Chapter 11. Properties of Solutions

Size: px
Start display at page:

Download "Chapter 11. Properties of Solutions"

Transcription

1 Chapter 11 Properties of Solutions

2 Section 11.1 Solution Composition Various Types of Solutions Copyright Cengage Learning. All rights reserved 2

3 Section 11.1 Solution Composition Solution Composition moles of solute Molarity ( M) = liters of solution mass of solute Mass (weight) percent = 100% mass of solution Mole fraction ( moles A A ) = total moles of solution moles of solute Molality ( m) = kilogram of s olvent Copyright Cengage Learning. All rights reserved 3

4 Section 11.1 Solution Composition Molarity moles of solute Molarity ( M) = liters of solution Copyright Cengage Learning. All rights reserved 4

5 Section 11.1 Solution Composition EXERCISE! You have 1.00 mol of sugar in ml of solution. Calculate the concentration in units of molarity M Copyright Cengage Learning. All rights reserved 5

6 Section 11.1 Solution Composition EXERCISE! You have a 10.0 M sugar solution. What volume of this solution do you need to have 2.00 mol of sugar? L Copyright Cengage Learning. All rights reserved 6

7 Section 11.1 Solution Composition EXERCISE! Consider separate solutions of NaOH and KCl made by dissolving g of each solute in ml of solution. Calculate the concentration of each solution in units of molarity M NaOH 5.37 M KCl Copyright Cengage Learning. All rights reserved 7

8 Section 11.1 Solution Composition Mass Percent mass of solute Mass (weight) percent = 100% mass of solution Copyright Cengage Learning. All rights reserved 8

9 Section 11.1 Solution Composition EXERCISE! What is the percent-by-mass concentration of glucose in a solution made my dissolving 5.5 g of glucose in 78.2 g of water? 6.6% Copyright Cengage Learning. All rights reserved 9

10 Section 11.1 Solution Composition Mole Fraction Mole fraction ( moles A A ) = total moles of solution Copyright Cengage Learning. All rights reserved 10

11 Section 11.1 Solution Composition EXERCISE! A solution of phosphoric acid was made by dissolving 8.00 g of H 3 PO 4 in ml of water. Calculate the mole fraction of H 3 PO 4. (Assume water has a density of 1.00 g/ml.) Copyright Cengage Learning. All rights reserved 11

12 Section 11.1 Solution Composition Molality moles of solute Molality ( m) = kilogram of solvent Copyright Cengage Learning. All rights reserved 12

13 Section 11.1 Solution Composition EXERCISE! A solution of phosphoric acid was made by dissolving 8.00 g of H 3 PO 4 in ml of water. Calculate the molality of the solution. (Assume water has a density of 1.00 g/ml.) m Copyright Cengage Learning. All rights reserved 13

14 Section 11.2 The Energies of Solution Formation Formation of a Liquid Solution 1. Separating the solute into its individual components (expanding the solute). 2. Overcoming intermolecular forces in the solvent to make room for the solute (expanding the solvent). 3. Allowing the solute and solvent to interact to form the solution. Copyright Cengage Learning. All rights reserved 14

15 Section 11.2 The Energies of Solution Formation Steps in the Dissolving Process Copyright Cengage Learning. All rights reserved 15

16 Section 11.2 The Energies of Solution Formation Steps in the Dissolving Process Steps 1 and 2 require energy, since forces must be overcome to expand the solute and solvent. Step 3 usually releases energy. Steps 1 and 2 are endothermic, and step 3 is often exothermic. Copyright Cengage Learning. All rights reserved 16

17 Section 11.2 The Energies of Solution Formation Enthalpy (Heat) of Solution Enthalpy change associated with the formation of the solution is the sum of the ΔH values for the steps: ΔH soln = ΔH 1 + ΔH 2 + ΔH 3 ΔH soln may have a positive sign (energy absorbed) or a negative sign (energy released). Copyright Cengage Learning. All rights reserved 17

18 Section 11.2 The Energies of Solution Formation Enthalpy (Heat) of Solution Copyright Cengage Learning. All rights reserved 18

19 Section 11.2 The Energies of Solution Formation CONCEPT CHECK! Explain why water and oil (a long chain hydrocarbon) do not mix. In your explanation, be sure to address how ΔH plays a role. Copyright Cengage Learning. All rights reserved 19

20 Section 11.2 The Energies of Solution Formation The Energy Terms for Various Types of Solutes and Solvents ΔH 1 ΔH 2 ΔH 3 ΔH soln Outcome Polar solute, polar solvent Large Large Large, negative Small Solution forms Nonpolar solute, polar solvent Small Large Small Large, positive No solution forms Nonpolar solute, nonpolar solvent Small Small Small Small Solution forms Polar solute, nonpolar solvent Large Small Small Large, positive No solution forms Copyright Cengage Learning. All rights reserved 20

21 Section 11.2 The Energies of Solution Formation In General One factor that favors a process is an increase in probability of the state when the solute and solvent are mixed. Processes that require large amounts of energy tend not to occur. Overall, remember that like dissolves like. Copyright Cengage Learning. All rights reserved 21

22 Section 11.3 Factors Affecting Solubility Structure Effects: Polarity Pressure Effects: Henry s law Temperature Effects: Affecting aqueous solutions Copyright Cengage Learning. All rights reserved 22

23 Section 11.3 Factors Affecting Solubility Structure Effects Hydrophobic (water fearing) Non-polar substances Hydrophilic (water loving) Polar substances Copyright Cengage Learning. All rights reserved 23

24 Section 11.3 Factors Affecting Solubility Pressure Effects Little effect on solubility of solids or liquids Henry s law: C = kp C = concentration of dissolved gas k = constant P = partial pressure of gas solute above the solution Amount of gas dissolved in a solution is directly proportional to the pressure of the gas above the solution. Copyright Cengage Learning. All rights reserved 24

25 Section 11.3 Factors Affecting Solubility A Gaseous Solute Copyright Cengage Learning. All rights reserved 25

26 Section 11.3 Factors Affecting Solubility Temperature Effects (for Aqueous Solutions) Although the solubility of most solids in water increases with temperature, the solubilities of some substances decrease with increasing temperature. Predicting temperature dependence of solubility is very difficult. Solubility of a gas in solvent typically decreases with increasing temperature. Copyright Cengage Learning. All rights reserved 26

27 Section 11.3 Factors Affecting Solubility The Solubilities of Several Solids as a Function of Temperature Copyright Cengage Learning. All rights reserved 27

