MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department 8.323: Relativistic Quantum Field Theory I

Size: px
Start display at page:

Download "MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department 8.323: Relativistic Quantum Field Theory I"

Transcription

1 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Departent 8.33: Relativistic Quantu Field Theory I INFORMAL NOTES DISTRIBUTIONS AND THE FOURIER TRANSFORM Basic idea: In QFT it is coon to encounter integrals that are not well-defined.last week we talked about the two point function φ(x)φ(y) for spacelike separations (x y) = r, which is given forally by D(r) = i dp (π) r p +. If this integral is defined in the usual way as Λ li dp Λ Λ p +, then it does not exist.the integral can be defined by putting in a convergence factor e ɛ p : li dp peipr e ɛ p p +. But how does one know whether a different convergence factor would get the sae result? One way to resolve these issues is to treat the abiguous quantity as a distribution, rather than a function.all tepered distributions (to be defined below) have Fourier transfors, which are also tepered distributions.furtherore, we can show that the ɛ-prescription used above is equivalent to the tepered-distribution definition of the Fourier transfor. Distribution: A distribution is a linear apping fro a space of test functions to real or coplex nubers.(an operator-valued distribution aps test functions into operators.) Test Functions: The space of test functions {ϕ(t)} deterines what type of distribution one is discussing.the test functions for tepered distributions belong to Schwartz space, the space of functions which are infinitely differentiable, and the function and each of its derivatives fall off faster than any power for large t.the Gaussian is a good exaple of a Schwartz function.any function in Schwartz space has a Fourier transfor in Schwartz space.(the Fourier transfor of a Gaussian is a Gaussian.)

2 8.33 NOTES, DISTRIBUTIONS AND THE FOURIER TRANSFORM, SPRING 3 p. Functions as Distributions: Given any function f(t) which is piecewise continuous and bounded by soe power of t for large t, one can define a distribution T f by T f [ϕ] dtf(t)ϕ(t). Since ϕ(t) falls off faster than any power, this integral will converge.note that because the class of ϕ(t) s is very restricted, the class of possible f(t) s is very large. Fourier Transfor: For any function f(t) which is integrable, eaning that dt f(t) converges, define f(ω) dte iωt f(t). Fourier Transfor of a Distribution: To otivate the definition, suppose f(t) is integrable, and consider T f [ϕ] = = = f(ω)ϕ(ω) dω dt = T f [ ϕ]. dtf(t) ϕ(t) e iωt f(t) ϕ(ω) dω Note that these integrals are absolutely convergent, so there is no proble about interchanging the order of integration.so, for any distribution T, define its Fourier transfor by T [ϕ] T [ ϕ]. Note that any function f(t) which is piecewise continuous and bounded by soe power of t for large t can define a distribution, and can therefore be Fourier transfored as a distribution.

3 8.33 NOTES, DISTRIBUTIONS AND THE FOURIER TRANSFORM, SPRING 3 p. 3 Relation to ɛ convergence factor: Suppose f(t) is not integrable, and so does not have a Fourier transfor.suppose, however, that there exists a continuous sequence of regulated functions f ɛ (t) which are integrable for ɛ>, which satisfy f ɛ (t) < f(t), and which for each t satisfy li f ɛ(t) =f(t). Proof: Exaple: f ɛ (t) =f(t)e ɛ t.note that the regulator that we used for the two-point function at spacelike separations has this property.to show: if we Fourier transfor f ɛ (t) and take the liit ɛ at the end, it is the sae as the distribution-theory definition of the Fourier transfor. The distribution-theory definition of the Fourier transfor is T f [ϕ] T f [ ϕ] = dtf(t) ϕ(t). The ɛ prescription is to use T f [ϕ] li T f ɛ [ϕ]. We need to show these are equivalent.use Tf [ϕ] = li dω f ɛ (ω)ϕ(ω) = li dω = li dte iωt f ɛ (t)ϕ(ω) dtf ɛ (t) ϕ(t). If we can take the liit inside the integral, we are done!

4 8.33 NOTES, DISTRIBUTIONS AND THE FOURIER TRANSFORM, SPRING 3 p. 4 Last step is proven with Lebesgue s Doinated Convergence Theore: If h ɛ (t) isa sequence of functions for which li h ɛ(t) =h(t) for all t, and if there exists a function g(t) forwhich dtg(t) converges, and for which g(t) h ɛ (t) for all t and all ɛ, then li dth ɛ (t) = dth(t). Note, by the way, that the existence of the integrable bounding function g(x) is absolutely necessary.a siple exaple of a function h ɛ (t) for which one CANNOT bring the liit through the integral sign would be a function that looks soething like: Analytically, this function can be written as h ɛ (t) = { 1 if 1 ɛ <t< 1 ɛ +1 otherwise. Note that the square well oves infinitely far to the right as ɛ, so h ɛ (t) for any t.but the integral of the curve is 1 for any ɛ, and hence it is 1 in the liit.the Lebesgue Doinated Convergence theore excludes functions like this, because any bounding function g(t) ust be 1 for all t, so g(t) cannot be integrable. The theore does apply, however, to li dtf ɛ (t) ϕ(t).

