Outline of the Course

Size: px
Start display at page:

Download "Outline of the Course"

Transcription

1 Outline of the Course 1) Review and Definitions 2) Molecules and their Energies 3) 1 st Law of Thermodynamics Conservation of Energy. 4) 2 nd Law of Thermodynamics Ever-Increasing Entropy. 5) Gibbs Free Energy 6) Phase Diagrams and REAL Phenomena 7) Non-Electrolyte Solutions 8) Chemical Equilibrium 9) Chemical Kinetics and Rates of Processes

2 Section 7.0. Non-Electrolyte Solutions & Simple Mixtures PART II (Chapter 7 in Chang Text Most of It!)

3 7.8. Real Solutions..most solutions do not behave ideally Remember.in a solution we have two components solvent and solute In a real (non-ideal) solution how do we write the chemical potentials of the solute and the solvent??

4 The Solvent Component the chemical potential of the solvent in an ideal solution is given by the following equation.. 1 (l) = 1 * (l) + RT ln x 1 where x 1 = P 1 /P 1 * and P 1 is the vapour pressure of 1 when it is a component of a solution while P 1 * is the equilibrium vapor pressure of pure component 1 at T. for a non-ideal solution we write.. 1 (l) = 1 * (l) + RT ln a 1 where a 1 is the activity of the solvent.

5 non-idealityis the consequence of unequal intermolecular forces between solvent solvent and solvent solute molecules the solvent s activity can be expressed in terms of vapour pressure as follows: a 1 = P 1 /P 1 * the solvent s activity is related to mole fraction (concentration) as follows: a 1 = 1 x 1 where 1 is the activity coefficient. 1 (l) = 1 * (l) + RT ln a 1 1 (l) = 1 * (l) + RT ln 1 + RT ln x 1

6 The Activity Coefficient ( 1 ) is a measure of the degree of deviation from ideality: a 1 = 1 x 1.solvents obey Raoult s Law as concentration of solute approaches zero (i.e. x 2 0 ). In this case (i.e. x 1 1 ) the activity of the solvent approaches the mole fraction.. so a 1 x 1 as x 1 1..in fact as x

7

8 Solute Component for ideal solutions the solute and the solvent obey Raoult s Law for ideal-dilute solutions (also referred to as non-ideal dilute solutions) the solute obeys Henry s Law and the solvent obeys Raoult s Law The chemical potential for the solute according to Raoult s Law (i.e. for solute in an ideal solution) is given by: 2 (l) = 2 * (l) + RT ln x 2 = 2 * (l) + RT ln (P 2 /P 2 *)

9 The chemical potential for the solute according to Henry s Law (i.e. for solute in an ideal-dilute solution) is given by: [ recall: P 2 = K x 2 ] 2 (l) = 2 * (l) + RT ln (P 2 /P 2 *) = 2 * (l) + RT ln [(K x 2 )/P 2 *] = 2 * (l) + RT ln [K/P 2 *] + RT ln x 2 = 2o (l) + RT ln x 2 where: = 2o (l) + RT ln (P 2 /K) 2o (l) = 2 * (l) + RT ln [K/P 2 *]

10 For non-ideal solutions (beyond the dilute solution limit) the chemical potential of the solute is commonly given as follows: 2 (l) = 2 (l) + RT ln a 2 where a 2 is the activity of the solute. As with the solvent for the solute: a 2 = 2 x 2 where 2 is the activity coefficient of the solute..solute obey Henry s Law as its concentration approaches zero (i.e. x 2 0 ). In this case (i.e. x 1 1 ) the activity of the solute approaches the mole fraction.. so a 2 x 2 as x 2 0..in fact as x

11 Example: Acetone (A) Chloroform (C) Mixture (propanone (H 3 C) 2 C=O ) (trichloromethane CHCl 3 ) X C P C /torr P A /torr Henry s Law Constants: K A K C = 175 torr = 165 torr

12 Solvent Convention (Raoult s Law): a C = P C / P C * γ C = a C / x C P C * = 273 torr Solute Convention (Henry s Law): a C = P C / K C γ C = a C / x C K C = 165 torr

13 Chloroform X C P C /torr Chloroform As Solvent (Raoult s Law): a C γ C Chloroform As Solute (Henry s Law): a C γ C γ 1 as x 1 (Raoult s Law) γ 1 as x 0 (Henry s Law)

14 Variation of Activity and Activity Coefficient with Mole Fraction of Chloroform according to.. Raoult s Law (chloroform considered solvent) Henry s Law (chloroform considered solute) As x As x Atkins 7 th Edn Phys. Chem

15 Activities In Terms Of Molalities (alternate form of Ideal-Dilute solution) Selection of a standard state is entirely arbitrary so choose one that best suits our purpose. In chemistry, compositions are usually expressed as molalities (m 2 ) rather than mole fractions (x 2 ). For 2 component system: 1 = solvent, 2 = solute x 2 = m 2 / [ m 2 + (1000/M 1 ) ] = m 2 M 1 / [ m 2 M ] If: m 2 M 1 << 1000 then: x 2 m 2 M 1 / 1000 = m 2 (M 1 /1000) Therefore: x 2 proportional to m 2 as: m 2 0

16 The alternate form of the chemical potential for the solute according to Henry s Law (for solute in an ideal-dilute solution) is given by: [ recall: P 2 = K m ] [choose: m o = 1 mol solute / kg solvent] 2 (l) = 2 * (l) + RT ln (P 2 /P 2 *) = 2 * (l) + RT ln [(K m )/P 2 *] = 2 * (l) + RT ln [(K m m o )/(P 2 *m o )] = 2 * (l) + RT ln [(K m o )/P 2 *] + RT ln [m/m o ] where: = 2o (l) + RT ln (m/m o ) 2o (l) = 2 * (l) + RT ln [(K m o )/P 2 *]

17 Check out dimensions of the two ln ratios: (K m o )/P 2 * = (atm mol -1 kg solvent)(mol kg -1 solvent)/(atm) = dimensionless!!! (m/m o ) = (mol solute kg -1 solvent)/(1 mol solute kg -1 solvent) = dimensionless!!! Correct!!! Can t take a logarithm of a dimensioned quantity!!!