28 Section 11.3 Factors Affecting Solubility The Solubilities of Several Gases in Water Copyright Cengage Learning. All rights reserved 28

29 Section 11.4 The Vapor Pressures of Solutions An Aqueous Solution and Pure Water in a Closed Environment Copyright Cengage Learning. All rights reserved 29

30 Section 11.4 The Vapor Pressures of Solutions Liquid/Vapor Equilibrium To play movie you must be in Slide Show Mode PC Users: Please wait for content to load, then click to play Mac Users: CLICK HERE Copyright Cengage Learning. All rights reserved 30

31 Section 11.4 The Vapor Pressures of Solutions Vapor Pressure Lowering: Addition of a Solute To play movie you must be in Slide Show Mode PC Users: Please wait for content to load, then click to play Mac Users: CLICK HERE Copyright Cengage Learning. All rights reserved 31

32 Section 11.4 The Vapor Pressures of Solutions Vapor Pressures of Solutions Nonvolatile solute lowers the vapor pressure of a solvent. Raoult s Law: P soln = observed vapor pressure of solution solv = mole fraction of solvent = vapor pressure of pure solvent P solv P = P soln solv solv Copyright Cengage Learning. All rights reserved 32

33 Section 11.4 The Vapor Pressures of Solutions A Solution Obeying Raoult s Law Copyright Cengage Learning. All rights reserved 33

34 Section 11.4 The Vapor Pressures of Solutions Nonideal Solutions Liquid-liquid solutions where both components are volatile. Modified Raoult s Law: PTotal = APA + BPB Nonideal solutions behave ideally as the mole fractions approach 0 and 1. Copyright Cengage Learning. All rights reserved 34

35 Section 11.4 The Vapor Pressures of Solutions Vapor Pressure for a Solution of Two Volatile Liquids Copyright Cengage Learning. All rights reserved 35

36 Section 11.4 The Vapor Pressures of Solutions Summary of the Behavior of Various Types of Solutions Interactive Forces Between Solute (A) and Solvent (B) Particles ΔH soln ΔT for Solution Formation Deviation from Raoult s Law Example A A, B B A B Zero Zero None (ideal solution) Benzenetoluene A A, B B < A B Negative (exothermic) Positive Negative Acetonewater A A, B B > A B Positive (endothermic) Negative Positive Ethanolhexane Copyright Cengage Learning. All rights reserved 36

37 Section 11.4 The Vapor Pressures of Solutions CONCEPT CHECK! For each of the following solutions, would you expect it to be relatively ideal (with respect to Raoult s Law), show a positive deviation, or show a negative deviation? a) Hexane (C 6 H 14 ) and chloroform (CHCl 3 ) b) Ethyl alcohol (C 2 H 5 OH) and water c) Hexane (C 6 H 14 ) and octane (C 8 H 18 ) Copyright Cengage Learning. All rights reserved 37

38 Section 11.5 Boiling-Point Elevation and Freezing-Point Depression Colligative Properties Depend only on the number, not on the identity, of the solute particles in an ideal solution: Boiling-point elevation Freezing-point depression Osmotic pressure Copyright Cengage Learning. All rights reserved 38

39 Section 11.5 Boiling-Point Elevation and Freezing-Point Depression Boiling-Point Elevation Nonvolatile solute elevates the boiling point of the solvent. ΔT = K b m solute ΔT = boiling-point elevation K b = molal boiling-point elevation constant m solute = molality of solute Copyright Cengage Learning. All rights reserved 39

40 Section 11.5 Boiling-Point Elevation and Freezing-Point Depression Boiling Point Elevation: Liquid/Vapor Equilibrium To play movie you must be in Slide Show Mode PC Users: Please wait for content to load, then click to play Mac Users: CLICK HERE Copyright Cengage Learning. All rights reserved 40

41 Section 11.5 Boiling-Point Elevation and Freezing-Point Depression Boiling Point Elevation: Addition of a Solute To play movie you must be in Slide Show Mode PC Users: Please wait for content to load, then click to play Mac Users: CLICK HERE Copyright Cengage Learning. All rights reserved 41

42 Section 11.5 Boiling-Point Elevation and Freezing-Point Depression Boiling Point Elevation: Solution/Vapor Equilibrium To play movie you must be in Slide Show Mode PC Users: Please wait for content to load, then click to play Mac Users: CLICK HERE Copyright Cengage Learning. All rights reserved 42

43 Section 11.5 Boiling-Point Elevation and Freezing-Point Depression Freezing-Point Depression When a solute is dissolved in a solvent, the freezing point of the solution is lower than that of the pure solvent. ΔT = K f m solute ΔT K f = freezing-point depression = molal freezing-point depression constant m solute = molality of solute Copyright Cengage Learning. All rights reserved 43

44 Section 11.5 Boiling-Point Elevation and Freezing-Point Depression Freezing Point Depression: Solid/Liquid Equilibrium To play movie you must be in Slide Show Mode PC Users: Please wait for content to load, then click to play Mac Users: CLICK HERE Copyright Cengage Learning. All rights reserved 44

45 Section 11.5 Boiling-Point Elevation and Freezing-Point Depression Freezing Point Depression: Addition of a Solute To play movie you must be in Slide Show Mode PC Users: Please wait for content to load, then click to play Mac Users: CLICK HERE Copyright Cengage Learning. All rights reserved 45

46 Section 11.5 Boiling-Point Elevation and Freezing-Point Depression Freezing Point Depression: Solid/Solution Equilibrium To play movie you must be in Slide Show Mode PC Users: Please wait for content to load, then click to play Mac Users: CLICK HERE Copyright Cengage Learning. All rights reserved 46

47 Section 11.5 Boiling-Point Elevation and Freezing-Point Depression Changes in Boiling Point and Freezing Point of Water Copyright Cengage Learning. All rights reserved 47

48 Section 11.5 Boiling-Point Elevation and Freezing-Point Depression EXERCISE! A solution was prepared by dissolving g of glucose in g water. The molar mass of glucose is g/mol. What is the boiling point of the resulting solution (in C)? Glucose is a molecular solid that is present as individual molecules in solution C Copyright Cengage Learning. All rights reserved 48

49 Section 11.5 Boiling-Point Elevation and Freezing-Point Depression EXERCISE! You take 20.0 g of a sucrose (C 12 H 22 O 11 ) and NaCl mixture and dissolve it in 1.0 L of water. The freezing point of this solution is found to be C. Assuming ideal behavior, calculate the mass percent composition of the original mixture, and the mole fraction of sucrose in the original mixture. 72.8% sucrose and 27.2% sodium chloride; mole fraction of the sucrose is Copyright Cengage Learning. All rights reserved 49

