固态量子操纵和量子相变. Chang-Pu Sun ( 孙昌璞 ) Institute of Theoretical Physics, Chinese Academy of Sciences

Size: px
Start display at page:

Download "固态量子操纵和量子相变. Chang-Pu Sun ( 孙昌璞 ) Institute of Theoretical Physics, Chinese Academy of Sciences"

Transcription

1 固态量子操纵和量子相变 Chang-Pu Sun ( 孙昌璞 ) Institute of Theoretical Physics, Chinese Academy of Sciences suncp@itp.ac.cn

2 Related Publications and References therein Lecture 3:. C. P. Sun, Y. Li, and X. F. Liu, Phys. Rev. Lett. 9, 4793 (3). S. Yang, Z. Song, and C. P. Sun, Phys. Rev. A 73, 37 (6) 3. X.-F. Qian, Y. Li, Y. Li, Z. Song, and C. P. Sun, Phys. Rev. A 7, 639 (5) 4. Z. Song, P. Zhang, T. Shi, and C.-P. Sun, Phys. Rev. B 7, 534 (5) 5. T. Shi, Y. Li, Z. Song, and C.-P. Sun,Phys. Rev. A 7, 339 (5) 6. Y. Li, T. Shi, B. Chen, Z. Song, and C.-P. Sun, Phys. Rev. A 7, 3 (5) 7. R. Xin, Z. Song and C.P. Sun, Physics Letters A, 34,, 3 (5) Review Article: Song Z, Sun CP,LOW TEMPERATURE PHYSICS 3 (8-9): 686 (5)

3 量子态存储

4 Revisit Quantum information (QI) Quantum bit (qubit) : A Robust and Controllable Two Level System Photon: Robust, but not Controllable Electronic Spin: Controllable, but not Robust Transfer the QI between difference qubits for different goals

5 Quantum Information Storage in QIP cn n QI Carrier Cn n QI Carrier en n QI transfer QI Processing QI transfer cn Mn( t) en Mn( t) en Mn( t) Quantum memory (QME)

6 Two kind of Quantum Information Storages Type I: Qubits is hard to have without construable interaction Three Level Atom in Optical Lattice (CI) and non-local, but QME is local and has (CI) Type II: L.V. Hau et al. Nature 397, 594 (999) C. Liu et al. Nature 49, 49 () QME has much longer decoherence time than that of Qubit. Sun, Li, Liu Taylor,et,Phys. al Rev., PRL Lett.., 9, 683 9, 4793 (3) 3 Song, Zhang, Sun, Qunt-phy/343

7 Atomic ensemble based Quantum Storage Electromagnetic Induced Transparency (EIT) L.V. Hau et al. Nature 397, 594 (999) C. Liu et al. Nature 49, 49 ()

8 Atomic responsibility in EIT media Ω p, ω p > > Ω c, ω c >

9 Dark State for Single Atom Dark state D : (quantum) g (classical) Ω HI D ( n) = D D = cos θ g n+ sinθ e n n n g n+ e n g n tan θ n( t) = Ω () t θ : π / ( n) D : e n g n+

10 Dark State of Many Atoms n a n a c n a a n n ac b N n c n k c n k n c n n! dn() θ sinθ cos θ = b c k! n! k= ( ) ( ) ( ) k k n k Nk k n k

11 Many Atom dark State With Few photons a b N, ( ) N d θ = b N b c a d c b c N ( θ ) = + c a ac, c c d c b c N ( θ ) = + c + c3 c N b

12 Adiabatic manipulation of QI of Photons Dark state polariton : n dn ( t) D = acosθ Csin θ, [ H, D] = θ n d n + n ( θ ) = D n! S() = ( cn n ) a C S( π /) = c a n n C S( θ) = cn dn( θ) θ : π / g n tan θ n( t) = Ω () t

13 An Experiment of Photon Storage on Atom Ensemble C. H. van der et al, JULY 3, VOL 3 SCIENCE

14 Quantum Memory =Collective Excitation in Atomic Ensemble Inhomogeneous homogeneous N HI = g + hc k = ( k ) ( kσ +..) Bosnic Collective Excitation N HI = g + hc a k = ( k ) ( σ +..) [ bb, + ] = b N [ k ] = J_ = σ N N k=

15 Quasi-Spin Wave based Quantum Storage Sun, Li, Liu, Phys. Rev. Lett., 9, Optical lattice Real crystal lattice Phonon induced decoherence N N ikab j ( j) ikac j ( j) I σab σac j= j= H = ga e +Ω e + hc..

16 Collective Excitation Quasi-spin wave Excitations a A N ab j j= ik r ( j) σ ba = e N c b C N ikcb rj j e σ bc N j= = N j= ikac rj ( j) ca T = e σ

17 Bosonization of Collective Modes Tow bosonic Excitons [ AA, + ] = [ CC, + ] = for N Hidden dynamic symmetry SU() h(3) [ CT, ] = A, [ A, T ] = C + [ T, T ] = T + [ T, T ] = ± T 3 3 ± ± [ SU(), h(3)] h(3) H () t = g NaA + +Ω () t T + hc.. +

18 Quantum Storage Based on Collective Excitation in Quantum Dots Lukin et al, PRL,4 Nuclei ensemble QME Song, Zhang, Shi, Sun, PRB 5, Spin-Boson Model

19 Quasi-Excitation Spin-Boson Model H z z N z j Iz j N j N g j I j h. c z j g j Iz j.5. B I j g j N i g i I i Energy spectrums (a) Models (b) B, B I z I N I N j Iz j g j g, I Ng [ BB, + ] = H = wb + B + ws z + g Bs B s- ( )

20 Decoherence by Non-Storage Modes C k = N [ k] ( i) i = i + I h I j h j. ωznk ρ R = exp( ) nk nk Z k T k n B k H + ( ω + gc C ) σ p z k k z k

21 Spin-Boson Model : Spin Wave N N z n = nμ n l Sl Sl+ l= l= H g B S J Ω s H = ω bb + σ + λ σ b + σ b N ( + ) z N N N N N N Electron Nuclei π k ωk = gnμnb + Js Jscos. N N i π kl N bk = e S N l= l, Universal Storage Unit

22 Decoherence by Non-Storage Modes N s V = λ ( σ χkbk + hc..) N + k = N λ s χ k s γ = π δ ωk λ. k= N N Ft () = Ψ Ψ R

23 量子态传输

24 Quantum State Transfer and Storage Storage transfer ( C + C ) M ( C + C ) M q Interaction Interaction M = M ' k k q ( C M + C M ) q' M ' ( C + C ) QST =Non-Local Quantum Storages

25 Quantum Information Meets Condensed Matter Physics? Or Condensed Matter Physics Beats Quantum Information?

26 Other Condensed Matter System seems to Beat Quantum Information? Finite Correlated Length vs. Decaying Entanglement A qubit N Data Bus L Correlation length L<N B qubit a long range order? ϕ ϕ or /N δ x x ' Ψ ( x) Ψ ( x ') exp( ), L ζ Δ L

27 Overcome Difficulty by Engineered Spin Chain With Always-On Interactions S. Bose, 3; M. Christandl, PRL, 9, (4) i = N + + θ i i i+ i i+ i= H = J ( S S + S S ) J = i( N i) i Engineered Couplings

28 Perfect Quantum State Transfer (QST) State transfer = Time evolution of state A B ψ + ( r r,) iht AB ψ( r,) ψ '( r, t) = e ψ( r,) ψ ( r, T) iht Ft ( ) = ψ( r+ r,) ψ'( rt, ) = ψ( r+ r,) e ψ( r,) AB Perfect F ( τ) =, Near perfect F ( τ) AB

29 QST by Difference of Known Transformation: A B ψ R ( r,) iht ψ( r,) ψ '( r, t) = e ψ( r,) ψ ( r, T) iht Ft ( ) = Rψ( r,) ψ'( rt, ) = Rψ( r,) e ψ( r,)

