2.2 Measurement Uncertainties Comparing Results:

Size: px
Start display at page:

Download "2.2 Measurement Uncertainties Comparing Results:"

Transcription

1 2.2 Measurement Uncertainties Comparing Results: disregard this section Accuracy and Precision degree of eactness of a measurement like a tight grouping of arrows shot at a target) getting basically the same results ) depends on instrument used it's divisions) Generally, the precision is one half the smallest increment. If an instrument meterstick) measures to the nearest millimeter mm) you would estimate and list the measurement to within at least.5 mm. An instrument like a micrometer can measure to.1 mm and you can estimate within at least.5 mm, therfore, it is more precise than the meterstick. Accuracy and Precision agreement of a measurement with a standard value hitting the bulls eye) two point calibration: checks the accuracy of an insturment by 1) seeing if the instrument reads "" when it should and 2) do it then also give the correct reading of an accepted standard. Techniques of good measurement avoid paralla control outside sources of error heat, ecess pressure) 1

2 ? Significant Digits tells about instrument and how you use it) Significant digits include all valid digits. This includes all digits up to the smallest increment of the instrument and then one estimated place further. You decide how many divisions you can estimate between the smallest increment the better the instrument the easier it is to estimate). eample: If you used a meterstick to measure the length of your book it would be about.285 m 28.5 cm). The "" digit in the smallest increment of the meterstick the "mm") and the "5" represents the estimated value between the smallest increment. The estimated digit is valid so this measurement has 4 valid digits and therefore 4 sig. figs. 2

3 repeat Significant Digits Significant digits include all valid digits. This includes all digits up to the smallest increment of the instrument and then one estimated place further. You decide how many divisions you can estimate between the smallest increment. How you estimate is called Uncertainty of a Measurement and is indicated by a +/ following the listing of the measurement showing how many divisions you divided the smallest increment into. If you thought you could divide the millimeter increment into 1 estimated divisions you would list your tetbook length measurement as.285 ±.1 m. The ±.1 m states you divided the mm increment into 1 divisions are are confident the length is no smaller than.284 m and no larger than.286 m.286 m no larger than.285 ±.1 m.284 m no smaller than Significant Digits With digital instruments like this scale you can assume that all of the digits are significant and it can measure to the nearest pound and estimate to the nearest.1 of a pound.

4 Are all zeros significant? 1) All nonzero digits are significant 2) All final zeros after the decimal point are significant ) Zeros between any two nozero digits are significant 4) Zeros used solely as placeholders are not significant 4

5 Arithmetic with Significant Digits When you use your measurements to calculate additional characteristics/properties by adding, subtracting or multiplying/dividing you have to remember that your results can not be more precise than your measurements. When you add/subtract in a calculation the place of significant digits in the measurements determines the place of significance in the answer. 1.2 mm + 2. mm.5 mm =.5 mm 1.2 mm + 2. mm.5 mm =.5 mm the leftmost place of significance in the addends determine the rightmost place of significance in the answer When you multiply/divide in a calculation the number of significant digits in the measurements determines the number of significant digits in the answer. 2 2 sig. figs. sig. figs 2.2 m 1.24 m m 2 = 2.7m 2 2 answer has to have the least 2) 5

6 Jon has 5 dimes. How many pennies is that? converting 1) 5 dimes ) = pennies units you have units you want 1) write out the problem with the units you have on the left and the units you want on the right...leave room for the conversion factor) 2) determine the conversion factor that is the identify of the two units pennies/dimes) if you put a "1" in front of the largest unit dimes), then the other unit pennies) will always be larger than "1" 1 pennies/1dime) 2) 1 pennies 5 dimes 1 dime ) = pennies Jon has 5 dimes. How many pennies is that? continued units you want 1 pennies 5 dimes = pennies 1 dime units you have ) arrange the units in the conversion factor so the units you have are on the bottom and the units you want are on the top 4) the units you have now cancel dimes on top cancel with dimes on the bottom) and pennies remain 1 pennies 5 dimes = pennies 1 dime 5) multiply the units you have by the conversion factor 5 1= = 5) 5 dimes = 5 pennies 6

7 2 cm = m units you want 2 cm 1 m =.2 m 1 cm units you have 2 cm 1 m =.2 m 1 cm 2 1 = =.2...or 2 1 =.2 _. 1 cm m = cmm)... cmm) cm = m review 1) have/want 2) conversion factor identity ) range, "1" by biggest unit 7