50 Section 11.5 Boiling-Point Elevation and Freezing-Point Depression EXERCISE! A plant cell has a natural concentration of 0.25 m. You immerse it in an aqueous solution with a freezing point of C. Will the cell explode, shrivel, or do nothing? Copyright Cengage Learning. All rights reserved 50

51 Section 11.6 Osmotic Pressure Osmosis flow of solvent into the solution through a semipermeable membrane. = MRT = osmotic pressure (atm) M = molarity of the solution R = gas law constant T = temperature (Kelvin) Copyright Cengage Learning. All rights reserved 51

52 Section 11.6 Osmotic Pressure Copyright Cengage Learning. All rights reserved 52

53 Section 11.6 Osmotic Pressure Osmosis To play movie you must be in Slide Show Mode PC Users: Please wait for content to load, then click to play Mac Users: CLICK HERE Copyright Cengage Learning. All rights reserved 53

54 Section 11.6 Osmotic Pressure Copyright Cengage Learning. All rights reserved 54

55 Section 11.6 Osmotic Pressure EXERCISE! When 33.4 mg of a compound is dissolved in 10.0 ml of water at 25 C, the solution has an osmotic pressure of 558 torr. Calculate the molar mass of this compound. 111 g/mol Copyright Cengage Learning. All rights reserved 55

56 Section 11.7 Colligative Properties of Electrolyte Solutions van t Hoff Factor, i The relationship between the moles of solute dissolved and the moles of particles in solution is usually expressed as: i = moles of particles in solution moles of solute dissolved Copyright Cengage Learning. All rights reserved 56

57 Section 11.7 Colligative Properties of Electrolyte Solutions Ion Pairing At a given instant a small percentage of the sodium and chloride ions are paired and thus count as a single particle. Copyright Cengage Learning. All rights reserved 57

58 Section 11.7 Colligative Properties of Electrolyte Solutions Examples The expected value for i can be determined for a salt by noting the number of ions per formula unit (assuming complete dissociation and that ion pairing does not occur). NaCl i = 2 KNO 3 i = 2 Na 3 PO 4 i = 4 Copyright Cengage Learning. All rights reserved 58

59 Section 11.7 Colligative Properties of Electrolyte Solutions Ion Pairing Ion pairing is most important in concentrated solutions. As the solution becomes more dilute, the ions are farther apart and less ion pairing occurs. Ion pairing occurs to some extent in all electrolyte solutions. Ion pairing is most important for highly charged ions. Copyright Cengage Learning. All rights reserved 59

60 Section 11.7 Colligative Properties of Electrolyte Solutions Modified Equations T = imk = imrt Copyright Cengage Learning. All rights reserved 60

61 Section 11.8 Colloids A suspension of tiny particles in some medium. Tyndall effect scattering of light by particles. Suspended particles are single large molecules or aggregates of molecules or ions ranging in size from 1 to 1000 nm. Copyright Cengage Learning. All rights reserved 61

62 Section 11.8 Colloids Types of Colloids Copyright Cengage Learning. All rights reserved 62

63 Section 11.8 Colloids Coagulation Destruction of a colloid. Usually accomplished either by heating or by adding an electrolyte. Copyright Cengage Learning. All rights reserved 63

Big Idea Three Topics

Big Idea Three Topics Big Idea Three Topics 1. Molecular, Ionic, Net Ionic Equations 2. Stoichiometry 3. Synthesis, Decomposition Reactions 6. Chemical Change Evidence 7. Endothermic & Exothermic Reactions 8. Electrochemistry

More information

Chapter 11. Properties of Solutions. Copyright 2017 Cengage Learning. All Rights Reserved.

Chapter 11. Properties of Solutions. Copyright 2017 Cengage Learning. All Rights Reserved. Chapter 11 Properties of Solutions Chapter 11 Table of Contents (11.1) (11.2) (11.3) (11.4) (11.5) (11.6) (11.7) (11.8) Solution composition The energies of solution formation Factors affecting solubility

More information

AP Chemistry--Chapter 11: Properties of Solutions

AP Chemistry--Chapter 11: Properties of Solutions AP Chemistry--Chapter 11: Properties of Solutions I. Solution Composition (ways of expressing concentration) 1. Qualitatively, use dilute or concentrated to describe 2. Quantitatively a. Mass Percentage

More information

Name AP CHEM / / Chapter 11 Outline Properties of Solutions

Name AP CHEM / / Chapter 11 Outline Properties of Solutions Name AP CHEM / / Chapter 11 Outline Properties of Solutions Solution Composition Because a mixture, unlike a chemical compound, has a variable composition, the relative amounts of substances in a solution

More information

Chapter 11 Properties of Solutions

Chapter 11 Properties of Solutions Chapter 11 Properties of Solutions Solutions Homogeneous mixtures of two or more substances Composition is uniform throughout the sample No chemical reaction between the components of the mixture Solvents

More information

Chapter 11. General Chemistry. Chapter 11/1

Chapter 11. General Chemistry. Chapter 11/1 Chapter 11 Solutions and Their Properties Professor Sam Sawan General Chemistry 84.122 Chapter 11/1 Solutions Solution: A homogeneous mixture. Solvent: The major component. Solute: A minor component. Copyright

More information

Properties of Solutions. Chapter 13

Properties of Solutions. Chapter 13 Properties of Solutions Chapter 13 Sodium acetate crystals rapidly form when a seed crystal is added to a supersaturated solution of sodium acetate. Saturated solution: contains the maximum amount of a

More information

Chapter 11. Properties of Solutions Solutions

Chapter 11. Properties of Solutions Solutions Chapter 11. Properties of Solutions Solutions Homogeneous Mixture 1 Solution Composition Equivalent moles of solute (mol) Acid-Base reaction Molarity (M) = liter of solution (L) 1 eq: the quantity of acid

More information

Physical Properties of Solutions

Physical Properties of Solutions Physical Properties of Solutions Chapter 12 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 12.1- Types of solutions A solution is a homogenous mixture of 2 or

More information

Chapter 11 Properties of Solutions

Chapter 11 Properties of Solutions Chapter 11 Properties of Solutions 11.1 Solution Composition. Molarity moles solute 1. Molarity ( M ) = liters of solution B. Mass Percent mass of solute 1. Mass percent = 1 mass of solution C. Mole Fraction

