TTIC 31230, Fundamentals of Deep Learning David McAllester, Winter Variational Autoencoders

Size: px
Start display at page:

Download "TTIC 31230, Fundamentals of Deep Learning David McAllester, Winter Variational Autoencoders"

Transcription

1 TTIC 31230, Fundamentals of Deep Learning David McAllester, Winter 2018 Variational Autoencoders 1

2 The Latent Variable Cross-Entropy Objective We will now drop the negation and switch to argmax. Φ = argmax Φ E y Pop ln Q Φ (y) Q Φ (y) = ẑ Q Φ (ẑ, y) EG Identity: Φ ln Q Φ (y) = Eẑ QΦ (ẑ y) Φ ln Q Φ (ẑ, y) 2

3 Variational Autoencoders Φ ln Q Φ (y) = Eẑ QΦ (ẑ y) Φ ln Q Φ (ẑ, y) Except for directed tree models, this gradient must be approximated exact computation is #-P hard. Variational autoencoders approximate Q Φ (ẑ y) with a model supporting easy sampling of ẑ. 3

4 Generative Models A model for which sampling is easy will be called generative. In Variational autoencoders we assume that Q Φ (y ẑ) is generative but that Q Φ (ẑ y) is not that sampling from Q Φ (ẑ y) is hard. We approximate Q Φ (ẑ y) with a generative model. 4

5 Generation Replaces Search Generation replaces search can be viewed as a general principle of Deep leaning. Rather than search for a ẑ that generates y we strive to directly calculate to generate a ẑ that generates y. Generation replaces search is exemplified in current parsing architectures. 5

6 Variational Autoencoders Φ ln Q Φ (y) = Eẑ QΦ (ẑ y) Φ ln Q Φ (ẑ, y) Φ, Ψ = argmax Φ,Ψ E y Pop Eẑ PΨ (ẑ y) ln Q Φ(ẑ, y) + H(P Ψ (ẑ y)) Here P Ψ (ẑ y) is a generative approximation of Q Φ (ẑ y). The quantity being optimized is called the evidence lower bound (ELBO). 6

7 Variational Autoencoders Φ ln Q Φ (y) = Eẑ QΦ (ẑ y) Φ ln Q Φ (ẑ, y) Φ, Ψ = argmax Φ,Ψ = argmax Φ,Ψ E y Pop Eẑ PΨ (ẑ y) ln Q Φ(ẑ, y) + H(P Ψ (ẑ y)) E y Pop ln Q Φ (y) KL(P Ψ (ẑ y), Q Φ (ẑ y)) The equivalence of the two ELBO expressions is proved below. The first expression supports SGD training through sampling. The second expression establishes that the ELBO is a lower bound on the evidence ln Q Φ (y) and that P Ψ (ẑ y) should approximate Q Φ (ẑ y). 7

8 Derivation of Equivalence I Eẑ PΨ (ẑ y) ln Q Φ(ẑ, y) = Eẑ PΨ (ẑ y) ( ln Q Φ(y) + ln Q Φ (ẑ y) ) = ln Q Φ (y) + Eẑ PΨ (ẑ y) ln Q Φ(ẑ y) = ln Q Φ (y) H(P Ψ (ẑ y), Q Φ (ẑ y)) 8

9 Derivation of Equivalence II Eẑ PΨ (ẑ y) ln Q Φ(ẑ, y) + H(P Ψ (ẑ y)) = ln Q Φ (y) H(P Ψ (ẑ y), Q Φ (ẑ y)) + H(P Ψ (ẑ y)) = ln Q Φ (y) KL(P Ψ (ẑ y), Q Φ (ẑ y)) 9

10 EM is Alternating Optimization of the ELBO Eẑ PΨ (ẑ y) ln Q Φ(ẑ, y) + H(P Ψ (ẑ y)) (1) = ln Q Φ (y) KL(P Ψ (ẑ y), Q Φ (ẑ y)) (2) by (2) Ψ = argmin Ψ E y Pop KL(P Ψ (ẑ y), Q Φ (ẑ y)) by (1) Φ = argmax Φ E y Pop Eẑ PΨ (ẑ y) ln Q Φ(ẑ, y) EM: Φ t+1 = argmax Φ E y Pop Eẑ QΦ t(ẑ y) log Q Φ (ẑ, y) 10

