Objectives of the Solubility Data Series

Size: px
Start display at page:

Download "Objectives of the Solubility Data Series"

Transcription

1 Objectives of the Solubility Data Series Mark Salomon MaxPower, Inc. 141 Christopher Lane Harleysville, PA Foreword by A.S Kertes appearing in SDS Volumes 1-53 ( ). If the knowledge is undigested or simply wrong, more is not better.

2 Presentation Outline Introduction to the IUPAC Solubility Data Project and the IUPAC-NIST Solubility Data Series. Format for compilation data sheets. Format for critical evaluations Examples of smoothing equations used in regression analyses of data for gas/liquid, liquid/liquid and solid liquid systems. References quoted for this review.

3 Sources of Solubility Data Primary Sources: peer reviewed literature; sheer volume of data overcomes the capacity of 2 o and 3 o services to respond effectively. Some articles in which solubilities are not the main objective can contain briefly measured, sometimes qualitative values which find their way into subsequent literature proliferating the literature with undigested or wrong data. Secondary Sources: review articles often more specialized and limited in scope of literature cited, no indication if material has been excluded by design or less than thorough literature search, lack detailed analyses of numerical data. Tertiary Sources: handbooks, reference books, proprietary company reports are generally uncritical, limited in literature survey, neglect error limits and lack references which users might wish to check.

4 The Solubility Data Project and the Solubility Data Series The IUPAC Solubility Data Project (SDP) addresses the above problems by producing the Solubility Data Series (SDS) in which all available published literature to date on solubility data from all available literature sources for a specific solute/solvent system are precisely detailed on Compilation (data) sheets providing information on materials, experimental methods and errors. Where sufficient literature data exist, contributors to the SDS provide Critical Evaluations comparing literature data to determine their merits. Data can be classified as rejected when qualitative or incorrect, recommended when agreement between different authors exists, or tentative when sufficient literature comparisons cannot be made. Details on preparing Compilations and Critical Evaluations are presented in the following slides.

5 General Format for Compilations (Data Sheets) Components: List of components: formulas, CAR numbers Variables: Temperature, pressure, concentrations Original Measurements: Citation to the primary source of data Prepared by: Name of Compiler Experimental Values Experimental data exactly as they appear exactly in the literature and converted to various convenient units where appropriate. Auxiliary Information Method/Apparatus/Procedure: Experimental apparatus and methods used to determine solubilities. Source and Purity of Materials: Estimated Error: Either from the primary source or estimated by the compiler.

6 General Format for Critical Evaluations Components: List of components: formulas, CAR numbers Evaluator: Name of Evaluator and date of evaluation Based on data in the compilations, the Evaluator discusses the data in terms of experimental methods, purity of materials, reproducibility and precision or accuracy. If sufficient data exist by different authors, the Evaluator will produce a set of data based on weighted averages or an appropriate smoothing equation with estimated standard deviations. The data in this set are designated as either Recommended or Tentative. Data that are judged to be of low precision or in error are either rejected or designated as Doubtful. Graphical plots of Recommended or Tentative data are given where appropriate.

7 Examples of Smoothing Equations used in Critical Evaluations (mole fraction bases for binary gas/liquid & solid/liquid systems) Clarke and Glew s variation* of the van t Hoff equation for solubilities at constant pressure is used extensively in the Critical Evaluations; 1 Y = A BT ClnT DT The solubility function Y is formulated either in mole fraction or molality units. Mole fraction units are useful for solubilities over the entire composition range from very dilute solutions, including hydrates, to the melting point of the anhydrous solid in which case the above equation takes the form (Counioux, Cohen-Adad, Lorimer). v r v r r v r 1 ln x 1 x ( v r) r / r (1 x) A BT ClnT DT For gas solubilities as a function of pressure at constant temperature, the following equation has been used (Battino et al.) 2 ln x A ln P / MPa A P / MPa A P / MPa *E.C.W. Clarke and D.N. Glew, Evaluation of thermodynamic functions from equilibrium constants, Trans. Faraday Soc., 62, 539 (1966).

8 Examples of Smoothing Equations used in Critical Evaluations (molality bases for binary solid/liquid systems) 1 Y = A BT ClnT DT A second and equivalent form of the function Y is useful when hydrates are the solid phase in which case the above equation takes the following form (Counioux, Cohen-Adad, Lorimer, Mioduski et al.) 1 ln( / 0)-( / 0-1) = A B Cln D m m m m T T T Where m 0 = 1/rM 2 is the molality of a binary salt solvate with M 2 the molar mass of the solvent. This equation is particularly useful to accurately confirm and predict metastable solubilities before and after congruent melting points. Other complex methods involving equations for activity coefficients are used providing additional experimental data exist. For example, the solubilities of the alkaline earth carbonates MgCO 3 and BeCO 3 utilized the equation CO CO CO s 1 4K K K a 1 f f f c a b d T mol kg 3 K2 2 3 atm atm atm T M HCO 3 s c 1 w lg lg lg lg lg lg 1 2 where K s is the solubility constant of MCO 3, K c is the solubility constant of CO 2, K 1 and K 2 are the first and second acid dissociation constant of CO 2 /carbonic acid, f(co 2 ) is the fugacity of CO 2, and the values are activity coefficients (De Visscher et al.).

9 Very Old Solubility Studies Solubilities published even in the first half of the 19th century often compare favorably with values measured recently and sometimes constitute the only source of data. Compilations based on these publications not only are possible sources of reliable data but also are sources for the history of science and technology. Example of a compilation for NaCl + H 2 O published in 1885 where solubilities were determined to be Recommended with experimental methods and purity of materials comparable to modern standards is summarized in the following 3 slides.