8 = 75 pm Mm pm = Mm prefi pm _1 Mm 1? pm 12 = Mm pm _1 Mm = 18 _ Mm 1 18 pm 12 6 put a "1" 1 ) by the largest eponential separation Mm = 1 6 m pm = 1 12 m eponents: 2 + = ) = 16 Another way to do the same conversion is to identify the eponent values of the measurement and the metric prefies..12 km = m 1) epress the measured value in scientific notation.12 km = km 2) insert your conversion factor with the proper metric units what you have and what you need) km m = km m ) put a "1" or 1) by the largest prefi in the conversion factor km m km 1 = m 4) outside the conversion bracket list the eponent value of the metic prefis) inside the bracket. In this case "m" is a base unit with a value of 1, or 1, hence the, and kilo means 1, or 1, hence, the "" km m = km 1 m 5) list the eponential separation of the metric units in the conversion factor in this case there an eponential separation of meaning 1 or 1) km m = km 1 m 6) This is now the value to insert in the conversion factor m km km 1 = m 7) Because you listed your measurement in scientific notation you can list your primary units in your answer and then and then determine the eponent m km = km ? m 8) determine you eponent by add because you're multiplying) and subtracting because you're dividing) m km = km m = ? m is 1 + which is 2 1 2) 12 1 is 2, which is 2 2 stands for 1 2, that's the eponent in you answer recap: 1 + = 2 8

9 conversion steps 75 pm = mm pm = mm #1: rewrite in standard Scientific Notation #2 conversion factor with what you have on bottom and what you want on top # put a "1" 1 ) by the largest metric prefis you'll never have negative eponents in the conversion factor!!! #4 find eponential separation of your metric prefies #5 This separation is the eponent of your smaller prefi in the conversion factor #6 add subtract eponents! pm 1 mm = mm 1??? pm pm _1 mm = 9 _ _mm pm 12 eponential separation mm = 1 m pm = 1 12 m 2 + = = 7 add because you're multplying subtract because you're dividing speed of what????? _ 11 ft/s = m/s _ 11 ft/s = 1 m m/s.28 ft = 5 9

10 77 miles/hr = m/s miles/hr = m 1 mile no need for eponents in conversion factor when we don't have metric prefies 1 hr 6 s = 4 m/s 1

11 + 15) = = 12 Are all zeros significant? 1) All nonzero digits are significant 2) All final zeros after the decimal point are significant ) Zeros between any two nozero digits are significant 4) Zeros used solely as placeholders are not significant 11

Scientific Measurement

Scientific Measurement Scientific Measurement Sprint times are often measured to the nearest hundredth of a second (0.01 s). Chemistry also requires making accurate and often very small measurements. CHEMISTRY & YOU How do you

More information

Chapter 3 Scientific Measurement

Chapter 3 Scientific Measurement Chapter 3 Scientific Measurement 3.1 Using and Expressing Measurements 3.2 Units of Measurement 3.3 Solving Conversion Problems 1 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

More information

3.1 Using and Expressing Measurements > 3.1 Using and Expressing Measurements >

3.1 Using and Expressing Measurements > 3.1 Using and Expressing Measurements > Chapter 3 Scientific Measurement 3.1 Using and Expressing Measurements 3.2 Units of Measurement 3.3 Solving Conversion Problems 1 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

More information

Scientific Measurement

Scientific Measurement A measurement is a quantity that has both a number and a unit Some numbers encountered in science can be either very large or very small We use scientific notation to make those numbers easier to work

More information

Chemistry: The Study of Change Chang & Goldsby 12 th edition

Chemistry: The Study of Change Chang & Goldsby 12 th edition Chemistry: The Study of Change Chang & Goldsby 12 th edition modified by Dr. Hahn Chapter 1 Example 1.4 Determine the number of significant figures in the following measurements: (a)478 cm (b)6.01 g end

More information

Measurement. Scientific Notation. Measurements and Problem Solving. Writing Numbers in Scientific Notation

Measurement. Scientific Notation. Measurements and Problem Solving. Writing Numbers in Scientific Notation Measurement Chapter 2 Measurements and Problem Solving Quantitative observation Comparison based on an accepted scale e.g. Meter stick Has 2 parts number and unit Number tells comparison Unit tells scale

More information

Scientific Notation Review

Scientific Notation Review Summer Packet AP Physics B Use the internet for additional reference on the following problems. Complete all problems!! You must bring this on the first day of school it will count as your first exam!!

More information

Section 10-1: Laws of Exponents

Section 10-1: Laws of Exponents Section -: Laws of Eponents Learning Outcome Multiply: - ( ) = - - = = To multiply like bases, add eponents, and use common base. Rewrite answer with positive eponent. Learning Outcome Write the reciprocals

More information

Introductory Chemistry: A Foundation, 6 th Ed. Introductory Chemistry, 6 th Ed. Basic Chemistry, 6 th Ed.

Introductory Chemistry: A Foundation, 6 th Ed. Introductory Chemistry, 6 th Ed. Basic Chemistry, 6 th Ed. Introductory Chemistry: A Foundation, 6 th Ed. Introductory Chemistry, 6 th Ed. Basic Chemistry, 6 th Ed. by Steven S. Zumdahl, Donald J. DeCoste University of Illinois Chapter 2 Measurements and Calculations

More information

Unit 1 Part 1: Significant Figures and Scientific Notation. Objective understand significant figures and their rules. Be able to use scientific

Unit 1 Part 1: Significant Figures and Scientific Notation. Objective understand significant figures and their rules. Be able to use scientific Unit 1 Part 1: Significant Figures and Scientific Notation. Objective understand significant figures and their rules. Be able to use scientific notation in calculations. Significant figures - consist of

More information

Uncertainty in Measurements

Uncertainty in Measurements Uncertainty in Measurements! Two kinds of numbers " Exact! counted values " 2 dogs " 26 letters " 3 brothers! defined numbers " 12 inches per foot " 1000 g per kilogram " 2.54 cm per inch Metric Practice!

