F TRETGRP SEX <.0001

12 unadjusted model for 6-month followup cholesterol - less interaction 12 22:31 Monday, April 19, 2004 Least Squares Means CHOLEST6 Standard LSMEAN TRETGRP LSMEAN Error Pr > t Number < < < Least Squares Means for effect TRETGRP Pr > t for H0: LSMean(i)=LSMean(j) Dependent Variable: CHOLEST6 i/j OTE: To ensure overall protection level, only probabilities associated with pre-planned comparisons should be used. H0:LSMean1= CHOLEST6 Standard H0:LSMEAN=0 LSMean2 SEX LSMEAN Error Pr > t Pr > t <.0001 < <.0001

13 Analysis of baseline cholesterol 22:31 Monday, April 19, tests of homogeneity of variances Class Level Information Class Levels Values z Number of observations 916

14 Analysis of baseline cholesterol 22:31 Monday, April 19, tests of homogeneity of variances ependent Variable: CHOLEST Sum of Source DF Squares Mean Square F Value Pr > F Model <.0001 Error Corrected Total R-Square Coeff Var Root MSE CHOLEST Mean Source DF Type I SS Mean Square F Value Pr > F z <.0001 Source DF Type III SS Mean Square F Value Pr > F z <.0001

15 Analysis of baseline cholesterol 22:31 Monday, April 19, tests of homogeneity of variances Bartlett's Test for Homogeneity of CHOLEST Variance Source DF Chi-Square Pr > ChiSq z

16 Analysis of baseline cholesterol 22:31 Monday, April 19, tests of homogeneity of variances Level of CHOLEST z N Mean Std Dev

17 Analysis of baseline cholesterol 22:31 Monday, April 19, distribution of residuals from saturated (interaction) model The UNIVARIATE Procedure Variable: res Moments N 916 Sum Weights 916 Mean 0 Sum Observations 0 Std Deviation Variance Skewness Kurtosis Uncorrected SS Corrected SS Coeff Variation. Std Error Mean Basic Statistical Measures Location Variability Mean Std Deviation Median Variance 1806 Mode Range Interquartile Range NOTE: The mode displayed is the smallest of 2 modes with a count of 6. Tests for Location: Mu0=0 Test -Statistic p Value Student's t t 0 Pr > t Sign M -24 Pr >= M Signed Rank S Pr >= S

18 Analysis of baseline cholesterol 22:31 Monday, April 19, distribution of residuals from saturated (interaction) model The UNIVARIATE Procedure Variable: res Tests for Normality Test --Statistic p Value Shapiro-Wilk W Pr < W < Kolmogorov-Smirnov D Pr > D < Cramer-von Mises W-Sq Pr > W-Sq < Anderson-Darling A-Sq Pr > A-Sq < Quantiles (Definition 5) Quantile Estimate 100% Max % % % % Q % Median % Q % % % % Min Extreme Observations Lowest Highest----- Value Obs Value Obs

19 Analysis of baseline cholesterol 22:31 Monday, April 19, distribution of residuals from saturated (interaction) model The UNIVARIATE Procedure Variable: res Extreme Observations Lowest Highest----- Value Obs Value Obs Histogram # Boxplot 190+* 1 0.* * 4 0.** 5 0.****** *********** 44.****************** 69.******************************* ***************************************** ********************************************* 177 *-----*.************************************* *************************** 106.********** 38.**** * * may represent up to 4 counts

20 Analysis of baseline cholesterol 22:31 Monday, April 19, distribution of residuals from saturated (interaction) model The UNIVARIATE Procedure Variable: res Normal Probability Plot 190+ * * 130+ ** ***+ *****+ 70+ ***** ***** ****** 10+ +***** ****** ****** -50+ ******** ******+ ***** *

21 Analysis of Month 6 cholesterol 22:31 Monday, April 19, tests of homogeneity of variances Class Level Information Class Levels Values z Number of observations 916 OTE: Due to missing values, only 902 observations can be used in this analysis.

22 Analysis of Month 6 cholesterol 22:31 Monday, April 19, tests of homogeneity of variances ependent Variable: CHOLEST6 Sum of Source DF Squares Mean Square F Value Pr > F Model <.0001 Error Corrected Total R-Square Coeff Var Root MSE CHOLEST6 Mean Source DF Type I SS Mean Square F Value Pr > F z <.0001 Source DF Type III SS Mean Square F Value Pr > F z <.0001

23 Analysis of Month 6 cholesterol 22:31 Monday, April 19, tests of homogeneity of variances Bartlett's Test for Homogeneity of CHOLEST6 Variance Source DF Chi-Square Pr > ChiSq z

24 Analysis of Month 6 cholesterol 22:31 Monday, April 19, tests of homogeneity of variances Level of CHOLEST z N Mean Std Dev

25 Analysis of Month 6 cholesterol 22:31 Monday, April 19, distribution of residuals from saturated (interaction) model The UNIVARIATE Procedure Variable: res Moments N 902 Sum Weights 902 Mean 0 Sum Observations 0 Std Deviation Variance Skewness Kurtosis Uncorrected SS Corrected SS Coeff Variation. Std Error Mean Basic Statistical Measures Location Variability Mean Std Deviation Median Variance 1486 Mode. Range Interquartile Range Tests for Location: Mu0=0 Test -Statistic p Value Student's t t 0 Pr > t Sign M -14 Pr >= M Signed Rank S Pr >= S Tests for Normality Test --Statistic p Value Shapiro-Wilk W Pr < W Kolmogorov Smirnov D Pr > D >0 1500

26 Analysis of Month 6 cholesterol 22:31 Monday, April 19, distribution of residuals from saturated (interaction) model The UNIVARIATE Procedure Variable: res Tests for Normality Test --Statistic p Value Cramer-von Mises W-Sq Pr > W-Sq > Anderson-Darling A-Sq Pr > A-Sq Quantiles (Definition 5) Quantile Estimate 100% Max % % % % Q % Median % Q % % % % Min Extreme Observations Lowest Highest----- Value Obs Value Obs

27 Analysis of Month 6 cholesterol 22:31 Monday, April 19, distribution of residuals from saturated (interaction) model The UNIVARIATE Procedure Variable: res Extreme Observations Lowest Highest----- Value Obs Value Obs Missing Values -----Percent Of----- Missing Missing Value Count All Obs Obs