18 For non-ideal solutions (beyond the dilute solution limit) the chemical potential of the solute is commonly given as follows: 2 (l) = 2 (l) + RT ln a 2 where a 2 is the activity of the solute. As with the solvent for the solute: a 2 = γ 2 (m 2 /m o ) where γ 2 is the activity coefficient of the solute solute obeys Henry s Law as its concentration approaches zero (i.e. m 2 0). In this case (i.e. x 1 1) the activity of the solute approaches the ratio (m 2 /m o )... so: a 2 (m 2 /m o ) and γ 2 1 as: m 2 0

19 Chang Figure 7.8 (a) Chemical potential of a solute plotted against the logarithm of molality for a non-ideal solution. (b) Activity of a solute as a function of molality for a nonideal solution. The standard state is at m 2 /m o =1

20 Phase Equilibria of Two Component Systems DISTILLATION: separation of two volatile liquid components may be achieved by fractional distillation.. to use distillation to separate two components we have to understand how pressure and temperature affect the vapor liquid equilibrium of binary liquid mixtures.need to be familiar with phase diagram for this two component system.

21 Phase Diagram for Mixture of Benzene and Toluene consists of A) Plot of vapor pressure vs. mole fraction of benzene in solution B) Plot of vapor pressure vs. mole fraction of benzene in vapor phase A) B)

22 Therefore, constructing the phase diagram involves two steps 1- construct plot of P versus mole fraction of benzene in solution (P vs x b ) 2- construct plot of P versus mole fraction of benzene in the vapor phase (P vs x b v ) Let s start with Step 1:..What is the relationship between P and x b? According to Raoult s Law the vapor pressure of the individual components may be described as follows: P b = x b P b * and P t = x t P t * where x b and x t are the mole fractions of benzene and toluene in solution. (* denotes pure component)

23 The total pressure may be given by: P = P b + P t = x b P b * + x t P t * = x b P b * + (1 x b )P t * = P t * + (P b * - P t * ) x b P = P t * + (P b * - P t * ) x b

24 STEP 2. Construct plot of P versus mole fraction of benzene in the vapor phase (P vs x b v ) According to Dalton s Law the mole fraction of benzene in the vapor phase is given by: x b v = (P b / P) = [ (x b P b *) / (P t * + (P b *- P t *) x b )] Solve for x b x b = [ (x bv P t *) / (P b * - (P b *- P t *) x bv )] By Dalton s and Raoult s Laws: P b = x bv P =x b P b *

25 P = (x b P b *) / x b v = (P b * P t *) / (P b * - (P b *- P t *) x bv )..equation may be used to construct plot of P vs. x b v

26 above straight linethe system is in liquid state (..as expected at high pressures system is in liquid state) below the curve the system exists as vapor (i.e. at low pressures system is a vapor) within enclosed area the system exists as vapor and liquid

27 At point a: we are in the liquid phase remember the phase rule f = c p + 2 At point a.f = 3 since f = = 3 at constant mole fraction and temperature we can lower pressure and reach point b. At point b: the liquid can exist in equilibrium with its vapor (at this point liquid begins to vaporize.there is virtually no vapor present but what is present has composition according to point ))

28 At point c: the composition of liquid is described by f while composition of vapor is defined by g horizontal tie - line Relative amounts of liquid and vapor present in equilibrium are given by the LEVER RULE: n L l L = n V l V n L and n V are the number of moles of liquid and vapor. At point c, we have two phases and f = 2 f= *remember: f, gives no. of variables (e.g. pressure, temperature and composition) that can be changed independently of one another without changing no. of phases in equilibrium.

29 The LEVER Rule n L l L = n V l V where l L and l V.as shown in Fig (Chang text) Use the Lever Rule to find relative amounts of two phases that are present in a quantitative manner.

30 Now with phase diagram in hand we can figure out a way to separate benzene and toluene (at a fixed temperature) Start at point a.and lower pressure until system begins to vaporize at this point x b = 0.2 and x t = = 0.8 The composition of vapor in equilibrium with the solution is x bv = 0.5 and x tv = 0.5.at this point the vapor phase is richer in benzene than liquid phase is

31 now condense vapor from b to c.now mole fraction of benzene in vapor phase is even higher.. x bv = 0.8 and x tv = 0.2 repeat process and eventually achieve complete separation of benzene and toluene.

32 Temperature - Composition Diagram -in practice we carry distillation out at constant P not constant T b.pt. Benzene = 80.1 C b.pt. Toluene = C -we vary T in order to separate components of solution At constant P - the liquid phase is most stable at low T - vapor most stable at high T To separate solution at point a is evaporated (a to b)..the vapor (richer in benzene) is then condensed (b to c) and evaporated (c to d)

33 -each vaporization-condensation step is called a theoretical plate - the efficiency of a fractionating column is expressed in terms of the no. of theoretical plates Atkins 7 th Edn Phys. Chem

34 Setup for Fractional Distillation used to separate volatile liquids flask contains benzene and toluene solution boils, vapor condenses on beads in column and falls back into flask beads gradually heat up allowing vapor to move up slowly vapor that migrates towards top of fractionating column becomes more and more rich in most volatile component ** vapor that reaches top of column is pure benzene Chang Text page

35 Azeotropes many liquids have temperature composition phase diagrams that resemble previous example..yet in some cases there are deviations from this including either a maximum or minimum in the phase diagram. Maximum in phase diagram occurs when there are favorable interactions between unlike (A and B) molecules. A-B interactions stabilize liquid. Negative deviation from Raoult s Law. Excess G E is negative more favorable to mixing than in ideal system. Atkins 7 th Edn Phys. Chem

36 Minimum in phase diagram occurs when the mixture is destabilized relative to ideal solution. A-B interactions are unfavorable. Positive deviation from Raoult s Law G E is positive (i.e. less favorable to mixing than in ideal solution) Atkins 7 th Edn Phys. Chem

37 once azeotrope distillate has been produced further distillation does not result in further separation Azeotrope : distillate (i.e. vapor) that has same composition as solution in flask)

Boiling point elevation and freezing point depression

Boiling point elevation and freezing point depression Class 4.2 More Colligative Properties, Solutions & Distillation CHEM 102H T. Hughbanks Boiling point elevation and freezing point depression When nonvolatile solutes are present in a solvent, the solution