More information

How long is the arrow?

How long is the arrow? 1.2 Measurements Measuring We have all measured things before, but how would you define it? Measurement: comparing an unknown quantity to a standard unit (known quantity) How long is the arrow? Any measurement

More information

PRE-ALGEBRA SUMMARY WHOLE NUMBERS

PRE-ALGEBRA SUMMARY WHOLE NUMBERS PRE-ALGEBRA SUMMARY WHOLE NUMBERS Introduction to Whole Numbers and Place Value Digits Digits are the basic symbols of the system 0,,,, 4,, 6, 7, 8, and 9 are digits Place Value The value of a digit in

More information

Math 7 Notes Unit One: Algebraic Reasoning

Math 7 Notes Unit One: Algebraic Reasoning Math 7 Notes Unit One: Algebraic Reasoning Numbers and Patterns Objective: The student will learn to identify and etend patterns. Note: This is not one of the 7 th grade benchmarks. However, this material

More information

CHAPTER 2: SCIENTIFIC MEASUREMENTS

CHAPTER 2: SCIENTIFIC MEASUREMENTS CHAPTER 2: SCIENTIFIC MEASUREMENTS Problems: 1-26, 37-76, 80-84, 89-93 2.1 UNCERTAINTY IN MEASUREMENTS measurement: a number with attached units To measure, one uses instruments = tools such as a ruler,

More information

Chapter 2 Measurements & Calculations. Quantity: A thing that can be measured. ex. Length (6.3 ft), mass (35 kg), and time (7.2 s)

Chapter 2 Measurements & Calculations. Quantity: A thing that can be measured. ex. Length (6.3 ft), mass (35 kg), and time (7.2 s) Chapter 2 Measurements & Calculations Quantity: A thing that can be measured. ex. Length (6.3 ft), mass (35 kg), and time (7.2 s) Measurements can be expressed in a variety of units: Example: length(cm,

More information

SCIENTIFIC MEASUREMENT C H A P T E R 3

SCIENTIFIC MEASUREMENT C H A P T E R 3 SCIENTIFIC MEASUREMENT C H A P T E R 3 WHAT IS MEASUREMENT? Comparing one object to a standard In science, we use SI Units meters, o C, grams NOT o F, pounds, ounces etc. TWO TYPES OF MEASUREMENTS 1.

More information

Metric Prefixes UNITS & MEASUREMENT 10/6/2015 WHY DO UNITS AND MEASUREMENT MATTER?

Metric Prefixes UNITS & MEASUREMENT 10/6/2015 WHY DO UNITS AND MEASUREMENT MATTER? UNITS & MEASUREMENT WHY DO UNITS AND MEASUREMENT MATTER? Chemistry In Action On 9/3/99, $15,000,000 Mars Climate Orbiter entered Mar s atmosphere 100 km (6 miles) lower than planned and was destroyed by

More information

1.1 Convert between scientific notation and standard notation

1.1 Convert between scientific notation and standard notation Unit 1 Measurements Objectives 1.1 Convert between scientific notation and standard notation 1.2 Define and identify significant digits including being able to round and perform mathematical operations

More information

Complex fraction: - a fraction which has rational expressions in the numerator and/or denominator

Complex fraction: - a fraction which has rational expressions in the numerator and/or denominator Comple fraction: - a fraction which has rational epressions in the numerator and/or denominator o 2 2 4 y 2 + y 2 y 2 2 Steps for Simplifying Comple Fractions. simplify the numerator and/or the denominator

More information

Principles and Problems. Chapter 1: A Physics Toolkit

Principles and Problems. Chapter 1: A Physics Toolkit PHYSICS Principles and Problems Chapter 1: A Physics Toolkit CHAPTER 1 A Physics Toolkit BIG IDEA Physicists use scientific methods to investigate energy and matter. CHAPTER 1 Table Of Contents Section

More information

Numbers and Uncertainty

Numbers and Uncertainty Significant Figures Numbers and Uncertainty Numbers express uncertainty. Exact numbers contain no uncertainty. They are obtained by counting objects (integers) or are defined, as in some conversion factors

More information

Section 4.3: Quadratic Formula

Section 4.3: Quadratic Formula Objective: Solve quadratic equations using the quadratic formula. In this section we will develop a formula to solve any quadratic equation ab c 0 where a b and c are real numbers and a 0. Solve for this

More information

Tutorial 2: Expressing Uncertainty (Sig Figs, Scientific Notation and Rounding)

Tutorial 2: Expressing Uncertainty (Sig Figs, Scientific Notation and Rounding) Tutorial 2: Expressing Uncertainty (Sig Figs, Scientific Notation and Rounding) Goals: To be able to convert quantities from one unit to another. To be able to express measurements and answers to the correct

More information

Pre-Algebra 8 Notes Exponents and Scientific Notation

Pre-Algebra 8 Notes Exponents and Scientific Notation Pre-Algebra 8 Notes Eponents and Scientific Notation Rules of Eponents CCSS 8.EE.A.: Know and apply the properties of integer eponents to generate equivalent numerical epressions. Review with students