28 Analysis of Month 6 cholesterol 22:31 Monday, April 19, distribution of residuals from saturated (interaction) model The UNIVARIATE Procedure Variable: res Histogram # Boxplot Normal Probability Plot 135+* *.* 1 0 *.* 1 0 *.* 2 0 *.** 6 ***.***** 13 ****+.***** 15 ***+.******** 22 ***+.********* 27 ***.************ 36 ***.************************ 70 ****.**************************** ****.********************** 66 ***.******************************** 94 + ****.********************************** 102 *-----* ***.**************************** 82 ****.**************************** ****.********************* 62 ***.****************** 52 ****.********** 30 ***.********** 30 ****.***** 13 ****.*** 7 ****+ -95+** 5-95+* * may represent up to 3 counts

29 regression of 6 month on baseline cholesterol 22:31 Monday, April 19, The REG Procedure Model: MODEL1 Dependent Variable: CHOLEST6 Analysis of Variance Sum of Mean Source DF Squares Square F Value Pr > F Model <.0001 Error Corrected Total Root MSE R-Square Dependent Mean Adj R-Sq Coeff Var Parameter Estimates Parameter Standard Variable DF Estimate Error t Value Pr > t Intercept <.0001 CHOLEST <.0001

30 covariance adjusted model with interaction 22:31 Monday, April 19, Class Level Information Class Levels Values TRETGRP SEX Number of observations 916 OTE: Due to missing values, only 902 observations can be used in this analysis.

31 covariance adjusted model with interaction 22:31 Monday, April 19, ependent Variable: CHOLEST6 Sum of Source DF Squares Mean Square F Value Pr > F Model <.0001 Error Corrected Total R-Square Coeff Var Root MSE CHOLEST6 Mean Source DF Type III SS Mean Square F Value Pr > F TRETGRP SEX TRETGRP*SEX CHOLEST <.0001 Standard Parameter Estimate Error t Value Pr > t Intercept B <.0001 TRETGRP B TRETGRP B TRETGRP B... SEX B SEX B... TRETGRP*SEX B TRETGRP*SEX B... TRETGRP*SEX B

32 covariance adjusted model with interaction 22:31 Monday, April 19, ependent Variable: CHOLEST6 Standard Parameter Estimate Error t Value Pr > t TRETGRP*SEX B... TRETGRP*SEX B... TRETGRP*SEX B... CHOLEST <.0001 OTE: The X'X matrix has been found to be singular, and a generalized inverse was used to solve the normal equations. Terms whose estimates are followed by the letter 'B' are not uniquely estimable.

33 covariance adjusted model without interaction 22:31 Monday, April 19, Class Level Information Class Levels Values TRETGRP SEX Number of observations 916 OTE: Due to missing values, only 902 observations can be used in this analysis.

34 covariance adjusted model without interaction 22:31 Monday, April 19, ependent Variable: CHOLEST6 Sum of Source DF Squares Mean Square F Value Pr > F Model <.0001 Error Corrected Total R-Square Coeff Var Root MSE CHOLEST6 Mean Source DF Type III SS Mean Square F Value Pr > F TRETGRP SEX CHOLEST <.0001 Standard Parameter Estimate Error t Value Pr > t Intercept B <.0001 TRETGRP B TRETGRP B TRETGRP B... SEX B SEX B... CHOLEST <.0001

35 covariance adjusted model without interaction 22:31 Monday, April 19, ependent Variable: CHOLEST6 OTE: The X'X matrix has been found to be singular, and a generalized inverse was used to solve the normal equations. Terms whose estimates are followed by the letter 'B' are not uniquely estimable.

36 covariance adjusted model without interaction 22:31 Monday, April 19, Least Squares Means CHOLEST6 Standard LSMEAN TRETGRP LSMEAN Error Pr > t Number < < < Least Squares Means for effect TRETGRP Pr > t for H0: LSMean(i)=LSMean(j) Dependent Variable: CHOLEST6 i/j OTE: To ensure overall protection level, only probabilities associated with pre-planned comparisons should be used. H0:LSMean1= CHOLEST6 Standard H0:LSMEAN=0 LSMean2 SEX LSMEAN Error Pr > t Pr > t < <.0001

37 test of homogeneity of slope assumption 22:31 Monday, April 19, Class Level Information Class Levels Values TRETGRP SEX Number of observations 916 OTE: Due to missing values, only 902 observations can be used in this analysis.

38 test of homogeneity of slope assumption 22:31 Monday, April 19, ependent Variable: CHOLEST6 Sum of Source DF Squares Mean Square F Value Pr > F Model <.0001 Error Corrected Total R-Square Coeff Var Root MSE CHOLEST6 Mean Source DF Type III SS Mean Square F Value Pr > F TRETGRP SEX TRETGRP*SEX CHOLEST <.0001 CHOLEST*TRETGRP*SEX Standard Parameter Estimate Error t Value Pr > t Intercept B <.0001 TRETGRP B TRETGRP B TRETGRP B... SEX B SEX B... TRETGRP*SEX B TRETGRP*SEX B

39 test of homogeneity of slope assumption 22:31 Monday, April 19, ependent Variable: CHOLEST6 Standard Parameter Estimate Error t Value Pr > t TRETGRP*SEX B TRETGRP*SEX B... TRETGRP*SEX B... TRETGRP*SEX B... CHOLEST B <.0001 CHOLEST*TRETGRP*SEX B CHOLEST*TRETGRP*SEX B CHOLEST*TRETGRP*SEX B CHOLEST*TRETGRP*SEX B CHOLEST*TRETGRP*SEX B CHOLEST*TRETGRP*SEX B... OTE: The X'X matrix has been found to be singular, and a generalized inverse was used to solve the normal equations. Terms whose estimates are followed by the letter 'B' are not uniquely estimable.