10 Example of a compilation for NaCl + H 2 O published in 1885

11 From R. Cohen-Adad and J.W. Lorimer, Solubility Data Series, Volume 47. For the critical evaluation of the binary NaCl-water system, 481 data sets fitted by least squares, and after rejecting outliers, 409 data points fitted to the 4-parameter equation to produce a set of Recommended and Tentative solubilities as a function of temperature. Y A / T Bln( T / T ) CT D where T f is a reference temperature (melting point of the solid phase). Selected results for data reported by Raupenstrauch in 1885 are shown below. f

12 Examples of Smoothing Equations used in Critical Evaluations (mole fraction bases for liquid/liquid systems) For binary systems where T c is the upper critical solution temperature and x c,1 is the corresponding critical mole fraction, the solubility of liquid 1 in liquid 2 analyzed by (Góral et al., SDS vol 91) utilized the following equation ln x ln x b ( T / T 1) b (1 T / T ) b (1 T / T ) (1/3) 1 c,1 1 c 2 c 3 c The solubility of liquid 2 in liquid 1 is given by ln x ln(1 x ) c ( T / T 1) c (1 T / T ) c (1 T / T ) (1/3) 2 c,1 1 c 2 c 3 c For ternary systems, experimental data were correlated using the NRTL equation (Góral et al., SDS vol 101 based on the notation of Renon and Prausnitz, AIChE J. 14, 135 (1968)) E G RT 3 3 å j = å å i x i t G 3 k ji G ki ji x x k j

13 Future of the SDP At the present time, 103 SDS volumes have been published and new volumes are in various stages of completion. A number of volumes are quite large and thus have been published in parts in JPCRD bringing the total number of SDS publications to 136. New contributors to the SDS are warmly welcome, and inquiries can be sent to the following: Clara Magalhães, Chair of the Subcommittee on Solubility and Equilibrium Data (SSED). mclara@ua.pt Earle Waghorne, SSED secretary. earle.waghorne@ucd.ie Mark Salomon, SDS Editor-in-Chief. marksalomon@comcast.net Additional information on volumes in preparation is available at the IUPAC web site.

14 Much of this review was taken liberally from the following publications. H.L. Clever, The IUPAC Solubility Data Project. A Brief History: Chem. Intern., 26, No.3, May-June R. Battino, T.R. Rettich and T. Tominaga, The Solubility of oxygen and ozone in liquids; J. Phys. Chem. Ref. Data, 12, (1983). R. Cohen-Adad and J.W. Lorimer, Alkali Metal and Ammonium Chlorides in Water and Heavy Water (Binary Systems), Solubility Data Series, Volume 47, Pergamon Press, G.T. Hefter and R.P.T. Tomkins, Eds., The Experimental Determination of Solubilities, Wiley Series in Solution Chemistry, Chichester, UK J.-J. Counioux and R. Tenu, J. Chim. Phys, 78, 815 and 823 (1981). R. Cohen-Adad, Pure Appl. Chem., 57, 255 (1985). R. Cohen-Adad, J. W. Lorimer, S. L. Phillips, and M. Salomon, A Consistent Approach to Tabulation of Evaluated Solubility Data: Application to the Binary Systems RbCl-H 2 O and UO 2 (NO 3 ) 2 -H 2 O, J. Chem. Inf: Comput. Sci. 35, (1995). T. Mioduski, C. Guminski and D. Zeng, IUPAC-NIST Solubility Data Series. 87. Rare Earth Metal Chlorides in Water and Aqueous Systems. Part 1 Scandium Group (Sc, Y, La), JPCRD 37, 1765 (2008). A. De Visscher et al., IUPAC-NIST Solubility Data Series. 95. Alkaline Earth Carbonates in Aqueous Systems. Part 1. Introduction, Be and Mg. JPCRD 41, (2012). M. Góral, D. G. Shaw, A. Maczynski and B. Wisniewska-Goclowska, IUPAC-NIST Solubility Data Series. 91. Phenols with Water. Part 1. C 6 and C 7 Phenols with Water and Heavy Water, JPCRD 40, (2011).

Minutes INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY SUBCOMMITTEE ON SOLUBILITY AND EQUILIBRIUM DATA

Minutes INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY SUBCOMMITTEE ON SOLUBILITY AND EQUILIBRIUM DATA Minutes INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY SUBCOMMITTEE ON SOLUBILITY AND EQUILIBRIUM DATA 39 th Annual Meeting (12 th of SSED) to be held in conjunction with the IUPAC General Assembly,

More information

The choice of fitting equations in critical evaluation of solubility

The choice of fitting equations in critical evaluation of solubility Pure & App!. Chem., Vol. 57, No. 2, pp. 255 262, 1985. Printed in Great Britain. 1985 IUPAC The choice of fitting equations in critical evaluation of solubility data in binary mixtures MCI H2 Roger Cohen

More information

The underlying prerequisite to the application of thermodynamic principles to natural systems is that the system under consideration should be at equilibrium. http://eps.mcgill.ca/~courses/c220/ Reversible

More information

Partial molar volumes at infinite dilution in aqueous solutions of NaCl, LiCl, NaBr, and CsBr at temperatures from 550 K to 725 K

Partial molar volumes at infinite dilution in aqueous solutions of NaCl, LiCl, NaBr, and CsBr at temperatures from 550 K to 725 K J. Chem. Thermodynamics 1998, 3, 312 Partial molar volumes at infinite dilution in aqueous solutions of NaCl, LiCl, NaBr, and CsBr at temperatures from 55 K to 725 K Josef Sedlbauer, Department of Chemistry,

More information

Thermodynamics of solubility in mixed solvent systems

Thermodynamics of solubility in mixed solvent systems fure&app/. Chem., Vol. 65, No. 2, pp. 183-191, 1993. Printed in Great Britain. @ 1993 IUPAC Thermodynamics of solubility in mixed solvent systems J.W. Lorimer Department of Chemistry, The University of

More information

CHEM1109 Answers to Problem Sheet Isotonic solutions have the same osmotic pressure. The osmotic pressure, Π, is given by:

CHEM1109 Answers to Problem Sheet Isotonic solutions have the same osmotic pressure. The osmotic pressure, Π, is given by: CHEM1109 Answers to Problem Sheet 5 1. Isotonic solutions have the same osmotic pressure. The osmotic pressure, Π, is given by: Π = MRT where M is the molarity of the solution. Hence, M = Π 5 (8.3 10 atm)