30 Quantum State Transfer by Flying Qubit Polarized photon A photon A photon B B Spin System without any dynamical controls Spin A Polarized particle(electron) A = a Vac, = a Vac ; A Spin A, A A, B B Magnon = = + SA...,.... A A

31 Wave Packet Spreading Time x Key point: Seeking Flying Qubit in solid-state system -x

32 Fidelity of polarization Fidelity of spatial WF Other option: Two orthogonal GWPs A α ( j N ) A ik j + e e a Vac, = A Ω j = A Ω j j, α ( j N ) A ik j + e e a Vac. j, Ft () = ψ( r,) ψ(, rt) B B Also Witness: detecting the property of solid-state systems

33 QST via Modulated XY Chain Spinless fermion, Tight binding model J n = n = J z = J, M J + M + i= N + = i i i+ + i= H J ( a a hc. ) J = in ( i) i i= N H = J ( S S + S S ) i= + + i i i+ i i+ H N = Jx, J =, E =±, ± 3,, J M=N/- subspace M. Christandl et al, PRL, 9,879(4)

34 Time Evolution = S(3) Rotation Ut e R t () = ij x t = x () Perfect QST = Quantum Rotation from J, J = J, J = N x z J, M = J + M + J, M' = J + M' + Y

35 Modulated XY chain: A general class for QST i= N H= J( S S + S S ) i= + + i i i+ i i+ J i i( N i) i = even = ( i + k)( N i + k) i = odd k =,,,, The spectrum E n N+ ( n k) n=,,, N/ = N + ( n + k) n = N/ +, N

36 Commensurate Spectrum Shi, Li, Song, and Sun, Phys. Rev. A 7, 339 (5) Our discovery : Ut ( ) = P Time evolution=parity Reflection

37 Rigorous result beyond Models Consider a system H, [ Pˆ, H] =, Pˆψ( r) = ψ( r) H φ ( r) = ε φ ( r), Pˆ φ ( r) = p φ ( r). n n n n n n If ε, p can be written in the form n n ε = E + C, n p n =± ( ) n, n is an arbitrary integer, any state evolve to ± ψ( r) after time π / E. n ψ( r) can Corollary n+ - n = odd number

38 Propagation of GWP: U= Simple networks: Transmission of GWP: Quantum revival: Fast transmission of GWP: Moving GWP H = J ( a a + hc..), j, σ k, σ + j, σ j+, σ H = J ε a a + k k, σ k, σ ring & chain fast & slow τ N, N full & fractional t= j-j j+ j+a t=

39 Propagation of GWP: U= ε k = J cos k, ε k k ψ A α π A ( j N ) i j + = e e aj, σ Vac Ω j Heff = vp, p = ka a k, σ + k, σ k, σ Ut ( ) = exp( ipvt) Tvt ( ), T ( x ) j = j + x σ σ Ring : τ = ( N + )/ J ; Chain : τ = N /( J )

40 Tight Binding Networks: Y-beam N l [ l ] + j l, j l, j+ j = H = ( t a a + H. c.). N, J A N, J A + + { a } { a } l, j R mi, N, J A b N, J A J nb J nc nb nc J + J = J A a (a) M, J A Realistic Space l R H + l Hjoint H m m H α, H = β (b) M, Virtual space J A

41 Tight Binding Networks Complicated networks: Chains + Nodes + Flux N l [ l ] + l l l j l, j l, j+ j = Chain : H = H ( N ) ( t a a + H. c. ). [ lm ] + Nodes : H ( t a a + H. c.) jo int ji l, j m, i { t, t,..., t N } [ l] [ l ] [ l] l Fux l : t i Φ + π +, j l j = te ; Φ, + = φ A d l j [ l ] j l j Our Aim : + + { } { a } a l, j R mi, N l + l l l l, j l, j+ j = H = H ( N ) t ( a a + H. c.).

42 TB Networks Decomposition at Critical Node A (a) Input t t n Output M N Real space t B B B m B m a (b) Input t M Virtual space Output N t a b b b m m Quantum Interference Effects t [ ABp ] N A = t = n t m H = H + H a m q = bq H α, H = β

43 Wave Packet Propagating along TB Networks A M t nb t nc Real space N t B C M Virtual space N t a b t t t + = ψτ ( ) = cos θψ ( N ) + sin θ ψ ( N ) nc nb B τ C τ Rigorous results, for arbitrary particle sectors S. Yang, Z. Song, and C.P. Sun, quant-ph/69

44 Reflection on the Node t nc The reflection factor R(t nc,t nb ) R(t nb,t nb ) α =.3 N A = N B = NC = 5. (a) t nb. (b) t nb Around the matching condition the reflection factor vanishes J = J + J = J = A nc nb B J C

45 Beam Splitter, Entangler The maximal concurrence C max ( J nc, J nb ) = max{ C( t)} as a function of and J nc J nb t nc C max (t nc,t nb ) C max (t nb,t nb ) (a) t nb. (b) t nb J = J = J nc nb /

46 Quantum Control By Flux A M t t nb nc φ N N B C n t φ =, tnb = tnc = : a a b n φ = + 4 t = t cos θ, t = t sin θ : nb nc Arbitrary φ, t = t cos θ, t = t sin θ : nb nc t a a = t nc t / μ = tcosφ nb = a b ~ t = t sinφ μ ~ t μ

47 Quantum Control By Flux t a = t nc t / μ = tcosφ nb = b ~ t = t sinφ μ ~ t μ A (a) t ψ A ( N ) μ ~ t μ φ A (τ ) φ B (τ ) M M μ = t cos Φ Real space~ t = t sin Φ initial t B final Transmission-reflection film: a = fa fa ( + ) a, j A, j B, j a = fa + fa ( A, j + B, j) b, j Φ Φ f ± = cos ± sin a b joint a (b) ψ N ) N ) a ( t φ a (τ ) φ (τ ) M b M Virtual space ψ b ( initial b final + H = H + H + H H jo int = t( a a, NabN, + H. c.).

48 Quantum Control By Flux 3 φ A t nab M N t nbd L D φ = n + : a b t nac N t ncd t = t = t cosθ nab t = t = t sinθ nac ncd nbd φ = n : a b a arbitrary φ : t = t = t = t = t/ nab ncd nac nbd a b ~ t ac ~ t bc i t = t( + e φ ) / ac c i t = t( e φ ) / bc

49 Lattice AB effect:, ψ( j, α) Q( j, φα, ) =. ψ( A, α) max max Δ = 5.55 ( α =.3) Δ = 6.65 ( α =.) Δ = ( α = )

50 Engineered Hubbard model t t t N 3 N N H = ( t c c + hc..) + U n n, j, σ + j j, σ j+, σ j j j t = j ( N j ) j σ =, Single-electron Bloch state Angular momentum states: J, M = J + M + J, M = J Mj+ J = ( N )/, M = J, J,, J +, J

51 TB Networks: U J, J J, J t t t N 3 N J, J + J, J (a) J, J + J, J J, J U U U U U (b) J, J + N J, J J, J N N Pseudo-spin operators: J = J ij = t c c ( ) ( ) ( ) + x y j j, j+, j J = J ij = t c c ( ) ( ) ( ) + x y j j+, j, j J = jc c ( σ ) + z jσ j, σ j, σ σ =, ( ) ( ) J = ( J ) σ σ + + [ J+, J ] = J z SO(3)

52 TB Networks: U Reduction H = J + J + V ( ) ( ) x x ; V = U J, MJ ;, M J, MJ ;, M M J, M; J, M' = J, M J, M' The intrinsic dynamic symmetry: SO (3) SO (3) The goal: D D = D [ J ] [ J ] J [ L] L= [ J ] D irreducible representation of SO(3)