T-test: means of Spock's judge versus all other judges 1 12:10 Wednesday, January 5, judge1 N Mean Std Dev Std Err Minimum Maximum

T-test: means of Spock's judge versus all other judges 1 12:10 Wednesday, January 5, judge1 N Mean Std Dev Std Err Minimum Maximum T-test: means of Spock's judge versus all other judges 1 The TTEST Procedure Variable: pcwomen judge1 N Mean Std Dev Std Err Minimum Maximum OTHER 37 29.4919 7.4308 1.2216 16.5000 48.9000 SPOCKS 9 14.6222

More information

Chapter 8 (More on Assumptions for the Simple Linear Regression)

Chapter 8 (More on Assumptions for the Simple Linear Regression) EXST3201 Chapter 8b Geaghan Fall 2005: Page 1 Chapter 8 (More on Assumptions for the Simple Linear Regression) Your textbook considers the following assumptions: Linearity This is not something I usually

More information

ANALYSES OF NCGS DATA FOR ALCOHOL STATUS CATEGORIES 1 22:46 Sunday, March 2, 2003

ANALYSES OF NCGS DATA FOR ALCOHOL STATUS CATEGORIES 1 22:46 Sunday, March 2, 2003 ANALYSES OF NCGS DATA FOR ALCOHOL STATUS CATEGORIES 1 22:46 Sunday, March 2, 2003 The MEANS Procedure DRINKING STATUS=1 Analysis Variable : TRIGL N Mean Std Dev Minimum Maximum 164 151.6219512 95.3801744

More information

5.3 Three-Stage Nested Design Example

5.3 Three-Stage Nested Design Example 5.3 Three-Stage Nested Design Example A researcher designs an experiment to study the of a metal alloy. A three-stage nested design was conducted that included Two alloy chemistry compositions. Three ovens

More information

This is a Randomized Block Design (RBD) with a single factor treatment arrangement (2 levels) which are fixed.

This is a Randomized Block Design (RBD) with a single factor treatment arrangement (2 levels) which are fixed. EXST3201 Chapter 13c Geaghan Fall 2005: Page 1 Linear Models Y ij = µ + βi + τ j + βτij + εijk This is a Randomized Block Design (RBD) with a single factor treatment arrangement (2 levels) which are fixed.

More information

Handout 1: Predicting GPA from SAT

Handout 1: Predicting GPA from SAT Handout 1: Predicting GPA from SAT appsrv01.srv.cquest.utoronto.ca> appsrv01.srv.cquest.utoronto.ca> ls Desktop grades.data grades.sas oldstuff sasuser.800 appsrv01.srv.cquest.utoronto.ca> cat grades.data

More information

SAS Procedures Inference about the Line ffl model statement in proc reg has many options ffl To construct confidence intervals use alpha=, clm, cli, c

SAS Procedures Inference about the Line ffl model statement in proc reg has many options ffl To construct confidence intervals use alpha=, clm, cli, c Inference About the Slope ffl As with all estimates, ^fi1 subject to sampling var ffl Because Y jx _ Normal, the estimate ^fi1 _ Normal A linear combination of indep Normals is Normal Simple Linear Regression

More information

EXST7015: Estimating tree weights from other morphometric variables Raw data print

EXST7015: Estimating tree weights from other morphometric variables Raw data print Simple Linear Regression SAS example Page 1 1 ********************************************; 2 *** Data from Freund & Wilson (1993) ***; 3 *** TABLE 8.24 : ESTIMATING TREE WEIGHTS ***; 4 ********************************************;

More information

Biological Applications of ANOVA - Examples and Readings

Biological Applications of ANOVA - Examples and Readings BIO 575 Biological Applications of ANOVA - Winter Quarter 2010 Page 1 ANOVA Pac Biological Applications of ANOVA - Examples and Readings One-factor Model I (Fixed Effects) This is the same example for

More information

COMPREHENSIVE WRITTEN EXAMINATION, PAPER III FRIDAY AUGUST 26, 2005, 9:00 A.M. 1:00 P.M. STATISTICS 174 QUESTION

COMPREHENSIVE WRITTEN EXAMINATION, PAPER III FRIDAY AUGUST 26, 2005, 9:00 A.M. 1:00 P.M. STATISTICS 174 QUESTION COMPREHENSIVE WRITTEN EXAMINATION, PAPER III FRIDAY AUGUST 26, 2005, 9:00 A.M. 1:00 P.M. STATISTICS 174 QUESTION Answer all parts. Closed book, calculators allowed. It is important to show all working,

More information

Answer Keys to Homework#10

Answer Keys to Homework#10 Answer Keys to Homework#10 Problem 1 Use either restricted or unrestricted mixed models. Problem 2 (a) First, the respective means for the 8 level combinations are listed in the following table A B C Mean

More information

Assignment 9 Answer Keys

Assignment 9 Answer Keys Assignment 9 Answer Keys Problem 1 (a) First, the respective means for the 8 level combinations are listed in the following table A B C Mean 26.00 + 34.67 + 39.67 + + 49.33 + 42.33 + + 37.67 + + 54.67

More information

data proc sort proc corr run proc reg run proc glm run proc glm run proc glm run proc reg CONMAIN CONINT run proc reg DUMMAIN DUMINT run proc reg

data proc sort proc corr run proc reg run proc glm run proc glm run proc glm run proc reg CONMAIN CONINT run proc reg DUMMAIN DUMINT run proc reg data one; input id Y group X; I1=0;I2=0;I3=0;if group=1 then I1=1;if group=2 then I2=1;if group=3 then I3=1; IINT1=I1*X;IINT2=I2*X;IINT3=I3*X; *************************************************************************;

More information

Booklet of Code and Output for STAC32 Final Exam

Booklet of Code and Output for STAC32 Final Exam Booklet of Code and Output for STAC32 Final Exam December 8, 2014 List of Figures in this document by page: List of Figures 1 Popcorn data............................. 2 2 MDs by city, with normal quantile

More information

1) Answer the following questions as true (T) or false (F) by circling the appropriate letter.