11 The Reparameterization Trick Ψ = argmax Ψ E y Pop Eẑ PΨ (ẑ y) ln Q Φ(ẑ, y) + H(P Ψ (ẑ y)) How do we differentiate the sampling? 11

12 The Reparameterization Trick Ψ = argmax Ψ E y Pop Eẑ PΨ (ẑ y) ln Q Φ(ẑ, y) + H(P Ψ (ẑ y)) We note that in practice all sampling is computed by a deterministic function of (pseudo) random numbers. We can make this explicit. Model P Ψ (ẑ y) by ɛ noise, ẑ = ẑ Ψ (y, ɛ) 12

13 The Reparameterization Trick Ψ = argmax Ψ H(P Ψ (ẑ y)) = E ɛ noise ln P Ψ (ẑ Ψ (y, ɛ) y) E y Pop E ɛ noise ln Q Φ (ẑ Ψ (y, ɛ), y) + H(P Ψ (ẑ y For VAEs we typically we have ẑ(y, ɛ) R d with ẑ(y, ɛ)[i] = µ Ψ (y)[i] + σ Ψ (y)[i] ɛ[i] ɛ[i] N (0, 1) This supports easy calculation of P Ψ (ẑ Ψ (y, ɛ) y). 13

14 Decoding with L 2 Distortion An autoencoder encodes and decodes. We can view ẑ Ψ (y, ɛ) as the encoding of y. We now consider a deterministic decoder ŷ Φ (ẑ) and define a model ( ) y ŷ Q Φ (y ẑ) exp Φ (ẑ) 2 2σ 2

15 A VAE for Images Auto-Encoding Variational Bayes, Diederik P Kingma, Max Welling, y ẑ Ψ (y, ɛ) ẑ ŷ Φ (ẑ) y ŷ 2 [Hyeonwoo Noh et al.] 15

16 Deconvoution: Increasing Spatial Dimension Consider a stride 2 convolution y[i, j, c y ] = W [ i, j, c x, c y ]x[2i + i, 2j + j, c x ] y[i, j, c y ] += B[c y ] For deconvolution we use stride 1 with 4 times the channels. ˆx[i, j, cˆx ] = W [ i, j, cŷ, cˆx ]ŷ[i + i, j + j, cˆx ] ˆx[i, j, cˆx ] += B[cˆx ] The channels at each lower resolution pixel ˆx[i, j] are divided among four higher resolution pixels. This is done by a simple reshaping of ˆx. 16

17 Decoding with L 2 Distortion Φ, Ψ = argmax Φ,Ψ E y Pop Eẑ PΨ (ẑ y) ln Q Φ(ẑ, y) + H(P Ψ (ẑ y)) The objective now becomes E y Pop Eẑ PΨ (ẑ y) ( ln P Φ (ẑ) 1 ) 2σ 2 y ŷ Φ(ẑ) 2 +H(P Ψ (ẑ y)) 17

18 Decoding with L 2 Distortion Switching back to minimization, we can now rewrite the objective as min E y,ɛ ( ẑ Ψ (y, ɛ) Φ λ y ŷ Φ(ẑ Ψ (y, ɛ)) 2 ) ẑ Ψ (y, ɛ) Ψ,y ẑ Φ = log 2 P Φ (ẑ) ẑ Ψ,y = log 2 P Ψ (ẑ y) For ẑ discrete, ẑ Φ is the code length of ẑ(y, ɛ) under an optimal code for P Φ. ẑ Ψ,y is the code length for ẑ under the code for P Ψ (ẑ y). 18

19 Soft EM is to Hard EM as VAE is to Rate-Distortion (Soft) EM: Φ t+1 = argmax Φ E y Pop Eẑ QΦ t(ẑ y) log Q Φ (ẑ, y) Hard EM: Φ t+1 = argmax Φ E y Pop Q Φ (ẑ(y), y) ẑ(y) = argmax ẑ Q Φ t(ẑ y) VAE: min E y,ɛ ẑ Ψ (y, ɛ) Φ λ y ŷ Φ(ẑ Ψ (y, ɛ)) 2 ẑ Ψ (y, ɛ) Ψ,y RD: min E y ẑ Ψ (y) Φ λ y ŷ Φ(ẑ Ψ (y)) 2