53 Total angular momentum L, ;,, ;,, ) ( M J M J JM L JJ C LM M J M J =, ;,, ;,, ) (, M J M J C JM L JJ M L M M M M J M J LM = + = where are the Clebsch-Gordan coefficients. The interaction term is ',,, ;,, ;,, ;,, ;, ' L L C C U M J M J M J M J U V L M J M J L M J M J M LL M = =,,, ;,, ;, L L L M m M J m J LM m M J m J m C C = δ Due to the orthogonal relation of Clebsch-Gordan coefficients the on-site interaction can be reduced as the sum of the irreducible tensors, ) (, ) ( ] [ L JJ L JJ U W V L L L = = TB Networks: U

54 TB Networks: U N H = H L= ( L) ( L) ( L) [ L] [ L] H = H + W = Jx + W. t t t t U U U U (c) 3 t N N 3 N L ( L) + + = j j j+ + + j= L H ( t a a hc..) Ua a, t = ( L + j + )( L j) j Central potential barrier U

55 Numerical results F max peaks: (a) N=4 N=5 N=6 3 4 U Swapping fidelity iht F( U, t) = J, J; J, J e J, J; J, J The maxima of the fidelity F max ( U ) = max{ F( U, t), t } There indeed exist some U to get very high F max ( U )

56 Simple Mathematics ispt e x = x+ st ispt ψ () t = e ( c s ) s φ ψ () = ( c s ) s φ = ( c s ) e s isp φ ψ ( xt, ) = xψ ( t) = ispt c x e φ s s = cφ( x+ st) s s

57 量子态相变

58 Generalized Hepp-Coleman model: Ising model in a transverse field x z z ( e j j j+) H = J g e σ + σ σ j e ( ) H = H λ = H + V e e g e g H = J σ σ + z z g j j j V = λj σ. e j x j

59 Exact solution of Loschmidt echo k + ( λ ) = kε ( ) H A A / e e k k ikal e [ x] k [ + ] k [ ] A = σ u σ iv σ, ( ) k s e l e l l N s< l ε k ( λ) e Finite N k k e e ( ( )) ε =ε ( λ ) = J +λ λcos ka K=n/Na λ =λ c = Large N

60 Ground states H = J σσ λj σ z z x e j j j+ j j H = J σ σ + z z g j j j A G = k e G =... g g B G = k g ( ) ( )( ) B± k = cos αk A± k isin αk A k, + g + + ( k) ( k) k k G = icos α + sin α A A G k> e

61 Decoherence & Loschmidt echo Reduced Density matrix ( ) ( ) [ ρ t ] = c c D t s eg g e ( ) = ϕ ( ) ϕ ( ) D t t t g e α () t exp[ ihαt] G g ϕ = Loschmidt echo ( ) ( ) ( ) L( λ,t) = D t = ϕ t ϕ t g e ( k) ( e ) k L( λ, t) = [ sin α sin ε t ]. k>

62 动力学敏感性与量子混沌 Classical Chaos: Butterfly Effect( 蝴蝶效应 ): Slightly different initial conditions leads to exponential divergence of trajectories Same Dynamics Largely different Final State Slightly different initial condition Zurek,Nature,4,7(); PRL, 89,745 ()

63 量子混沌的基本概念 ϕ e () ϕ g () Unitary Transformation ϕ e() t ϕ g () t ϕ t ϕ t = ϕ U t U t ϕ = ϕ ϕ g( ) e( ) g() ( ) ( ) e() g() e() Peres, Conception of Quantum Mechanics,995 E () t Dynamic Sensitiveness E U e Loschmidt echo U g E () t ϕ ϕ ϕ ϕ g() t e() t = Ug () t Ue() t

64 Loschmidt echo via Local density of state L L t e dt G E E iωt ( ω) = ( ) = s δ( ω s), s L() t e γ t L( ω) ( ω Ω ) + γ

65 A heuristic analysis c K c L ( λ,t) F > L( λ,t), k> k K c S(, t) ln L ln F λ = > c k k [ ] ( ) sin α kλa /( λ) k k ε e J λ λ E(K ) ( λ) c S( λ, t) sin J[ λ]t ( ) E(K ) = 4π N (N + )(N + ) /(6N ) c c c c c ( ) L( λ,t) exp γt γ=4j E(K c)

66 Numerical results: far from the critical point Our result: Unpublished, but even posted in Arxive before the PRL paper Short time behavior c ( ) L( λ,t) exp γt

67 Universality of Loschmidt Echo Cucchietti, Fernandez-Vidal, Paz, quantph/6436 ( ) L ( λ, t) exp ut F(t) c Coupling independent u transverse field Ising model Boson Habburd model

68 Numerical results : near the critical point Small N Large N

69 量子相变环境导致退相干增强 near the critical point Far from critical point Small N Large N 由于联系了凝聚态物理中的量子相变 非平衡统计物理中的量子混沌和量子信息中的量子退相干, 立即得到不同领域科学家的重视, 引发一系列后续的工作 ( 如由保真度描述量子相变和经典相变 ), 引用已经超过 次

70 理论预言的实验证实之一 8 年德国 Suter 小组的核磁共振实验

71 理论预言的实验证实之二 9 年加拿大 Laflamme 小组的新实验

72 Implementation : Superconducting Quantum Network Circuit QED for Charge Qubit array

73 Model Hamiltonian H h B ( α) ( α) ( α ) = [ λ] ( λ σx + σz σ + z ) α α NEC : C / C Σ.5 m ( ) φx = η a+ a ( ω ) / η = ( S/ d) l / L ( ) HF = ωa a g a a+ aa σ ( α ) x α

74 Pseudo-Spin Representation: S S S = γγ + γ γ, zk k k k k = iγ γ + γ γ, xk k k k k = γ γ γ γ. yk k k k k G = Ok, O H k k> k> n = > k H ( k ) n k H = ε ( S cosα + S sin α ) ( k ) n nk zk nk xk nk k m ih t ih t Dmn e e k> k n = k

75

Z-Factory Physics. Physics for Modernized Z-Factory. Chao-Hsi Chang (Zhao-Xi Zhang) ITP, CAS

Z-Factory Physics. Physics for Modernized Z-Factory. Chao-Hsi Chang (Zhao-Xi Zhang) ITP, CAS Z-Factory Physics Physics for Modernized Z-Factory Chao-Hsi Chang (Zhao-Xi Zhang) ITP, CAS --- Working Group for Z-factory Physics --- Group Meeting @ WeiHai The topics for Z-factory Physics July 13-17,

More information

Wave-packet transmission of Bloch electrons manipulated by magnetic field

Wave-packet transmission of Bloch electrons manipulated by magnetic field Wave-packet transmission of Bloch electrons manipulated by magnetic field S. Yang, 1 Z. Song, 1, * and C. P. Sun 1,2, 1 Department of Physics, Nankai University, Tianin 300071, China 2 Institute of Theoretical

More information

Driving Qubit Transitions in J-C Hamiltonian

Driving Qubit Transitions in J-C Hamiltonian Qubit Control Driving Qubit Transitions in J-C Hamiltonian Hamiltonian for microwave drive Unitary transform with and Results in dispersive approximation up to 2 nd order in g Drive induces Rabi oscillations

More information

Galileo Galilei ( ) Title page of Galileo's Dialogue concerning the two chief world systems, published in Florence in February 1632.