1) Answer the following questions as true (T) or false (F) by circling the appropriate letter. 1) Answer the following questions as true (T) or false (F) by circling the appropriate letter. T F T F T F a) Variance estimates should always be positive, but covariance estimates can be either positive

More information

Comparison of a Population Means

Comparison of a Population Means Analysis of Variance Interested in comparing Several treatments Several levels of one treatment Comparison of a Population Means Could do numerous two-sample t-tests but... ANOVA provides method of joint

More information

Odor attraction CRD Page 1

Odor attraction CRD Page 1 Odor attraction CRD Page 1 dm'log;clear;output;clear'; options ps=512 ls=99 nocenter nodate nonumber nolabel FORMCHAR=" ---- + ---+= -/\*"; ODS LISTING; *** Table 23.2 ********************************************;

More information

Analysis of variance and regression. April 17, Contents Comparison of several groups One-way ANOVA. Two-way ANOVA Interaction Model checking

Analysis of variance and regression. April 17, Contents Comparison of several groups One-way ANOVA. Two-way ANOVA Interaction Model checking Analysis of variance and regression Contents Comparison of several groups One-way ANOVA April 7, 008 Two-way ANOVA Interaction Model checking ANOVA, April 008 Comparison of or more groups Julie Lyng Forman,

More information

dm'log;clear;output;clear'; options ps=512 ls=99 nocenter nodate nonumber nolabel FORMCHAR=" = -/\<>*"; ODS LISTING;

dm'log;clear;output;clear'; options ps=512 ls=99 nocenter nodate nonumber nolabel FORMCHAR= = -/\<>*; ODS LISTING; dm'log;clear;output;clear'; options ps=512 ls=99 nocenter nodate nonumber nolabel FORMCHAR=" ---- + ---+= -/\*"; ODS LISTING; *** Table 23.2 ********************************************; *** Moore, David

More information

Analysis of variance. April 16, Contents Comparison of several groups

Analysis of variance. April 16, Contents Comparison of several groups Contents Comparison of several groups Analysis of variance April 16, 2009 One-way ANOVA Two-way ANOVA Interaction Model checking Acknowledgement for use of presentation Julie Lyng Forman, Dept. of Biostatistics

More information

Analysis of variance. April 16, 2009

Analysis of variance. April 16, 2009 Analysis of variance April 16, 2009 Contents Comparison of several groups One-way ANOVA Two-way ANOVA Interaction Model checking Acknowledgement for use of presentation Julie Lyng Forman, Dept. of Biostatistics

More information

Lecture 3. Experiments with a Single Factor: ANOVA Montgomery 3.1 through 3.3

Lecture 3. Experiments with a Single Factor: ANOVA Montgomery 3.1 through 3.3 Lecture 3. Experiments with a Single Factor: ANOVA Montgomery 3.1 through 3.3 Fall, 2013 Page 1 Tensile Strength Experiment Investigate the tensile strength of a new synthetic fiber. The factor is the

More information

Lecture 3. Experiments with a Single Factor: ANOVA Montgomery 3-1 through 3-3

Lecture 3. Experiments with a Single Factor: ANOVA Montgomery 3-1 through 3-3 Lecture 3. Experiments with a Single Factor: ANOVA Montgomery 3-1 through 3-3 Page 1 Tensile Strength Experiment Investigate the tensile strength of a new synthetic fiber. The factor is the weight percent

More information

BE640 Intermediate Biostatistics 2. Regression and Correlation. Simple Linear Regression Software: SAS. Emergency Calls to the New York Auto Club

BE640 Intermediate Biostatistics 2. Regression and Correlation. Simple Linear Regression Software: SAS. Emergency Calls to the New York Auto Club BE640 Intermediate Biostatistics 2. Regression and Correlation Simple Linear Regression Software: SAS Emergency Calls to the New York Auto Club Source: Chatterjee, S; Handcock MS and Simonoff JS A Casebook

More information

Single Factor Experiments

Single Factor Experiments Single Factor Experiments Bruce A Craig Department of Statistics Purdue University STAT 514 Topic 4 1 Analysis of Variance Suppose you are interested in comparing either a different treatments a levels

More information

Outline. Analysis of Variance. Comparison of 2 or more groups. Acknowledgements. Comparison of serveral groups

Outline. Analysis of Variance. Comparison of 2 or more groups. Acknowledgements. Comparison of serveral groups Outline Analysis of Variance Analysis of variance and regression course http://staff.pubhealth.ku.dk/~jufo/varianceregressionf2011.html Comparison of serveral groups Model checking Marc Andersen, mja@statgroup.dk

More information

Outline. Analysis of Variance. Acknowledgements. Comparison of 2 or more groups. Comparison of serveral groups

Outline. Analysis of Variance. Acknowledgements. Comparison of 2 or more groups. Comparison of serveral groups Outline Analysis of Variance Analysis of variance and regression course http://staff.pubhealth.ku.dk/~lts/regression10_2/index.html Comparison of serveral groups Model checking Marc Andersen, mja@statgroup.dk

More information

STATISTICS 479 Exam II (100 points)

STATISTICS 479 Exam II (100 points) Name STATISTICS 79 Exam II (1 points) 1. A SAS data set was created using the following input statement: Answer parts(a) to (e) below. input State $ City $ Pop199 Income Housing Electric; (a) () Give the

More information

Analysis of Variance

Analysis of Variance 1 / 70 Analysis of Variance Analysis of variance and regression course http://staff.pubhealth.ku.dk/~lts/regression11_2 Marc Andersen, mja@statgroup.dk Analysis of variance and regression for health researchers,

More information

Booklet of Code and Output for STAC32 Final Exam

Booklet of Code and Output for STAC32 Final Exam Booklet of Code and Output for STAC32 Final Exam December 7, 2017 Figure captions are below the Figures they refer to. LowCalorie LowFat LowCarbo Control 8 2 3 2 9 4 5 2 6 3 4-1 7 5 2 0 3 1 3 3 Figure

More information

Week 7.1--IES 612-STA STA doc

Week 7.1--IES 612-STA STA doc Week 7.1--IES 612-STA 4-573-STA 4-576.doc IES 612/STA 4-576 Winter 2009 ANOVA MODELS model adequacy aka RESIDUAL ANALYSIS Numeric data samples from t populations obtained Assume Y ij ~ independent N(μ

More information

General Linear Model (Chapter 4)

General Linear Model (Chapter 4) General Linear Model (Chapter 4) Outcome variable is considered continuous Simple linear regression Scatterplots OLS is BLUE under basic assumptions MSE estimates residual variance testing regression coefficients