20 Sampling P Ψ (ẑ y) ẑ Q Φ (ẑ, y) [Hyeonwoo Noh et al.] Sampling uses just the second half Q Φ (ẑ, y). 20

21 Sampling from Gaussian Variational Autoencoders [Alec Radford] 21

22 Why Blurry? A common explanation for the blurryness of images generated from VAEs is the use of L 2 as the distortion measure. It does seem that L 1 works better (see the slides on image-toimage GANs). However, training on L 2 distortion can produce sharp images in rate-distortion autoencoders (see the slides on ratedistortion autoencoders). 22

23 END

Variational Autoencoders (VAEs)

Variational Autoencoders (VAEs) September 26 & October 3, 2017 Section 1 Preliminaries Kullback-Leibler divergence KL divergence (continuous case) p(x) andq(x) are two density distributions. Then the KL-divergence is defined as Z KL(p

More information

TTIC 31230, Fundamentals of Deep Learning David McAllester, April Information Theory and Distribution Modeling

TTIC 31230, Fundamentals of Deep Learning David McAllester, April Information Theory and Distribution Modeling TTIC 31230, Fundamentals of Deep Learning David McAllester, April 2017 Information Theory and Distribution Modeling Why do we model distributions and conditional distributions using the following objective

More information

Variational Autoencoders

Variational Autoencoders Variational Autoencoders Recap: Story so far A classification MLP actually comprises two components A feature extraction network that converts the inputs into linearly separable features Or nearly linearly

More information

Variational Autoencoder

Variational Autoencoder Variational Autoencoder Göker Erdo gan August 8, 2017 The variational autoencoder (VA) [1] is a nonlinear latent variable model with an efficient gradient-based training procedure based on variational

More information

Auto-Encoding Variational Bayes

Auto-Encoding Variational Bayes Auto-Encoding Variational Bayes Diederik P Kingma, Max Welling June 18, 2018 Diederik P Kingma, Max Welling Auto-Encoding Variational Bayes June 18, 2018 1 / 39 Outline 1 Introduction 2 Variational Lower

More information

TTIC 31230, Fundamentals of Deep Learning David McAllester, Winter Multiclass Logistic Regression. Multilayer Perceptrons (MLPs)

TTIC 31230, Fundamentals of Deep Learning David McAllester, Winter Multiclass Logistic Regression. Multilayer Perceptrons (MLPs) TTIC 31230, Fundamentals of Deep Learning David McAllester, Winter 2018 Multiclass Logistic Regression Multilayer Perceptrons (MLPs) Stochastic Gradient Descent (SGD) 1 Multiclass Classification We consider

More information

Expectation Maximization (EM)

Expectation Maximization (EM) Expectation Maximization (EM) The Expectation Maximization (EM) algorithm is one approach to unsupervised, semi-supervised, or lightly supervised learning. In this kind of learning either no labels are

More information

The Success of Deep Generative Models

The Success of Deep Generative Models The Success of Deep Generative Models Jakub Tomczak AMLAB, University of Amsterdam CERN, 2018 What is AI about? What is AI about? Decision making: What is AI about? Decision making: new data High probability

More information

arxiv: v1 [cs.lg] 6 Dec 2018

arxiv: v1 [cs.lg] 6 Dec 2018 Embedding-reparameterization procedure for manifold-valued latent variables in generative models arxiv:1812.02769v1 [cs.lg] 6 Dec 2018 Eugene Golikov Neural Networks and Deep Learning Lab Moscow Institute

More information

Variational Inference in TensorFlow. Danijar Hafner Stanford CS University College London, Google Brain

Variational Inference in TensorFlow. Danijar Hafner Stanford CS University College London, Google Brain Variational Inference in TensorFlow Danijar Hafner Stanford CS 20 2018-02-16 University College London, Google Brain Outline Variational Inference Tensorflow Distributions VAE in TensorFlow Variational

More information

Computing with Distributed Distributional Codes Convergent Inference in Brains and Machines?