Galileo Galilei ( ) Title page of Galileo's Dialogue concerning the two chief world systems, published in Florence in February 1632. Special Relativity Galileo Galilei (1564-1642) Title page of Galileo's Dialogue concerning the two chief world systems, published in Florence in February 1632. 2 Galilean Transformation z z!!! r ' = r

More information

Lie algebraic aspects of quantum control in interacting spin-1/2 (qubit) chains

Lie algebraic aspects of quantum control in interacting spin-1/2 (qubit) chains .. Lie algebraic aspects of quantum control in interacting spin-1/2 (qubit) chains Vladimir M. Stojanović Condensed Matter Theory Group HARVARD UNIVERSITY September 16, 2014 V. M. Stojanović (Harvard)

More information

Optical Lattices. Chapter Polarization

Optical Lattices. Chapter Polarization Chapter Optical Lattices Abstract In this chapter we give details of the atomic physics that underlies the Bose- Hubbard model used to describe ultracold atoms in optical lattices. We show how the AC-Stark

More information

Design and realization of exotic quantum phases in atomic gases

Design and realization of exotic quantum phases in atomic gases Design and realization of exotic quantum phases in atomic gases H.P. Büchler and P. Zoller Theoretische Physik, Universität Innsbruck, Austria Institut für Quantenoptik und Quanteninformation der Österreichischen

More information

Beam Splitters, Interferometers and Hong-Ou-Mandel Effect for Interacting Bosonic and Fermionic Walkers in a Lattice

Beam Splitters, Interferometers and Hong-Ou-Mandel Effect for Interacting Bosonic and Fermionic Walkers in a Lattice Beam Splitters, Interferometers and Hong-Ou-Mandel Effect for Interacting Bosonic and Fermionic Walkers in a Lattice Leonardo Banchi University College London, UK Aim of the work Implement linear optics

More information

There are only 92 stable elements in nature

There are only 92 stable elements in nature There are only stable elements in nature Jiang Chun-xuan P. O. Box, Beijing 0, P. R. China jcxxxx@.com Abstract Using mathematical method we prove that there are only stable elements in nature and obtain

More information

Quantum Computing with neutral atoms and artificial ions

Quantum Computing with neutral atoms and artificial ions Quantum Computing with neutral atoms and artificial ions NIST, Gaithersburg: Carl Williams Paul Julienne T. C. Quantum Optics Group, Innsbruck: Peter Zoller Andrew Daley Uwe Dorner Peter Fedichev Peter

More information

Quantum Memory in Atomic Ensembles BY GEORG BRAUNBECK

Quantum Memory in Atomic Ensembles BY GEORG BRAUNBECK Quantum Memory in Atomic Ensembles BY GEORG BRAUNBECK Table of contents 1. Motivation 2. Quantum memory 3. Implementations in general 4. Implementation based on EIT in detail QUBIT STORAGE IN ATOMIC ENSEMBLES

More information

TRANSPORT OF QUANTUM INFORMATION IN SPIN CHAINS

TRANSPORT OF QUANTUM INFORMATION IN SPIN CHAINS TRANSPORT OF QUANTUM INFORMATION IN SPIN CHAINS Joachim Stolze Institut für Physik, Universität Dortmund, 44221 Dortmund Göttingen, 7.6.2005 Why quantum computing? Why quantum information transfer? Entangled

More information

Entanglement creation and characterization in a trapped-ion quantum simulator

Entanglement creation and characterization in a trapped-ion quantum simulator Time Entanglement creation and characterization in a trapped-ion quantum simulator Christian Roos Institute for Quantum Optics and Quantum Information Innsbruck, Austria Outline: Highly entangled state

More information

新型人工电磁媒质对电磁波的调控及其应用. What s Metamaterial? Hot Research Topics. What s Metamaterial? Problem and Motivation. On Metamaterials 崔铁军 东南大学毫米波国家重点实验室

新型人工电磁媒质对电磁波的调控及其应用. What s Metamaterial? Hot Research Topics. What s Metamaterial? Problem and Motivation. On Metamaterials 崔铁军 东南大学毫米波国家重点实验室 What s Metamaterial? 新型人工电磁媒质对电磁波的调控及其应用 崔铁军 东南大学毫米波国家重点实验室 全国微波毫米波会议 2011 年 6 月 3 日 青岛 Metamaterial: 超材料 ; 新型人工电磁材料 ; 新型人工电磁媒质 ; 特异材料 ; 特异介质 ; What s Metamaterial? Hot Research Topics most materials Metamaterial>LHM

More information

Concurrent Engineering Pdf Ebook Download >>> DOWNLOAD

Concurrent Engineering Pdf Ebook Download >>> DOWNLOAD 1 / 6 Concurrent Engineering Pdf Ebook Download >>> DOWNLOAD 2 / 6 3 / 6 Rozenfeld, WEversheim, HKroll - Springer.US - 1998 WDuring 2005 年 3 月 1 日 - For.the.journal,.see.Conc urrent.engineering.(journal)verhagen

More information

Quantum Simulation with Rydberg Atoms

Quantum Simulation with Rydberg Atoms Hendrik Weimer Institute for Theoretical Physics, Leibniz University Hannover Blaubeuren, 23 July 2014 Outline Dissipative quantum state engineering Rydberg atoms Mesoscopic Rydberg gates A Rydberg Quantum

More information

Berry-phase Approach to Electric Polarization and Charge Fractionalization. Dennis P. Clougherty Department of Physics University of Vermont

Berry-phase Approach to Electric Polarization and Charge Fractionalization. Dennis P. Clougherty Department of Physics University of Vermont Berry-phase Approach to Electric Polarization and Charge Fractionalization Dennis P. Clougherty Department of Physics University of Vermont Outline Quick Review Berry phase in quantum systems adiabatic

More information

9 Atomic Coherence in Three-Level Atoms

9 Atomic Coherence in Three-Level Atoms 9 Atomic Coherence in Three-Level Atoms 9.1 Coherent trapping - dark states In multi-level systems coherent superpositions between different states (atomic coherence) may lead to dramatic changes of light

More information

Tsinghua-Berkeley Shenzhen Institute (TBSI) PhD Program Design

Tsinghua-Berkeley Shenzhen Institute (TBSI) PhD Program Design 1. SCOPE Tsinghua-Berkeley Shenzhen Institute (TBSI) PhD Program Design (Approved in June, 2018, Applicable to Class 2018) This Ph.D. program is applicable for all doctoral students (including the international

More information

Quantum Communication & Computation Using Spin Chains

Quantum Communication & Computation Using Spin Chains Quantum Communication & Computation Using Spin Chains Sougato Bose Institute for Quantum Information, Caltech & UCL, London Quantum Computation Part: S. C. Benjamin & S. Bose, quant-ph/02057 (to appear

More information

Reciprocal Space Magnetic Field: Physical Implications

Reciprocal Space Magnetic Field: Physical Implications Reciprocal Space Magnetic Field: Physical Implications Junren Shi ddd Institute of Physics Chinese Academy of Sciences November 30, 2005 Outline Introduction Implications Conclusion 1 Introduction 2 Physical

More information

Key Topic. Body Composition Analysis (BCA) on lab animals with NMR 采用核磁共振分析实验鼠的体内组分. TD-NMR and Body Composition Analysis for Lab Animals

Key Topic. Body Composition Analysis (BCA) on lab animals with NMR 采用核磁共振分析实验鼠的体内组分. TD-NMR and Body Composition Analysis for Lab Animals TD-NMR and Body Composition Analysis for Lab Animals 时域磁共振及实验鼠体内组分的测量 Z. Harry Xie ( 谢宗海 谢宗海 ), PhD Bruker Optics, Inc. Key Topic Body Composition Analysis (BCA) on lab animals with NMR 采用核磁共振分析实验鼠的体内组分

More information

暗物质 II 毕效军 中国科学院高能物理研究所 2017 年理论物理前沿暑期讲习班 暗物质 中微子与粒子物理前沿, 2017/7/25

暗物质 II 毕效军 中国科学院高能物理研究所 2017 年理论物理前沿暑期讲习班 暗物质 中微子与粒子物理前沿, 2017/7/25 暗物质 II 毕效军 中国科学院高能物理研究所 2017 年理论物理前沿暑期讲习班 暗物质 中微子与粒子物理前沿, 2017/7/25 Outline 暗物质 profile 确定 Subhalo 计算 Axion 简介 温暗物质 sterile neutrino Nonthermal DM SIDM Fuzzy dm 2 看什么信号? Gamma, e+,pbar; 什么实验探测? 看什么地方?