5 8.33 NOTES, DISTRIBUTIONS AND THE FOURIER TRANSFORM, SPRING 3 p. 5 Take and h ɛ (t) =f ɛ (t) ϕ(t), h(t) =f(t) ϕ(t), g(t) = f(t) ϕ(t). Botto Line: The ɛ prescription used by physicists is equivalent to the unabiguous definition of the Fourier transfor in tepered-distribution theory.that is, if the function to be Fourier-transfored f(t) is not integrable, one can proceed as long as one can find an integrable regulator f ɛ (t) such that f ɛ (t) < f(t), and for each t, li f ɛ(t) =f(t). One can then Fourier transfor f ɛ (t) instead.in the general case one cannot take the liit ɛ iediately, but one ust leave ɛ in the expression for the distribution. Only after the distribution is evaluated for a particular test function can the liit ɛ be taken.reeber, for exaple, that we wrote the Fourier transfor of the Feynan propagator as i p + iɛ. With the ɛ in place one can carry out integrals involving the propagator, and then one can take the liit ɛ at the end.if one tried to set the ɛ ter to zero iediately, then the poles in the propagator would lead to ill-defined integrations. The two-point function at spacelike separation: When we applied the regulator e ɛ p to the integral for the two-point function at spacelike separation, we found that we could obtain a definite function, D(r) = li i e ɛ p (π) r p + = 4π r K 1(r). The distribution theory analysis, however, did not justify the last step of taking the liit ɛ, but instead indicated that we should keep ɛ in place until after the distribution has been applied to a test function.in the previous lecture I showed that the integral shown above can be evaluated exactly with finite nonzero ɛ, and

6 8.33 NOTES, DISTRIBUTIONS AND THE FOURIER TRANSFORM, SPRING 3 p. 6 the result involved K 1 (r + iɛ), and also the iaginary part of a Struve function H 1 (i(r + iɛ)) and the real part of a Bessel function J 1 (i(r + iɛ)).if one defines i e ɛ p (π) r p + D(r, ɛ), then the distribution theory approach iplies that we should evaluate this distribution on a test function ϕ(r) by coputing li dr D(r, ɛ) ϕ(r). We, however, would like to siplify this further by taking the liit through the integral sign and using li D(r, ɛ) = 4π r K 1(r). Since ϕ(r) is required to be very well behaved, one needs only a oderate aount of unifority in the liit above to justify bringing the liit through the integral sign, using again the Lebesgue doinated convergence theore.a unifor liit would ean that for every δ>thereexistsanɛ such that D(r, ɛ) 4π r K 1(r) <δ. To bring the liit through the integral sign, it would be enough to show that for every δ>thereexistsanɛ such that D(r, ɛ) 4π r K 1(r) <g(r) δ, where g(r) is soe fixed function which blows up no faster than a power as r, so that drg(r) ϕ(r) would be guaranteed to converge.i assue that this can be ade to work, but I will not pursue it further. There is, however, an interesting point to look at concerning the use of different regulators.the distribution analysis shows that any regulator should be equivalent to any other, provided only that f ɛ (t) < f(t), and for each t, li f ɛ(t) =f(t).

7 8.33 NOTES, DISTRIBUTIONS AND THE FOURIER TRANSFORM, SPRING 3 p. 7 This includes the possibility of a sharp cutoff at Λ = 1/ɛ.So 1/ɛ dp p + should be an acceptable regulator.but earlier we rejected this definition, because it looked like the liit did not exist.to understand what is happening, it is easiest to integrate by parts: 1/ɛ dp p + = 1 ir eir/ɛ 1 1+ ɛ ir 1/ɛ dp e ipr (p + ) 3/. The second ter is well-behaved, since it falls off at large p as 1/p 3.This integration by parts is just the recipe that I recoended for a purely nuerical evaluation of the two-point function.for the exponential regulator the surface ter vanished, but this tie we have the probleatic ter proportional to e ir/ɛ.this factor has no liit as ɛ if one thinks of it as a function, but as a distribution it vanishes: li dre ir/ɛ ϕ(r) is defined by first Fourier transforing ϕ(r) at p = 1/ɛ, and then taking the liit ɛ, or equivalently p.but the Fourier transfor of a Schwartz function is also a function of Schwartz type, and therefore it falls off faster than any power as p. In the above arguent I ignored the factor of 1/r that arose in the Fourier transfor. For the spacelike separation proble r ust be positive, so we restrict the ϕ(r) to vanish if r.but we have not yet specified how the test functions ϕ(r) should behave as r.following the general philosophy of choosing test functions to be extreely well-behaved, we can require each test functions to vanish in an open neighborhood about r =.We do not fix the size of these open neighborhoods, but just insist that for each acceptable ϕ(r), there is soe δ> such that ϕ(r) = if r < δ.then ultiplication by 1/r is perfectly well-defined operation on test functions, and we are justified in setting to zero. 1 1 ir eir/ɛ 1+ ɛ

8.323 Relativistic Quantum Field Theory I

8.323 Relativistic Quantum Field Theory I MIT OpenCourseWare http://ocw.mit.edu 8.323 Relativistic Quantum Field Theory I Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. MASSACHUSETTS

More information

2 Q 10. Likewise, in case of multiple particles, the corresponding density in 2 must be averaged over all

2 Q 10. Likewise, in case of multiple particles, the corresponding density in 2 must be averaged over all Lecture 6 Introduction to kinetic theory of plasa waves Introduction to kinetic theory So far we have been odeling plasa dynaics using fluid equations. The assuption has been that the pressure can be either

More information

a a a a a a a m a b a b

a a a a a a a m a b a b Algebra / Trig Final Exa Study Guide (Fall Seester) Moncada/Dunphy Inforation About the Final Exa The final exa is cuulative, covering Appendix A (A.1-A.5) and Chapter 1. All probles will be ultiple choice

More information

Physics 221A: HW3 solutions

Physics 221A: HW3 solutions Physics 22A: HW3 solutions October 22, 202. a) It will help to start things off by doing soe gaussian integrals. Let x be a real vector of length, and let s copute dxe 2 xt Ax, where A is soe real atrix.