More information

COLLIGATIVE PROPERTIES

COLLIGATIVE PROPERTIES COLLIGATIVE PROPERTIES Depend on the number of solute particles in solution but not on the identity of the solute Vapor pressure lowering Boiling point elevation Freezing point depression Osmotic pressure

More information

StudyHub: AP Chemistry

StudyHub: AP Chemistry StudyHub+ 1 StudyHub: AP Chemistry Solution Composition and Energies, Boiling Point, Freezing Point, and Vapor Pressure StudyHub+ 2 Solution Composition: Mole Fraction: Formula: Mole Fraction of Component

More information

Chapter 11 Problems: 11, 15, 18, 20-23, 30, 32-35, 39, 41, 43, 45, 47, 49-51, 53, 55-57, 59-61, 63, 65, 67, 70, 71, 74, 75, 78, 81, 85, 86, 93

Chapter 11 Problems: 11, 15, 18, 20-23, 30, 32-35, 39, 41, 43, 45, 47, 49-51, 53, 55-57, 59-61, 63, 65, 67, 70, 71, 74, 75, 78, 81, 85, 86, 93 Chapter 11 Problems: 11, 15, 18, 20-23, 30, 32-35, 39, 41, 43, 45, 47, 49-51, 53, 55-57, 59-61, 63, 65, 67, 70, 71, 74, 75, 78, 81, 85, 86, 93 Chapter 11 Properties of Solutions Types of mixtures: homogenous

More information

COLLIGATIVE PROPERTIES. Engr. Yvonne Ligaya F. Musico 1

COLLIGATIVE PROPERTIES. Engr. Yvonne Ligaya F. Musico 1 COLLIGATIVE PROPERTIES Engr. Yvonne Ligaya F. Musico 1 Colligative Properties Properties that depend on the collective effect of the number of solute particles. Engr. Yvonne Ligaya F. Musico 2 COLLEGATIVE

More information

Chapter 11: Properties of Solutions

Chapter 11: Properties of Solutions Chapter 11: Properties of Solutions Apr 1 11:01 AM 11.1 Solution Composition Solve problems relating to the mass percent, mole fraction and molality. Mar 26 1:09 PM 1 Molarity (M) is defined as moles of

More information

Molality. Molality (m) is the number of moles of solute per kilogram of solvent. mol of solute kg solvent. Molality ( m) =

Molality. Molality (m) is the number of moles of solute per kilogram of solvent. mol of solute kg solvent. Molality ( m) = Molality Molality (m) is the number of moles of solute per kilogram of solvent. Molality ( m) = mol of solute kg solvent Sample Problem Calculate the molality of a solution of 13.5g of KF dissolved in

More information

Lecture Presentation. Chapter 12. Solutions. Sherril Soman, Grand Valley State University Pearson Education, Inc.

Lecture Presentation. Chapter 12. Solutions. Sherril Soman, Grand Valley State University Pearson Education, Inc. Lecture Presentation Chapter 12 Solutions Sherril Soman, Grand Valley State University Thirsty Seawater Drinking seawater can cause dehydration. Seawater Is a homogeneous mixture of salts with water Contains

More information

Solution Formation. Copyright Houghton Mifflin Company.All rights reserved. Presentation of Lecture Outlines, 12 2

Solution Formation. Copyright Houghton Mifflin Company.All rights reserved. Presentation of Lecture Outlines, 12 2 Solutions Solution Formation A solution is a homogeneous mixture of two or more substances, consisting of ions or molecules. (See Animation: Solution Equilibrium). A colloid, although it also appears to

More information

Colligative Properties

Colligative Properties Colligative Properties Vapor pressures have been defined as the pressure over a liquid in dynamic equilibrium between the liquid and gas phase in a closed system. The vapor pressure of a solution is different

More information

Physical Properties of Solutions

Physical Properties of Solutions Physical Properties of Solutions Physical Properties of Solutions Types of Solutions (13.1) A Molecular View of the Solution Process (13.2) Concentration Units (13.3) Effect of Temperature on Solubility

More information

Chapter 13 Properties of Solutions

Chapter 13 Properties of Solutions Chapter 13 Properties of Solutions Learning goals and key skills: Describe how enthalpy and entropy changes affect solution formation. Describe the relationship between intermolecular forces and solubility,

More information

Solutions and Their Properties

Solutions and Their Properties Chapter 11 Solutions and Their Properties Solutions: Definitions A solution is a homogeneous mixture. A solution is composed of a solute dissolved in a solvent. When two compounds make a solution, the

More information

Chapter 13. Ions in aqueous Solutions And Colligative Properties

Chapter 13. Ions in aqueous Solutions And Colligative Properties Chapter 13 Ions in aqueous Solutions And Colligative Properties Compounds in Aqueous Solution Dissociation The separation of ions that occurs when an ionic compound dissolves H2O NaCl (s) Na+ (aq) + Cl-

More information

Chapter 13. Properties of Solutions. Lecture Presentation. John D. Bookstaver St. Charles Community College Cottleville, MO

Chapter 13. Properties of Solutions. Lecture Presentation. John D. Bookstaver St. Charles Community College Cottleville, MO Lecture Presentation Chapter 13 Properties of John D. Bookstaver St. Charles Community College Cottleville, MO are homogeneous mixtures of two or more pure substances. In a solution, the solute is dispersed

More information

x =!b ± b2! 4ac 2a moles particles solution (expt) moles solute dissolved (calculated conc ) i =

x =!b ± b2! 4ac 2a moles particles solution (expt) moles solute dissolved (calculated conc ) i = Properties of Solution Practice Exam Solutions Name (last) (First) Read all questions before you start. Show all work and explain your answers. Report all numerical answers to the proper number of sig.

More information

Solutions. Solution Formation - Types of Solutions - Solubility and the Solution Process - Effects of Temperature and Pressure on Solubility

Solutions. Solution Formation - Types of Solutions - Solubility and the Solution Process - Effects of Temperature and Pressure on Solubility Solutions Solutions Solution Formation - Types of Solutions - Solubility and the Solution Process - Effects of Temperature and Pressure on Solubility Colligative Properties - Ways of Expressing Concentration

More information

Chapter 17: Phenomena

Chapter 17: Phenomena Chapter 17: Phenomena Phenomena: Different masses of solute were added to 1 kg of either H 2 O or C 6 H 6. The boiling and freezing points of the solutions were then measured. Examine the data to determine

More information

11/4/2017. General Chemistry CHEM 101 (3+1+0) Dr. Mohamed El-Newehy. Chapter 4 Physical Properties of Solutions

11/4/2017. General Chemistry CHEM 101 (3+1+0) Dr. Mohamed El-Newehy.   Chapter 4 Physical Properties of Solutions General Chemistry CHEM 11 (3+1+) Dr. Mohamed El-Newehy http://fac.ksu.edu.sa/melnewehy Chapter 4 Physical Properties of Solutions 1 Types of Solutions A solution is a homogenous mixture of 2 or more substances.