Computing with Distributed Distributional Codes Convergent Inference in Brains and Machines? Computing with Distributed Distributional Codes Convergent Inference in Brains and Machines? Maneesh Sahani Professor of Theoretical Neuroscience and Machine Learning Gatsby Computational Neuroscience

More information

Variational Auto Encoders

Variational Auto Encoders Variational Auto Encoders 1 Recap Deep Neural Models consist of 2 primary components A feature extraction network Where important aspects of the data are amplified and projected into a linearly separable

More information

Generative Models for Sentences

Generative Models for Sentences Generative Models for Sentences Amjad Almahairi PhD student August 16 th 2014 Outline 1. Motivation Language modelling Full Sentence Embeddings 2. Approach Bayesian Networks Variational Autoencoders (VAE)

More information

Bayesian Semi-supervised Learning with Deep Generative Models

Bayesian Semi-supervised Learning with Deep Generative Models Bayesian Semi-supervised Learning with Deep Generative Models Jonathan Gordon Department of Engineering Cambridge University jg801@cam.ac.uk José Miguel Hernández-Lobato Department of Engineering Cambridge

More information

Variational Auto-Encoders (VAE)

Variational Auto-Encoders (VAE) Variational Auto-Encoders (VAE) Jonathan Pillow Lecture 21 slides NEU 560 Spring 2018 VAE Generative Model latent ~z N (0, I) data f aaacyhicdzhnbhmxemed5assxy0cuvhesfyidiskofb0ungoiktasnk0cpzzxoq/zm+mjsxfeasu8as8ew+dk64qswaks3/n7z9jj2dipfbyfl862z279+4/2huyp3r85omz/ypn5940jkofg2ncymi8skghjwildkwdpiyslibz4xw/widzwugvulqwuuxki1pwhik1qmcvzgdzel9b9ip10f1rtqjl2jgbh3r+vlpdgwuauwted8vc4igwh4jlihnvelcmz9kvdjputiefhfwdi32dmlnag5eorrro/l0rmpj+qsbjqrjo/dzbjf/fhg3wh0zbansgah57ud1iioaupqdt4ycjxcbbubpprztpmgmc0x/leaxhmhulmj6gsuhfdjfhbrnjjkbnywixfrob0xuuhdpegg+bnqnhjusyqjr1d2umhzun/ljwv55tpxjftcqzdkfbehgt6ai4vdkg8xbmy562w27vclech/bkold+ftc9+tjuey+8jk/ig1ks9+sinjaz0iecspknfcc/sk+zza6z5a0167q1l8hgzf9/a5t+5qk=

More information

TTIC 31230, Fundamentals of Deep Learning, Winter David McAllester. The Fundamental Equations of Deep Learning

TTIC 31230, Fundamentals of Deep Learning, Winter David McAllester. The Fundamental Equations of Deep Learning TTIC 31230, Fundamentals of Deep Learning, Winter 2019 David McAllester The Fundamental Equations of Deep Learning 1 Early History 1943: McCullock and Pitts introduced the linear threshold neuron. 1962:

More information

Deep Variational Inference. FLARE Reading Group Presentation Wesley Tansey 9/28/2016

Deep Variational Inference. FLARE Reading Group Presentation Wesley Tansey 9/28/2016 Deep Variational Inference FLARE Reading Group Presentation Wesley Tansey 9/28/2016 What is Variational Inference? What is Variational Inference? Want to estimate some distribution, p*(x) p*(x) What is

More information

Variational Inference via Stochastic Backpropagation

Variational Inference via Stochastic Backpropagation Variational Inference via Stochastic Backpropagation Kai Fan February 27, 2016 Preliminaries Stochastic Backpropagation Variational Auto-Encoding Related Work Summary Outline Preliminaries Stochastic Backpropagation

More information

Generative models for missing value completion

Generative models for missing value completion Generative models for missing value completion Kousuke Ariga Department of Computer Science and Engineering University of Washington Seattle, WA 98105 koar8470@cs.washington.edu Abstract Deep generative

More information

GENERATIVE ADVERSARIAL LEARNING

GENERATIVE ADVERSARIAL LEARNING GENERATIVE ADVERSARIAL LEARNING OF MARKOV CHAINS Jiaming Song, Shengjia Zhao & Stefano Ermon Computer Science Department Stanford University {tsong,zhaosj12,ermon}@cs.stanford.edu ABSTRACT We investigate