More information

IUPAC Books-Available at the Secretariat Price List Effective January 2005

IUPAC Books-Available at the Secretariat Price List Effective January 2005 Author Title Pub date Price (USD) ISBN Bertie Tables of Intensities for the Calibration of Infrared Spectroscopic Measurements in the Liquid Phase Feb-95 91 0865422926X Boldyrev Reactivity of Solids Sep-96

More information

Phase equilibria for the oxygen water system up to elevated temperatures and pressures

Phase equilibria for the oxygen water system up to elevated temperatures and pressures Fluid Phase Equilibria 222 223 (2004) 39 47 Phase equilibria for the oxygen water system up to elevated temperatures and pressures Xiaoyan Ji a,b, Xiaohua Lu b, Jinyue Yan a,c, a Department of Chemical

More information

SITARAM K. CHAVAN * and MADHURI N. HEMADE ABSTRACT INTRODUCTION

SITARAM K. CHAVAN * and MADHURI N. HEMADE ABSTRACT INTRODUCTION Int. J. Chem. Sci.: 11(1), 013, 619-67 ISSN 097-768X www.sadgurupublications.com DENSITIES, VISCOSITIES AND EXCESS THERMODYNAMIC PROPERTIES OF MONOMETHYL AMMONIUM CHLORIDE IN TETRAHYDROFURAN AND WATER

More information

Prediction of Nitrogen Solubility in Pure Water and Aqueous NaCl Solutions up to High Temperature, Pressure, and Ionic Strength

Prediction of Nitrogen Solubility in Pure Water and Aqueous NaCl Solutions up to High Temperature, Pressure, and Ionic Strength Journal of Solution Chemistry, Vol. 30, No. 6, 2001 Prediction of Nitrogen Solubility in Pure Water and Aqueous NaCl Solutions up to High Temperature, Pressure, and Ionic Strength Rui Sun, 1 Wenxuan Hu,

More information

Soluble: A solute that dissolves in a specific solvent. Insoluble: A solute that will not dissolve in a specific solvent. "Like Dissolves Like"

Soluble: A solute that dissolves in a specific solvent. Insoluble: A solute that will not dissolve in a specific solvent. Like Dissolves Like Solutions Homogeneous Mixtures Solutions: Mixtures that contain two or more substances called the solute and the solvent where the solute dissolves in the solvent so the solute and solvent are not distinguishable

More information

- Applications: In chemistry, this effect is often used to determine the molecular weight of an unknown molecule.

- Applications: In chemistry, this effect is often used to determine the molecular weight of an unknown molecule. 73 FREEZING POINT DEPRESSION concentration of solute (molality) Freezing point depression constant (for SOLVENT) Freezing point depression: The amount the freezing temperature is LOWERED by the solute.

More information

Consistency issues of aqueous solubility data and solution thermodynamics of electrolytes*

Consistency issues of aqueous solubility data and solution thermodynamics of electrolytes* Pure Appl. Chem., Vol. 77, No. 3, pp. 619 629, 2005. DOI: 10.1351/pac200577030619 2005 IUPAC Consistency issues of aqueous solubility data and solution thermodynamics of electrolytes* Alex De Visscher

More information

Learning Outcomes: At the end of this assignment, students will be able to:

Learning Outcomes: At the end of this assignment, students will be able to: Chemical Equilibria & Sample Preparation Purpose: The purpose of this assignment is to predict how solute concentrations are controlled by chemical equilibria, understand the chemistry involved with sample

More information

Review of Chemical Equilibrium Introduction

Review of Chemical Equilibrium Introduction Review of Chemical Equilibrium Introduction Copyright c 2015 by Nob Hill Publishing, LLC This chapter is a review of the equilibrium state of a system that can undergo chemical reaction Operating reactors

More information

Review of Chemical Equilibrium Introduction

Review of Chemical Equilibrium Introduction Review of Chemical Equilibrium Introduction Copyright c 2015 by Nob Hill Publishing, LLC This chapter is a review of the equilibrium state of a system that can undergo chemical reaction Operating reactors

More information

Class XII Chapter 2 Solutions Chemistry

Class XII Chapter 2 Solutions Chemistry Class XII Chapter 2 Solutions Chemistry Question 2.1: Calculate the mass percentage of benzene (C 6 H 6 ) and carbon tetrachloride (CCl 4 ) if 22 g of benzene is dissolved in 122 g of carbon tetrachloride.

More information

Prentice Hall. Chemistry, (Wilbraham) 2008, National SE, Georgia TE. Grades 9-12

Prentice Hall. Chemistry, (Wilbraham) 2008, National SE, Georgia TE. Grades 9-12 Prentice Hall Chemistry, (Wilbraham) 2008, National SE, Georgia TE Grades 9-12 C O R R E L A T E D T O Georgia Performance s for Chemistry (Course Number 40.05100 Chemistry I) Grades 9-12 FORMAT FOR CORRELATION

More information

Process design using ionic liquids: Physical property modeling

Process design using ionic liquids: Physical property modeling Title A.B. Editor et al. (Editors) 2005 Elsevier B.V./Ltd. All rights reserved. Process design using ionic liquids: Physical property modeling Adolfo E. Ayala a, Luke D. Simoni a, Youdong Lin a, Joan F.