More information

d) There is a Web page that includes links to both Web page A and Web page B.

d) There is a Web page that includes links to both Web page A and Web page B. P403-406 5. Determine whether the relation R on the set of all eb pages is reflexive( 自反 ), symmetric( 对 称 ), antisymmetric( 反对称 ), and/or transitive( 传递 ), where (a, b) R if and only if a) Everyone who

More information

时间相关密度泛函理论的发展 及其在重离子碰撞中的应用

时间相关密度泛函理论的发展 及其在重离子碰撞中的应用 时间相关密度泛函理论的发展 及其在重离子碰撞中的应用 郭璐 中国科学院大学 第十七届全国核结构大会, 辽宁师范大学,2018 年 7 月 9 日 1 Contents I. Introduction of TDHF approach II. Development of theoretical approach spin-orbit force tensor force density-constraint

More information

arxiv: v7 [quant-ph] 20 Mar 2017

arxiv: v7 [quant-ph] 20 Mar 2017 Quantum oblivious transfer and bit commitment protocols based on two non-orthogonal states coding arxiv:1306.5863v7 [quant-ph] 0 Mar 017 Li Yang State Key Laboratory of Information Security, Institute

More information

Supplementary information for Quantum delayed-choice experiment with a beam splitter in a quantum superposition

Supplementary information for Quantum delayed-choice experiment with a beam splitter in a quantum superposition Supplementary information for Quantum delayed-choice experiment with a beam splitter in a quantum superposition Shi-Biao Zheng 1, You-Peng Zhong 2, Kai Xu 2, Qi-Jue Wang 2, H. Wang 2, Li-Tuo Shen 1, Chui-Ping

More information

Lecture on First-principles Computations (14): The Linear Combination of Atomic Orbitals (LCAO) Method

Lecture on First-principles Computations (14): The Linear Combination of Atomic Orbitals (LCAO) Method Lecture on First-principles Computations (14): The Linear Combination of Atomic Orbitals (LCAO) Method 任新国 (Xinguo Ren) 中国科学技术大学量子信息重点实验室 Key Laboratory of Quantum Information, USTC Hefei, 2016.11.11 Recall:

More information

Quantum Control of Qubits

Quantum Control of Qubits Quantum Control of Qubits K. Birgitta Whaley University of California, Berkeley J. Zhang J. Vala S. Sastry M. Mottonen R. desousa Quantum Circuit model input 1> 6> = 1> 0> H S T H S H x x 7 k = 0 e 3 π

More information

上海激光电子伽玛源 (SLEGS) 样机的实验介绍

上海激光电子伽玛源 (SLEGS) 样机的实验介绍 上海激光电子伽玛源 (SLEGS) 样机的实验介绍 Pan Qiangyan for SLEGS collaborators 一. 引言二. 装置布局三. 实验及其结果四. 结论 一, 引言 为建设 SLEGS 光束线提供参考和研制依据, 中科院上海应用物理研究所于 2005 年成立了以徐望研究员为组长的 SLEGS 小组, 开展 SLEGS 样机的实验工作 ; 在中科院知识创新工程方向性项目 (

More information

Quantum Networks with Atomic Ensembles

Quantum Networks with Atomic Ensembles Quantum Networks with Atomic Ensembles Daniel Felinto* dfelinto@df.ufpe.br C.W. Chou, H. Deng, K.S. Choi, H. de Riedmatten, J. Laurat, S. van Enk, H.J. Kimble Caltech Quantum Optics *Presently at Departamento

More information

S.K. Saikin May 22, Lecture 13

S.K. Saikin May 22, Lecture 13 S.K. Saikin May, 007 13 Decoherence I Lecture 13 A physical qubit is never isolated from its environment completely. As a trivial example, as in the case of a solid state qubit implementation, the physical

More information

Quantum computing and quantum communication with atoms. 1 Introduction. 2 Universal Quantum Simulator with Cold Atoms in Optical Lattices

Quantum computing and quantum communication with atoms. 1 Introduction. 2 Universal Quantum Simulator with Cold Atoms in Optical Lattices Quantum computing and quantum communication with atoms L.-M. Duan 1,2, W. Dür 1,3, J.I. Cirac 1,3 D. Jaksch 1, G. Vidal 1,2, P. Zoller 1 1 Institute for Theoretical Physics, University of Innsbruck, A-6020

More information

10.5 Circuit quantum electrodynamics

10.5 Circuit quantum electrodynamics AS-Chap. 10-1 10.5 Circuit quantum electrodynamics AS-Chap. 10-2 Analogy to quantum optics Superconducting quantum circuits (SQC) Nonlinear circuits Qubits, multilevel systems Linear circuits Waveguides,

More information

铁硒超导薄膜的原位制 备和电子结构测量 谢斌平 复旦大学 杭州 2014 全国表面分析应用技术学术交流会及赛默飞世尔科技 XPS 应用及设备维护技术培训班

铁硒超导薄膜的原位制 备和电子结构测量 谢斌平 复旦大学 杭州 2014 全国表面分析应用技术学术交流会及赛默飞世尔科技 XPS 应用及设备维护技术培训班 铁硒超导薄膜的原位制 备和电子结构测量 谢斌平 复旦大学 2014.04.24 杭州 2014 全国表面分析应用技术学术交流会及赛默飞世尔科技 XPS 应用及设备维护技术培训班 Outline 1. Experimental setup----ombe+mbe+arpes 2. Heterostructure Design and in-situ ARPES study FeSe/STO films

More information

Use of dynamical coupling for improved quantum state transfer

Use of dynamical coupling for improved quantum state transfer Use of dynamical coupling for improved quantum state transfer A. O. Lyakhov and C. Bruder Department of Physics and Astronomy, University of Basel, Klingelbergstr. 82, 45 Basel, Switzerland We propose

More information

通量数据质量控制的理论与方法 理加联合科技有限公司

通量数据质量控制的理论与方法 理加联合科技有限公司 通量数据质量控制的理论与方法 理加联合科技有限公司 通量变量 Rn = LE + H + G (W m -2 s -1 ) 净辐射 潜热 感热 地表热 通量 通量 通量 通量 Fc (mg m -2 s -1 ) 二氧化碳通量 τ [(kg m s -1 ) m -2 s -1 ] 动量通量 质量控制 1. 概率统计方法 2. 趋势法 3. 大气物理依据 4. 测定实地诊断 5. 仪器物理依据 '

More information

The dynamic N1-methyladenosine methylome in eukaryotic messenger RNA 报告人 : 沈胤

The dynamic N1-methyladenosine methylome in eukaryotic messenger RNA 报告人 : 沈胤 The dynamic N1-methyladenosine methylome in eukaryotic messenger RNA 报告人 : 沈胤 2016.12.26 研究背景 RNA 甲基化作为表观遗传学研究的重要内容之一, 是指发生在 RNA 分子上不同位置的甲基化修饰现象 RNA 甲基化在调控基因表达 剪接 RNA 编辑 RNA 稳定性 控制 mrna 寿命和降解等方面可能扮演重要角色

More information

Quantum Memory with Atomic Ensembles

Quantum Memory with Atomic Ensembles Lecture Note 5 Quantum Memory with Atomic Ensembles 04.06.2008 Difficulties in Long-distance Quantum Communication Problems leads Solutions Absorption (exponentially) Decoherence Photon loss Degrading

More information

An IntRoduction to grey methods by using R

An IntRoduction to grey methods by using R An IntRoduction to grey methods by using R Tan Xi Department of Statistics, NUFE Nov 6, 2009 2009-2-5 Contents: A brief introduction to Grey Methods An analysis of Degree of Grey Incidence Grey GM(, )

More information

8 Quantized Interaction of Light and Matter

8 Quantized Interaction of Light and Matter 8 Quantized Interaction of Light and Matter 8.1 Dressed States Before we start with a fully quantized description of matter and light we would like to discuss the evolution of a two-level atom interacting

More information

Short Course in Quantum Information Lecture 8 Physical Implementations

Short Course in Quantum Information Lecture 8 Physical Implementations Short Course in Quantum Information Lecture 8 Physical Implementations Course Info All materials downloadable @ website http://info.phys.unm.edu/~deutschgroup/deutschclasses.html Syllabus Lecture : Intro