More information

Chapter 11 section 6 and Chapter 8 Sections 1-4 from Atkins

Chapter 11 section 6 and Chapter 8 Sections 1-4 from Atkins Lecture Announce: Chapter 11 section 6 and Chapter 8 Sections 1-4 from Atkins Outline: osmotic pressure electrolyte solutions phase diagrams of mixtures Gibbs phase rule liquid-vapor distillation azeotropes

More information

Distillation Course MSO2015

Distillation Course MSO2015 Distillation Course MSO2015 Distillation Distillation is a process in which a liquid or vapour mixture of two or more substances is separated into its component fractions of desired purity, by the application

More information

The Chemical Potential of Components of Solutions

The Chemical Potential of Components of Solutions CHEM 331 Physical Chemistry Fall 2017 The Chemical Potential of Components of Solutions We have shown that the Gibbs Free Energy for a solution at constant T and P can be determined from the chemical potential

More information

CH2351 Chemical Engineering Thermodynamics II Unit I, II Phase Equilibria. Dr. M. Subramanian

CH2351 Chemical Engineering Thermodynamics II Unit I, II   Phase Equilibria.   Dr. M. Subramanian CH2351 Chemical Engineering Thermodynamics II Unit I, II Phase Equilibria Dr. M. Subramanian Associate Professor Department of Chemical Engineering Sri Sivasubramaniya Nadar College of Engineering Kalavakkam

More information

Phase Transformations

Phase Transformations Phase Transformations Chapter 8 of Atkins: Sections 8.4-8.6 Temperature- Composition Diagrams Distillation of Mixtures Azeotropes Immiscible Liquids Liquid- Liquid Phase Diagrams Phase Separations Critical

More information

Colligative Properties. Vapour pressure Boiling point Freezing point Osmotic pressure

Colligative Properties. Vapour pressure Boiling point Freezing point Osmotic pressure Colligative Properties Vapour pressure Boiling point Freezing point Osmotic pressure Learning objectives Describe meaning of colligative property Use Raoult s law to determine vapor pressure of solutions

More information

Chemistry 163B. Concluding Factoids. and. Comments

Chemistry 163B. Concluding Factoids. and. Comments Chemistry 163B Concluding Factoids and Comments 1 neuron, resting potential http://projects.gw.utwente.nl/pi/sim/bovt/concep4.gif http://www.uta.edu/biology/westmoreland/classnotes/144/chapter_48_files/image009.jpg

More information

Thermodynamic condition for equilibrium between two phases a and b is G a = G b, so that during an equilibrium phase change, G ab = G a G b = 0.

Thermodynamic condition for equilibrium between two phases a and b is G a = G b, so that during an equilibrium phase change, G ab = G a G b = 0. CHAPTER 5 LECTURE NOTES Phases and Solutions Phase diagrams for two one component systems, CO 2 and H 2 O, are shown below. The main items to note are the following: The lines represent equilibria between

More information

Introduction: Introduction. material is transferred from one phase (gas, liquid, or solid) into another.

Introduction: Introduction. material is transferred from one phase (gas, liquid, or solid) into another. Introduction: Virtually all commercial chemical processes involve operations in which material is transferred from one phase (gas, liquid, or solid) into another. rewing a cup of Coffee (Leaching) Removal

More information

Thermodynamics IV - Free Energy and Chemical Equilibria Chemical Potential (Partial Molar Gibbs Free Energy)

Thermodynamics IV - Free Energy and Chemical Equilibria Chemical Potential (Partial Molar Gibbs Free Energy) Thermodynamics IV - Free Energy and Chemical Equilibria Chemical Potential (Partial Molar Gibbs Free Energy) increase in the Gibbs free energy of the system when 1 mole of i is added to a large amount

More information

General Physical Chemistry I

General Physical Chemistry I General Physical Chemistry I Lecture 14 Aleksey Kocherzhenko April 9, 2015" Last time " Chemical potential " Partial molar property the contribution per mole that a substance makes to an overall property

More information

Vapor-liquid equilibrium

Vapor-liquid equilibrium Vapor-liquid equilibrium From Wikipedia, the free encyclopedia Vapor-liquid equilibrium, abbreviated as VLE by some, is a condition where a liquid and its vapor (gas phase) are in equilibrium with each

More information

They provide us with the knowledge of phase composition and phase stability as a function of temperature (T), pressure (P) and composition(c).

They provide us with the knowledge of phase composition and phase stability as a function of temperature (T), pressure (P) and composition(c). They provide us with the knowledge of phase composition and phase stability as a function of temperature (T), pressure (P) and composition(c). PHASE EQUILIBRIUM one of the most important sources of information

More information

SOLUTION CONCENTRATIONS

SOLUTION CONCENTRATIONS SOLUTION CONCENTRATIONS The amount of solute in a solution (concentration) is an important property of the solution. A dilute solution contains small quantities of solute relative to the solvent, while

More information

CH1810 Lecture #2 Vapor Pressure of Liquids and Solutions

CH1810 Lecture #2 Vapor Pressure of Liquids and Solutions CH1810 Lecture #2 Vapor Pressure of Liquids and Solutions Vaporization and Condensation Kinetic Energy and Temperature Molecules in a liquid are constantly in motion Types of motion: vibrational, and limited

More information

x =!b ± b2! 4ac 2a moles particles solution (expt) moles solute dissolved (calculated conc ) i =

x =!b ± b2! 4ac 2a moles particles solution (expt) moles solute dissolved (calculated conc ) i = Properties of Solution Practice Exam Solutions Name (last) (First) Read all questions before you start. Show all work and explain your answers. Report all numerical answers to the proper number of sig.

More information

Vapor Pressure & Raoult s Law. This is the pressure above a solid or liquid due to evaporation.