More information

ANALYSIS OF VARIANCE OF BALANCED DAIRY SCIENCE DATA USING SAS

ANALYSIS OF VARIANCE OF BALANCED DAIRY SCIENCE DATA USING SAS ANALYSIS OF VARIANCE OF BALANCED DAIRY SCIENCE DATA USING SAS Ravinder Malhotra and Vipul Sharma National Dairy Research Institute, Karnal-132001 The most common use of statistics in dairy science is testing

More information

STA 302 H1F / 1001 HF Fall 2007 Test 1 October 24, 2007

STA 302 H1F / 1001 HF Fall 2007 Test 1 October 24, 2007 STA 302 H1F / 1001 HF Fall 2007 Test 1 October 24, 2007 LAST NAME: SOLUTIONS FIRST NAME: STUDENT NUMBER: ENROLLED IN: (circle one) STA 302 STA 1001 INSTRUCTIONS: Time: 90 minutes Aids allowed: calculator.

More information

Chapter 11 : State SAT scores for 1982 Data Listing

Chapter 11 : State SAT scores for 1982 Data Listing EXST3201 Chapter 12a Geaghan Fall 2005: Page 1 Chapter 12 : Variable selection An example: State SAT scores In 1982 there was concern for scores of the Scholastic Aptitude Test (SAT) scores that varied

More information

Outline. Topic 20 - Diagnostics and Remedies. Residuals. Overview. Diagnostics Plots Residual checks Formal Tests. STAT Fall 2013

Outline. Topic 20 - Diagnostics and Remedies. Residuals. Overview. Diagnostics Plots Residual checks Formal Tests. STAT Fall 2013 Topic 20 - Diagnostics and Remedies - Fall 2013 Diagnostics Plots Residual checks Formal Tests Remedial Measures Outline Topic 20 2 General assumptions Overview Normally distributed error terms Independent

More information

Lecture notes on Regression & SAS example demonstration

Lecture notes on Regression & SAS example demonstration Regression & Correlation (p. 215) When two variables are measured on a single experimental unit, the resulting data are called bivariate data. You can describe each variable individually, and you can also

More information

Introduction to Design and Analysis of Experiments with the SAS System (Stat 7010 Lecture Notes)

Introduction to Design and Analysis of Experiments with the SAS System (Stat 7010 Lecture Notes) Introduction to Design and Analysis of Experiments with the SAS System (Stat 7010 Lecture Notes) Asheber Abebe Discrete and Statistical Sciences Auburn University Contents 1 Completely Randomized Design

More information

ANOVA Longitudinal Models for the Practice Effects Data: via GLM

ANOVA Longitudinal Models for the Practice Effects Data: via GLM Psyc 943 Lecture 25 page 1 ANOVA Longitudinal Models for the Practice Effects Data: via GLM Model 1. Saturated Means Model for Session, E-only Variances Model (BP) Variances Model: NO correlation, EQUAL

More information

Analysis of Covariance

Analysis of Covariance Analysis of Covariance (ANCOVA) Bruce A Craig Department of Statistics Purdue University STAT 514 Topic 10 1 When to Use ANCOVA In experiment, there is a nuisance factor x that is 1 Correlated with y 2

More information

SAS Commands. General Plan. Output. Construct scatterplot / interaction plot. Run full model

SAS Commands. General Plan. Output. Construct scatterplot / interaction plot. Run full model Topic 23 - Unequal Replication Data Model Outline - Fall 2013 Parameter Estimates Inference Topic 23 2 Example Page 954 Data for Two Factor ANOVA Y is the response variable Factor A has levels i = 1, 2,...,

More information

Descriptions of post-hoc tests

Descriptions of post-hoc tests Experimental Statistics II Page 81 Descriptions of post-hoc tests Post-hoc or Post-ANOVA tests! Once you have found out some treatment(s) are different, how do you determine which one(s) are different?

More information

Statistics for exp. medical researchers Comparison of groups, T-tests and ANOVA

Statistics for exp. medical researchers Comparison of groups, T-tests and ANOVA Faculty of Health Sciences Outline Statistics for exp. medical researchers Comparison of groups, T-tests and ANOVA Lene Theil Skovgaard Sept. 14, 2015 Paired comparisons: tests and confidence intervals

More information

UNIVERSITY OF TORONTO. Faculty of Arts and Science APRIL 2010 EXAMINATIONS STA 303 H1S / STA 1002 HS. Duration - 3 hours. Aids Allowed: Calculator

UNIVERSITY OF TORONTO. Faculty of Arts and Science APRIL 2010 EXAMINATIONS STA 303 H1S / STA 1002 HS. Duration - 3 hours. Aids Allowed: Calculator UNIVERSITY OF TORONTO Faculty of Arts and Science APRIL 2010 EXAMINATIONS STA 303 H1S / STA 1002 HS Duration - 3 hours Aids Allowed: Calculator LAST NAME: FIRST NAME: STUDENT NUMBER: There are 27 pages

More information

ANOVA: Analysis of Variation

ANOVA: Analysis of Variation ANOVA: Analysis of Variation The basic ANOVA situation Two variables: 1 Categorical, 1 Quantitative Main Question: Do the (means of) the quantitative variables depend on which group (given by categorical

More information

Failure Time of System due to the Hot Electron Effect

Failure Time of System due to the Hot Electron Effect of System due to the Hot Electron Effect 1 * exresist; 2 option ls=120 ps=75 nocenter nodate; 3 title of System due to the Hot Electron Effect ; 4 * TIME = failure time (hours) of a system due to drift

More information

IES 612/STA 4-573/STA Winter 2008 Week 1--IES 612-STA STA doc

IES 612/STA 4-573/STA Winter 2008 Week 1--IES 612-STA STA doc IES 612/STA 4-573/STA 4-576 Winter 2008 Week 1--IES 612-STA 4-573-STA 4-576.doc Review Notes: [OL] = Ott & Longnecker Statistical Methods and Data Analysis, 5 th edition. [Handouts based on notes prepared

More information

Statistics 512: Solution to Homework#11. Problems 1-3 refer to the soybean sausage dataset of Problem 20.8 (ch21pr08.dat).