More information

1 Proof of learning bounds

1 Proof of learning bounds COS 511: Theoretical Machine Learning Lecturer: Rob Schapire Lecture #4 Scribe: Akshay Mittal February 13, 2013 1 Proof of learning bounds For intuition of the following theore, suppose there exists a

More information

Lectures 8 & 9: The Z-transform.

Lectures 8 & 9: The Z-transform. Lectures 8 & 9: The Z-transfor. 1. Definitions. The Z-transfor is defined as a function series (a series in which each ter is a function of one or ore variables: Z[] where is a C valued function f : N

More information

Fourier Series Summary (From Salivahanan et al, 2002)

Fourier Series Summary (From Salivahanan et al, 2002) Fourier Series Suary (Fro Salivahanan et al, ) A periodic continuous signal f(t), - < t

More information

Electromagnetic scattering. Graduate Course Electrical Engineering (Communications) 1 st Semester, Sharif University of Technology

Electromagnetic scattering. Graduate Course Electrical Engineering (Communications) 1 st Semester, Sharif University of Technology Electroagnetic scattering Graduate Course Electrical Engineering (Counications) 1 st Seester, 1388-1389 Sharif University of Technology Contents of lecture 5 Contents of lecture 5: Scattering fro a conductive

More information

BEE604 Digital Signal Processing

BEE604 Digital Signal Processing BEE64 Digital Signal Processing Copiled by, Mrs.S.Sherine Assistant Professor Departent of EEE BIHER. COTETS Sapling Discrete Tie Fourier Transfor Properties of DTFT Discrete Fourier Transfor Inverse Discrete

More information

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation Course Notes for EE227C (Spring 2018): Convex Optiization and Approxiation Instructor: Moritz Hardt Eail: hardt+ee227c@berkeley.edu Graduate Instructor: Max Sichowitz Eail: sichow+ee227c@berkeley.edu October

More information

1 Generalization bounds based on Rademacher complexity

1 Generalization bounds based on Rademacher complexity COS 5: Theoretical Machine Learning Lecturer: Rob Schapire Lecture #0 Scribe: Suqi Liu March 07, 08 Last tie we started proving this very general result about how quickly the epirical average converges

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 11 10/15/2008 ABSTRACT INTEGRATION I

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 11 10/15/2008 ABSTRACT INTEGRATION I MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 11 10/15/2008 ABSTRACT INTEGRATION I Contents 1. Preliinaries 2. The ain result 3. The Rieann integral 4. The integral of a nonnegative

More information

SOLUTIONS. PROBLEM 1. The Hamiltonian of the particle in the gravitational field can be written as, x 0, + U(x), U(x) =

SOLUTIONS. PROBLEM 1. The Hamiltonian of the particle in the gravitational field can be written as, x 0, + U(x), U(x) = SOLUTIONS PROBLEM 1. The Hailtonian of the particle in the gravitational field can be written as { Ĥ = ˆp2, x 0, + U(x), U(x) = (1) 2 gx, x > 0. The siplest estiate coes fro the uncertainty relation. If

More information

PROBLEMSET 4 SOLUTIONS

PROBLEMSET 4 SOLUTIONS MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department 8.33: Relativistic Quantum Field Theory I Prof.Alan Guth March 17, 8 PROBLEMSET 4 SOLUTIONS Problem 1: Evaluation of φ(x)φ(y) for spacelike separations

More information

List Scheduling and LPT Oliver Braun (09/05/2017)

List Scheduling and LPT Oliver Braun (09/05/2017) List Scheduling and LPT Oliver Braun (09/05/207) We investigate the classical scheduling proble P ax where a set of n independent jobs has to be processed on 2 parallel and identical processors (achines)

More information

Causality and the Kramers Kronig relations

Causality and the Kramers Kronig relations Causality and the Kraers Kronig relations Causality describes the teporal relationship between cause and effect. A bell rings after you strike it, not before you strike it. This eans that the function

More information

lecture 36: Linear Multistep Mehods: Zero Stability

lecture 36: Linear Multistep Mehods: Zero Stability 95 lecture 36: Linear Multistep Mehods: Zero Stability 5.6 Linear ultistep ethods: zero stability Does consistency iply convergence for linear ultistep ethods? This is always the case for one-step ethods,

More information

Analysis of Polynomial & Rational Functions ( summary )

Analysis of Polynomial & Rational Functions ( summary ) Analysis of Polynoial & Rational Functions ( suary ) The standard for of a polynoial function is ( ) where each of the nubers are called the coefficients. The polynoial of is said to have degree n, where

More information

Physics 215 Winter The Density Matrix

Physics 215 Winter The Density Matrix Physics 215 Winter 2018 The Density Matrix The quantu space of states is a Hilbert space H. Any state vector ψ H is a pure state. Since any linear cobination of eleents of H are also an eleent of H, it

More information

12 Towards hydrodynamic equations J Nonlinear Dynamics II: Continuum Systems Lecture 12 Spring 2015

12 Towards hydrodynamic equations J Nonlinear Dynamics II: Continuum Systems Lecture 12 Spring 2015 18.354J Nonlinear Dynaics II: Continuu Systes Lecture 12 Spring 2015 12 Towards hydrodynaic equations The previous classes focussed on the continuu description of static (tie-independent) elastic systes.