More information

Possible contribu.ons from the Solubility Data Project for arsenic and carbon dioxide environmental impacts mi.ga.on

Possible contribu.ons from the Solubility Data Project for arsenic and carbon dioxide environmental impacts mi.ga.on Possible contribu.ons from the Solubility Data Project for arsenic and carbon dioxide environmental impacts mi.ga.on M. Clara F. Magalhães a and Jus2n Salminen b a Department of Chemistry and CICECO, University

More information

Chapter 13. Ions in aqueous Solutions And Colligative Properties

Chapter 13. Ions in aqueous Solutions And Colligative Properties Chapter 13 Ions in aqueous Solutions And Colligative Properties Compounds in Aqueous Solution Dissociation The separation of ions that occurs when an ionic compound dissolves H2O NaCl (s) Na+ (aq) + Cl-

More information

in seawater: Better fitting equations

in seawater: Better fitting equations Notes 1307 Limnol. Oceanogr., 37(6), 1992, 1 307-1312 0 1992, by the American Society of Limnology and Oceanography, Inc. Oxygen solubility in seawater: Better fitting equations Abstract-We examined uncertainties

More information

Draft Minutes INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY SUBCOMMITTEE ON SOLUBILITY AND EQUILIBRIUM DATA

Draft Minutes INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY SUBCOMMITTEE ON SOLUBILITY AND EQUILIBRIUM DATA Draft Minutes INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY SUBCOMMITTEE ON SOLUBILITY AND EQUILIBRIUM DATA 43 rd Annual Meeting (16 th of SSED) held in conjunction with the 21 st ECTP-2017 Graz, Austria

More information

Chapter 11. Properties of Solutions

Chapter 11. Properties of Solutions Chapter 11 Properties of Solutions Section 11.1 Solution Composition Various Types of Solutions Copyright Cengage Learning. All rights reserved 2 Section 11.1 Solution Composition Solution Composition

More information

Solutions Solubility. Chapter 14

Solutions Solubility. Chapter 14 Copyright 2004 by Houghton Mifflin Company. Solutions Chapter 14 All rights reserved. 1 Solutions Solutions are homogeneous mixtures Solvent substance present in the largest amount Solute is the dissolved

More information

Solubility of Hydrogen in Aqueous Solutions of Sodium and Potassium Bicarbonate from 293 to 333 K

Solubility of Hydrogen in Aqueous Solutions of Sodium and Potassium Bicarbonate from 293 to 333 K 546 J. Chem. Eng. Data 1996, 41, 546-550 Solubility of Hydrogen in Aqueous Solutions of Sodium and Potassium Bicarbonate from 293 to 333 K Dico C. Engel,* Geert F. Versteeg, and Wim P. M. van Swaaij Department

More information

Chemistry 201. Working with K. NC State University. Lecture 11

Chemistry 201. Working with K. NC State University. Lecture 11 Chemistry 201 Lecture 11 Working with K NC State University Working With K What is the relationship between pressure and concentration in K? How does one calculate K or components of K? How does one calculate

More information

Colligative Properties

Colligative Properties Colligative Properties Vapor pressures have been defined as the pressure over a liquid in dynamic equilibrium between the liquid and gas phase in a closed system. The vapor pressure of a solution is different

More information

Solutions. Solutions. How Does a Solution Form? Solutions. Energy Changes in Solution. How Does a Solution Form

Solutions. Solutions. How Does a Solution Form? Solutions. Energy Changes in Solution. How Does a Solution Form Ummm Solutions Solutions Solutions are homogeneous mixtures of two or more pure substances. In a solution, the solute is dispersed uniformly throughout the solvent. Solutions The intermolecular forces

More information

Physical Properties of Solutions

Physical Properties of Solutions Physical Properties of Solutions Chapter 12 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 12.1- Types of solutions A solution is a homogenous mixture of 2 or

More information

Chapter 13 Properties of Solutions

Chapter 13 Properties of Solutions Chapter 13 Properties of Solutions Learning goals and key skills: Describe how enthalpy and entropy changes affect solution formation. Describe the relationship between intermolecular forces and solubility,

More information

SOLUTION CONCENTRATIONS

SOLUTION CONCENTRATIONS SOLUTION CONCENTRATIONS The amount of solute in a solution (concentration) is an important property of the solution. A dilute solution contains small quantities of solute relative to the solvent, while

More information

SOLUTIONS. Chapter Test B. A. Matching. Column A. Column B. Name Date Class. 418 Core Teaching Resources

SOLUTIONS. Chapter Test B. A. Matching. Column A. Column B. Name Date Class. 418 Core Teaching Resources 16 SOLUTIONS Chapter Test B A. Matching Match each term in Column B to the correct description in Column A. Write the letter of the correct term on the line. Column A Column B 1. the number of moles of

More information

Department of Chemistry University of Texas at Austin

Department of Chemistry University of Texas at Austin Colligative Properties Supplemental Worksheet PROBLEM #1: Give the molecular formula, the van t Hoff factor for the following Ionic Compounds as well as guess the solubility of the compounds. If you cannot

More information

An aqueous solution is 8.50% ammonium chloride by mass. The density of the solution is g/ml Find: molality, mole fraction, molarity.

An aqueous solution is 8.50% ammonium chloride by mass. The density of the solution is g/ml Find: molality, mole fraction, molarity. 66 An aqueous solution is 8.50% ammonium chloride by mass. The density of the solution is 1.024 g/ml Find: molality, mole fraction, molarity. Find molality: mass percent molality Assuming 100 g solution,

More information

DATA THAT YOU MAY USE UNITS Conventional Volume ml or cm 3 = cm 3 or 10-3 dm 3 Liter (L) = dm 3 Pressure atm = 760 torr = Pa CONSTANTS

DATA THAT YOU MAY USE UNITS Conventional Volume ml or cm 3 = cm 3 or 10-3 dm 3 Liter (L) = dm 3 Pressure atm = 760 torr = Pa CONSTANTS DATA THAT YOU MAY USE UNITS Conventional S.I. Volume ml or cm 3 = cm 3 or 0-3 dm 3 Liter (L) = dm 3 Pressure atm = 760 torr =.03 0 5 Pa torr = 33.3 Pa Temperature C 0 C = 73.5 K PV L-atm =.03 0 5 dm 3

More information

Solution KEY CONCEPTS

Solution KEY CONCEPTS Solution KEY CONCEPTS Solution is the homogeneous mixture of two or more substances in which the components are uniformly distributed into each other. The substances which make the solution are called

More information

Chapter 12 & 13 Test Review. Bond, Ionic Bond

Chapter 12 & 13 Test Review. Bond, Ionic Bond Chapter 12 & 13 Test Review A solid solute dissolved in a solid solvent is an Alloy What is happening in a solution at equilibrium? The Ionic rate of Bond dissolving is equal to the rate of crystallization.