Statistics 512: Solution to Homework#11. Problems 1-3 refer to the soybean sausage dataset of Problem 20.8 (ch21pr08.dat). Statistics 512: Solution to Homework#11 Problems 1-3 refer to the soybean sausage dataset of Problem 20.8 (ch21pr08.dat). 1. Perform the two-way ANOVA without interaction for this model. Use the results

More information

Residuals from regression on original data 1

Residuals from regression on original data 1 Residuals from regression on original data 1 Obs a b n i y 1 1 1 3 1 1 2 1 1 3 2 2 3 1 1 3 3 3 4 1 2 3 1 4 5 1 2 3 2 5 6 1 2 3 3 6 7 1 3 3 1 7 8 1 3 3 2 8 9 1 3 3 3 9 10 2 1 3 1 10 11 2 1 3 2 11 12 2 1

More information

SPECIAL TOPICS IN REGRESSION ANALYSIS

SPECIAL TOPICS IN REGRESSION ANALYSIS 1 SPECIAL TOPICS IN REGRESSION ANALYSIS Representing Nominal Scales in Regression Analysis There are several ways in which a set of G qualitative distinctions on some variable of interest can be represented

More information

STOR 455 STATISTICAL METHODS I

STOR 455 STATISTICAL METHODS I STOR 455 STATISTICAL METHODS I Jan Hannig Mul9variate Regression Y=X β + ε X is a regression matrix, β is a vector of parameters and ε are independent N(0,σ) Es9mated parameters b=(x X) - 1 X Y Predicted

More information

Analysis of Variance. Source DF Squares Square F Value Pr > F. Model <.0001 Error Corrected Total

Analysis of Variance. Source DF Squares Square F Value Pr > F. Model <.0001 Error Corrected Total Math 221: Linear Regression and Prediction Intervals S. K. Hyde Chapter 23 (Moore, 5th Ed.) (Neter, Kutner, Nachsheim, and Wasserman) The Toluca Company manufactures refrigeration equipment as well as

More information

Lecture 11: Simple Linear Regression

Lecture 11: Simple Linear Regression Lecture 11: Simple Linear Regression Readings: Sections 3.1-3.3, 11.1-11.3 Apr 17, 2009 In linear regression, we examine the association between two quantitative variables. Number of beers that you drink

More information

A Little Stats Won t Hurt You

A Little Stats Won t Hurt You A Little Stats Won t Hurt You Nate Derby Statis Pro Data Analytics Seattle, WA, USA Edmonton SAS Users Group, 11/13/09 Nate Derby A Little Stats Won t Hurt You 1 / 71 Outline Introduction 1 Introduction

More information

171:162 Design and Analysis of Biomedical Studies, Summer 2011 Exam #3, July 16th

171:162 Design and Analysis of Biomedical Studies, Summer 2011 Exam #3, July 16th Name 171:162 Design and Analysis of Biomedical Studies, Summer 2011 Exam #3, July 16th Use the selected SAS output to help you answer the questions. The SAS output is all at the back of the exam on pages

More information

Topic 2. Chapter 3: Diagnostics and Remedial Measures

Topic 2. Chapter 3: Diagnostics and Remedial Measures Topic Overview This topic will cover Regression Diagnostics Remedial Measures Statistics 512: Applied Linear Models Some other Miscellaneous Topics Topic 2 Chapter 3: Diagnostics and Remedial Measures

More information

Overview. Prerequisites

Overview. Prerequisites Overview Introduction Practicalities Review of basic ideas Peter Dalgaard Department of Biostatistics University of Copenhagen Structure of the course The normal distribution t tests Determining the size

More information

Problem Set 1 ANSWERS

Problem Set 1 ANSWERS Economics 20 Prof. Patricia M. Anderson Problem Set 1 ANSWERS Part I. Multiple Choice Problems 1. If X and Z are two random variables, then E[X-Z] is d. E[X] E[Z] This is just a simple application of one

More information

PLS205!! Lab 9!! March 6, Topic 13: Covariance Analysis

PLS205!! Lab 9!! March 6, Topic 13: Covariance Analysis PLS205!! Lab 9!! March 6, 2014 Topic 13: Covariance Analysis Covariable as a tool for increasing precision Carrying out a full ANCOVA Testing ANOVA assumptions Happiness! Covariable as a Tool for Increasing

More information

Outline. Review regression diagnostics Remedial measures Weighted regression Ridge regression Robust regression Bootstrapping

Outline. Review regression diagnostics Remedial measures Weighted regression Ridge regression Robust regression Bootstrapping Topic 19: Remedies Outline Review regression diagnostics Remedial measures Weighted regression Ridge regression Robust regression Bootstrapping Regression Diagnostics Summary Check normality of the residuals

More information

1-Way ANOVA MATH 143. Spring Department of Mathematics and Statistics Calvin College

1-Way ANOVA MATH 143. Spring Department of Mathematics and Statistics Calvin College 1-Way ANOVA MATH 143 Department of Mathematics and Statistics Calvin College Spring 2010 The basic ANOVA situation Two variables: 1 Categorical, 1 Quantitative Main Question: Do the (means of) the quantitative

More information

22s:152 Applied Linear Regression. Take random samples from each of m populations.

22s:152 Applied Linear Regression. Take random samples from each of m populations. 22s:152 Applied Linear Regression Chapter 8: ANOVA NOTE: We will meet in the lab on Monday October 10. One-way ANOVA Focuses on testing for differences among group means. Take random samples from each

More information

Stat 500 Midterm 2 12 November 2009 page 0 of 11

Stat 500 Midterm 2 12 November 2009 page 0 of 11 Stat 500 Midterm 2 12 November 2009 page 0 of 11 Please put your name on the back of your answer book. Do NOT put it on the front. Thanks. Do not start until I tell you to. The exam is closed book, closed

More information

22s:152 Applied Linear Regression. There are a couple commonly used models for a one-way ANOVA with m groups. Chapter 8: ANOVA

22s:152 Applied Linear Regression. There are a couple commonly used models for a one-way ANOVA with m groups. Chapter 8: ANOVA 22s:152 Applied Linear Regression Chapter 8: ANOVA NOTE: We will meet in the lab on Monday October 10. One-way ANOVA Focuses on testing for differences among group means. Take random samples from each