More information

Solutions of some selected problems of Homework 4

Solutions of some selected problems of Homework 4 Solutions of soe selected probles of Hoework 4 Sangchul Lee May 7, 2018 Proble 1 Let there be light A professor has two light bulbs in his garage. When both are burned out, they are replaced, and the next

More information

The Weierstrass Approximation Theorem

The Weierstrass Approximation Theorem 36 The Weierstrass Approxiation Theore Recall that the fundaental idea underlying the construction of the real nubers is approxiation by the sipler rational nubers. Firstly, nubers are often deterined

More information

Some Perspective. Forces and Newton s Laws

Some Perspective. Forces and Newton s Laws Soe Perspective The language of Kineatics provides us with an efficient ethod for describing the otion of aterial objects, and we ll continue to ake refineents to it as we introduce additional types of

More information

NB1140: Physics 1A - Classical mechanics and Thermodynamics Problem set 2 - Forces and energy Week 2: November 2016

NB1140: Physics 1A - Classical mechanics and Thermodynamics Problem set 2 - Forces and energy Week 2: November 2016 NB1140: Physics 1A - Classical echanics and Therodynaics Proble set 2 - Forces and energy Week 2: 21-25 Noveber 2016 Proble 1. Why force is transitted uniforly through a assless string, a assless spring,

More information

Now multiply the left-hand-side by ω and the right-hand side by dδ/dt (recall ω= dδ/dt) to get:

Now multiply the left-hand-side by ω and the right-hand side by dδ/dt (recall ω= dδ/dt) to get: Equal Area Criterion.0 Developent of equal area criterion As in previous notes, all powers are in per-unit. I want to show you the equal area criterion a little differently than the book does it. Let s

More information

Ocean 420 Physical Processes in the Ocean Project 1: Hydrostatic Balance, Advection and Diffusion Answers

Ocean 420 Physical Processes in the Ocean Project 1: Hydrostatic Balance, Advection and Diffusion Answers Ocean 40 Physical Processes in the Ocean Project 1: Hydrostatic Balance, Advection and Diffusion Answers 1. Hydrostatic Balance a) Set all of the levels on one of the coluns to the lowest possible density.

More information

Four-vector, Dirac spinor representation and Lorentz Transformations

Four-vector, Dirac spinor representation and Lorentz Transformations Available online at www.pelagiaresearchlibrary.co Advances in Applied Science Research, 2012, 3 (2):749-756 Four-vector, Dirac spinor representation and Lorentz Transforations S. B. Khasare 1, J. N. Rateke

More information

Principles of Optimal Control Spring 2008

Principles of Optimal Control Spring 2008 MIT OpenCourseWare http://ocw.it.edu 16.323 Principles of Optial Control Spring 2008 For inforation about citing these aterials or our Ters of Use, visit: http://ocw.it.edu/ters. 16.323 Lecture 10 Singular

More information

13.2 Fully Polynomial Randomized Approximation Scheme for Permanent of Random 0-1 Matrices

13.2 Fully Polynomial Randomized Approximation Scheme for Permanent of Random 0-1 Matrices CS71 Randoness & Coputation Spring 018 Instructor: Alistair Sinclair Lecture 13: February 7 Disclaier: These notes have not been subjected to the usual scrutiny accorded to foral publications. They ay

More information

Lesson 24: Newton's Second Law (Motion)

Lesson 24: Newton's Second Law (Motion) Lesson 24: Newton's Second Law (Motion) To really appreciate Newton s Laws, it soeties helps to see how they build on each other. The First Law describes what will happen if there is no net force. The

More information

Lecture 21. Interior Point Methods Setup and Algorithm

Lecture 21. Interior Point Methods Setup and Algorithm Lecture 21 Interior Point Methods In 1984, Kararkar introduced a new weakly polynoial tie algorith for solving LPs [Kar84a], [Kar84b]. His algorith was theoretically faster than the ellipsoid ethod and

More information

Physics 201, Lecture 15

Physics 201, Lecture 15 Physics 0, Lecture 5 Today s Topics q More on Linear Moentu And Collisions Elastic and Perfect Inelastic Collision (D) Two Diensional Elastic Collisions Exercise: Billiards Board Explosion q Multi-Particle

More information

Chapter 6 1-D Continuous Groups

Chapter 6 1-D Continuous Groups Chapter 6 1-D Continuous Groups Continuous groups consist of group eleents labelled by one or ore continuous variables, say a 1, a 2,, a r, where each variable has a well- defined range. This chapter explores:

More information

Kinetic Theory of Gases: Elementary Ideas

Kinetic Theory of Gases: Elementary Ideas Kinetic Theory of Gases: Eleentary Ideas 17th February 2010 1 Kinetic Theory: A Discussion Based on a Siplified iew of the Motion of Gases 1.1 Pressure: Consul Engel and Reid Ch. 33.1) for a discussion

More information

3.8 Three Types of Convergence

3.8 Three Types of Convergence 3.8 Three Types of Convergence 3.8 Three Types of Convergence 93 Suppose that we are given a sequence functions {f k } k N on a set X and another function f on X. What does it ean for f k to converge to

More information

Generalized eigenfunctions and a Borel Theorem on the Sierpinski Gasket.

Generalized eigenfunctions and a Borel Theorem on the Sierpinski Gasket. Generalized eigenfunctions and a Borel Theore on the Sierpinski Gasket. Kasso A. Okoudjou, Luke G. Rogers, and Robert S. Strichartz May 26, 2006 1 Introduction There is a well developed theory (see [5,

More information

Mechanics Physics 151

Mechanics Physics 151 Mechanics Physics 5 Lecture Oscillations (Chapter 6) What We Did Last Tie Analyzed the otion of a heavy top Reduced into -diensional proble of θ Qualitative behavior Precession + nutation Initial condition

More information

. The univariate situation. It is well-known for a long tie that denoinators of Pade approxiants can be considered as orthogonal polynoials with respe

. The univariate situation. It is well-known for a long tie that denoinators of Pade approxiants can be considered as orthogonal polynoials with respe PROPERTIES OF MULTIVARIATE HOMOGENEOUS ORTHOGONAL POLYNOMIALS Brahi Benouahane y Annie Cuyt? Keywords Abstract It is well-known that the denoinators of Pade approxiants can be considered as orthogonal