More information

1. *The density of aqueous solutions of acetic acid varies with the mass fraction w 2 of acetic acid at 298 K as follows:

1. *The density of aqueous solutions of acetic acid varies with the mass fraction w 2 of acetic acid at 298 K as follows: Chem 42/523 Chemical Thermodynamics Homework Assignment # 4 1. *The density of aqueous solutions of acetic acid varies with the mass fraction w 2 of acetic acid at 298 K as follows: ρ (g cm 3 ) w 2 ρ (g

More information

SY 2017/ nd Final Term Revision. Student s Name: Grade: 10 B & C. Subject: CHEMISTRY. Teacher Signature

SY 2017/ nd Final Term Revision. Student s Name: Grade: 10 B & C. Subject: CHEMISTRY. Teacher Signature SY 2017/2018 2 nd Final Term Revision Student s Name: Grade: 10 B & C Subject: CHEMISTRY Teacher Signature 1- Complete. a-avogadros law b-henrys law REVISION SHEET CHEMISTRY GR-10B 2-What is the difference

More information

70 Example: If a solution is m citric acid, what is the molar concentration (M) of the solution? The density of the solution is 1.

70 Example: If a solution is m citric acid, what is the molar concentration (M) of the solution? The density of the solution is 1. 70 Example: If a solution is 0.688 m citric acid, what is the molar concentration (M) of the solution? The density of the solution is 1.049 g/ml molality definition molarity definition To solve the problem,

More information

Thermodynamics IV - Free Energy and Chemical Equilibria Chemical Potential (Partial Molar Gibbs Free Energy)

Thermodynamics IV - Free Energy and Chemical Equilibria Chemical Potential (Partial Molar Gibbs Free Energy) Thermodynamics IV - Free Energy and Chemical Equilibria Chemical Potential (Partial Molar Gibbs Free Energy) increase in the Gibbs free energy of the system when 1 mole of i is added to a large amount

More information

Chapter 13. Properties of Solutions

Chapter 13. Properties of Solutions Chapter 13 Properties of Solutions Warm - Up Why doesn t salt dissolve in nonpolar solvents such as hexane? How does the orientation of water around Na + differ from the orientation of water around Cl

More information

Henry s Law Constants of Methane and Acid Gases at Pressures above the Saturation Line of Water

Henry s Law Constants of Methane and Acid Gases at Pressures above the Saturation Line of Water Henry s Law Constants of Methane and Acid Gases at Pressures above the Saturation Line of Water Josef Sedlbauer and Vladimir Majer 2* Department of Chemistry, Technical University of Liberec, 46 7 Liberec,

More information

Phase Equilibrium: Preliminaries

Phase Equilibrium: Preliminaries Phase Equilibrium: Preliminaries Phase diagrams for two one component systems, CO 2 and H 2 O, are shown below. The main items to note are the following: The lines represent equilibria between two phases.

More information

Comparison of distillation arrangement for the recovery process of dimethyl sulfoxide

Comparison of distillation arrangement for the recovery process of dimethyl sulfoxide Korean J. Chem. Eng., 24(3), 438-444 (2007) SHORT COMMUNICATION Comparison of distillation arrangement for the recovery process of dimethyl sulfoxide Jungho Cho and Dong Min Kim* Department of Chemical

More information

Physical Pharmacy PHR 211. Lecture 1. Solubility and distribution phenomena.

Physical Pharmacy PHR 211. Lecture 1. Solubility and distribution phenomena. Physical Pharmacy PHR 211 Lecture 1 Solubility and distribution phenomena. Course coordinator Magda ELMassik, PhD Assoc. Prof. of Pharmaceutics 1 Objectives of the lecture After completion of thislecture,

More information

64 previous solution

64 previous solution 64 previous solution mole fraction (definition) 1 - Convert 29.6 grams sodium sulfate to moles. We already did this to find molality, so we can re-use the number. 2 - This is the total moles of both sodium

More information

Announcements. It is critical that you are keeping up. Ask or see me if you need help. Lecture slides updated and homework solutions posted.

Announcements. It is critical that you are keeping up. Ask or see me if you need help. Lecture slides updated and homework solutions posted. Announcements Dec. 18 Hour Exam 1 C-109 Start time 6PM Coverage is Chapter 12 and 13. 10-multiple choice 3-fairly short problems 3-longer problem solving 100 point Exam Lecture slides updated and homework

More information

Chapter 11. General Chemistry. Chapter 11/1

Chapter 11. General Chemistry. Chapter 11/1 Chapter 11 Solutions and Their Properties Professor Sam Sawan General Chemistry 84.122 Chapter 11/1 Solutions Solution: A homogeneous mixture. Solvent: The major component. Solute: A minor component. Copyright

More information

Chapter 11 Review Packet

Chapter 11 Review Packet Chapter 11 Review Packet Name Multiple Choice Portion: 1. Which of the following terms is not a quantitative description of a solution? a. molarity b. molality c. mole fraction d. supersaturation 2. Which

More information

Slide 1. Slide 2. Slide 3. Colligative Properties. Compounds in Aqueous Solution. Rules for Net Ionic Equations. Rule

Slide 1. Slide 2. Slide 3. Colligative Properties. Compounds in Aqueous Solution. Rules for Net Ionic Equations. Rule Slide 1 Colligative Properties Slide 2 Compounds in Aqueous Solution Dissociation - The separation of ions that occurs when an ionic compound dissolves Precipitation Reactions - A chemical reaction in

More information

m m 3 mol Pa = Pa or bar At this pressure the system must also be at approximately 1000 K.

m m 3 mol Pa = Pa or bar At this pressure the system must also be at approximately 1000 K. 5. PHASES AND SOLUTIONS n Thermodynamics of Vapor Pressure 5.. At equilibrium, G(graphite) G(diamond); i.e., G 2 0. We are given G 2900 J mol. ( G/ P) T V V 2.0 g mol.95 0 6 m 3 mol Holding T constant