More information

AP PHYSICS 1 SUMMER PREVIEW

AP PHYSICS 1 SUMMER PREVIEW AP PHYSICS 1 SUMMER PREVIEW Name: Your summer homework assignment is to read through this summer preview, completing the practice problems, and completing TASK 1 and Task 2. It is important that you read

More information

Co Curricular Data Analysis Review

Co Curricular Data Analysis Review Chapter Vocabulary Co Curricular Data Analysis Review Base Unit Second (s) Meter (m) Kilogram (kg) Kelvin (K) Derived unit Liter Density Scientific notation Dimensional analysis (Equality) not in book

More information

Self-Directed Course: Transitional Math Module 4: Algebra

Self-Directed Course: Transitional Math Module 4: Algebra Lesson #1: Solving for the Unknown with no Coefficients During this unit, we will be dealing with several terms: Variable a letter that is used to represent an unknown number Coefficient a number placed

More information

TECHNIQUES IN FACTORISATION

TECHNIQUES IN FACTORISATION TECHNIQUES IN FACTORISATION The process where brackets are inserted into an equation is referred to as factorisation. Factorisation is the opposite process to epansion. METHOD: Epansion ( + )( 5) 15 Factorisation

More information

Math Review Packet. for Pre-Algebra to Algebra 1

Math Review Packet. for Pre-Algebra to Algebra 1 Math Review Packet for Pre-Algebra to Algebra 1 Epressions, Equations, Eponents, Scientific Notation, Linear Functions, Proportions, Pythagorean Theorem 2016 Math in the Middle Evaluating Algebraic Epressions

More information

Appendix A: Significant Figures and Error Analysis

Appendix A: Significant Figures and Error Analysis 1 Appendix A: Significant Figures and Error Analysis Every measurement of a physical quantity contains some amount of uncertainty or error. We often speak of a certain number or measurement as being precise

More information

The Rules of the Game

The Rules of the Game The Rules of the Game Over hundreds of years ago, physicists and other scientists developed a traditional way of expressing their observations. International System of Units (SI) metric system. The amount

More information

The Metric System and Measurement

The Metric System and Measurement The Metric System and Measurement Introduction The metric system is the world standard for measurement. Not only is it used by scientists throughout the world, but most nations have adopted it as their

More information

2 Standards for Measurement. Careful and accurate measurements of ingredients are important both when cooking and in the chemistry laboratory!

2 Standards for Measurement. Careful and accurate measurements of ingredients are important both when cooking and in the chemistry laboratory! 2 Standards for Measurement Careful and accurate measurements of ingredients are important both when cooking and in the chemistry laboratory! Chapter Outline 2.1 Scientific Notation 2.2 Measurement and

More information

HW #1: 1.42, 1.52, 1.54, 1.64, 1.66, 1.70, 1.76, 1.78, 1.80, 1.82, 1.84, 1.86, 1.92, 1.94, 1.98, 1.106, 1.110, 1.116

HW #1: 1.42, 1.52, 1.54, 1.64, 1.66, 1.70, 1.76, 1.78, 1.80, 1.82, 1.84, 1.86, 1.92, 1.94, 1.98, 1.106, 1.110, 1.116 Chemistry 121 Lecture 3: Physical Quantities Measuring Mass, Length, and Volume; Measurement and Significant Figures; Scientific Notation; Rounding Review Sections 1.7-1.11 in McMurry, Ballantine, et.

More information

Algebra I Notes Unit Nine: Exponential Expressions

Algebra I Notes Unit Nine: Exponential Expressions Algera I Notes Unit Nine: Eponential Epressions Syllaus Ojectives: 7. The student will determine the value of eponential epressions using a variety of methods. 7. The student will simplify algeraic epressions

More information

Name: AP Physics 1/2 Summer Assignment Math Review

Name: AP Physics 1/2 Summer Assignment Math Review Name: AP Physics 1/ Summer Assignment Math Review Scientific Notation a method for writing large or small numbers using powers of 10. 005 =.005 10 3 OR.005E3 0.0001 = 1. 10-4 OR 1.E-4 Note that the letter

More information

Making Measurements. Units of Length

Making Measurements. Units of Length Experiment #2. Measurements and Conversions. Goals 1. To measure and record length, volume and mass accurately with the correct number of significant figures 2. To convert between units using conversion

More information

A summary of factoring methods

A summary of factoring methods Roberto s Notes on Prerequisites for Calculus Chapter 1: Algebra Section 1 A summary of factoring methods What you need to know already: Basic algebra notation and facts. What you can learn here: What

More information

A constant is a value that is always the same. (This means that the value is constant / unchanging). o

A constant is a value that is always the same. (This means that the value is constant / unchanging). o Math 8 Unit 7 Algebra and Graphing Relations Solving Equations Using Models We will be using algebra tiles to help us solve equations. We will practice showing work appropriately symbolically and pictorially