More information

Kinetic Theory of Gases: Elementary Ideas

Kinetic Theory of Gases: Elementary Ideas Kinetic Theory of Gases: Eleentary Ideas 9th February 011 1 Kinetic Theory: A Discussion Based on a Siplified iew of the Motion of Gases 1.1 Pressure: Consul Engel and Reid Ch. 33.1) for a discussion of

More information

OSCILLATIONS AND WAVES

OSCILLATIONS AND WAVES OSCILLATIONS AND WAVES OSCILLATION IS AN EXAMPLE OF PERIODIC MOTION No stories this tie, we are going to get straight to the topic. We say that an event is Periodic in nature when it repeats itself in

More information

About the definition of parameters and regimes of active two-port networks with variable loads on the basis of projective geometry

About the definition of parameters and regimes of active two-port networks with variable loads on the basis of projective geometry About the definition of paraeters and regies of active two-port networks with variable loads on the basis of projective geoetry PENN ALEXANDR nstitute of Electronic Engineering and Nanotechnologies "D

More information

Beyond Mere Convergence

Beyond Mere Convergence Beyond Mere Convergence Jaes A. Sellers Departent of Matheatics The Pennsylvania State University 07 Whitore Laboratory University Park, PA 680 sellers@ath.psu.edu February 5, 00 REVISED Abstract In this

More information

Physically Based Modeling CS Notes Spring 1997 Particle Collision and Contact

Physically Based Modeling CS Notes Spring 1997 Particle Collision and Contact Physically Based Modeling CS 15-863 Notes Spring 1997 Particle Collision and Contact 1 Collisions with Springs Suppose we wanted to ipleent a particle siulator with a floor : a solid horizontal plane which

More information

Lecture 16: Scattering States and the Step Potential. 1 The Step Potential 1. 4 Wavepackets in the step potential 6

Lecture 16: Scattering States and the Step Potential. 1 The Step Potential 1. 4 Wavepackets in the step potential 6 Lecture 16: Scattering States and the Step Potential B. Zwiebach April 19, 2016 Contents 1 The Step Potential 1 2 Step Potential with E>V 0 2 3 Step Potential with E

More information

The Wilson Model of Cortical Neurons Richard B. Wells

The Wilson Model of Cortical Neurons Richard B. Wells The Wilson Model of Cortical Neurons Richard B. Wells I. Refineents on the odgkin-uxley Model The years since odgkin s and uxley s pioneering work have produced a nuber of derivative odgkin-uxley-like

More information

Quantum algorithms (CO 781, Winter 2008) Prof. Andrew Childs, University of Waterloo LECTURE 15: Unstructured search and spatial search

Quantum algorithms (CO 781, Winter 2008) Prof. Andrew Childs, University of Waterloo LECTURE 15: Unstructured search and spatial search Quantu algoriths (CO 781, Winter 2008) Prof Andrew Childs, University of Waterloo LECTURE 15: Unstructured search and spatial search ow we begin to discuss applications of quantu walks to search algoriths

More information

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation Course Notes for EE7C (Spring 018: Convex Optiization and Approxiation Instructor: Moritz Hardt Eail: hardt+ee7c@berkeley.edu Graduate Instructor: Max Sichowitz Eail: sichow+ee7c@berkeley.edu October 15,

More information

ma x = -bv x + F rod.

ma x = -bv x + F rod. Notes on Dynaical Systes Dynaics is the study of change. The priary ingredients of a dynaical syste are its state and its rule of change (also soeties called the dynaic). Dynaical systes can be continuous

More information

4 = (0.02) 3 13, = 0.25 because = 25. Simi-

4 = (0.02) 3 13, = 0.25 because = 25. Simi- Theore. Let b and be integers greater than. If = (. a a 2 a i ) b,then for any t N, in base (b + t), the fraction has the digital representation = (. a a 2 a i ) b+t, where a i = a i + tk i with k i =

More information

Curious Bounds for Floor Function Sums

Curious Bounds for Floor Function Sums 1 47 6 11 Journal of Integer Sequences, Vol. 1 (018), Article 18.1.8 Curious Bounds for Floor Function Sus Thotsaporn Thanatipanonda and Elaine Wong 1 Science Division Mahidol University International

More information

U V. r In Uniform Field the Potential Difference is V Ed

U V. r In Uniform Field the Potential Difference is V Ed SPHI/W nit 7.8 Electric Potential Page of 5 Notes Physics Tool box Electric Potential Energy the electric potential energy stored in a syste k of two charges and is E r k Coulobs Constant is N C 9 9. E

More information

VC Dimension and Sauer s Lemma

VC Dimension and Sauer s Lemma CMSC 35900 (Spring 2008) Learning Theory Lecture: VC Diension and Sauer s Lea Instructors: Sha Kakade and Abuj Tewari Radeacher Averages and Growth Function Theore Let F be a class of ±-valued functions

More information

Finite fields. and we ve used it in various examples and homework problems. In these notes I will introduce more finite fields

Finite fields. and we ve used it in various examples and homework problems. In these notes I will introduce more finite fields Finite fields I talked in class about the field with two eleents F 2 = {, } and we ve used it in various eaples and hoework probles. In these notes I will introduce ore finite fields F p = {,,...,p } for

More information

Problem 1. Arfken

Problem 1. Arfken All Arfken problems are reproduced at the end of this assignment Problem 1. Arfken 11.2.11. Problem 2. (a) Do Arfken 11.3.3 (b) The integral Integrals 4 3i 3+4i (x 2 iy 2 ) dz (1) is not defined without

More information

Donald Fussell. October 28, Computer Science Department The University of Texas at Austin. Point Masses and Force Fields.