More information

Influence of the Temperature on the Liquid-Liquid- Solid Equilibria of the Water + Ethanol + 1-

Influence of the Temperature on the Liquid-Liquid- Solid Equilibria of the Water + Ethanol + 1- Influence of the Temperature on the Liquid-Liquid- Solid Equilibria of the Water + Ethanol + 1- Undecanol Ternary System Vicente Gomis*, M. Dolores Saquete, Nuria Boluda-Botella, and Alicia Font. Chemical

More information

Conductometric Study of Sodium Chloride in Aqueous 2- methylpropan-2-ol of Mass Fraction 0.10, 0.30, 0.50, 0.70, 0.80 and 0.90

Conductometric Study of Sodium Chloride in Aqueous 2- methylpropan-2-ol of Mass Fraction 0.10, 0.30, 0.50, 0.70, 0.80 and 0.90 Int. J. Electrochem. Sci., 9 (2014) 3574-3587 International Journal of ELECTROCHEMICAL SCIENCE www.electrochemsci.org Conductometric Study of Sodium Chloride in Aqueous 2- methylpropan-2-ol of Mass Fraction

More information

PHYSICAL PROPERTIES OF SOLUTIONS

PHYSICAL PROPERTIES OF SOLUTIONS PHYSICAL PROPERTIES OF SOLUTIONS Do all the exercises in your study guide. PHYSICAL PROPERTIES OF SOLUTIONS A solution is a homogeneous mixture of a solute and a solvent. A solvent is a substance that

More information

Unit - 2 SOLUTIONS VSA QUESTIONS (1 - MARK QUESTIONS) 1. Give an example of liquid in solid type solution.

Unit - 2 SOLUTIONS VSA QUESTIONS (1 - MARK QUESTIONS) 1. Give an example of liquid in solid type solution. Unit - 2 SOLUTIONS VSA QUESTIONS (1 - MARK QUESTIONS) 1. Give an example of liquid in solid type solution. 2. Which type of solid solution will result by mixing two solid components with large difference

More information

Sub- and supercritical equilibria in aqueous electrolyte solutions

Sub- and supercritical equilibria in aqueous electrolyte solutions Pure&App/. Chem.,Vol. 62, No. 11, pp. 2129-2138, 1990, Printed in Great Britain. @ 1990 IUPAC Sub- and supercritical equilibria in aqueous electrolyte solutions V.M.Valyashko N.S.Kurnakov Institute of

More information

ANSWER KEY. Chemistry 25 (Spring term 2016) Midterm Examination

ANSWER KEY. Chemistry 25 (Spring term 2016) Midterm Examination Name ANSWER KEY Chemistry 25 (Spring term 2016) Midterm Examination 1 Some like it hot 1a (5 pts) The Large Hadron Collider is designed to reach energies of 7 TeV (= 7 x 10 12 ev, with 1 ev = 1.602 x 10-19

More information

Colligative Properties

Colligative Properties Slide 1 Colligative Properties Practical uses of solutions Slide 2 Units of Concentration Whatever units you use, the goal is the same: specify the quantity of 1 component (the solute s ) relative to the

More information

SOLUBILITY AS AN EQUILIBRIUM PHENOMENA

SOLUBILITY AS AN EQUILIBRIUM PHENOMENA SOLUBILITY AS AN EQUILIBRIUM PHENOMENA Equilibrium in Solution solute (undissolved) solute (dissolved) Solubility A saturated solution contains the maximum amount of solute that will dissolve in a given

More information

NAME: NITROMETHANE CHEMISTRY 443, Fall, 2015(15F) Section Number: 10 Final Examination, December 18, 2015

NAME: NITROMETHANE CHEMISTRY 443, Fall, 2015(15F) Section Number: 10 Final Examination, December 18, 2015 NAME: NITROMETHANE CHEMISTRY 443, Fall, 015(15F) Section Number: 10 Final Examination, December 18, 015 Answer each question in the space provided; use back of page if extra space is needed. Answer questions

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Chapter 13 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The process of solute particles being surrounded by solvent particles is known as. A)

More information

VAPOR PRESSURE LOWERING - Described by RAOULT'S LAW

VAPOR PRESSURE LOWERING - Described by RAOULT'S LAW 73 VAPOR PRESSURE LOWERING - Described by RAOULT'S LAW partial pressure of the VAPOR of solvent molecules. mole fraction of component A vapor pressure of pure component A (depends on temperature) partial

More information

Modeling Viscosity of Multicomponent Electrolyte Solutions 1

Modeling Viscosity of Multicomponent Electrolyte Solutions 1 International Journal of Thermophysics, Vol. 19, No. 2, 1998 Modeling Viscosity of Multicomponent Electrolyte Solutions 1 M. M. Lencka, 2 A. Anderko, 2,3 S. J. Sanders, 2 and R. D. Young 2 A comprehensive

More information

KEMS448 Physical Chemistry Advanced Laboratory Work. Freezing Point Depression

KEMS448 Physical Chemistry Advanced Laboratory Work. Freezing Point Depression KEMS448 Physical Chemistry Advanced Laboratory Work Freezing Point Depression 1 Introduction Colligative properties are properties of liquids that depend only on the amount of dissolved matter (concentration),

More information

Aqueous Solutions (When water is the solvent)

Aqueous Solutions (When water is the solvent) Aqueous Solutions (When water is the solvent) Solvent= the dissolving medium (what the particles are put in ) Solute= dissolved portion (what we put in the solvent to make a solution) Because water is

More information

Balances 9, , 623, 643, , , 679 (also see Electroneutrality. Material balances)

Balances 9, , 623, 643, , , 679 (also see Electroneutrality. Material balances) Handbook of Aqueous Electrolyte Thermodynamics: Theory & Application by Joseph F. Zemaitis, Jr., Diane M. Clark, Marshall Rafal and Noel C. Scrivner Copyright 1986 American Institute of Chemical Engineers,