More information

Linear models Analysis of Covariance

Linear models Analysis of Covariance Esben Budtz-Jørgensen April 22, 2008 Linear models Analysis of Covariance Confounding Interactions Parameterizations Analysis of Covariance group comparisons can become biased if an important predictor

More information

STAT 3A03 Applied Regression Analysis With SAS Fall 2017

STAT 3A03 Applied Regression Analysis With SAS Fall 2017 STAT 3A03 Applied Regression Analysis With SAS Fall 2017 Assignment 5 Solution Set Q. 1 a The code that I used and the output is as follows PROC GLM DataS3A3.Wool plotsnone; Class Amp Len Load; Model CyclesAmp

More information

Topic 20: Single Factor Analysis of Variance

Topic 20: Single Factor Analysis of Variance Topic 20: Single Factor Analysis of Variance Outline Single factor Analysis of Variance One set of treatments Cell means model Factor effects model Link to linear regression using indicator explanatory

More information

3 Variables: Cyberloafing Conscientiousness Age

3 Variables: Cyberloafing Conscientiousness Age title 'Cyberloafing, Mike Sage'; run; PROC CORR data=sage; var Cyberloafing Conscientiousness Age; run; quit; The CORR Procedure 3 Variables: Cyberloafing Conscientiousness Age Simple Statistics Variable

More information

Multi-Equation Structural Models: Seemingly Unrelated Regression Models

Multi-Equation Structural Models: Seemingly Unrelated Regression Models Chapter 15 Multi-Equation Structural Models: Seemingly Unrelated Regression Models Section 15.1 Seemingly Unrelated Regression Models Modeling Approaches Econometric (Structural) Models Time-Series Models

More information

4.8 Alternate Analysis as a Oneway ANOVA

4.8 Alternate Analysis as a Oneway ANOVA 4.8 Alternate Analysis as a Oneway ANOVA Suppose we have data from a two-factor factorial design. The following method can be used to perform a multiple comparison test to compare treatment means as well

More information

Multicollinearity Exercise

Multicollinearity Exercise Multicollinearity Exercise Use the attached SAS output to answer the questions. [OPTIONAL: Copy the SAS program below into the SAS editor window and run it.] You do not need to submit any output, so there

More information

Chapter 6 Multiple Regression

Chapter 6 Multiple Regression STAT 525 FALL 2018 Chapter 6 Multiple Regression Professor Min Zhang The Data and Model Still have single response variable Y Now have multiple explanatory variables Examples: Blood Pressure vs Age, Weight,

More information

Lecture 11 Multiple Linear Regression

Lecture 11 Multiple Linear Regression Lecture 11 Multiple Linear Regression STAT 512 Spring 2011 Background Reading KNNL: 6.1-6.5 11-1 Topic Overview Review: Multiple Linear Regression (MLR) Computer Science Case Study 11-2 Multiple Regression

More information

Stat 427/527: Advanced Data Analysis I

Stat 427/527: Advanced Data Analysis I Stat 427/527: Advanced Data Analysis I Review of Chapters 1-4 Sep, 2017 1 / 18 Concepts you need to know/interpret Numerical summaries: measures of center (mean, median, mode) measures of spread (sample

More information

WITHIN-PARTICIPANT EXPERIMENTAL DESIGNS

WITHIN-PARTICIPANT EXPERIMENTAL DESIGNS 1 WITHIN-PARTICIPANT EXPERIMENTAL DESIGNS I. Single-factor designs: the model is: yij i j ij ij where: yij score for person j under treatment level i (i = 1,..., I; j = 1,..., n) overall mean βi treatment

More information

Booklet of Code and Output for STAC32 Final Exam

Booklet of Code and Output for STAC32 Final Exam Booklet of Code and Output for STAC32 Final Exam December 12, 2015 List of Figures in this document by page: List of Figures 1 Time in days for students of different majors to find full-time employment..............................

More information

Section 9c. Propensity scores. Controlling for bias & confounding in observational studies

Section 9c. Propensity scores. Controlling for bias & confounding in observational studies Section 9c Propensity scores Controlling for bias & confounding in observational studies 1 Logistic regression and propensity scores Consider comparing an outcome in two treatment groups: A vs B. In a

More information

Forestry 430 Advanced Biometrics and FRST 533 Problems in Statistical Methods Course Materials 2010

Forestry 430 Advanced Biometrics and FRST 533 Problems in Statistical Methods Course Materials 2010 Forestr 430 Advanced Biometrics and FRST 533 Problems in Statistical Methods Course Materials 00 Instructor: Dr. Valerie LeMa, Forest Sciences 039, 604-8-4770, EMAIL: Valerie.LeMa@ubc.ca Course Objectives

More information

STA 303H1F: Two-way Analysis of Variance Practice Problems

STA 303H1F: Two-way Analysis of Variance Practice Problems STA 303H1F: Two-way Analysis of Variance Practice Problems 1. In the Pygmalion example from lecture, why are the average scores of the platoon used as the response variable, rather than the scores of the

More information

SAS code for Levene s Test and Weighted Least Squares DM LOG; CLEAR; OUT; CLEAR; ; ODS GRAPHICS ON; OPTIONS NODATE NONUMBER;

SAS code for Levene s Test and Weighted Least Squares DM LOG; CLEAR; OUT; CLEAR; ; ODS GRAPHICS ON; OPTIONS NODATE NONUMBER; 4.5 4.9 Weighted WeightedLeast Least Squares Squares and and Transformation Transformation Example Example 97 8 SAS code for Levene s Test and Weighted Least Squares M LOG; LEAR; OUT; LEAR; ; OS GRAPHIS

More information

Section Least Squares Regression

Section Least Squares Regression Section 2.3 - Least Squares Regression Statistics 104 Autumn 2004 Copyright c 2004 by Mark E. Irwin Regression Correlation gives us a strength of a linear relationship is, but it doesn t tell us what it

More information

2-way analysis of variance

2-way analysis of variance 2-way analysis of variance We may be considering the effect of two factors (A and B) on our response variable, for instance fertilizer and variety on maize yield; or therapy and sex on cholesterol level.