Vapor Pressure & Raoult s Law. This is the pressure above a solid or liquid due to evaporation. 1. What is Vapor Pressure? Vapor Pressure & Raoult s Law This is the pressure above a solid or liquid due to evaporation. 2. Can a solute affect the vapor pressure of a solvent? Yes. 3. What do solutes

More information

Lecture 6. NONELECTROLYTE SOLUTONS

Lecture 6. NONELECTROLYTE SOLUTONS Lecture 6. NONELECTROLYTE SOLUTONS NONELECTROLYTE SOLUTIONS SOLUTIONS single phase homogeneous mixture of two or more components NONELECTROLYTES do not contain ionic species. CONCENTRATION UNITS percent

More information

KEMS448 Physical Chemistry Advanced Laboratory Work. Freezing Point Depression

KEMS448 Physical Chemistry Advanced Laboratory Work. Freezing Point Depression KEMS448 Physical Chemistry Advanced Laboratory Work Freezing Point Depression 1 Introduction Colligative properties are properties of liquids that depend only on the amount of dissolved matter (concentration),

More information

COLLIGATIVE PROPERTIES. Engr. Yvonne Ligaya F. Musico 1

COLLIGATIVE PROPERTIES. Engr. Yvonne Ligaya F. Musico 1 COLLIGATIVE PROPERTIES Engr. Yvonne Ligaya F. Musico 1 Colligative Properties Properties that depend on the collective effect of the number of solute particles. Engr. Yvonne Ligaya F. Musico 2 COLLEGATIVE

More information

CHEMISTRY Topic #2: Thermochemistry and Electrochemistry What Makes Reactions Go? Fall 2018 Dr. Susan Findlay See Exercises in Topic 8

CHEMISTRY Topic #2: Thermochemistry and Electrochemistry What Makes Reactions Go? Fall 2018 Dr. Susan Findlay See Exercises in Topic 8 CHEMISTRY 2000 Topic #2: Thermochemistry and Electrochemistry What Makes Reactions Go? Fall 208 Dr. Susan Findlay See Exercises in Topic 8 Vapour Pressure of Pure Substances When you leave wet dishes on

More information

Chapter 11 Problems: 11, 15, 18, 20-23, 30, 32-35, 39, 41, 43, 45, 47, 49-51, 53, 55-57, 59-61, 63, 65, 67, 70, 71, 74, 75, 78, 81, 85, 86, 93

Chapter 11 Problems: 11, 15, 18, 20-23, 30, 32-35, 39, 41, 43, 45, 47, 49-51, 53, 55-57, 59-61, 63, 65, 67, 70, 71, 74, 75, 78, 81, 85, 86, 93 Chapter 11 Problems: 11, 15, 18, 20-23, 30, 32-35, 39, 41, 43, 45, 47, 49-51, 53, 55-57, 59-61, 63, 65, 67, 70, 71, 74, 75, 78, 81, 85, 86, 93 Chapter 11 Properties of Solutions Types of mixtures: homogenous

More information

General Physical Chemistry I

General Physical Chemistry I General Physical Chemistry I Lecture 13 leksey Kocherzhenko pril 7, 2015" Last time " Phase diagrams" Maps showing the thermodynamically stable phases for each and," phase regions in a phase diagram are

More information

CHEM 254 EXPERIMENT 7. Phase Diagrams - Liquid Vapour Equilibrium for two component solutions

CHEM 254 EXPERIMENT 7. Phase Diagrams - Liquid Vapour Equilibrium for two component solutions pressure CHEM 254 EXPERIMENT 7 Phase Diagrams - Liquid Vapour Equilibrium for two component solutions The partial pressures of the components of an ideal solution of two volatile liquids are related to

More information

Distillation of Liquids: Separation of 2-Propanol from Water by Fractional Distillation

Distillation of Liquids: Separation of 2-Propanol from Water by Fractional Distillation Distillation of Liquids: Separation of 2-Propanol from Water by Fractional Distillation Introduction: Distillation is the process of vaporizing a liquid, condensing the vapor, and collecting the condensate

More information

Simple Mixtures. Chapter 7 of Atkins: Section

Simple Mixtures. Chapter 7 of Atkins: Section Simple Mixtures Chapter 7 of Atkins: Section 7.5-7.8 Colligative Properties Boiling point elevation Freezing point depression Solubility Osmotic Pressure Activities Solvent Activity Solute Activity Regular

More information

Vapor-liquid Separation Process MULTICOMPONENT DISTILLATION

Vapor-liquid Separation Process MULTICOMPONENT DISTILLATION Vapor-liquid Separation Process MULTICOMPONENT DISTILLATION Outline: Introduction to multicomponent distillation Phase Equilibria in Multicomponent Distillation (Pg. 737) Bubble-point and dew-point calculation

More information

Phase Equilibrium: Preliminaries

Phase Equilibrium: Preliminaries Phase Equilibrium: Preliminaries Phase diagrams for two one component systems, CO 2 and H 2 O, are shown below. The main items to note are the following: The lines represent equilibria between two phases.

More information

CHEMISTRY XL-14A PHYSICAL EQUILIBRIUM. August 13, 2011 Robert Iafe

CHEMISTRY XL-14A PHYSICAL EQUILIBRIUM. August 13, 2011 Robert Iafe CHEMISTRY XL-14A PHYSICAL EQUILIBRIUM August 13, 2011 Robert Iafe Chapter Overview 2 Phases and Phase Transitions Solubility Colligative Properties Binary Liquid Mixtures Phases and Phase Transitions 3

More information

Thermodynamics of Solutions Why important? Why are liquid solutions nonideal?

Thermodynamics of Solutions Why important? Why are liquid solutions nonideal? Thermodynamics of Solutions Why important? Why are liquid solutions nonideal? mixtures of different chemical components are everywhere : biochemical, geological, environmental and industrial systems chemically-reacting

More information

Chapter 11. Properties of Solutions

Chapter 11. Properties of Solutions Chapter 11 Properties of Solutions Section 11.1 Solution Composition Various Types of Solutions Copyright Cengage Learning. All rights reserved 2 Section 11.1 Solution Composition Solution Composition

More information

PHYSICAL CHEMISTRY CHEM330

PHYSICAL CHEMISTRY CHEM330 PHYSICAL CHEMISTRY CHEM330 Duration: 3 hours Total Marks: 100 Internal Examiner: External Examiner: Professor B S Martincigh Professor J C Swarts University of the Free State INSTRUCTIONS: 1. Answer five

More information

CHAPTER SIX THERMODYNAMICS Vapor-Liquid Equilibrium in a Binary System 6.2. Investigation of the Thermodynamic Properties of Pure Water