More information

4. Two-level systems. 4.1 Generalities

4. Two-level systems. 4.1 Generalities 4. Two-level systems 4.1 Generalities 4. Rotations and angular momentum 4..1 Classical rotations 4.. QM angular momentum as generator of rotations 4..3 Example of Two-Level System: Neutron Interferometry

More information

Electrical quantum engineering with superconducting circuits

Electrical quantum engineering with superconducting circuits 1.0 10 0.8 01 switching probability 0.6 0.4 0.2 00 P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group 11 0.0 0 100 200 300 400 swap duration (ns) Electrical quantum engineering with superconducting

More information

Superconducting Qubits Lecture 4

Superconducting Qubits Lecture 4 Superconducting Qubits Lecture 4 Non-Resonant Coupling for Qubit Readout A. Blais, R.-S. Huang, A. Wallraff, S. M. Girvin, and R. J. Schoelkopf, PRA 69, 062320 (2004) Measurement Technique Dispersive Shift

More information

Problem Set # 8 Solutions

Problem Set # 8 Solutions Id: hw.tex,v 1.4 009/0/09 04:31:40 ike Exp 1 MIT.111/8.411/6.898/18.435 Quantum Information Science I Fall, 010 Sam Ocko November 15, 010 Problem Set # 8 Solutions 1. (a) The eigenvectors of S 1 S are

More information

Design, Development and Application of Northeast Asia Resources and Environment Scientific Expedition Data Platform

Design, Development and Application of Northeast Asia Resources and Environment Scientific Expedition Data Platform September, 2011 J. Resour. Ecol. 2011 2(3) 266-271 DOI:10.3969/j.issn.1674-764x.2011.03.010 www.jorae.cn Journal of Resources and Ecology Vol.2 No.3 NE Asia Design, Development and Application of Northeast

More information

Stopped Light With Storage Times Greater than 1 second using Electromagnetically Induced Transparency in a Solid

Stopped Light With Storage Times Greater than 1 second using Electromagnetically Induced Transparency in a Solid Stopped Light With Storage Times Greater than 1 second using Electromagnetically Induced Transparency in a Solid J.J Londell, E. Fravel, M.J. Sellars and N.B. Manson, Phys. Rev. Lett. 95 063601 (2005)

More information

Spin liquid phases in strongly correlated lattice models

Spin liquid phases in strongly correlated lattice models Spin liquid phases in strongly correlated lattice models Sandro Sorella Wenjun Hu, F. Becca SISSA, IOM DEMOCRITOS, Trieste Seiji Yunoki, Y. Otsuka Riken, Kobe, Japan (K-computer) Williamsburg, 14 June

More information

(Quasi-) Nambu-Goldstone Fermion in Hot QCD Plasma and Bose-Fermi Cold Atom System

(Quasi-) Nambu-Goldstone Fermion in Hot QCD Plasma and Bose-Fermi Cold Atom System (Quasi-) Nambu-Goldstone Fermion in Hot QCD Plasma and Bose-Fermi Cold Atom System Daisuke Satow (RIKEN/BNL) Collaborators: Jean-Paul Blaizot (Saclay CEA, France) Yoshimasa Hidaka (RIKEN, Japan) Supersymmetry

More information

Decoherence Effect in An Anisotropic Two-Qubit Heisenberg XYZ Model with Inhomogeneous Magnetic Field

Decoherence Effect in An Anisotropic Two-Qubit Heisenberg XYZ Model with Inhomogeneous Magnetic Field Commun. Theor. Phys. (Beijing, China) 53 (010) pp. 1053 1058 c Chinese Physical Society and IOP Publishing Ltd Vol. 53, No. 6, June 15, 010 Decoherence Effect in An Anisotropic Two-Qubit Heisenberg XYZ

More information

Vibrational motion. Harmonic oscillator ( 諧諧諧 ) - A particle undergoes harmonic motion. Parabolic ( 拋物線 ) (8.21) d 2 (8.23)

Vibrational motion. Harmonic oscillator ( 諧諧諧 ) - A particle undergoes harmonic motion. Parabolic ( 拋物線 ) (8.21) d 2 (8.23) Vibrational motion Harmonic oscillator ( 諧諧諧 ) - A particle undergoes harmonic motion F == dv where k Parabolic V = 1 f k / dx = is Schrodinge h m d dx ψ f k f x the force constant x r + ( 拋物線 ) 1 equation

More information

Quantum Optics and Quantum Informatics FKA173

Quantum Optics and Quantum Informatics FKA173 Quantum Optics and Quantum Informatics FKA173 Date and time: Tuesday, 7 October 015, 08:30-1:30. Examiners: Jonas Bylander (070-53 44 39) and Thilo Bauch (0733-66 13 79). Visits around 09:30 and 11:30.

More information

Lecture 14 Dispersion engineering part 1 - Introduction. EECS Winter 2006 Nanophotonics and Nano-scale Fabrication P.C.Ku

Lecture 14 Dispersion engineering part 1 - Introduction. EECS Winter 2006 Nanophotonics and Nano-scale Fabrication P.C.Ku Lecture 14 Dispersion engineering part 1 - Introduction EEC 598-2 Winter 26 Nanophotonics and Nano-scale Fabrication P.C.Ku chedule for the rest of the semester Introduction to light-matter interaction

More information

H ψ = E ψ. Introduction to Exact Diagonalization. Andreas Läuchli, New states of quantum matter MPI für Physik komplexer Systeme - Dresden

H ψ = E ψ. Introduction to Exact Diagonalization. Andreas Läuchli, New states of quantum matter MPI für Physik komplexer Systeme - Dresden H ψ = E ψ Introduction to Exact Diagonalization Andreas Läuchli, New states of quantum matter MPI für Physik komplexer Systeme - Dresden http://www.pks.mpg.de/~aml laeuchli@comp-phys.org Simulations of

More information

Quantum Many-Body Phenomena in Arrays of Coupled Cavities

Quantum Many-Body Phenomena in Arrays of Coupled Cavities Quantum Many-Body Phenomena in Arrays of Coupled Cavities Michael J. Hartmann Physik Department, Technische Universität München Cambridge-ITAP Workshop, Marmaris, September 2009 A Paradigm Many-Body Hamiltonian:

More information

Quantum Memory with Atomic Ensembles. Yong-Fan Chen Physics Department, Cheng Kung University

Quantum Memory with Atomic Ensembles. Yong-Fan Chen Physics Department, Cheng Kung University Quantum Memory with Atomic Ensembles Yong-Fan Chen Physics Department, Cheng Kung University Outline Laser cooling & trapping Electromagnetically Induced Transparency (EIT) Slow light & Stopped light Manipulating

More information

Quantum Reservoir Engineering

Quantum Reservoir Engineering Departments of Physics and Applied Physics, Yale University Quantum Reservoir Engineering Towards Quantum Simulators with Superconducting Qubits SMG Claudia De Grandi (Yale University) Siddiqi Group (Berkeley)

More information

Decay of the Singlet Conversion Probability in One Dimensional Quantum Networks

Decay of the Singlet Conversion Probability in One Dimensional Quantum Networks Decay of the Singlet Conversion Probability in One Dimensional Quantum Networks Scott Hottovy shottovy@math.arizona.edu Advised by: Dr. Janek Wehr University of Arizona Applied Mathematics December 18,

More information

New schemes for manipulating quantum states using a Kerr cell. Istituto Elettrotecnico Nazionale Galileo Ferraris, Str. delle Cacce 91, I Torino

New schemes for manipulating quantum states using a Kerr cell. Istituto Elettrotecnico Nazionale Galileo Ferraris, Str. delle Cacce 91, I Torino New schemes for manipulating quantum states using a Kerr cell Marco Genovese and C.Novero Istituto Elettrotecnico Nazionale Galileo Ferraris, Str. delle Cacce 91, I-10135 Torino Recently, Quantum Non Demolition

More information

Lecture on First-principles Computations (11): The Linearized Augmented Plane-wave Method