More information

Robust Locally-Linear Controllable Embedding

Robust Locally-Linear Controllable Embedding Ershad Banijamali Rui Shu 2 Mohammad Ghavamzadeh 3 Hung Bui 3 Ali Ghodsi University of Waterloo 2 Standford University 3 DeepMind Abstract Embed-to-control (E2C) 7] is a model for solving high-dimensional

More information

Nonparametric Inference for Auto-Encoding Variational Bayes

Nonparametric Inference for Auto-Encoding Variational Bayes Nonparametric Inference for Auto-Encoding Variational Bayes Erik Bodin * Iman Malik * Carl Henrik Ek * Neill D. F. Campbell * University of Bristol University of Bath Variational approximations are an

More information

Variational AutoEncoder: An Introduction and Recent Perspectives

Variational AutoEncoder: An Introduction and Recent Perspectives Metode de optimizare Riemanniene pentru învățare profundă Proiect cofinanțat din Fondul European de Dezvoltare Regională prin Programul Operațional Competitivitate 2014-2020 Variational AutoEncoder: An

More information

Gradient Estimation Using Stochastic Computation Graphs

Gradient Estimation Using Stochastic Computation Graphs Gradient Estimation Using Stochastic Computation Graphs Yoonho Lee Department of Computer Science and Engineering Pohang University of Science and Technology May 9, 2017 Outline Stochastic Gradient Estimation

More information

Unsupervised Learning

Unsupervised Learning CS 3750 Advanced Machine Learning hkc6@pitt.edu Unsupervised Learning Data: Just data, no labels Goal: Learn some underlying hidden structure of the data P(, ) P( ) Principle Component Analysis (Dimensionality

More information

Deep latent variable models

Deep latent variable models Deep latent variable models Pierre-Alexandre Mattei IT University of Copenhagen http://pamattei.github.io @pamattei 19 avril 2018 Séminaire de statistique du CNAM 1 Overview of talk A short introduction

More information

Lecture 14: Deep Generative Learning

Lecture 14: Deep Generative Learning Generative Modeling CSED703R: Deep Learning for Visual Recognition (2017F) Lecture 14: Deep Generative Learning Density estimation Reconstructing probability density function using samples Bohyung Han

More information

Discrete Latent Variable Models

Discrete Latent Variable Models Discrete Latent Variable Models Stefano Ermon, Aditya Grover Stanford University Lecture 14 Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 14 1 / 29 Summary Major themes in the course

More information

Probabilistic & Unsupervised Learning

Probabilistic & Unsupervised Learning Probabilistic & Unsupervised Learning Week 2: Latent Variable Models Maneesh Sahani maneesh@gatsby.ucl.ac.uk Gatsby Computational Neuroscience Unit, and MSc ML/CSML, Dept Computer Science University College

More information

Probabilistic Graphical Models

Probabilistic Graphical Models 10-708 Probabilistic Graphical Models Homework 3 (v1.1.0) Due Apr 14, 7:00 PM Rules: 1. Homework is due on the due date at 7:00 PM. The homework should be submitted via Gradescope. Solution to each problem

More information

Bayesian Deep Learning

Bayesian Deep Learning Bayesian Deep Learning Mohammad Emtiyaz Khan AIP (RIKEN), Tokyo http://emtiyaz.github.io emtiyaz.khan@riken.jp June 06, 2018 Mohammad Emtiyaz Khan 2018 1 What will you learn? Why is Bayesian inference

More information

Probabilistic Graphical Models & Applications

Probabilistic Graphical Models & Applications Probabilistic Graphical Models & Applications Learning of Graphical Models Bjoern Andres and Bernt Schiele Max Planck Institute for Informatics The slides of today s lecture are authored by and shown with

More information

An Information Theoretic Interpretation of Variational Inference based on the MDL Principle and the Bits-Back Coding Scheme

An Information Theoretic Interpretation of Variational Inference based on the MDL Principle and the Bits-Back Coding Scheme An Information Theoretic Interpretation of Variational Inference based on the MDL Principle and the Bits-Back Coding Scheme Ghassen Jerfel April 2017 As we will see during this talk, the Bayesian and information-theoretic