More information

Chapter 12. Properties of Solutions

Chapter 12. Properties of Solutions Chapter 12. Properties of Solutions What we will learn: Types of solutions Solution process Interactions in solution Types of concentration Concentration units Solubility and temperature Solubility and

More information

Properties of Solutions

Properties of Solutions Properties of Solutions The Solution Process A solution is a homogeneous mixture of solute and solvent. Solutions may be gases, liquids, or solids. Each substance present is a component of the solution.

More information

Chapter 12.4 Colligative Properties of Solutions Objectives List and define the colligative properties of solutions. Relate the values of colligative

Chapter 12.4 Colligative Properties of Solutions Objectives List and define the colligative properties of solutions. Relate the values of colligative Chapter 12.4 Colligative Properties of Solutions Objectives List and define the colligative properties of solutions. Relate the values of colligative properties to the concentrations of solutions. Calculate

More information

Chapter 13. Properties of Solutions

Chapter 13. Properties of Solutions Chapter 13 Properties of Solutions Warm - Up Why doesn t salt dissolve in nonpolar solvents such as hexane? How does the orientation of water around Na + differ from the orientation of water around Cl

More information

1) Define the following terms: a) solution, b) miscible, c) hydration, d) percent by mass (solute), e) colligative property, f) hypotonic.

1) Define the following terms: a) solution, b) miscible, c) hydration, d) percent by mass (solute), e) colligative property, f) hypotonic. Problems - Chapter 13 (with solutions) 1) Define the following terms: a) solution, b) miscible, c) hydration, d) percent by mass (solute), e) colligative property, f) hypotonic. a) solution - A homogeneous

More information

Chapter 13. Properties of Solutions

Chapter 13. Properties of Solutions Chapter 13. Properties of Solutions Common Student Misconceptions Students often confuse dilute and concentrated with weak and strong. Students do not realize that crystallization is the reverse of dissolution.

More information

Chapter 17 - Properties of Solutions

Chapter 17 - Properties of Solutions Chapter 17 - Properties of Solutions 17.1 Solution Composition 17.2 Thermodynamics of Solution Formation 17.3 Factors Affecting Solubility 17.4 Vapor Pressures of Solutions 17.5 Boiling-Point Elevation

More information

1) Define the following terms: a) solution, b) miscible, c) hydration, d) percent by mass (solute), e) colligative property, f) hypotonic.

1) Define the following terms: a) solution, b) miscible, c) hydration, d) percent by mass (solute), e) colligative property, f) hypotonic. Problems - Chapter 13 (with solutions) 1) Define the following terms: a) solution, b) miscible, c) hydration, d) percent by mass (solute), e) colligative property, f) hypotonic. a) solution - A homogeneous

More information

Chapter 13 Properties of Solutions

Chapter 13 Properties of Solutions Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chapter 13 Properties of John D. Bookstaver St. Charles Community College St. Peters, MO 2006,

More information

Chapter 13 Properties of Solutions

Chapter 13 Properties of Solutions Chemistry, The Central Science, 11th edition Theodore L. Brown, H. Eugene LeMay, Jr., and Bruce E. Bursten Chapter 13 Properties of John D. Bookstaver St. Charles Community College Cottleville, MO Chapter

More information

PX-III Chem 1411 Chaps 11 & 12 Ebbing

PX-III Chem 1411 Chaps 11 & 12 Ebbing PX-III Chem 1411 Chaps 11 & 12 Ebbing 1. What is the name for the following phase change? I 2 (s) I 2 (g) A) melting B) condensation C) sublimation D) freezing E) vaporization 2. Which of the following

More information

PHYSICAL PROPERTIES OF SOLUTIONS

PHYSICAL PROPERTIES OF SOLUTIONS PHYSICAL PROPERTIES OF SOLUTIONS Do all the exercises in your study guide. PHYSICAL PROPERTIES OF SOLUTIONS A solution is a homogeneous mixture of a solute and a solvent. A solvent is a substance that

More information

1) Define the following terms: a) solution, b) miscible, c) hydration, d) percent by mass (solute), e) colligative property, f) hypotonic.

1) Define the following terms: a) solution, b) miscible, c) hydration, d) percent by mass (solute), e) colligative property, f) hypotonic. Problems - Chapter 13 (with solutions) 1) Define the following terms: a) solution, b) miscible, c) hydration, d) percent by mass (solute), e) colligative property, f) hypotonic. a) solution - A homogeneous

More information

Unit 7. Solution Concentrations and Colligative Properties

Unit 7. Solution Concentrations and Colligative Properties Unit 7 Solution Concentrations and Colligative Properties Molarity Most widely used concentration unit [HCl] means concentration of HCl in mol/l Notice volume is total volume of solution Molarity (M)=

More information

Properties of Solutions. Overview of factors affecting solubility Ways of expressing concentration Physical properties of solutions

Properties of Solutions. Overview of factors affecting solubility Ways of expressing concentration Physical properties of solutions Properties of Solutions Overview of factors affecting solubility Ways of expressing concentration Physical properties of solutions Learning objectives Define terms solute, solvent and solution Distinguish

More information

Chapter 17 - Properties of Solutions

Chapter 17 - Properties of Solutions Chapter 17 - Properties of Solutions 17.1 Solution Composition 17.2 Thermodynamics of Solution Formation 17.3 Factors Affecting Solubility 17.4 Vapor Pressures of Solutions 17.5 Boiling-Point Elevation

More information

Overview. Types of Solutions. Intermolecular forces in solution. Concentration terms. Colligative properties. Osmotic Pressure 2 / 46

Overview. Types of Solutions. Intermolecular forces in solution. Concentration terms. Colligative properties. Osmotic Pressure 2 / 46 1 / 46 2 / 46 Overview Types of Solutions. Intermolecular forces in solution Concentration terms Colligative properties Osmotic Pressure 3 / 46 Solutions and Colloids A solution is a homogeneous mixture

More information

Chemistry, The Central Science, 11th edition Theodore L. Brown, H. Eugene LeMay, Jr., and Bruce E. Bursten Chapter 13 Properties of Solutions