CHAPTER SIX THERMODYNAMICS Vapor-Liquid Equilibrium in a Binary System 6.2. Investigation of the Thermodynamic Properties of Pure Water CHAPTER SIX THERMODYNAMICS 6.1. Vapor-Liquid Equilibrium in a Binary System 6.2. Investigation of the Thermodynamic Properties of Pure Water 2 6.1. VAPOR-LIQUID EQUILIBRIUM IN A BINARY SYSTEM Keywords:

More information

Distillation is a method of separating mixtures based

Distillation is a method of separating mixtures based Distillation Distillation is a method of separating mixtures based on differences in their volatilities in a boiling liquid mixture. Distillation is a unit operation, or a physical separation process,

More information

General Chemistry II, Unit II: Study Guide (part 2)

General Chemistry II, Unit II: Study Guide (part 2) General Chemistry II Unit II Part 2 1 General Chemistry II, Unit II: Study Guide (part 2) CDS Chapter 17: Phase Equilibrium and Intermolecular Forces Introduction o In this chapter, we will develop a model

More information

PHASE CHEMISTRY AND COLLIGATIVE PROPERTIES

PHASE CHEMISTRY AND COLLIGATIVE PROPERTIES PHASE CHEMISTRY AND COLLIGATIVE PROPERTIES Phase Diagrams Solutions Solution Concentrations Colligative Properties Brown et al., Chapter 10, 385 394, Chapter 11, 423-437 CHEM120 Lecture Series Two : 2013/01

More information

Solutions. Solution Formation - Types of Solutions - Solubility and the Solution Process - Effects of Temperature and Pressure on Solubility

Solutions. Solution Formation - Types of Solutions - Solubility and the Solution Process - Effects of Temperature and Pressure on Solubility Solutions Solutions Solution Formation - Types of Solutions - Solubility and the Solution Process - Effects of Temperature and Pressure on Solubility Colligative Properties - Ways of Expressing Concentration

More information

CH 2: SOLUTIONS

CH 2: SOLUTIONS 1 CH 2: SOLUTIONS 2 SOLUTION, SOLVENT, SOLUTE Solutions are homogeneous mixtures of two or more than two components. i.e. composition and properties are uniform throughout the mixture. Eg: The component

More information

Chemistry 201: General Chemistry II - Lecture

Chemistry 201: General Chemistry II - Lecture Chemistry 201: General Chemistry II - Lecture Dr. Namphol Sinkaset Chapter 14 Study Guide Concepts 1. Solutions are homogeneous mixtures of two or more substances. 2. solute: substance present in smaller

More information

Chapter 5. Simple Mixtures Fall Semester Physical Chemistry 1 (CHM2201)

Chapter 5. Simple Mixtures Fall Semester Physical Chemistry 1 (CHM2201) Chapter 5. Simple Mixtures 2011 Fall Semester Physical Chemistry 1 (CHM2201) Contents The thermodynamic description of mixtures 5.1 Partial molar quantities 5.2 The thermodynamic of Mixing 5.3 The chemical

More information

Physical Properties of Solutions

Physical Properties of Solutions Physical Properties of Solutions Physical Properties of Solutions Types of Solutions (13.1) A Molecular View of the Solution Process (13.2) Concentration Units (13.3) Effect of Temperature on Solubility

More information

SOLUTIONS CHAPTER 9 TEXT BOOK EXERCISE Q1. Choose the correct answer for the given ones. (i) Morality of pure water is (a) 1. (b) 18. (c) 55.5 (d) 6. Hint: Morality of pure water Consider 1 dm 3 (-1000cm

More information

7 Simple mixtures. Solutions to exercises. Discussion questions. Numerical exercises

7 Simple mixtures. Solutions to exercises. Discussion questions. Numerical exercises 7 Simple mixtures Solutions to exercises Discussion questions E7.1(b For a component in an ideal solution, Raoult s law is: p xp. For real solutions, the activity, a, replaces the mole fraction, x, and

More information

Chem 260 Quiz - Chapter 4 (11/19/99)

Chem 260 Quiz - Chapter 4 (11/19/99) Chem 260 Quiz - Chapter 4 (11/19/99) Name (print) Signature Terms in bold: phase transitions transition temperature phase diagram phase boundaries vapor pressure thermal analysis dynamic equilibrium boiling

More information

Chapter 11 Review Packet

Chapter 11 Review Packet Chapter 11 Review Packet Name Multiple Choice Portion: 1. Which of the following terms is not a quantitative description of a solution? a. molarity b. molality c. mole fraction d. supersaturation 2. Which

More information

EXPERIMENT 7 - Distillation Separation of a Mixture

EXPERIMENT 7 - Distillation Separation of a Mixture EXPERIMENT 7 - Distillation Separation of a Mixture Purpose: a) To purify a compound by separating it from a non-volatile or less-volatile material. b) To separate a mixture of two miscible liquids (liquids

More information

Chapter 17: Phenomena

Chapter 17: Phenomena Chapter 17: Phenomena Phenomena: Different masses of solute were added to 1 kg of either H 2 O or C 6 H 6. The boiling and freezing points of the solutions were then measured. Examine the data to determine

More information

Solutions to Problem Set 9

Solutions to Problem Set 9 Solutions to Problem Set 9 1. When possible, we want to write an equation with the quantity on the ordinate in terms of the quantity on the abscissa for each pf the labeled curves. A B C p CHCl3 = K H

More information

Physical Chemistry Chapter 4 The Properties of Mixtures

Physical Chemistry Chapter 4 The Properties of Mixtures Physical Chemistry Chapter 4 The Properties of Mixtures by Izirwan Bin Izhab FKKSA izirwan@ump.edu.my Chapter Description Aims Determine the fugacity and fugacity coefficients for pure species using generic

More information

LECTURE 6 NON ELECTROLYTE SOLUTION

LECTURE 6 NON ELECTROLYTE SOLUTION LECTURE 6 NON ELECTROLYTE SOLUTION Ch 45.5 pplied Phy Chem First Sem 2014-15 Ch 45.5 Exam II September 1/3 (Multiple Choice/Problem Solving) Coverage: Second/Third Laws of Thermodynamics Nonelectrolyte

More information

m m 3 mol Pa = Pa or bar At this pressure the system must also be at approximately 1000 K.