More information

Natural Gradients via the Variational Predictive Distribution

Natural Gradients via the Variational Predictive Distribution Natural Gradients via the Variational Predictive Distribution Da Tang Columbia University datang@cs.columbia.edu Rajesh Ranganath New York University rajeshr@cims.nyu.edu Abstract Variational inference

More information

Generative Adversarial Networks, and Applications

Generative Adversarial Networks, and Applications Generative Adversarial Networks, and Applications Ali Mirzaei Nimish Srivastava Kwonjoon Lee Songting Xu CSE 252C 4/12/17 2/44 Outline: Generative Models vs Discriminative Models (Background) Generative

More information

TTIC 31230, Fundamentals of Deep Learning David McAllester, Winter Generalization and Regularization

TTIC 31230, Fundamentals of Deep Learning David McAllester, Winter Generalization and Regularization TTIC 31230, Fundamentals of Deep Learning David McAllester, Winter 2019 Generalization and Regularization 1 Chomsky vs. Kolmogorov and Hinton Noam Chomsky: Natural language grammar cannot be learned by

More information

Convolutional Neural Networks. Srikumar Ramalingam

Convolutional Neural Networks. Srikumar Ramalingam Convolutional Neural Networks Srikumar Ramalingam Reference Many of the slides are prepared using the following resources: neuralnetworksanddeeplearning.com (mainly Chapter 6) http://cs231n.github.io/convolutional-networks/

More information

A Unified View of Deep Generative Models

A Unified View of Deep Generative Models SAILING LAB Laboratory for Statistical Artificial InteLigence & INtegreative Genomics A Unified View of Deep Generative Models Zhiting Hu and Eric Xing Petuum Inc. Carnegie Mellon University 1 Deep generative

More information

Stochastic Video Prediction with Deep Conditional Generative Models

Stochastic Video Prediction with Deep Conditional Generative Models Stochastic Video Prediction with Deep Conditional Generative Models Rui Shu Stanford University ruishu@stanford.edu Abstract Frame-to-frame stochasticity remains a big challenge for video prediction. The

More information

Variational Dropout via Empirical Bayes

Variational Dropout via Empirical Bayes Variational Dropout via Empirical Bayes Valery Kharitonov 1 kharvd@gmail.com Dmitry Molchanov 1, dmolch111@gmail.com Dmitry Vetrov 1, vetrovd@yandex.ru 1 National Research University Higher School of Economics,

More information

Sequence labeling. Taking collective a set of interrelated instances x 1,, x T and jointly labeling them

Sequence labeling. Taking collective a set of interrelated instances x 1,, x T and jointly labeling them HMM, MEMM and CRF 40-957 Special opics in Artificial Intelligence: Probabilistic Graphical Models Sharif University of echnology Soleymani Spring 2014 Sequence labeling aking collective a set of interrelated

More information

LDA with Amortized Inference

LDA with Amortized Inference LDA with Amortied Inference Nanbo Sun Abstract This report describes how to frame Latent Dirichlet Allocation LDA as a Variational Auto- Encoder VAE and use the Amortied Variational Inference AVI to optimie

More information

Variational Autoencoders for Classical Spin Models

Variational Autoencoders for Classical Spin Models Variational Autoencoders for Classical Spin Models Benjamin Nosarzewski Stanford University bln@stanford.edu Abstract Lattice spin models are used to study the magnetic behavior of interacting electrons

More information

Privacy-Preserving Adversarial Networks

Privacy-Preserving Adversarial Networks MITSUBISHI ELECTRIC RESEARCH LABORATORIES http://www.merl.com Privacy-Preserving Adversarial Networks Tripathy, A.; Wang, Y.; Ishwar, P. TR2017-194 December 2017 Abstract We propose a data-driven framework

More information

EE-559 Deep learning 9. Autoencoders and generative models

EE-559 Deep learning 9. Autoencoders and generative models EE-559 Deep learning 9. Autoencoders and generative models François Fleuret https://fleuret.org/dlc/ [version of: May 1, 2018] ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE Embeddings and generative models

More information

Deep Generative Models. (Unsupervised Learning)