Lecture on First-principles Computations (11): The Linearized Augmented Plane-wave Method Lecture on First-principles Computations (11): The Linearized Augmented Plane-wave Method 任新国 (Xinguo Ren) 中国科学技术大学量子信息重点实验室 Key Laboratory of Quantum Information, USTC Hefei, 2018.10.24 Recall: orthogonalized

More information

强子谱和强子结构研究前沿简介 邹冰松 中国科学院高能物理研究所 中国科学院大科学装置理论物理研究中心

强子谱和强子结构研究前沿简介 邹冰松 中国科学院高能物理研究所 中国科学院大科学装置理论物理研究中心 强子谱和强子结构研究前沿简介 邹冰松 中国科学院高能物理研究所 中国科学院大科学装置理论物理研究中心 内容提要 一. 背景知识简介 二. 强子谱和强子结构研究前沿热点 三. 北京正负电子对撞机 BEPC 强子谱研究 一. 背景知识简介 1) 物质的基本相互作用和结构 2) 强子物理研究的基本问题 3) 探索强子内部结构的基本途径 1) 物质的基本相互作用和结构 引力相互作用宇宙 天体结构 > 10-2

More information

Cooperative Phenomena

Cooperative Phenomena Cooperative Phenomena Frankfurt am Main Kaiserslautern Mainz B1, B2, B4, B6, B13N A7, A9, A12 A10, B5, B8 Materials Design - Synthesis & Modelling A3, A8, B1, B2, B4, B6, B9, B11, B13N A5, A7, A9, A12,

More information

Math Questions for the 2011 PhD Qualifier Exam 1. Evaluate the following definite integral 3" 4 where! ( x) is the Dirac! - function. # " 4 [ ( )] dx x 2! cos x 2. Consider the differential equation dx

More information

Storage of Quantum Information in Topological Systems with Majorana Fermions

Storage of Quantum Information in Topological Systems with Majorana Fermions Storage of Quantum Information in Topological Systems with Majorana Fermions Leonardo Mazza Scuola Normale Superiore, Pisa Mainz September 26th, 2013 Leonardo Mazza (SNS) Storage of Information & Majorana

More information

Regular & Chaotic. collective modes in nuclei. Pavel Cejnar. ipnp.troja.mff.cuni.cz

Regular & Chaotic. collective modes in nuclei. Pavel Cejnar. ipnp.troja.mff.cuni.cz Pavel Cejnar Regular & Chaotic collective modes in nuclei Institute of Particle and Nuclear Physics Faculty of Mathematics and Physics Charles University, Prague, Czech Republic cejnar @ ipnp.troja.mff.cuni.cz

More information

Quantum many-body systems and tensor networks: simulation methods and applications

Quantum many-body systems and tensor networks: simulation methods and applications Quantum many-body systems and tensor networks: simulation methods and applications Román Orús School of Physical Sciences, University of Queensland, Brisbane (Australia) Department of Physics and Astronomy,

More information

Entanglement Entropy in Extended Quantum Systems

Entanglement Entropy in Extended Quantum Systems Entanglement Entropy in Extended Quantum Systems John Cardy University of Oxford STATPHYS 23 Genoa Outline A. Universal properties of entanglement entropy near quantum critical points B. Behaviour of entanglement

More information

Optimal Controlled Phasegates for Trapped Neutral Atoms at the Quantum Speed Limit

Optimal Controlled Phasegates for Trapped Neutral Atoms at the Quantum Speed Limit with Ultracold Trapped Atoms at the Quantum Speed Limit Michael Goerz May 31, 2011 with Ultracold Trapped Atoms Prologue: with Ultracold Trapped Atoms Classical Computing: 4-Bit Full Adder Inside the CPU:

More information

Efficient time evolution of one-dimensional quantum systems

Efficient time evolution of one-dimensional quantum systems Efficient time evolution of one-dimensional quantum systems Frank Pollmann Max-Planck-Institut für komplexer Systeme, Dresden, Germany Sep. 5, 2012 Hsinchu Problems we will address... Finding ground states

More information

Experimentally yet unobserved hadrons from QCD thermodynamics

Experimentally yet unobserved hadrons from QCD thermodynamics Experimentally yet unobserved hadrons from QCD thermodynamics Heng-Tong Ding ( 丁亨通 ) Central China Normal University (CCNU) 中国科学技术 大学交叉学科理论研究中 心合肥,2014.9.18 1 /41 Experimentally yet unobserved hadrons

More information

Topological Phases of Matter Out of Equilibrium

Topological Phases of Matter Out of Equilibrium Topological Phases of Matter Out of Equilibrium Nigel Cooper T.C.M. Group, Cavendish Laboratory, University of Cambridge Solvay Workshop on Quantum Simulation ULB, Brussels, 18 February 2019 Max McGinley

More information

Rigorous back analysis of shear strength parameters of landslide slip

Rigorous back analysis of shear strength parameters of landslide slip Trans. Nonferrous Met. Soc. China 23(2013) 1459 1464 Rigorous back analysis of shear strength parameters of landslide slip Ke ZHANG 1, Ping CAO 1, Rui BAO 1,2 1. School of Resources and Safety Engineering,

More information

INTRODUCTION TO NMR and NMR QIP

INTRODUCTION TO NMR and NMR QIP Books (NMR): Spin dynamics: basics of nuclear magnetic resonance, M. H. Levitt, Wiley, 2001. The principles of nuclear magnetism, A. Abragam, Oxford, 1961. Principles of magnetic resonance, C. P. Slichter,

More information

Topological Kondo Insulators!

Topological Kondo Insulators! Topological Kondo Insulators! Maxim Dzero, University of Maryland Collaborators: Kai Sun, University of Maryland Victor Galitski, University of Maryland Piers Coleman, Rutgers University Main idea Kondo

More information

On complexified quantum mechanics and space-time

On complexified quantum mechanics and space-time On complexified quantum mechanics and space-time Dorje C. Brody Mathematical Sciences Brunel University, Uxbridge UB8 3PH dorje.brody@brunel.ac.uk Quantum Physics with Non-Hermitian Operators Dresden:

More information

arxiv: v1 [quant-ph] 3 Feb 2011

arxiv: v1 [quant-ph] 3 Feb 2011 Heisenberg Spin Bus as a Robust Transmission Line for Perfect State Transfer Sangchul Oh, Lian-Ao Wu,, Yun-Pil Shim, Mark Friesen, and Xuedong Hu Department of Physics, University at Buffalo, State University

More information

Time Evolving Block Decimation Algorithm

Time Evolving Block Decimation Algorithm Time Evolving Block Decimation Algorithm Application to bosons on a lattice Jakub Zakrzewski Marian Smoluchowski Institute of Physics and Mark Kac Complex Systems Research Center, Jagiellonian University,

More information

Theory of Water-Proton Spin Relaxation in Complex Biological Systems

Theory of Water-Proton Spin Relaxation in Complex Biological Systems Theory of Water-Proton Spin Relaxation in Complex Biological Systems Zhiwei Chang Doctoral Thesis by due permission of the Faculty of Engineering LTH, Lund University, Sweden. The thesis will be publicly

More information

Principia and Design of Heat Exchanger Device 热交换器原理与设计

Principia and Design of Heat Exchanger Device 热交换器原理与设计 Principia and Design of Heat Exchanger Device 热交换器原理与设计 School of Energy and Power Engineering, SDU Presented: 杜文静 E-mail: wjdu@sdu.edu.cn Telephone: 88399000-511 1. Spiral heat exchanger 螺旋板式热交换器 basic

More information

Rotor Spectra, Berry Phases, and Monopole Fields: From Antiferromagnets to QCD

Rotor Spectra, Berry Phases, and Monopole Fields: From Antiferromagnets to QCD Rotor Spectra, Berry Phases, and Monopole Fields: From Antiferromagnets to QCD Uwe-Jens Wiese Bern University LATTICE08, Williamsburg, July 14, 008 S. Chandrasekharan (Duke University) F.-J. Jiang, F.