Chemistry, The Central Science, 11th edition Theodore L. Brown, H. Eugene LeMay, Jr., and Bruce E. Bursten Chapter 13 Properties of Solutions Chemistry, The Central Science, 11th edition Theodore L. Brown, H. Eugene LeMay, Jr., and Bruce E. Bursten Chapter 13 Properties of Dr. Ayman Nafady John D. Bookstaver St. Charles Community College Cottleville,

More information

Chapter 12. Physical Properties of Solutions. Chemistry, Raymond Chang 10th edition, 2010 McGraw-Hill

Chapter 12. Physical Properties of Solutions. Chemistry, Raymond Chang 10th edition, 2010 McGraw-Hill Chemistry, Raymond Chang 10th edition, 2010 McGraw-Hill Chapter 12 Physical Properties of Solutions Ahmad Aqel Ifseisi Assistant Professor of Analytical Chemistry College of Science, Department of Chemistry

More information

Chemistry 201: General Chemistry II - Lecture

Chemistry 201: General Chemistry II - Lecture Chemistry 201: General Chemistry II - Lecture Dr. Namphol Sinkaset Chapter 14 Study Guide Concepts 1. Solutions are homogeneous mixtures of two or more substances. 2. solute: substance present in smaller

More information

Chapter 10: CHM 2045 (Dr. Capps)

Chapter 10: CHM 2045 (Dr. Capps) Phase Diagram Phase diagrams for CO 2 and H 2 O Chapter 13. Solutions and Their Physical Properties Shows pressures and temperatures at which gaseous, liquid, and solid phases can exist. Allows us to predict

More information

SOLUTION CONCENTRATIONS

SOLUTION CONCENTRATIONS SOLUTION CONCENTRATIONS The amount of solute in a solution (concentration) is an important property of the solution. A dilute solution contains small quantities of solute relative to the solvent, while

More information

1) Define the following terms: a) solution, b) miscible, c) hydration, d) percent by mass (solute), e) colligative property, f) hypotonic.

1) Define the following terms: a) solution, b) miscible, c) hydration, d) percent by mass (solute), e) colligative property, f) hypotonic. Problems - Chapter 13 (with solutions) 1) Define the following terms: a) solution, b) miscible, c) hydration, d) percent by mass (solute), e) colligative property, f) hypotonic. a) solution - A homogeneous

More information

Ways of Expressing Concentrations of Solutions. Solutions

Ways of Expressing Concentrations of Solutions. Solutions Ways of Expressing Concentrations of Mole Fraction (X) X A = moles of A total moles in solution In some applications, one needs the mole fraction of solvent, not solute make sure you find the quantity

More information

70 Example: If a solution is m citric acid, what is the molar concentration (M) of the solution? The density of the solution is 1.

70 Example: If a solution is m citric acid, what is the molar concentration (M) of the solution? The density of the solution is 1. 70 Example: If a solution is 0.688 m citric acid, what is the molar concentration (M) of the solution? The density of the solution is 1.049 g/ml molality definition molarity definition To solve the problem,

More information

Chapter 14. Physical Properties of Solutions. Concentration Units. Example: 1. Show that for dilute solutions, 1ppm is approximately equal to 1mg/L

Chapter 14. Physical Properties of Solutions. Concentration Units. Example: 1. Show that for dilute solutions, 1ppm is approximately equal to 1mg/L Chapter 14 Physical Properties of Solutions alloy Concentration Units Molarity (M) = moles solute / Liters of solution Percent by Mass (weight) 1. Show that for dilute solutions, 1ppm is approximately

More information

Strong Electrolytes - substance that dissolves almost completely in water to produce many ions to conduct electricity

Strong Electrolytes - substance that dissolves almost completely in water to produce many ions to conduct electricity I. What are Solutions A. Solution - homogeneous mixture made up of individual molecules, atoms or ions. B. Solute - the substance being C. Solvent - the substance D. Soluble - substance that in a solvent

More information

Solutions: Physical Properties and Behavior

Solutions: Physical Properties and Behavior Solutions: Physical Properties and Behavior In the previous chapter you were exposed to a great deal of information about the forces present in and the properties of individual pure substances (for example,

More information

Properties of Solutions

Properties of Solutions Properties of Solutions Reading: Ch 11, section 8 Ch 12, sections 1-8 * = important homework question Homework: Chapter 11: 85*, 87 Chapter 12: 29, 33, 35, 41, 51*, 53, 55, 63*, 65, 67*, 69, 71, 75*, 79*,

More information

Let's look at the following "reaction" Mixtures. water + salt > "salt water"

Let's look at the following reaction Mixtures. water + salt > salt water Mixtures What happens to the properties (phase changes) when we make a solution? Let's look at the following "reaction" water + salt ------> "salt water" Which has the higher entropy? A. The water + the

More information

Colligative Properties

Colligative Properties Slide 1 Colligative Properties Practical uses of solutions Slide 2 Solution homogeneous mixtures composition may vary from one sample to another appears to be one substance, though really contains multiple

More information

Properties of Solutions. Course Learning Outcomes for Unit III. Reading Assignment. Unit Lesson UNIT III STUDY GUIDE

Properties of Solutions. Course Learning Outcomes for Unit III. Reading Assignment. Unit Lesson UNIT III STUDY GUIDE UNIT III STUDY GUIDE Properties of Solutions Course Learning Outcomes for Unit III Upon completion of this unit, students should be able to: 1. Describe how enthalpy and entropy changes affect solution

More information

Chapter 7 Solutions and Colloids

Chapter 7 Solutions and Colloids Chapter 7 Solutions and Colloids 7.1 Physical States of Solutions Solutions are homogeneous mixtures of two or more substances in which the components are present as atoms, molecules, or ions. Properties

More information

Chapter 7 Solutions and Colloids

Chapter 7 Solutions and Colloids Chapter 7 Solutions and Colloids 7.1 Physical States of Solutions Solutions are homogeneous mixtures of two or more substances in which the components are present as atoms, molecules, or ions. Properties

More information

Liquid in liquid: ethanol in water. Solid in liquid: any salt in water. Solid in solid: brass, bronze, and all alloys

Liquid in liquid: ethanol in water. Solid in liquid: any salt in water. Solid in solid: brass, bronze, and all alloys 1 of 6 I. The solution process Solutions, colloids, and suspensions Solution: homogeneous mixture, equally dispersed at the molecular level, uniform throughout in its physical and chemical properties Colloid:

More information

Warm UP. between carbonate and lithium. following elements have? 3) Name these compounds: 1) Write the neutral compound that forms

Warm UP. between carbonate and lithium. following elements have? 3) Name these compounds: 1) Write the neutral compound that forms Warm UP 1) Write the neutral compound that forms between carbonate and lithium 2) How many valence electrons do the following elements have? a) Chlorine b) Neon c) Potassium 3) Name these compounds: a)

More information

Colligative Properties

Colligative Properties Slide 1 Colligative Properties Practical uses of solutions Slide 2 Units of Concentration Whatever units you use, the goal is the same: specify the quantity of 1 component (the solute s ) relative to the

More information

Chapter 13 Properties of Solutions

Chapter 13 Properties of Solutions Chapter 13 Properties of Solutions 13.1 The Solution Process - Solutions are homogeneous mixtures of two or more pure substances. - In a solution, the solute is dispersed uniformly throughout the solvent.