m m 3 mol Pa = Pa or bar At this pressure the system must also be at approximately 1000 K. 5. PHASES AND SOLUTIONS n Thermodynamics of Vapor Pressure 5.. At equilibrium, G(graphite) G(diamond); i.e., G 2 0. We are given G 2900 J mol. ( G/ P) T V V 2.0 g mol.95 0 6 m 3 mol Holding T constant

More information

Summary of Gas Laws V T. Boyle s Law (T and n constant) Charles Law (p and n constant) Combined Gas Law (n constant) 1 =

Summary of Gas Laws V T. Boyle s Law (T and n constant) Charles Law (p and n constant) Combined Gas Law (n constant) 1 = Summary of Gas Laws Boyle s Law (T and n constant) p 1 V 1 = p 2 V 2 Charles Law (p and n constant) V 1 = T 1 V T 2 2 Combined Gas Law (n constant) pv 1 T 1 1 = pv 2 T 2 2 1 Ideal Gas Equation pv = nrt

More information

Overview. Types of Solutions. Intermolecular forces in solution. Concentration terms. Colligative properties. Osmotic Pressure 2 / 46

Overview. Types of Solutions. Intermolecular forces in solution. Concentration terms. Colligative properties. Osmotic Pressure 2 / 46 1 / 46 2 / 46 Overview Types of Solutions. Intermolecular forces in solution Concentration terms Colligative properties Osmotic Pressure 3 / 46 Solutions and Colloids A solution is a homogeneous mixture

More information

Subject : Chemistry Class : XII Chapter-2.Solutions Work Sheet ( WS 2. 1) Topic- 2.1 Henry s & Raoult s Laws

Subject : Chemistry Class : XII Chapter-2.Solutions Work Sheet ( WS 2. 1) Topic- 2.1 Henry s & Raoult s Laws Work Sheet ( WS 2. 1) Topic- 2.1 Henry s & Raoult s Laws Name -. Class/ sec.. Roll No.. A. Fill in the blanks: 1. Solutions are mixtures of two or more than two components. 2. Generally, the component

More information

Solution KEY CONCEPTS

Solution KEY CONCEPTS Solution KEY CONCEPTS Solution is the homogeneous mixture of two or more substances in which the components are uniformly distributed into each other. The substances which make the solution are called

More information

Downloaded from

Downloaded from : Bhubaneswar Region CHAPTER 2-SOLUTIONS 1 MARK QUESTIONS 1 What is molarity? 2 What do you understand by saying that molality of a solution is 0.2? 3 Why is the vapour pressure of a liquid remains constant

More information

DATE: POGIL: Colligative Properties Part 1

DATE: POGIL: Colligative Properties Part 1 NAME: AP Chemistry DATE: POGIL: Colligative Properties Part 1 Why? There is a general misconception that adding sodium chloride to cooking water for pasta increases the temperature of the boiling water

More information

OFB Chapter 6 Condensed Phases and Phase Transitions

OFB Chapter 6 Condensed Phases and Phase Transitions OFB Chapter 6 Condensed Phases and Phase Transitions 6-1 Intermolecular Forces: Why Condensed Phases Exist 6- The Kinetic Theory of Liquids and Solids 6-3 Phase Equilibrium 6-4 Phase Transitions 6-5 Phase

More information

Chapter 12. Properties of Solutions

Chapter 12. Properties of Solutions Chapter 12. Properties of Solutions What we will learn: Types of solutions Solution process Interactions in solution Types of concentration Concentration units Solubility and temperature Solubility and

More information

Born-Haber Cycle: ΔH hydration

Born-Haber Cycle: ΔH hydration Born-Haber Cycle: ΔH hydration ΔH solution,nacl = ΔH hydration,nacl(aq) U NaCl ΔH hydration,nacl(aq) = ΔH hydration,na + (g) + ΔH hydration,cl (g) Enthalpies of Hydration 1 Sample Exercise 11.3 Use the

More information

75 A solution of 2.500g of unknown dissolved in g of benzene has a freezing point of C. What is the molecular weight of the unknown?

75 A solution of 2.500g of unknown dissolved in g of benzene has a freezing point of C. What is the molecular weight of the unknown? 75 A solution of 2.500g of unknown dissolved in 100.0 g of benzene has a freezing point of 4.880 C. What is the molecular weight of the unknown? Solving for Cm (molality) will allow us to calculate how

More information

Phase Separation Degree of Freedom Analysis. Binary Vapor-Liquid Systems. Azeotropic Systems. - Gibbs phase rule F C P 2 -General analysis

Phase Separation Degree of Freedom Analysis. Binary Vapor-Liquid Systems. Azeotropic Systems. - Gibbs phase rule F C P 2 -General analysis Lecture 5. Single Equilibrium Stages (1) Phase Separation [Ch. 4] Degree of Freedom Analysis - Gibbs phase rule F CP2 -General analysis Binary Vapor-Liquid Systems - Examples of binary system - Phase equilibrium

More information

There are five problems on the exam. Do all of the problems. Show your work

There are five problems on the exam. Do all of the problems. Show your work CHM 3400 Fundamentals of Physical Chemistry Second Hour Exam March 8, 2017 There are five problems on the exam. Do all of the problems. Show your work R = 0.08206 L atm/mole K N A = 6.022 x 10 23 R = 0.08314

More information

70 Example: If a solution is m citric acid, what is the molar concentration (M) of the solution? The density of the solution is 1.

70 Example: If a solution is m citric acid, what is the molar concentration (M) of the solution? The density of the solution is 1. 70 Example: If a solution is 0.688 m citric acid, what is the molar concentration (M) of the solution? The density of the solution is 1.049 g/ml molality definition molarity definition To solve the problem,

More information

Final Examination. Multiple Choice Questions. 1. The Virial expansion of the Compressibility Factor for a van der Waals gas is:

Final Examination. Multiple Choice Questions. 1. The Virial expansion of the Compressibility Factor for a van der Waals gas is: CHEM 331 Physical Chemistry I Fall 2013 Name: Final Examination Multiple Choice Questions 1. The Virial expansion of the Compressibility Factor for a van der Waals gas is: Z = 1 + + The Boyle Temperature

More information

Lecture Notes 1: Physical Equilibria Vapor Pressure

Lecture Notes 1: Physical Equilibria Vapor Pressure Lecture Notes 1: Physical Equilibria Vapor Pressure Our first exploration of equilibria will examine physical equilibria (no chemical changes) in which the only changes occurring are matter changes phases.