More information

CHM101 Lab Measurements and Conversions Grading Rubric

CHM101 Lab Measurements and Conversions Grading Rubric CHM101 Lab Measurements and Conversions Grading Rubric Name Team Name Criteria Points possible Points earned Lab Performance Printed lab handout and rubric was brought to lab 3 Safety and proper waste

More information

CHM Accuracy, Precision, and Significant Figures (r14) C. Taylor 1/10

CHM Accuracy, Precision, and Significant Figures (r14) C. Taylor 1/10 CHM 110 - Accuracy, Precision, and Significant Figures (r14) - 2014 C. Taylor 1/10 Introduction Observations are vitally important to all of science. Some observations are qualitative in nature - such

More information

Chapter 2 Measurements and Solving Problems

Chapter 2 Measurements and Solving Problems History of Measurement Chapter 2 Measurements and Solving Problems Humans once used handy items as standards or reference tools for measurement. Ex: foot, cubit, hand, yard. English System the one we use.

More information

Accelerated Chemistry Study Guide What is Chemistry? (Chapter 1)

Accelerated Chemistry Study Guide What is Chemistry? (Chapter 1) Accelerated Chemistry Study Guide What is Chemistry? (Chapter 1) Conversion factor Density Uncertainty Significant digits/figures Precision Accuracy Percent error September 2017 Page 1 of 32 Scientific

More information

Scientific Measurement

Scientific Measurement Scientific Measurement Quantifying Matter For students using the Foundation edition, assign problems 2 4, 7, 8, 10 16, 18 24. 3.1 Using and Expressing Measurements Essential Understanding In science, measurements

More information

Engineering Calculations

Engineering Calculations Engineering Calculations (EC) Engineering Calculations In order to properly communicate with other engineers / scientists you must use the correct language.how can you use concise language to convey not

More information

Linear Equations in Linear Algebra

Linear Equations in Linear Algebra 1 Linear Equations in Linear Algebra 1.1 SYSTEMS OF LINEAR EQUATIONS LINEAR EQUATION x 1,, x n A linear equation in the variables equation that can be written in the form a 1 x 1 + a 2 x 2 + + a n x n

More information

Reference Page Math Symbols- + add - subtract x multiply divide = equal % percent $ dollar cent # at degree.

Reference Page Math Symbols- + add - subtract x multiply divide = equal % percent $ dollar cent # at degree. Reference Page Math Symbols- + add - subtract x multiply divide = equal % percent $ dollar cent # number/pound @ at degree. decimal point pi Roman Numerals Conversion I = 1 C = 100 V = 5 D = 500 X = 10

More information

EXPERIMENT MEASUREMENT

EXPERIMENT MEASUREMENT PHYS 1401 General Physics I EXPERIMENT 1 MEASUREMENT and UNITS I. OBJECTIVE The objective of this experiment is to become familiar with the measurement of the basic quantities of mechanics and to become

More information

Chapter 1 Review Problems (Done in Class)

Chapter 1 Review Problems (Done in Class) Chapter 1 Measurement Review Problems Chapter 1 Review Problems (Done in Class) Section - problems Sec 1, p. 8 # 2, 5, 6, 8, 9 Sec 2, p. 12 # 1, 3, 4, 5, 7, 8 Sec 3, p.17 # 3, 4, 5 Sec 4, p. 23 # 3, 6,

More information

Every time a measurement is taken, we must be aware of significant figures! Define significant figures.

Every time a measurement is taken, we must be aware of significant figures! Define significant figures. SCHM 103: FUNDAMENTALS OF CHEMISTRY Ch. 2: Numerical Side of Chemistry Types of data collected in experiments include: Qualitative: Quantitative: Making Measurements Whenever a piece of data is collected,

More information

Engineering Fundamentals and Problem Solving, 6e. Chapter 6 Engineering Measurements

Engineering Fundamentals and Problem Solving, 6e. Chapter 6 Engineering Measurements Engineering Fundamentals and Problem Solving, 6e Chapter 6 Engineering Measurements Chapter Objectives Determine the number of significant digits in a measurement Perform numerical computations with measured

More information

Chapter 2 - Analyzing Data

Chapter 2 - Analyzing Data Chapter 2 - Analyzing Data Section 1: Units and Measurements Section 2: Scientific Notation and Dimensional Analysis Section 3: Uncertainty in Data Section 4: Representing Data Chemists collect and analyze

More information

ACCUPLACER MATH 0311 OR MATH 0120

ACCUPLACER MATH 0311 OR MATH 0120 The University of Teas at El Paso Tutoring and Learning Center ACCUPLACER MATH 0 OR MATH 00 http://www.academics.utep.edu/tlc MATH 0 OR MATH 00 Page Factoring Factoring Eercises 8 Factoring Answer to Eercises

More information

Math 0210 Common Final Review Questions (2 5 i)(2 5 i )

Math 0210 Common Final Review Questions (2 5 i)(2 5 i ) Math 0 Common Final Review Questions In problems 1 6, perform the indicated operations and simplif if necessar. 1. ( 8)(4) ( )(9) 4 7 4 6( ). 18 6 8. ( i) ( 1 4 i ) 4. (8 i ). ( 9 i)( 7 i) 6. ( i)( i )