Donald Fussell. October 28, Computer Science Department The University of Texas at Austin. Point Masses and Force Fields. s Vector Moving s and Coputer Science Departent The University of Texas at Austin October 28, 2014 s Vector Moving s Siple classical dynaics - point asses oved by forces Point asses can odel particles

More information

Classical systems in equilibrium

Classical systems in equilibrium 35 Classical systes in equilibriu Ideal gas Distinguishable particles Here we assue that every particle can be labeled by an index i... and distinguished fro any other particle by its label if not by any

More information

Lecture #8-3 Oscillations, Simple Harmonic Motion

Lecture #8-3 Oscillations, Simple Harmonic Motion Lecture #8-3 Oscillations Siple Haronic Motion So far we have considered two basic types of otion: translation and rotation. But these are not the only two types of otion we can observe in every day life.

More information

Definition of Work, The basics

Definition of Work, The basics Physics 07 Lecture 16 Lecture 16 Chapter 11 (Work) v Eploy conservative and non-conservative forces v Relate force to potential energy v Use the concept of power (i.e., energy per tie) Chapter 1 v Define

More information

E0 370 Statistical Learning Theory Lecture 6 (Aug 30, 2011) Margin Analysis

E0 370 Statistical Learning Theory Lecture 6 (Aug 30, 2011) Margin Analysis E0 370 tatistical Learning Theory Lecture 6 (Aug 30, 20) Margin Analysis Lecturer: hivani Agarwal cribe: Narasihan R Introduction In the last few lectures we have seen how to obtain high confidence bounds

More information

Analyzing Simulation Results

Analyzing Simulation Results Analyzing Siulation Results Dr. John Mellor-Cruey Departent of Coputer Science Rice University johnc@cs.rice.edu COMP 528 Lecture 20 31 March 2005 Topics for Today Model verification Model validation Transient

More information

Introduction to Robotics (CS223A) (Winter 2006/2007) Homework #5 solutions

Introduction to Robotics (CS223A) (Winter 2006/2007) Homework #5 solutions Introduction to Robotics (CS3A) Handout (Winter 6/7) Hoework #5 solutions. (a) Derive a forula that transfors an inertia tensor given in soe frae {C} into a new frae {A}. The frae {A} can differ fro frae

More information

The path integral approach in the frame work of causal interpretation

The path integral approach in the frame work of causal interpretation Annales de la Fondation Louis de Broglie, Volue 28 no 1, 2003 1 The path integral approach in the frae work of causal interpretation M. Abolhasani 1,2 and M. Golshani 1,2 1 Institute for Studies in Theoretical

More information

On Constant Power Water-filling

On Constant Power Water-filling On Constant Power Water-filling Wei Yu and John M. Cioffi Electrical Engineering Departent Stanford University, Stanford, CA94305, U.S.A. eails: {weiyu,cioffi}@stanford.edu Abstract This paper derives

More information

Feature Extraction Techniques

Feature Extraction Techniques Feature Extraction Techniques Unsupervised Learning II Feature Extraction Unsupervised ethods can also be used to find features which can be useful for categorization. There are unsupervised ethods that

More information

5.2. Example: Landau levels and quantum Hall effect

5.2. Example: Landau levels and quantum Hall effect 68 Phs460.nb i ħ (-i ħ -q A') -q φ' ψ' = + V(r) ψ' (5.49) t i.e., using the new gauge, the Schrodinger equation takes eactl the sae for (i.e. the phsics law reains the sae). 5.. Eaple: Lau levels quantu

More information

P (t) = P (t = 0) + F t Conclusion: If we wait long enough, the velocity of an electron will diverge, which is obviously impossible and wrong.

P (t) = P (t = 0) + F t Conclusion: If we wait long enough, the velocity of an electron will diverge, which is obviously impossible and wrong. 4 Phys520.nb 2 Drude theory ~ Chapter in textbook 2.. The relaxation tie approxiation Here we treat electrons as a free ideal gas (classical) 2... Totally ignore interactions/scatterings Under a static

More information

Uniform Approximation and Bernstein Polynomials with Coefficients in the Unit Interval

Uniform Approximation and Bernstein Polynomials with Coefficients in the Unit Interval Unifor Approxiation and Bernstein Polynoials with Coefficients in the Unit Interval Weiang Qian and Marc D. Riedel Electrical and Coputer Engineering, University of Minnesota 200 Union St. S.E. Minneapolis,

More information

The Fundamental Basis Theorem of Geometry from an algebraic point of view

The Fundamental Basis Theorem of Geometry from an algebraic point of view Journal of Physics: Conference Series PAPER OPEN ACCESS The Fundaental Basis Theore of Geoetry fro an algebraic point of view To cite this article: U Bekbaev 2017 J Phys: Conf Ser 819 012013 View the article

More information

Numerically repeated support splitting and merging phenomena in a porous media equation with strong absorption. Kenji Tomoeda

Numerically repeated support splitting and merging phenomena in a porous media equation with strong absorption. Kenji Tomoeda Journal of Math-for-Industry, Vol. 3 (C-), pp. Nuerically repeated support splitting and erging phenoena in a porous edia equation with strong absorption To the eory of y friend Professor Nakaki. Kenji

More information

On Process Complexity

On Process Complexity On Process Coplexity Ada R. Day School of Matheatics, Statistics and Coputer Science, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand, Eail: ada.day@cs.vuw.ac.nz Abstract Process