More information

Solutions Definition and Characteristics

Solutions Definition and Characteristics Solutions Solutions Definition and Characteristics Homogeneous mixtures of two or more substances Appear to be pure substances Transparency Separation by filtration is not possible Uniform distribution

More information

Mixtures. What happens to the properties (phase changes) when we make a solution? Principles of Chemistry II. Vanden Bout

Mixtures. What happens to the properties (phase changes) when we make a solution? Principles of Chemistry II. Vanden Bout Mixtures What happens to the properties (phase changes) when we make a solution? Let's look at the following "reaction" water + salt ------> "salt water" Which has the higher entropy? A. The water + the

More information

Solutions. Chapter 14 Solutions. Ion-Ion Forces (Ionic Bonding) Attraction Between Ions and Permanent Dipoles. Covalent Bonding Forces

Solutions. Chapter 14 Solutions. Ion-Ion Forces (Ionic Bonding) Attraction Between Ions and Permanent Dipoles. Covalent Bonding Forces Solutions Chapter 14 1 Brief Review of Major Topics in Chapter 13, Intermolecular forces Ion-Ion Forces (Ionic Bonding) 2 Na + Cl - in salt These are the strongest forces. Lead to solids with high melting

More information

Classification of Solutions. Classification of Solutions. Aqueous Solution Solution in which H2O is the solvent

Classification of Solutions. Classification of Solutions. Aqueous Solution Solution in which H2O is the solvent SOLUTIONS Solution Homogeneous mixture in which one substance is dissolved in another SOLUTE: substance that is dissolved SOLVENT: substance doing the dissolving INSOLUBLE: does NOT dissolve SOLUBLE: does

More information

7.02 Colligative Properties

7.02 Colligative Properties 7.02 Colligative Properties Changes in solvent properties due to impurities Colloidal suspensions or dispersions scatter light, a phenomenon known as the Tyndall effect. (a) Dust in the air scatters the

More information

Mixtures and Solutions

Mixtures and Solutions Mixtures and Solutions Section 14.1 Heterogeneous and Homogeneous Mixtures In your textbook, read about suspensions and colloids. For each statement below, write true or false. 1. A solution is a mixture

More information

Concentration of Solutions

Concentration of Solutions Chapter 11 Textbook Assigned Problems Exercises Concentration of Solutions 25. Because the density of water is 1.00 g/ml, 100.0 ml of water has a mass of 100. g. density = = 1.06 g/ml = 1.06 g/cm 3 mol

More information

ALE 24. Colligative Properties (Part 2)

ALE 24. Colligative Properties (Part 2) Name Chem 162, Section: Group Number: ALE 24. Colligative Properties (Part 2) (Reference: 13.6 Silberberg 5 th edition) Why is calcium chloride spread on highways in the North during the Winter? The Model:

More information

AP Chemistry: Properties of Solutions

AP Chemistry: Properties of Solutions AP Chemistry: Properties of Solutions Lecture Outline 13.1 The Solution Process A solution is a homogeneous mixture of solute and solvent. Solutions may be gases, liquids, or solids. Each substance present

More information

Solutions. π = n RT = M RT V

Solutions. π = n RT = M RT V Solutions Factors that affect solubility intermolecular interactions (like dissolves like) temperature pressure Colligative Properties vapor pressure lowering Raoult s Law: P A = X A P A boiling point

More information

Classifica,on of Solu,ons

Classifica,on of Solu,ons SOLUTIONS Solu,on Homogeneous mixture in which one substance is dissolved in another SOLUTE: substance that is dissolved SOLVENT: substance doing the dissolving INSOLUBLE: does NOT dissolve SOLUBLE: does

More information

- Applications: In chemistry, this effect is often used to determine the molecular weight of an unknown molecule.

- Applications: In chemistry, this effect is often used to determine the molecular weight of an unknown molecule. 73 FREEZING POINT DEPRESSION concentration of solute (molality) Freezing point depression constant (for SOLVENT) Freezing point depression: The amount the freezing temperature is LOWERED by the solute.

More information

Pure Liquid with solute. Pure Liquid

Pure Liquid with solute. Pure Liquid Colligative properties are physical properties of solutions that arise because of the number of solute molecules dissolved in solution and not on the kind of solute particles dissolved in solution. Pure

More information

Bushra Javed Valencia College CHM 1046 Chapter 12 - Solutions

Bushra Javed Valencia College CHM 1046 Chapter 12 - Solutions Bushra Javed Valencia College CHM 1046 Chapter 12 - Solutions 1 Chapter 12 :Solutions Tentative Outline 1. Introduction to solutions. 2. Types of Solutions 3. Solubility and the Solution Process: Saturated,

More information

Solutions. Solutions. A solution is a homogeneous mixture of two or more components.

Solutions. Solutions. A solution is a homogeneous mixture of two or more components. Lecture 6 Solutions Solutions A solution is a homogeneous mixture of two or more components. The component whose phase is retained يسود) ) when the solution forms is called Solvent. If all components are

More information

An aqueous solution is 8.50% ammonium chloride by mass. The density of the solution is g/ml Find: molality, mole fraction, molarity.