More information

Solutions: Physical Properties and Behavior

Solutions: Physical Properties and Behavior Solutions: Physical Properties and Behavior In the previous chapter you were exposed to a great deal of information about the forces present in and the properties of individual pure substances (for example,

More information

Exam 3 Solutions. ClO g. At 200 K and a total pressure of 1.0 bar, the partial pressure ratio for the chlorine-containing compounds is p ClO2

Exam 3 Solutions. ClO g. At 200 K and a total pressure of 1.0 bar, the partial pressure ratio for the chlorine-containing compounds is p ClO2 Chemistry 360 Dr. Jean M. Standard Fall 2016 Name KEY Exam 3 Solutions 1.) (14 points) Consider the gas phase decomposition of chlorine dioxide, ClO 2, ClO 2 ( g) ClO ( g) + O ( g). At 200 K and a total

More information

Colligative properties of solutions

Colligative properties of solutions Colligative properties of solutions Glucose and gycerol in the blood of the frog prevent it from freezing. Alcune immagine sono state prese e modificate da Chimica di Kotz, Treichel & Weaver, Edises 2007,

More information

Lecture 11: Models of the chemical potential

Lecture 11: Models of the chemical potential Lecture 11: 10.15.05 Models of the chemical potential Today: LAST TIME... 2 MORE ON THE RELATIONSHIP BETWEEN CHEMICAL POTENTIAL AND GIBBS FREE ENERGY... 3 Chemical potentials in multicomponent systems

More information

SOLUTIONS. Dissolution of sugar in water. General Chemistry I. General Chemistry I CHAPTER

SOLUTIONS. Dissolution of sugar in water. General Chemistry I. General Chemistry I CHAPTER 11 CHAPTER SOLUTIONS 11.1 Composition of Solutions 11.2 Nature of Dissolved Species 11.3 Reaction Stoichiometry in Solutions: Acid-Base Titrations 11.4 Reaction Stoichiometry in Solutions: Oxidation-Reduction

More information

5.4 Liquid Mixtures. G i. + n B. = n A. )+ n B. + RT ln x A. + RT ln x B. G = nrt ( x A. ln x A. Δ mix. + x B S = nr( x A

5.4 Liquid Mixtures. G i. + n B. = n A. )+ n B. + RT ln x A. + RT ln x B. G = nrt ( x A. ln x A. Δ mix. + x B S = nr( x A 5.4 Liquid Mixtures Key points 1. The Gibbs energy of mixing of two liquids to form an ideal solution is calculated in the same way as for two perfect gases 2. A regular solution is one in which the entropy

More information

Unit - 2 SOLUTIONS VSA QUESTIONS (1 - MARK QUESTIONS) 1. Give an example of liquid in solid type solution.

Unit - 2 SOLUTIONS VSA QUESTIONS (1 - MARK QUESTIONS) 1. Give an example of liquid in solid type solution. Unit - 2 SOLUTIONS VSA QUESTIONS (1 - MARK QUESTIONS) 1. Give an example of liquid in solid type solution. 2. Which type of solid solution will result by mixing two solid components with large difference

More information

Chapter 11 Properties of Solutions

Chapter 11 Properties of Solutions Chapter 11 Properties of Solutions Solutions Homogeneous mixtures of two or more substances Composition is uniform throughout the sample No chemical reaction between the components of the mixture Solvents

More information

7.02 Colligative Properties

7.02 Colligative Properties 7.02 Colligative Properties Changes in solvent properties due to impurities Colloidal suspensions or dispersions scatter light, a phenomenon known as the Tyndall effect. (a) Dust in the air scatters the

More information

Chapter 17 - Properties of Solutions

Chapter 17 - Properties of Solutions Chapter 17 - Properties of Solutions 17.1 Solution Composition 17.2 Thermodynamics of Solution Formation 17.3 Factors Affecting Solubility 17.4 Vapor Pressures of Solutions 17.5 Boiling-Point Elevation

More information

Solutions and Their Properties

Solutions and Their Properties Chapter 11 Solutions and Their Properties Solutions: Definitions A solution is a homogeneous mixture. A solution is composed of a solute dissolved in a solvent. When two compounds make a solution, the

More information

Freezing point depression - The freezing temperature of a SOLUTION gets lower as the CONCENTRATION of a solution increases.

Freezing point depression - The freezing temperature of a SOLUTION gets lower as the CONCENTRATION of a solution increases. 73 COLLIGATIVE PROPERTIES - properties unique to solutions. - depend only on the CONCENTRATION of a solution and not the IDENTITY of the solute** **ionic solutes: Remember that they dissociate into MULTIPLE

More information

Chapter 11 Spontaneous Change and Equilibrium

Chapter 11 Spontaneous Change and Equilibrium Chapter 11 Spontaneous Change and Equilibrium 11-1 Enthalpy and Spontaneous Change 11-2 Entropy 11-3 Absolute Entropies and Chemical Reactions 11-4 The Second Law of Thermodynamics 11-5 The Gibbs Function

More information

Chemistry 2000 Lecture 11: Chemical equilibrium

Chemistry 2000 Lecture 11: Chemical equilibrium Chemistry 2000 Lecture 11: Chemical equilibrium Marc R. Roussel February 4, 2019 Marc R. Roussel Chemical equilibrium February 4, 2019 1 / 27 Equilibrium and free energy Thermodynamic criterion for equilibrium

More information

CHAPTER 9 SOLUTIONS SHORT QUESTIONS WITH ANSWER Q.1 Binary solution can be homogenous or heterogeneous explain? The solutions which contain two components only are called as binary solution. If binary

More information

PX-III Chem 1411 Chaps 11 & 12 Ebbing

PX-III Chem 1411 Chaps 11 & 12 Ebbing PX-III Chem 1411 Chaps 11 & 12 Ebbing 1. What is the name for the following phase change? I 2 (s) I 2 (g) A) melting B) condensation C) sublimation D) freezing E) vaporization 2. Which of the following

More information

Physical Properties of Solutions

Physical Properties of Solutions Physical Properties of Solutions Chapter 12 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 12.1- Types of solutions A solution is a homogenous mixture of 2 or

More information

I: Life and Energy. Lecture 2: Solutions and chemical potential; Osmotic pressure (B Lentz).