More information

1 Bounding the Margin

1 Bounding the Margin COS 511: Theoretical Machine Learning Lecturer: Rob Schapire Lecture #12 Scribe: Jian Min Si March 14, 2013 1 Bounding the Margin We are continuing the proof of a bound on the generalization error of AdaBoost

More information

Massachusetts Institute of Technology Quantum Mechanics I (8.04) Spring 2005 Solutions to Problem Set 4

Massachusetts Institute of Technology Quantum Mechanics I (8.04) Spring 2005 Solutions to Problem Set 4 Massachusetts Institute of Technology Quantu Mechanics I (8.04) Spring 2005 Solutions to Proble Set 4 By Kit Matan 1. X-ray production. (5 points) Calculate the short-wavelength liit for X-rays produced

More information

Force and dynamics with a spring, analytic approach

Force and dynamics with a spring, analytic approach Force and dynaics with a spring, analytic approach It ay strie you as strange that the first force we will discuss will be that of a spring. It is not one of the four Universal forces and we don t use

More information

Discussion Examples Chapter 13: Oscillations About Equilibrium

Discussion Examples Chapter 13: Oscillations About Equilibrium Discussion Exaples Chapter 13: Oscillations About Equilibriu 17. he position of a ass on a spring is given by x 6.5 c cos t 0.88 s. (a) What is the period,, of this otion? (b) Where is the ass at t 0.5

More information

On Conditions for Linearity of Optimal Estimation

On Conditions for Linearity of Optimal Estimation On Conditions for Linearity of Optial Estiation Erah Akyol, Kuar Viswanatha and Kenneth Rose {eakyol, kuar, rose}@ece.ucsb.edu Departent of Electrical and Coputer Engineering University of California at

More information

Problem Set 14: Oscillations AP Physics C Supplementary Problems

Problem Set 14: Oscillations AP Physics C Supplementary Problems Proble Set 14: Oscillations AP Physics C Suppleentary Probles 1 An oscillator consists of a bloc of ass 050 g connected to a spring When set into oscillation with aplitude 35 c, it is observed to repeat

More information

The Solution of One-Phase Inverse Stefan Problem. by Homotopy Analysis Method

The Solution of One-Phase Inverse Stefan Problem. by Homotopy Analysis Method Applied Matheatical Sciences, Vol. 8, 214, no. 53, 2635-2644 HIKARI Ltd, www.-hikari.co http://dx.doi.org/1.12988/as.214.43152 The Solution of One-Phase Inverse Stefan Proble by Hootopy Analysis Method

More information

E0 370 Statistical Learning Theory Lecture 5 (Aug 25, 2011)

E0 370 Statistical Learning Theory Lecture 5 (Aug 25, 2011) E0 370 Statistical Learning Theory Lecture 5 Aug 5, 0 Covering Nubers, Pseudo-Diension, and Fat-Shattering Diension Lecturer: Shivani Agarwal Scribe: Shivani Agarwal Introduction So far we have seen how

More information

Some Classical Ergodic Theorems

Some Classical Ergodic Theorems Soe Classical Ergodic Theores Matt Rosenzweig Contents Classical Ergodic Theores. Mean Ergodic Theores........................................2 Maxial Ergodic Theore.....................................

More information

THERMODYNAMICS (SPA5219) Detailed Solutions to Coursework 1 ISSUE: September 26 th 2017 HAND-IN: October 3 rd 2017

THERMODYNAMICS (SPA5219) Detailed Solutions to Coursework 1 ISSUE: September 26 th 2017 HAND-IN: October 3 rd 2017 HERMODYNAMICS (SPA519) Detailed s to Coursework 1 ISSUE: Septeber 6 th 017 HAND-IN: October rd 017 QUESION 1: (5 arks) he siple kinetic theory arguent sketched in the lectures and in Feynan's lecture notes

More information

Introduction to Discrete Optimization

Introduction to Discrete Optimization Prof. Friedrich Eisenbrand Martin Nieeier Due Date: March 9 9 Discussions: March 9 Introduction to Discrete Optiization Spring 9 s Exercise Consider a school district with I neighborhoods J schools and

More information

A Simple Regression Problem

A Simple Regression Problem A Siple Regression Proble R. M. Castro March 23, 2 In this brief note a siple regression proble will be introduced, illustrating clearly the bias-variance tradeoff. Let Y i f(x i ) + W i, i,..., n, where

More information

1 Identical Parallel Machines

1 Identical Parallel Machines FB3: Matheatik/Inforatik Dr. Syaantak Das Winter 2017/18 Optiizing under Uncertainty Lecture Notes 3: Scheduling to Miniize Makespan In any standard scheduling proble, we are given a set of jobs J = {j

More information

Measuring Temperature with a Silicon Diode

Measuring Temperature with a Silicon Diode Measuring Teperature with a Silicon Diode Due to the high sensitivity, nearly linear response, and easy availability, we will use a 1N4148 diode for the teperature transducer in our easureents 10 Analysis

More information

PERIODIC STEADY STATE ANALYSIS, EFFECTIVE VALUE,

PERIODIC STEADY STATE ANALYSIS, EFFECTIVE VALUE, PERIODIC SEADY SAE ANALYSIS, EFFECIVE VALUE, DISORSION FACOR, POWER OF PERIODIC CURRENS t + Effective value of current (general definition) IRMS i () t dt Root Mean Square, in Czech boo denoted I he value

More information

Multi-Scale/Multi-Resolution: Wavelet Transform

Multi-Scale/Multi-Resolution: Wavelet Transform Multi-Scale/Multi-Resolution: Wavelet Transfor Proble with Fourier Fourier analysis -- breaks down a signal into constituent sinusoids of different frequencies. A serious drawback in transforing to the

More information

Sharp Time Data Tradeoffs for Linear Inverse Problems

Sharp Time Data Tradeoffs for Linear Inverse Problems Sharp Tie Data Tradeoffs for Linear Inverse Probles Saet Oyak Benjain Recht Mahdi Soltanolkotabi January 016 Abstract In this paper we characterize sharp tie-data tradeoffs for optiization probles used

More information

A DISCRETE ZAK TRANSFORM. Christopher Heil. The MITRE Corporation McLean, Virginia Technical Report MTR-89W00128.