More information

Measurements in Chemistry Chapter 2

Measurements in Chemistry Chapter 2 Measurements in Chemistry Chapter 2 Problem-Set Solutions 2.1 It is easier to use because it is a decimal unit system. 2.2 Common measurements include mass, volume, length, time, temperature, pressure,

More information

N= {1,2,3,4,5,6,7,8,9,10,11,...}

N= {1,2,3,4,5,6,7,8,9,10,11,...} 1.1: Integers and Order of Operations 1. Define the integers 2. Graph integers on a number line. 3. Using inequality symbols < and > 4. Find the absolute value of an integer 5. Perform operations with

More information

Name: Chapter 2: Analyzing Data Note Taking Guide This worksheet is meant to help us learn some of the basic terms and concepts of chemistry.

Name: Chapter 2: Analyzing Data Note Taking Guide This worksheet is meant to help us learn some of the basic terms and concepts of chemistry. Chemistry Name: Section ANALYZE DATA KEY Date: Chapter 2: Analyzing Data Note Taking Guide This worksheet is meant to help us learn some of the basic terms and concepts of chemistry. Most, but not all,

More information

Tools of Chemistry. Measurement Scientific Method Lab Safety & Apparatus

Tools of Chemistry. Measurement Scientific Method Lab Safety & Apparatus Tools of Chemistry Measurement Scientific Method Lab Safety & Apparatus Scientific Notation Scientific Notation a number described as a power of 10 (used for very large or small numbers) 1000 = 1 X 10

More information

US Customary Measurement System. O Keefe - LBHS

US Customary Measurement System. O Keefe - LBHS US Customary Measurement System O Keefe - LBHS The U S Customary System System of measurement used in the United States Similar to the British Imperial System of Measurement, but not identical Common U

More information

Finding a Percent of a Number (page 216)

Finding a Percent of a Number (page 216) LESSON Name 1 Finding a Percent of a Number (page 216) You already know how to change a percent to a fraction. Rewrite the percent as a fraction with a denominator of 100 and reduce. 25% = 25 100 = 1 5%

More information

Algebra I Notes Concept 00b: Review Properties of Integer Exponents

Algebra I Notes Concept 00b: Review Properties of Integer Exponents Algera I Notes Concept 00: Review Properties of Integer Eponents In Algera I, a review of properties of integer eponents may e required. Students egin their eploration of power under the Common Core in

More information

CHAPTER TWO: MEASUREMENTS AND PROBLEM SOLVING

CHAPTER TWO: MEASUREMENTS AND PROBLEM SOLVING CHAPTER TWO: MEASUREMENTS AND PROBLEM SOLVING Measurements: Our Starting Point! Why should we begin our study of chemistry with the topic of measurement?! Much of the laboratory work in this course is

More information

Scientific Measurement

Scientific Measurement Scientific Measurement A quantity is anything having a measurable size or amount For Example: 5 But 5 what? A unit assigns value to a measured quantity For Example: 5 ft, 5 gal, 5 sec, 5 m, 5 g. Base Units

More information

SECTION 2.3: LONG AND SYNTHETIC POLYNOMIAL DIVISION

SECTION 2.3: LONG AND SYNTHETIC POLYNOMIAL DIVISION 2.25 SECTION 2.3: LONG AND SYNTHETIC POLYNOMIAL DIVISION PART A: LONG DIVISION Ancient Example with Integers 2 4 9 8 1 In general: dividend, f divisor, d We can say: 9 4 = 2 + 1 4 By multiplying both sides

More information

MATH SKILL HANDBOOK. a (b ) II. Measurements and Significant Figures. 0 mm

MATH SKILL HANDBOOK. a (b ) II. Measurements and Significant Figures. 0 mm I. Symbols Δ change in quantity is defined as ± plus or minus a quantity a b ab is proportional to a (b ) = is equal to a b is approimately equal to a/b a_ b is less than or equal to a multiplied by b

More information

2 ways to write the same number: 6,500: standard form 6.5 x 10 3 : scientific notation

2 ways to write the same number: 6,500: standard form 6.5 x 10 3 : scientific notation greater than or equal to one, and less than 10 positive exponents: numbers greater than 1 negative exponents: numbers less than 1, (> 0) (fractions) 2 ways to write the same number: 6,500: standard form

More information

We want to determine what the graph of an exponential function. y = a x looks like for all values of a such that 0 > a > 1

We want to determine what the graph of an exponential function. y = a x looks like for all values of a such that 0 > a > 1 Section 5 B: Graphs of Decreasing Eponential Functions We want to determine what the graph of an eponential function y = a looks like for all values of a such that 0 > a > We will select a value of a such

More information

Base unit-a defined unit of measurement based on an object or event in the physical world. Length

Base unit-a defined unit of measurement based on an object or event in the physical world. Length Base unit-a defined unit of measurement based on an object or event in the physical world Five base units: Temperature Mass Length Time Energy Derived unit-a unit of measurement defined by a combination

More information

Warm-up: Are accuracy and precision the same thing? (If so do you want to bet the house on it?)