I: Life and Energy. Lecture 2: Solutions and chemical potential; Osmotic pressure (B Lentz). I: Life and Energy Lecture 1: What is life? An attempt at definition. Energy, heat, and work: Temperature and thermal equilibrium. The First Law. Thermodynamic states and state functions. Reversible and

More information

Chapter Solutions. MockTime.com. (a) M urea (b) 0.01 M KNO3 (c) 0.01 M Na2 SO4 (d) M glucose Ans: (c)

Chapter Solutions. MockTime.com. (a) M urea (b) 0.01 M KNO3 (c) 0.01 M Na2 SO4 (d) M glucose Ans: (c) 47 Chapter Solutions 1. Freezing point of an aqueous solution is ( 0.186) C. Elevation of boiling point of the same solution is K b = 0.512 C,Kf = 1.86 C, find the increase in boiling point. [2002] (a)

More information

UNIT 9.SOLUTIONS.

UNIT 9.SOLUTIONS. BOOK BACK QUESTION AND ANSWERS: 31.Define (i) molality (ii) Normality (i) molality (ii) Normality UNIT 9.SOLUTIONS Number of moles of solute Molality(m) = Mass of the solvent( in Kg) Number of gram equivalengt

More information

Vapor Pressure of Liquids Equilibria and Thermodynamics

Vapor Pressure of Liquids Equilibria and Thermodynamics Chemistry 1B-Foothill College Vapor Pressure of Liquids Equilibria and Thermodynamics In this exercise, you will investigate the relationship between the vapor pressure of a liquid and the thermodynamic

More information

Chapter 12 Intermolecular Forces of Attraction

Chapter 12 Intermolecular Forces of Attraction Chapter 12 Intermolecular Forces of Attraction Intermolecular Forces Attractive or Repulsive Forces between molecules. Molecule - - - - - - Molecule Intramolecular Forces bonding forces within the molecule.

More information

DATA THAT YOU MAY USE UNITS Conventional Volume ml or cm 3 = cm 3 or 10-3 dm 3 Liter (L) = dm 3 Pressure atm = 760 torr = Pa CONSTANTS

DATA THAT YOU MAY USE UNITS Conventional Volume ml or cm 3 = cm 3 or 10-3 dm 3 Liter (L) = dm 3 Pressure atm = 760 torr = Pa CONSTANTS DATA THAT YOU MAY USE UNITS Conventional S.I. Volume ml or cm 3 = cm 3 or 0-3 dm 3 Liter (L) = dm 3 Pressure atm = 760 torr =.03 0 5 Pa torr = 33.3 Pa Temperature C 0 C = 73.5 K PV L-atm =.03 0 5 dm 3

More information

Chapter 13. Properties of Solutions

Chapter 13. Properties of Solutions Chapter 13 Properties of Solutions Warm - Up Why doesn t salt dissolve in nonpolar solvents such as hexane? How does the orientation of water around Na + differ from the orientation of water around Cl

More information

Soluble: A solute that dissolves in a specific solvent. Insoluble: A solute that will not dissolve in a specific solvent. "Like Dissolves Like"

Soluble: A solute that dissolves in a specific solvent. Insoluble: A solute that will not dissolve in a specific solvent. Like Dissolves Like Solutions Homogeneous Mixtures Solutions: Mixtures that contain two or more substances called the solute and the solvent where the solute dissolves in the solvent so the solute and solvent are not distinguishable

More information

Properties of Solutions

Properties of Solutions Properties of Solutions Reading: Ch 11, section 8 Ch 12, sections 1-8 * = important homework question Homework: Chapter 11: 85*, 87 Chapter 12: 29, 33, 35, 41, 51*, 53, 55, 63*, 65, 67*, 69, 71, 75*, 79*,

More information

Class XII Chapter 2 Solutions Chemistry

Class XII Chapter 2 Solutions Chemistry Class XII Chapter 2 Solutions Chemistry Question 2.1: Calculate the mass percentage of benzene (C 6 H 6 ) and carbon tetrachloride (CCl 4 ) if 22 g of benzene is dissolved in 122 g of carbon tetrachloride.

More information

For more info visit

For more info visit A solution is a homogeneous mixture of two (or more) substances, the composition of which may vary between certain limits. A solution consisting of two components is called binary solution. The component

More information

Brief reminder of the previous lecture

Brief reminder of the previous lecture Brief reminder of the previous lecture partial molar quantities: contribution of each component to the properties of mixtures V j V = G µ = j n j n j pt,, n pt,, n dg = Vdp SdT + µ dn + µ dn +... A A B

More information

concentration of solute (molality) Freezing point depression constant (for SOLVENT)

concentration of solute (molality) Freezing point depression constant (for SOLVENT) 74 FREEZING POINT DEPRESSION concentration of solute (molality) Freezing point depression constant (for SOLVENT) Freezing point depression: The amount the freezing temperature is LOWERED by the solute.

More information

Chemistry 360 Spring 2017 Dr. Jean M. Standard April 19, Exam points

Chemistry 360 Spring 2017 Dr. Jean M. Standard April 19, Exam points Chemistry 360 pring 2017 Dr. Jean M. tandard April 19, 2017 Name Exam 3 100 points Note: You must show your work on problems in order to receive full credit for any answers. You must turn in your equation

More information

CH1020 Exam #1 Study Guide

CH1020 Exam #1 Study Guide CH1020 Exam #1 Study Guide For reference see Chemistry: An Atoms-focused Approach by Gilbert, Kirss, and Foster Chapter 12: Thermodynamics Definitions & Concepts to know: Thermodynamics: the study of the

More information

Chapter 11: Properties of Solutions - Their Concentrations and Colligative Properties. Chapter Outline

Chapter 11: Properties of Solutions - Their Concentrations and Colligative Properties. Chapter Outline Chapter 11: Properties of Solutions - Their Concentrations and Colligative Properties Chapter Outline 11.1 Energy Changes when Substances Dissolve 11.2 Vapor Pressure 11.3 Mixtures of Volatile Substances

More information