More information

Julkaisu 112. Freezing Point Depressions of Dilute Solutions of Alkali Metal Chlorides and Bromides. Jaakko I. Partanen [ ] γ ) ln( m d(ln ± I = ±)

Julkaisu 112. Freezing Point Depressions of Dilute Solutions of Alkali Metal Chlorides and Bromides. Jaakko I. Partanen [ ] γ ) ln( m d(ln ± I = ±) Julkaisu 112 Freezing Point Depressions o Dilute Solutions o Alkali Metal Chlorides and Bromides Jaakko I. Partanen = = + + + + ) / ( ) ( 2 ) ( 2 us 1 1 H I m RM I m M R [ ] ) / ( ) ( 2 / ) ) ln ( ( us

More information

General Physical Chemistry I

General Physical Chemistry I General Physical Chemistry I Lecture 14 Aleksey Kocherzhenko April 9, 2015" Last time " Chemical potential " Partial molar property the contribution per mole that a substance makes to an overall property

More information

2. Match each liquid to its surface tension (in millinewtons per meter, mn*m -1, at 20 C).

2. Match each liquid to its surface tension (in millinewtons per meter, mn*m -1, at 20 C). 1. Using your knowledge of the types of intermolecular forces present in CO 2, CH 3 CN, Ne, and CH 4 gases, assign each gas to its van der Waals a parameter. a ( ) 17.58 3.392 2.253 0.2107 gas 2. Match

More information

Solutions. Chapter 14 Solutions. Ion-Ion Forces (Ionic Bonding) Attraction Between Ions and Permanent Dipoles. Covalent Bonding Forces

Solutions. Chapter 14 Solutions. Ion-Ion Forces (Ionic Bonding) Attraction Between Ions and Permanent Dipoles. Covalent Bonding Forces Solutions Chapter 14 1 Brief Review of Major Topics in Chapter 13, Intermolecular forces Ion-Ion Forces (Ionic Bonding) 2 Na + Cl - in salt These are the strongest forces. Lead to solids with high melting

More information

A.% by mass (like % composition)

A.% by mass (like % composition) Solutions; Colloids Key Words Solute Solvent Solubility effervescence Miscible saturated Supersaturated (metastable system)- a cooled solution contains more solute than it would at equilibrium, desolvation=

More information

The International Association for the Properties of Water and Steam

The International Association for the Properties of Water and Steam IAPWS G7-04 The International Association for the Properties of Water and Steam Kyoto, Japan September 2004 Guideline on the Henry s Constant and Vapor-Liquid Distribution Constant for Gases in H 2 O and

More information

General Physical Chemistry I

General Physical Chemistry I General Physical Chemistry I Lecture 13 leksey Kocherzhenko pril 7, 2015" Last time " Phase diagrams" Maps showing the thermodynamically stable phases for each and," phase regions in a phase diagram are

More information

Water & Solutions Chapter 17 & 18 Assignment & Problem Set

Water & Solutions Chapter 17 & 18 Assignment & Problem Set Water & Solutions Chapter 17 & 18 Assignment & Problem Set Name Warm-Ups (Show your work for credit) Date 1. Date 2. Date 3. Date 4. Date 5. Date 6. Date 7. Date 8. Water & Solutions 2 Vocabulary (know

More information

First Law of Thermodynamics

First Law of Thermodynamics First Law of Thermodynamics Remember: ΔE univ = 0 Total energy of the universe is constant. Energy can be transferred: ΔE = q + w q = heat w = work (F*D) = ΔPV 1 st Law, review For constant volume process:

More information

Chapter 12: Solutions. Mrs. Brayfield

Chapter 12: Solutions. Mrs. Brayfield Chapter 12: Solutions Mrs. Brayfield 12.1: Solutions Solution a homogeneous mixture of two or more substances Solvent the majority component Solute the minority component What is the solute and solvent

More information

Solubility isotherm of the system LiNO 3 KNO 3 H 2 O at 373 K

Solubility isotherm of the system LiNO 3 KNO 3 H 2 O at 373 K Monatsh Chem (2018) 149:283 288 https://doi.org/10.1007/s00706-017-2118-2 ORIGINAL PAPER Solubility isotherm of the system LiNO 3 KNO 3 H 2 O at 373 K Heidelore Voigt 1 Wolfgang Voigt 1 Received: 26 August

More information

Crosswalk of Georgia Performance Standards & Georgia Standards of Excellence GSE Implementation in Chemistry

Crosswalk of Georgia Performance Standards & Georgia Standards of Excellence GSE Implementation in Chemistry Implementation in 2017-18 SC1. Students will analyze the nature of matter and its classifications. a. Relate the role of nuclear fusion in producing essentially all elements heavier than helium. b. Identify

More information

CH302 Spring 2009 Practice Exam 1 (a fairly easy exam to test basic concepts)

CH302 Spring 2009 Practice Exam 1 (a fairly easy exam to test basic concepts) CH302 Spring 2009 Practice Exam 1 (a fairly easy exam to test basic concepts) 1) Complete the following statement: We can expect vapor pressure when the molecules of a liquid are held together by intermolecular

More information

Subject : Chemistry Class : XII Chapter-2.Solutions Work Sheet ( WS 2. 1) Topic- 2.1 Henry s & Raoult s Laws

Subject : Chemistry Class : XII Chapter-2.Solutions Work Sheet ( WS 2. 1) Topic- 2.1 Henry s & Raoult s Laws Work Sheet ( WS 2. 1) Topic- 2.1 Henry s & Raoult s Laws Name -. Class/ sec.. Roll No.. A. Fill in the blanks: 1. Solutions are mixtures of two or more than two components. 2. Generally, the component

More information

7.1 Electrolyte and electrolytic solution

7.1 Electrolyte and electrolytic solution Out-class reading: Levine, pp. 294-310 Section 10.6 solutions of electrolytes Section 10.9 ionic association pp. 512-515 Section 16.6 electrical conductivity of electrolyte solutions. Contents of solution