More information

BIOL 933!! Lab 10!! Fall Topic 13: Covariance Analysis

BIOL 933!! Lab 10!! Fall Topic 13: Covariance Analysis BIOL 933!! Lab 10!! Fall 2017 Topic 13: Covariance Analysis Covariable as a tool for increasing precision Carrying out a full ANCOVA Testing ANOVA assumptions Happiness Covariables as Tools for Increasing

More information

Lecture 4. Checking Model Adequacy

Lecture 4. Checking Model Adequacy Lecture 4. Checking Model Adequacy Montgomery: 3-4, 15-1.1 Page 1 Model Checking and Diagnostics Model Assumptions 1 Model is correct 2 Independent observations 3 Errors normally distributed 4 Constant

More information

Linear models Analysis of Covariance

Linear models Analysis of Covariance Esben Budtz-Jørgensen November 20, 2007 Linear models Analysis of Covariance Confounding Interactions Parameterizations Analysis of Covariance group comparisons can become biased if an important predictor

More information

Categorical Predictor Variables

Categorical Predictor Variables Categorical Predictor Variables We often wish to use categorical (or qualitative) variables as covariates in a regression model. For binary variables (taking on only 2 values, e.g. sex), it is relatively

More information

Correlation and Simple Linear Regression

Correlation and Simple Linear Regression Correlation and Simple Linear Regression Sasivimol Rattanasiri, Ph.D Section for Clinical Epidemiology and Biostatistics Ramathibodi Hospital, Mahidol University E-mail: sasivimol.rat@mahidol.ac.th 1 Outline

More information

610 - R1A "Make friends" with your data Psychology 610, University of Wisconsin-Madison

610 - R1A Make friends with your data Psychology 610, University of Wisconsin-Madison 610 - R1A "Make friends" with your data Psychology 610, University of Wisconsin-Madison Prof Colleen F. Moore Note: The metaphor of making friends with your data was used by Tukey in some of his writings.

More information

CHAPTER 2 SIMPLE LINEAR REGRESSION

CHAPTER 2 SIMPLE LINEAR REGRESSION CHAPTER 2 SIMPLE LINEAR REGRESSION 1 Examples: 1. Amherst, MA, annual mean temperatures, 1836 1997 2. Summer mean temperatures in Mount Airy (NC) and Charleston (SC), 1948 1996 Scatterplots outliers? influential

More information

3rd Quartile. 1st Quartile) Minimum

3rd Quartile. 1st Quartile) Minimum EXST7034 - Regression Techniques Page 1 Regression diagnostics dependent variable Y3 There are a number of graphic representations which will help with problem detection and which can be used to obtain

More information

Topic 17 - Single Factor Analysis of Variance. Outline. One-way ANOVA. The Data / Notation. One way ANOVA Cell means model Factor effects model

Topic 17 - Single Factor Analysis of Variance. Outline. One-way ANOVA. The Data / Notation. One way ANOVA Cell means model Factor effects model Topic 17 - Single Factor Analysis of Variance - Fall 2013 One way ANOVA Cell means model Factor effects model Outline Topic 17 2 One-way ANOVA Response variable Y is continuous Explanatory variable is

More information

Statistics for exp. medical researchers Regression and Correlation

Statistics for exp. medical researchers Regression and Correlation Faculty of Health Sciences Regression analysis Statistics for exp. medical researchers Regression and Correlation Lene Theil Skovgaard Sept. 28, 2015 Linear regression, Estimation and Testing Confidence

More information

Models for Clustered Data

Models for Clustered Data Models for Clustered Data Edps/Psych/Soc 589 Carolyn J Anderson Department of Educational Psychology c Board of Trustees, University of Illinois Spring 2019 Outline Notation NELS88 data Fixed Effects ANOVA

More information

Answer to exercise 'height vs. age' (Juul)

Answer to exercise 'height vs. age' (Juul) Answer to exercise 'height vs. age' (Juul) Question 1 Fitting a straight line to height for males in the age range 5-20 and making the corresponding illustration is performed by writing: proc reg data=juul;

More information

Biostatistics Quantitative Data

Biostatistics Quantitative Data Biostatistics Quantitative Data Descriptive Statistics Statistical Models One-sample and Two-Sample Tests Introduction to SAS-ANALYST T- and Rank-Tests using ANALYST Thomas Scheike Quantitative Data This

More information

Outline. Topic 19 - Inference. The Cell Means Model. Estimates. Inference for Means Differences in cell means Contrasts. STAT Fall 2013

Outline. Topic 19 - Inference. The Cell Means Model. Estimates. Inference for Means Differences in cell means Contrasts. STAT Fall 2013 Topic 19 - Inference - Fall 2013 Outline Inference for Means Differences in cell means Contrasts Multiplicity Topic 19 2 The Cell Means Model Expressed numerically Y ij = µ i + ε ij where µ i is the theoretical

More information

Models for Clustered Data

Models for Clustered Data Models for Clustered Data Edps/Psych/Stat 587 Carolyn J Anderson Department of Educational Psychology c Board of Trustees, University of Illinois Fall 2017 Outline Notation NELS88 data Fixed Effects ANOVA

More information

Chapter 1: Linear Regression with One Predictor Variable also known as: Simple Linear Regression Bivariate Linear Regression

Chapter 1: Linear Regression with One Predictor Variable also known as: Simple Linear Regression Bivariate Linear Regression BSTT523: Kutner et al., Chapter 1 1 Chapter 1: Linear Regression with One Predictor Variable also known as: Simple Linear Regression Bivariate Linear Regression Introduction: Functional relation between

More information

Orthogonal contrasts for a 2x2 factorial design Example p130

Orthogonal contrasts for a 2x2 factorial design Example p130 Week 9: Orthogonal comparisons for a 2x2 factorial design. The general two-factor factorial arrangement. Interaction and additivity. ANOVA summary table, tests, CIs. Planned/post-hoc comparisons for the

More information

Analysis of variance and regression. November 22, 2007

Analysis of variance and regression. November 22, 2007 Analysis of variance and regression November 22, 2007 Parametrisations: Choice of parameters Comparison of models Test for linearity Linear splines Lene Theil Skovgaard, Dept. of Biostatistics, Institute

More information