Warm-up: Are accuracy and precision the same thing? (If so do you want to bet the house on it?) Obj: Students will: 1. Distinguish between accuracy and precision. 2. Examine various pieces of lab equipment for their accuracy. 3. Define and identify significant figures. Warm-up: Are accuracy and precision

More information

Metric System & SI Units The SI units are somewhat different from what you are used to. They are as follows: Measurement Base

Metric System & SI Units The SI units are somewhat different from what you are used to. They are as follows: Measurement Base Chapter 1 Scientific Method Metric System & SI Units Precision and Accuracy Significant Figures Scientific Notation States of Matter and Phase Changes Physical & Chemical Changes & Properties Scientific

More information

Introduction to Measurement

Introduction to Measurement Units and Measurement Introduction to Measurement One of the most important steps in applying the scientific method is experiment: testing the prediction of a hypothesis. Typically we measure simple quantities

More information

Algebra Final Exam Review Packet

Algebra Final Exam Review Packet Algebra 1 00 Final Eam Review Packet UNIT 1 EXPONENTS / RADICALS Eponents Degree of a monomial: Add the degrees of all the in the monomial together. o Eample - Find the degree of 5 7 yz Degree of a polynomial:

More information

We estimated the last digit, It's uncertain. These digits were obtained in all measurements. They are certain

We estimated the last digit, It's uncertain. These digits were obtained in all measurements. They are certain 21 Significant figures SIGNIFICANT FIGURES are a way to indicate the amount of uncertainty in a measurement. The significant figures in a measurement are all of the CERTAIN DIGITS plus one and only one

More information

Today is Thursday, February 11 th, 2016

Today is Thursday, February 11 th, 2016 In This Lesson: Scientific Notation and Unit Analysis (Lesson 4 of 6) Today is Thursday, February 11 th, 2016 Stuff You Need: Calculator Paper Towel Pre-Class: By now you ve probably heard of scientific

More information

**Multiply has higher priority **some calculators will do in correct order but not all DO NOT rely on your calculator!

**Multiply has higher priority **some calculators will do in correct order but not all DO NOT rely on your calculator! 1 Chemistry 047 Math in Chem Math in Chemistry: A. Multiplication/Division symbols B. Order of operations C. Ratio D. proportion E. Scientific notation F. Unit conversions G. Dimensional analysis H. Derived

More information

Law vs. Theory. Steps in the Scientific Method. Outcomes Over the Long-Term. Measuring Matter in Two Ways

Law vs. Theory. Steps in the Scientific Method. Outcomes Over the Long-Term. Measuring Matter in Two Ways Law vs. Theory A law summarizes what happens A theory (model) is an attempt to explain why it happens. Unit 2: (Chapter 5) Measurements and Calculations Cartoon courtesy of NearingZero.net Steps in the

More information

Chapter 1 Matter and Energy. Classifying Matter An Exercise. Chemical Classifications of Matter

Chapter 1 Matter and Energy. Classifying Matter An Exercise. Chemical Classifications of Matter Chapter 1 Matter and Energy Matter and its Classification Physical and Chemical Changes and Properties of Matter Energy and Energy Changes Scientific Inquiry 1-1 Copyright The McGraw-Hill Companies, Inc.

More information

Scientific Method. Why Study Chemistry? Why Study Chemistry? Chemistry has many applications to our everyday world. 1. Materials. Areas of Chemistry

Scientific Method. Why Study Chemistry? Why Study Chemistry? Chemistry has many applications to our everyday world. 1. Materials. Areas of Chemistry August 12, 2012 Introduction to Chemistry and Scientific Measurement What is Chemistry? Chemistry: is the study of the composition of matter and the changes that matter undergoes. Chapters 1 and 3 Why

More information

Notes: Measurement and Calculation

Notes: Measurement and Calculation Name Chemistry-PAP Per. I. The Basics of Measurement Notes: Measurement and Calculation A. Measurement Most provide quantitative information, but because they are obtained experimentally, they are inexact.

More information

5 3w. Unit 2 Function Operations and Equivalence Standard 4.1 Add, Subtract, & Multiply Polynomials

5 3w. Unit 2 Function Operations and Equivalence Standard 4.1 Add, Subtract, & Multiply Polynomials Unit Function Operations and Equivalence This document is meant to be used as an eample guide for each of the skills we will be holding students accountable for with Standard 4.1. This document should

More information

Topic 11: Measurement and data processing

Topic 11: Measurement and data processing Topic 11: Measurement and data processing 11.1 Uncertainty and error in measurement 11.2 Uncertainties in calculated results 11.3 Graphical techniques -later! From the syllabus Precision v. Accuracy The

More information

Measurements in Chemistry Chapter 2

Measurements in Chemistry Chapter 2 Measurements in Chemistry Chapter 2 Problem-Set Solutions 2.1 It is easier to use because it is a decimal unit system. 2.2 Common measurements include mass, volume, length, time, temperature, pressure,

More information

a = B. Examples: 1. Simplify the following expressions using the multiplication rule

a = B. Examples: 1. Simplify the following expressions using the multiplication rule Section. Monomials Objectives:. Multiply and divide monomials.. Simplify epressions involving powers of monomials.. Use epressions in scientific notation. I. Negative Eponents and Eponents of Zero A. Rules.