Deep Generative Models. (Unsupervised Learning) Deep Generative Models (Unsupervised Learning) CEng 783 Deep Learning Fall 2017 Emre Akbaş Reminders Next week: project progress demos in class Describe your problem/goal What you have done so far What

More information

Generative Adversarial Networks (GANs) Ian Goodfellow, OpenAI Research Scientist Presentation at Berkeley Artificial Intelligence Lab,

Generative Adversarial Networks (GANs) Ian Goodfellow, OpenAI Research Scientist Presentation at Berkeley Artificial Intelligence Lab, Generative Adversarial Networks (GANs) Ian Goodfellow, OpenAI Research Scientist Presentation at Berkeley Artificial Intelligence Lab, 2016-08-31 Generative Modeling Density estimation Sample generation

More information

CENG 783. Special topics in. Deep Learning. AlchemyAPI. Week 14. Sinan Kalkan

CENG 783. Special topics in. Deep Learning. AlchemyAPI. Week 14. Sinan Kalkan CENG 783 Special topics in Deep Learning AlchemyAPI Week 14 Sinan Kalkan Today Hopfield Networks Boltzmann Machines Deep BM, Restricted BM Generative Adversarial Networks Variational Auto-encoders Autoregressive

More information

arxiv: v1 [stat.ml] 6 Dec 2018

arxiv: v1 [stat.ml] 6 Dec 2018 missiwae: Deep Generative Modelling and Imputation of Incomplete Data arxiv:1812.02633v1 [stat.ml] 6 Dec 2018 Pierre-Alexandre Mattei Department of Computer Science IT University of Copenhagen pima@itu.dk

More information

LEARNING TO SAMPLE WITH ADVERSARIALLY LEARNED LIKELIHOOD-RATIO

LEARNING TO SAMPLE WITH ADVERSARIALLY LEARNED LIKELIHOOD-RATIO LEARNING TO SAMPLE WITH ADVERSARIALLY LEARNED LIKELIHOOD-RATIO Chunyuan Li, Jianqiao Li, Guoyin Wang & Lawrence Carin Duke University {chunyuan.li,jianqiao.li,guoyin.wang,lcarin}@duke.edu ABSTRACT We link

More information

Convolution and Pooling as an Infinitely Strong Prior

Convolution and Pooling as an Infinitely Strong Prior Convolution and Pooling as an Infinitely Strong Prior Sargur Srihari srihari@buffalo.edu This is part of lecture slides on Deep Learning: http://www.cedar.buffalo.edu/~srihari/cse676 1 Topics in Convolutional

More information

Stochastic Backpropagation, Variational Inference, and Semi-Supervised Learning

Stochastic Backpropagation, Variational Inference, and Semi-Supervised Learning Stochastic Backpropagation, Variational Inference, and Semi-Supervised Learning Diederik (Durk) Kingma Danilo J. Rezende (*) Max Welling Shakir Mohamed (**) Stochastic Gradient Variational Inference Bayesian

More information

CSC411: Final Review. James Lucas & David Madras. December 3, 2018

CSC411: Final Review. James Lucas & David Madras. December 3, 2018 CSC411: Final Review James Lucas & David Madras December 3, 2018 Agenda 1. A brief overview 2. Some sample questions Basic ML Terminology The final exam will be on the entire course; however, it will be

More information

Denoising Criterion for Variational Auto-Encoding Framework

Denoising Criterion for Variational Auto-Encoding Framework Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17) Denoising Criterion for Variational Auto-Encoding Framework Daniel Jiwoong Im, Sungjin Ahn, Roland Memisevic, Yoshua

More information

Auto-Encoding Variational Bayes. Stochastic Backpropagation and Approximate Inference in Deep Generative Models

Auto-Encoding Variational Bayes. Stochastic Backpropagation and Approximate Inference in Deep Generative Models Auto-Encoding Variational Bayes Diederik Kingma and Max Welling Stochastic Backpropagation and Approximate Inference in Deep Generative Models Danilo J. Rezende, Shakir Mohamed, Daan Wierstra Neural Variational