More information

Updating 8 m 2MPZ and Independence Models

Updating 8 m 2MPZ and Independence Models Updating 8 m 2MPZ and Independence Models Quarterly Report for January 1 March 31, 2013 by Brent Sherman Supported by the Texas Carbon Management Program and Carbon Capture Simulation Initiative McKetta

More information

Chapter 12. Preview. Objectives Solutions Suspensions Colloids Solutes: Electrolytes Versus Nonelectrolytes

Chapter 12. Preview. Objectives Solutions Suspensions Colloids Solutes: Electrolytes Versus Nonelectrolytes Preview Objectives Solutions Suspensions Colloids Solutes: Electrolytes Versus Nonelectrolytes Section 1 Types of Mixtures Objectives Distinguish between electrolytes and nonelectrolytes. List three different

More information

Chapter 1 The Atomic Nature of Matter

Chapter 1 The Atomic Nature of Matter Chapter 1 The Atomic Nature of Matter 1-1 Chemistry: Science of Change 1-2 The Composition of Matter 1-3 The Atomic Theory of Matter 1-4 Chemical Formulas and Relative Atomic Masses 1-5 The Building Blocks

More information

3.091 OCW Scholar Fall 2010 Final Exam

3.091 OCW Scholar Fall 2010 Final Exam .091 OCW Scholar Fall 2010 Final Exam Prof. Donald R. Sadoway, Instructor A complete exam consists of 11 questions. Write your answers on these pages. State your assumptions and show calculations that

More information

Outline of the Course

Outline of the Course Outline of the Course 1) Review and Definitions 2) Molecules and their Energies 3) 1 st Law of Thermodynamics Conservation of Energy. 4) 2 nd Law of Thermodynamics Ever-Increasing Entropy. 5) Gibbs Free

More information

Chemical Equilibria. Chapter Extent of Reaction

Chemical Equilibria. Chapter Extent of Reaction Chapter 6 Chemical Equilibria At this point, we have all the thermodynamics needed to study systems in ulibrium. The first type of uilibria we will examine are those involving chemical reactions. We will

More information

Topic 2060 Gibbs Energies; Salt Solutions; Aqueous Mixtures The solubilities of chemical substance j in two liquids l

Topic 2060 Gibbs Energies; Salt Solutions; Aqueous Mixtures The solubilities of chemical substance j in two liquids l Topic 6 Gibbs Energies; Salt Solutions; Aqueous Mixtures The solubilities of chemical substance in two liquids l and l (at the same T and p) offers a method for comparing the reference chemical potentials,

More information

Chemistry 122 (Tyvoll) ANSWERS TO PRACTICE EXAMINATION I Fall 2005

Chemistry 122 (Tyvoll) ANSWERS TO PRACTICE EXAMINATION I Fall 2005 hemistry 122 (Tyvoll) ANSWERS T PRATIE EXAMINATIN I Fall 2005 1. Which statement is not correct? 1) A volatile liquid has a high boiling point. 2. Which of the following compounds is predicted to have

More information

Chapter 17: Phenomena

Chapter 17: Phenomena Chapter 17: Phenomena Phenomena: Different masses of solute were added to 1 kg of either H 2 O or C 6 H 6. The boiling and freezing points of the solutions were then measured. Examine the data to determine

More information

This is an author-deposited version published in: Eprints ID: 5748

This is an author-deposited version published in:  Eprints ID: 5748 Open Archive Toulouse Archive Ouverte (OATAO) OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible. This is an author-deposited

More information

Simple Mixtures. Chapter 7 of Atkins: Section

Simple Mixtures. Chapter 7 of Atkins: Section Simple Mixtures Chapter 7 of Atkins: Section 7.5-7.8 Colligative Properties Boiling point elevation Freezing point depression Solubility Osmotic Pressure Activities Solvent Activity Solute Activity Regular

More information

Thermochemistry and Thermodynamics. What is the standard heat of formation of methane, H f CH 4 (g), as calculated from the data above?

Thermochemistry and Thermodynamics. What is the standard heat of formation of methane, H f CH 4 (g), as calculated from the data above? Thermochemistry and Thermodynamics 38% 1. H 4 (g) + 2 O 2 (g) O 2 (g) + 2 H 2 O(l); = - 889.1 kj H f H 2 O(l) = - 285.8 kj / mole H f O 2 (g) = - 393.3 kj / mole What is the standard heat of formation

More information

Lecture 4-6 Equilibrium

Lecture 4-6 Equilibrium Lecture 4-6 Equilibrium Discontinuity in the free energy, G verses T graph is an indication of phase transition. For one-component system, existing in two phases, the chemical potentials of each of these

More information

GEOL 414/514 ACTIVITY COEFFICIENTS OF DISSOLVED SPECIES

GEOL 414/514 ACTIVITY COEFFICIENTS OF DISSOLVED SPECIES GEOL 414/514 ACTIVITY COEFFICIENTS OF DISSOLVED SPECIES Chapter 4 LANGMUIR ACTIVITY & ACTIVITY COEFFICIENTS Earlier we studied common ion effect on decreasing the solubility CaCO 3 Ca +2 + CO 3 Add Ca

More information

Solution chemistry of carbon dioxide in sea water

Solution chemistry of carbon dioxide in sea water Page 1 of 15 Solution chemistry of carbon dioxide in sea water 1. Introduction This chapter outlines the chemistry of carbon dioxide in sea water so as to provide a coherent background for the rest of

More information

Chapter Eighteen. Thermodynamics

Chapter Eighteen. Thermodynamics Chapter Eighteen Thermodynamics 1 Thermodynamics Study of energy changes during observed processes Purpose: To predict spontaneity of a process Spontaneity: Will process go without assistance? Depends

More information

Chemical Engineering Science 55 (2000) 4993}5001

Chemical Engineering Science 55 (2000) 4993}5001 Chemical Engineering Science 55 (2000) 4993}5001 A further study of solid}liquid equilibrium for the NaCl}NH O system Xiaoyan Ji, Xiaohua Lu*, Luzheng Zhang, Ningzhong Bao, Yanru Wang, Jun Shi, Benjamin

More information