A DISCRETE ZAK TRANSFORM. Christopher Heil. The MITRE Corporation McLean, Virginia Technical Report MTR-89W00128. A DISCRETE ZAK TRANSFORM Christopher Heil The MITRE Corporation McLean, Virginia 22102 Technical Report MTR-89W00128 August 1989 Abstract. A discrete version of the Zak transfor is defined and used to

More information

Department of Physics Preliminary Exam January 3 6, 2006

Department of Physics Preliminary Exam January 3 6, 2006 Departent of Physics Preliinary Exa January 3 6, 2006 Day 1: Classical Mechanics Tuesday, January 3, 2006 9:00 a.. 12:00 p.. Instructions: 1. Write the answer to each question on a separate sheet of paper.

More information

16.512, Rocket Propulsion Prof. Manuel Martinez-Sanchez Lecture 30: Dynamics of Turbopump Systems: The Shuttle Engine

16.512, Rocket Propulsion Prof. Manuel Martinez-Sanchez Lecture 30: Dynamics of Turbopump Systems: The Shuttle Engine 6.5, Rocket Propulsion Prof. Manuel Martinez-Sanchez Lecture 30: Dynaics of Turbopup Systes: The Shuttle Engine Dynaics of the Space Shuttle Main Engine Oxidizer Pressurization Subsystes Selected Sub-Model

More information

STOPPING SIMULATED PATHS EARLY

STOPPING SIMULATED PATHS EARLY Proceedings of the 2 Winter Siulation Conference B.A.Peters,J.S.Sith,D.J.Medeiros,andM.W.Rohrer,eds. STOPPING SIMULATED PATHS EARLY Paul Glasseran Graduate School of Business Colubia University New Yor,

More information

EE5900 Spring Lecture 4 IC interconnect modeling methods Zhuo Feng

EE5900 Spring Lecture 4 IC interconnect modeling methods Zhuo Feng EE59 Spring Parallel LSI AD Algoriths Lecture I interconnect odeling ethods Zhuo Feng. Z. Feng MTU EE59 So far we ve considered only tie doain analyses We ll soon see that it is soeties preferable to odel

More information

P235 Midterm Examination Prof. Cline

P235 Midterm Examination Prof. Cline P235 Mier Exaination Prof. Cline THIS IS A CLOSED BOOK EXAMINATION. Do all parts of all four questions. Show all steps to get full credit. 7:00-10.00p, 30 October 2009 1:(20pts) Consider a rocket fired

More information

1 Brownian motion and the Langevin equation

1 Brownian motion and the Langevin equation Figure 1: The robust appearance of Robert Brown (1773 1858) 1 Brownian otion and the Langevin equation In 1827, while exaining pollen grains and the spores of osses suspended in water under a icroscope,

More information

I. Understand get a conceptual grasp of the problem

I. Understand get a conceptual grasp of the problem MASSACHUSETTS INSTITUTE OF TECHNOLOGY Departent o Physics Physics 81T Fall Ter 4 Class Proble 1: Solution Proble 1 A car is driving at a constant but unknown velocity,, on a straightaway A otorcycle is

More information

(a) Why cannot the Carnot cycle be applied in the real world? Because it would have to run infinitely slowly, which is not useful.

(a) Why cannot the Carnot cycle be applied in the real world? Because it would have to run infinitely slowly, which is not useful. PHSX 446 FINAL EXAM Spring 25 First, soe basic knowledge questions You need not show work here; just give the answer More than one answer ight apply Don t waste tie transcribing answers; just write on

More information

Srednicki Chapter 6. QFT Problems & Solutions. A. George. May 24, dp j 2π eip j(q j+1 q j ) e ihδt (6.1.1) dq k. j=0. k=1

Srednicki Chapter 6. QFT Problems & Solutions. A. George. May 24, dp j 2π eip j(q j+1 q j ) e ihδt (6.1.1) dq k. j=0. k=1 Srednicki Chapter 6 QFT Probles & Solutions A. George May 24, 202 Srednicki 6.. a) Find an explicit forula for Dq in equation 6.9. Your forula should be of the for Dq = C j= dq j, where C is a constant

More information

Machine Learning Basics: Estimators, Bias and Variance

Machine Learning Basics: Estimators, Bias and Variance Machine Learning Basics: Estiators, Bias and Variance Sargur N. srihari@cedar.buffalo.edu This is part of lecture slides on Deep Learning: http://www.cedar.buffalo.edu/~srihari/cse676 1 Topics in Basics

More information

A Simplified Analytical Approach for Efficiency Evaluation of the Weaving Machines with Automatic Filling Repair

A Simplified Analytical Approach for Efficiency Evaluation of the Weaving Machines with Automatic Filling Repair Proceedings of the 6th SEAS International Conference on Siulation, Modelling and Optiization, Lisbon, Portugal, Septeber -4, 006 0 A Siplified Analytical Approach for Efficiency Evaluation of the eaving

More information

26 Impulse and Momentum

26 Impulse and Momentum 6 Ipulse and Moentu First, a Few More Words on Work and Energy, for Coparison Purposes Iagine a gigantic air hockey table with a whole bunch of pucks of various asses, none of which experiences any friction

More information