More information

PH 451/551 Quantum Mechanics Capstone Winter 201x

PH 451/551 Quantum Mechanics Capstone Winter 201x These are the questions from the W7 exam presented as practice problems. The equation sheet is PH 45/55 Quantum Mechanics Capstone Winter x TOTAL POINTS: xx Weniger 6, time There are xx questions, for

More information

Magnets, 1D quantum system, and quantum Phase transitions

Magnets, 1D quantum system, and quantum Phase transitions 134 Phys620.nb 10 Magnets, 1D quantum system, and quantum Phase transitions In 1D, fermions can be mapped into bosons, and vice versa. 10.1. magnetization and frustrated magnets (in any dimensions) Consider

More information

A new operational medium-range numerical weather forecast system of CHINA. NWPD/NMC/CMA (Beijing,CHINA)

A new operational medium-range numerical weather forecast system of CHINA. NWPD/NMC/CMA (Beijing,CHINA) A new operational medium-range numerical weather forecast system of CHINA NWPD/NMC/CMA (Beijing,CHINA) Organizational Chart of CMA NSMC (National Satellite Meteorological Center) NCC (National Climate

More information

Lecture 6 Photons, electrons and other quanta. EECS Winter 2006 Nanophotonics and Nano-scale Fabrication P.C.Ku

Lecture 6 Photons, electrons and other quanta. EECS Winter 2006 Nanophotonics and Nano-scale Fabrication P.C.Ku Lecture 6 Photons, electrons and other quanta EECS 598-002 Winter 2006 Nanophotonics and Nano-scale Fabrication P.C.Ku From classical to quantum theory In the beginning of the 20 th century, experiments

More information

Manipulation of Artificial Gauge Fields for Ultra-cold Atoms

Manipulation of Artificial Gauge Fields for Ultra-cold Atoms Manipulation of Artificial Gauge Fields for Ultra-cold Atoms Shi-Liang Zhu ( 朱诗亮 ) slzhu@scnu.edu.cn Laboratory of Quantum Information Technology and School of Physics South China Normal University, Guangzhou,

More information

Joint Project between Japan and Korea M. Jeong, M. Song, S. Lee (KAIST, Korea) +KBSI T. Ueno, M. Matsubara (Kyoto University, Japan)+Fukui Univ.

Joint Project between Japan and Korea M. Jeong, M. Song, S. Lee (KAIST, Korea) +KBSI T. Ueno, M. Matsubara (Kyoto University, Japan)+Fukui Univ. Joint Project between Japan and Korea M. Jeong, M. Song, S. Lee (KAIST, Korea) +KBSI T. Ueno, M. Matsubara (Kyoto University, Japan)+Fukui Univ. +Vasiliev(Turku) 31 P NMR at low temperatures ( down to

More information

Waves in Linear Optical Media

Waves in Linear Optical Media 1/53 Waves in Linear Optical Media Sergey A. Ponomarenko Dalhousie University c 2009 S. A. Ponomarenko Outline Plane waves in free space. Polarization. Plane waves in linear lossy media. Dispersion relations

More information

(Received 22 October 2009; revised manuscript received 30 December 2010)

(Received 22 October 2009; revised manuscript received 30 December 2010) Chin. Phys. B Vol. 19 No. 9 010) 090313 Teleportation and thermal entanglement in two-qubit Heisenberg XY Z spin chain with the Dyaloshinski Moriya interaction and the inhomogeneous magnetic field Gao

More information

Recent Physics Results

Recent Physics Results 第九届粒子物理 核物理和宇宙学前沿问题研讨会 (2010 年 7 月 19-24 日 ) Recent Physics Results from pp Collisions with ALICE at LHC 蔡 勖 华中师范大学, 粒子物理研究所 LHC SPS PS 1 Large Hadron Collider at CERN ALICE 0.9, 2.36, 7TeV ALICE 0.9TeV

More information

What is possible to do with noisy quantum computers?

What is possible to do with noisy quantum computers? What is possible to do with noisy quantum computers? Decoherence, inaccuracy and errors in Quantum Information Processing Sara Felloni and Giuliano Strini sara.felloni@disco.unimib.it Dipartimento di Informatica

More information

Appendix: SU(2) spin angular momentum and single spin dynamics

Appendix: SU(2) spin angular momentum and single spin dynamics Phys 7 Topics in Particles & Fields Spring 03 Lecture v0 Appendix: SU spin angular momentum and single spin dynamics Jeffrey Yepez Department of Physics and Astronomy University of Hawai i at Manoa Watanabe

More information

能源化学工程专业培养方案. Undergraduate Program for Specialty in Energy Chemical Engineering 专业负责人 : 何平分管院长 : 廖其龙院学术委员会主任 : 李玉香

能源化学工程专业培养方案. Undergraduate Program for Specialty in Energy Chemical Engineering 专业负责人 : 何平分管院长 : 廖其龙院学术委员会主任 : 李玉香 能源化学工程专业培养方案 Undergraduate Program for Specialty in Energy Chemical Engineering 专业负责人 : 何平分管院长 : 廖其龙院学术委员会主任 : 李玉香 Director of Specialty: He Ping Executive Dean: Liao Qilong Academic Committee Director:

More information

Measuring entanglement in synthetic quantum systems

Measuring entanglement in synthetic quantum systems Measuring entanglement in synthetic quantum systems ψ?? ψ K. Rajibul Islam Institute for Quantum Computing and Department of Physics and Astronomy University of Waterloo research.iqc.uwaterloo.ca/qiti/

More information

Tensor network simulations of strongly correlated quantum systems

Tensor network simulations of strongly correlated quantum systems CENTRE FOR QUANTUM TECHNOLOGIES NATIONAL UNIVERSITY OF SINGAPORE AND CLARENDON LABORATORY UNIVERSITY OF OXFORD Tensor network simulations of strongly correlated quantum systems Stephen Clark LXXT[[[GSQPEFS\EGYOEGXMZMXMIWUYERXYQGSYVWI

More information

Measuring Entanglement Entropy in Synthetic Matter

Measuring Entanglement Entropy in Synthetic Matter Measuring Entanglement Entropy in Synthetic Matter Markus Greiner Harvard University H A R V A R D U N I V E R S I T Y M I T CENTER FOR ULTRACOLD ATOMS Ultracold atom synthetic quantum matter: First Principles

More information

QUANTUM CRYPTOGRAPHY QUANTUM COMPUTING. Philippe Grangier, Institut d'optique, Orsay. from basic principles to practical realizations.

QUANTUM CRYPTOGRAPHY QUANTUM COMPUTING. Philippe Grangier, Institut d'optique, Orsay. from basic principles to practical realizations. QUANTUM CRYPTOGRAPHY QUANTUM COMPUTING Philippe Grangier, Institut d'optique, Orsay 1. Quantum cryptography : from basic principles to practical realizations. 2. Quantum computing : a conceptual revolution

More information

Transient Dynamics of Light Propagation in Λ-Atom EIT Medium

Transient Dynamics of Light Propagation in Λ-Atom EIT Medium Commun. Theor. Phys. (Beijing, China) 44 (2005) pp. 356 364 c International Academic Publishers Vol. 44, o. 2, August 15, 2005 Transient Dynamics of Light Propagation in Λ-Atom EIT Medium LI Yong 1,2 and

More information

Quantum simulations, adiabatic transformations,

Quantum simulations, adiabatic transformations, Quantum simulations, adiabatic transformations, and resonating valence bond states Aspen June 2009 Simon Trebst Microsoft Station Q UC Santa Barbara Ulrich Schollwöck Matthias Troyer Peter Zoller High

More information

Topological Physics in Band Insulators IV

Topological Physics in Band Insulators IV Topological Physics in Band Insulators IV Gene Mele University of Pennsylvania Wannier representation and band projectors Modern view: Gapped electronic states are equivalent Kohn (1964): insulator is

More information