More information

Using Scientific Measurements

Using Scientific Measurements Section 3 Main Ideas Accuracy is different from precision. Significant figures are those measured precisely, plus one estimated digit. Scientific notation is used to express very large or very small numbers.

More information

1m 100cm=1m =1 100cm 1m 89cm = 0.89m 100cm

1m 100cm=1m =1 100cm 1m 89cm = 0.89m 100cm Units and Measurement Physics 40 Lab 1: Introduction to Measurement One of the most important steps in applying the scientific method is experiment: testing the prediction of a hypothesis. Typically we

More information

Notes. In order to make numbers more "friendly" looking, the metric system sometimes uses prefixes in the front of the base units.

Notes. In order to make numbers more friendly looking, the metric system sometimes uses prefixes in the front of the base units. The Metric System By the eighteenth century, dozens of different units of measurement were commonly used throughout the world. Length, for example, could be measured in feet, inches, miles, spans, cubits,

More information

Physics. Nov Title: Nov 3 8:52 AM (1 of 45)

Physics. Nov Title: Nov 3 8:52 AM (1 of 45) Physics Nov 3 2008 Title: Nov 3 8:52 AM (1 of 45) Physics Nov 3 2008 Physics is the branch of science that studies matter and energy, how they are related and how they interact. Physics covers everything

More information

How do physicists study problems?

How do physicists study problems? What is Physics? The branch of science that studies the physical world (from atoms to the universe); The study of the nature of matter and energy and how they are related; The ability to understand or

More information

Measurements. October 06, 2014

Measurements. October 06, 2014 Measurements Measurements Measurements are quantitative observations. What are some kinds of quantitative observations you might make? Temperature Volume Length Mass Student A and Student B measured the

More information

Chapter 1 Introduction, Measurement, Estimating

Chapter 1 Introduction, Measurement, Estimating Chapter 1 Introduction, Measurement, Estimating The Nature of Science Units of Chapter 1 Physics and Its Relation to Other Fields Models, Theories, and Laws Measurement and Uncertainty; Significant Figures

More information

In this unit we will study exponents, mathematical operations on polynomials, and factoring.

In this unit we will study exponents, mathematical operations on polynomials, and factoring. GRADE 0 MATH CLASS NOTES UNIT E ALGEBRA In this unit we will study eponents, mathematical operations on polynomials, and factoring. Much of this will be an etension of your studies from Math 0F. This unit

More information

ACCUPLACER MATH 0310

ACCUPLACER MATH 0310 The University of Teas at El Paso Tutoring and Learning Center ACCUPLACER MATH 00 http://www.academics.utep.edu/tlc MATH 00 Page Linear Equations Linear Equations Eercises 5 Linear Equations Answer to

More information

What are these standards? Who decides what they are? How many Standards should we have?

What are these standards? Who decides what they are? How many Standards should we have? AP Physics Summer Work: Read the following notes from our first unit. Answer any questions. Do the Algebra Review Sheet. This will allow us to go through this unit very quickly upon your return. PHYSICAL

More information

Math-1010 Lesson 4-2. Add and Subtract Rational Expressions

Math-1010 Lesson 4-2. Add and Subtract Rational Expressions Math-00 Lesson - Add and Subtract Rational Epressions What are like terms? Like variables: Like powers: y y Multiples of the same variable same base and same eponent. Like radicals: same radicand and same

More information

Q 1 Find the square root of 729. 6. Squares and Square Roots Q 2 Fill in the blank using the given pattern. 7 2 = 49 67 2 = 4489 667 2 = 444889 6667 2 = Q 3 Without adding find the sum of 1 + 3 + 5 + 7

More information

Scientific Notation. Scientific Notation. Table of Contents. Purpose of Scientific Notation. Can you match these BIG objects to their weights?

Scientific Notation. Scientific Notation. Table of Contents. Purpose of Scientific Notation. Can you match these BIG objects to their weights? Scientific Notation Table of Contents Click on the topic to go to that section The purpose of scientific notation Scientific Notation How to write numbers in scientific notation How to convert between

More information

Notes Chapter 2: Measurements and Calculations. It is used to easily and simply write very large numbers, and very small numbers.

Notes Chapter 2: Measurements and Calculations. It is used to easily and simply write very large numbers, and very small numbers. Scientific Notation Notes Chapter 2: Measurements and Calculations It is used to easily and simply write very large numbers, and very small numbers. It begins with a number greater than zero & less than

More information

Chemistry 104 Chapter Two PowerPoint Notes

Chemistry 104 Chapter Two PowerPoint Notes Measurements in Chemistry Chapter 2 Physical Quantities Measurable physical properties such as height, volume, and temperature are called Physical quantity. A number and a unit of defined size is required

More information

Significant Figures: A Brief Tutorial

Significant Figures: A Brief Tutorial Significant Figures: A Brief Tutorial 2013-2014 Mr. Berkin *Please note that some of the information contained within this guide has been reproduced for non-commercial, educational purposes under the Fair

More information