An aqueous solution is 8.50% ammonium chloride by mass. The density of the solution is g/ml Find: molality, mole fraction, molarity. 66 An aqueous solution is 8.50% ammonium chloride by mass. The density of the solution is 1.024 g/ml Find: molality, mole fraction, molarity. Find molality: mass percent molality Assuming 100 g solution,

More information

Chapter 11 Solutions and Colloids 645

Chapter 11 Solutions and Colloids 645 Chapter 11 Solutions and Colloids 645 11.5 Colloids Colloids are mixtures in which one or more substances are dispersed as relatively large solid particles or liquid droplets throughout a solid, liquid,

More information

Set 1: Set 2: Set 3: Set 4: Set 5:

Set 1: Set 2: Set 3: Set 4: Set 5: Chapter 12 Physical Properties of Solutions Problems - Page 535 541 Set 1:16, 22, 24, 29, 31; Set 2: 34, 38, 45, 52, 60; Set 3: 62, 66, 74, 90, 93; Set 4: 94, 96, 101, 107, 108, 114 Set 5: 120, 123, 128,

More information

General Chemistry by Ebbing and Gammon, 9th Edition George W.J. Kenney, Jr, Professor of Chemistry Last Update: 15-May-2009

General Chemistry by Ebbing and Gammon, 9th Edition George W.J. Kenney, Jr, Professor of Chemistry Last Update: 15-May-2009 Chem 1046 General Chemistry by Ebbing and Gammon, 9th Edition George W.J. Kenney, Jr, Professor of Chemistry Last Update: 15-May-2009 Chapter 12 SOLUTIONS These Notes are to SUPPLIMENT the Text, They do

More information

Soln Notes February 17, 2017

Soln Notes February 17, 2017 Chapter 15 Solutions You are responsible for reading/notes on Section 15.4 Heterogeneous Mixtures p.476-479 What is a SOLUTION? SOLUTE vs SOLVENT Characteristics of Solutions: Soluble/ Insoluble Solvation

More information

Solutions: Multiple Choice Review PSI AP Chemistry. 1. Which of the following would be FALSE regarding mixtures?

Solutions: Multiple Choice Review PSI AP Chemistry. 1. Which of the following would be FALSE regarding mixtures? Solutions: Multiple Choice Review PSI AP Chemistry Name Part A: Mixtures, Solubility, and Concentration 1. Which of the following would be FALSE regarding mixtures? (A) Mixtures do not obey the law of

More information

Properties of Solutions

Properties of Solutions Chemistry, The Central Science, 11th edition Theodore L. Brown; H. Eugene LeMay, Jr.; Bruce E. Bursten; Catherine J. Murphy Chapter 13 Properties of Solutions Ahmad Aqel Ifseisi Assistant Professor of

More information

Find molality: mass percent. molality Assume a basis of 100g solution, then find moles ammonium chloride: Find mass water: So molality is:

Find molality: mass percent. molality Assume a basis of 100g solution, then find moles ammonium chloride: Find mass water: So molality is: 66 An aqueous solution is 8.50% ammonium chloride by mass. The density of the solution is 1.024 g/ml Find: molality, mole fraction, molarity. Find molality: mass percent molality Assume a basis of 100g

More information

Colligative Properties

Colligative Properties Colligative Properties Some physical properties of solutions differ in important ways from those of the pure solvent. For example, pure water freezes at 0 C, but aqueous solutions freeze at lower temperatures.

More information

- Let's look at how things dissolve into water, since aqueous solutions are quite common. sucrose (table sugar)

- Let's look at how things dissolve into water, since aqueous solutions are quite common. sucrose (table sugar) 68 HOW THINGS DISSOLVE - Let's look at how things dissolve into water, since aqueous solutions are quite common. sucrose (table sugar)... what happens? - Water molecules pull the sugar molecules out of

More information

Chapter 13. Properties of Solutions

Chapter 13. Properties of Solutions Chapter 13. Properties of Solutions 13.1 The Solution Process A solution is a homogeneous mixture of solute and solvent. Solutions may be gases, liquids, or solids, Each substance present is a component

More information

CHEMISTRY 102 FALL 2010 EXAM 1 FORM D SECTION 502 DR. KEENEY-KENNICUTT PART 1

CHEMISTRY 102 FALL 2010 EXAM 1 FORM D SECTION 502 DR. KEENEY-KENNICUTT PART 1 NAME CHEMISTRY 102 FALL 2010 EXAM 1 FORM D SECTION 502 DR. KEENEY-KENNICUTT Directions: (1) Put your name on PART 1 and your name and signature on PART 2 of the exam where indicated. (2) Sign the Aggie

More information

Soluble: A solute that dissolves in a specific solvent. Insoluble: A solute that will not dissolve in a specific solvent. "Like Dissolves Like"

Soluble: A solute that dissolves in a specific solvent. Insoluble: A solute that will not dissolve in a specific solvent. Like Dissolves Like Solutions Homogeneous Mixtures Solutions: Mixtures that contain two or more substances called the solute and the solvent where the solute dissolves in the solvent so the solute and solvent are not distinguishable

More information

11) What thermodynamic pressure encourages solution formation of two nonpolar substances?

11) What thermodynamic pressure encourages solution formation of two nonpolar substances? AP Chemistry Test (Chapter 11) Class Set Multiple Choice (54%) Please use the following choices to answer questions 1-10. A) London dispersion forces (temporary dipole attractions) B) Ion-ion attractions

More information

Colligative Properties

Colligative Properties Colligative Properties! Consider three beakers: " 50.0 g of ice " 50.0 g of ice + 0.15 moles NaCl " 50.0 g of ice + 0.15 moles sugar (sucrose)! What will the freezing temperature of each beaker be? " Beaker

More information

Lecture outline: Chapter 13

Lecture outline: Chapter 13 Lecture outline: Chapter 13 Properties of solutions Why solutions form at the molecular l levell Units of solution concentration Colligative properties: effects of solutes on BP, MP, and vapor pressure

More information

Chapter 12. Solutions and Their Behavior. Supersaturated contains more than the saturation limit (very unstable)

Chapter 12. Solutions and Their Behavior. Supersaturated contains more than the saturation limit (very unstable) Chapter 12 Solutions and Their Behavior Unsaturated holds less than maximum capacity at a given T Supersaturated contains more than the saturation limit (very unstable) Saturated maximum amount of solute

More information

SOLUTIONS CHAPTER 9 TEXT BOOK EXERCISE Q1. Choose the correct answer for the given ones. (i) Morality of pure water is (a) 1. (b) 18. (c) 55.5 (d) 6. Hint: Morality of pure water Consider 1 dm 3 (-1000cm

More information

Physical Pharmacy ( ) Unit 3 / Solutions

Physical Pharmacy ( ) Unit 3 / Solutions Physical Pharmacy (0510219) Unit 3 / Solutions Based on thermodynamics Ideal solution Real solution Classification of Aqueous solution systems Based on particle size True solution Colloidal dispersion

More information