More information

Deep Generative Models

Deep Generative Models Deep Generative Models Durk Kingma Max Welling Deep Probabilistic Models Worksop Wednesday, 1st of Oct, 2014 D.P. Kingma Deep generative models Transformations between Bayes nets and Neural nets Transformation

More information

Generative adversarial networks

Generative adversarial networks 14-1: Generative adversarial networks Prof. J.C. Kao, UCLA Generative adversarial networks Why GANs? GAN intuition GAN equilibrium GAN implementation Practical considerations Much of these notes are based

More information

MACHINE LEARNING AND PATTERN RECOGNITION Fall 2006, Lecture 8: Latent Variables, EM Yann LeCun

MACHINE LEARNING AND PATTERN RECOGNITION Fall 2006, Lecture 8: Latent Variables, EM Yann LeCun Y. LeCun: Machine Learning and Pattern Recognition p. 1/? MACHINE LEARNING AND PATTERN RECOGNITION Fall 2006, Lecture 8: Latent Variables, EM Yann LeCun The Courant Institute, New York University http://yann.lecun.com

More information

Convolutional Neural Network. Hung-yi Lee

Convolutional Neural Network. Hung-yi Lee al Neural Network Hung-yi Lee Why CNN for Image? [Zeiler, M. D., ECCV 2014] x 1 x 2 Represented as pixels x N The most basic classifiers Use 1 st layer as module to build classifiers Use 2 nd layer as

More information

Convolutional Neural Networks II. Slides from Dr. Vlad Morariu

Convolutional Neural Networks II. Slides from Dr. Vlad Morariu Convolutional Neural Networks II Slides from Dr. Vlad Morariu 1 Optimization Example of optimization progress while training a neural network. (Loss over mini-batches goes down over time.) 2 Learning rate

More information

STA 414/2104: Lecture 8

STA 414/2104: Lecture 8 STA 414/2104: Lecture 8 6-7 March 2017: Continuous Latent Variable Models, Neural networks Delivered by Mark Ebden With thanks to Russ Salakhutdinov, Jimmy Ba and others Outline Continuous latent variable

More information

Lecture 16 Deep Neural Generative Models

Lecture 16 Deep Neural Generative Models Lecture 16 Deep Neural Generative Models CMSC 35246: Deep Learning Shubhendu Trivedi & Risi Kondor University of Chicago May 22, 2017 Approach so far: We have considered simple models and then constructed

More information

B PROOF OF LEMMA 1. Published as a conference paper at ICLR 2018

B PROOF OF LEMMA 1. Published as a conference paper at ICLR 2018 A ADVERSARIAL DOMAIN ADAPTATION (ADA ADA aims to transfer prediction nowledge learned from a source domain with labeled data to a target domain without labels, by learning domain-invariant features. Let

More information

Backpropagation Through

Backpropagation Through Backpropagation Through Backpropagation Through Backpropagation Through Will Grathwohl Dami Choi Yuhuai Wu Geoff Roeder David Duvenaud Where do we see this guy? L( ) =E p(b ) [f(b)] Just about everywhere!

More information

REINTERPRETING IMPORTANCE-WEIGHTED AUTOENCODERS

REINTERPRETING IMPORTANCE-WEIGHTED AUTOENCODERS Worshop trac - ICLR 207 REINTERPRETING IMPORTANCE-WEIGHTED AUTOENCODERS Chris Cremer, Quaid Morris & David Duvenaud Department of Computer Science University of Toronto {ccremer,duvenaud}@cs.toronto.edu

More information

Deep Generative Models for Graph Generation. Jian Tang HEC Montreal CIFAR AI Chair, Mila

Deep Generative Models for Graph Generation. Jian Tang HEC Montreal CIFAR AI Chair, Mila Deep Generative Models for Graph Generation Jian Tang HEC Montreal CIFAR AI Chair, Mila Email: jian.tang@hec.ca Deep Generative Models Goal: model data distribution p(x) explicitly or implicitly, where

More information

Energy-Based Generative Adversarial Network

Energy-Based Generative Adversarial Network Energy-Based Generative Adversarial Network Energy-Based Generative Adversarial Network J. Zhao, M. Mathieu and Y. LeCun Learning to Draw Samples: With Application to Amoritized MLE for Generalized Adversarial

More information

Causal Modeling with Generative Neural Networks

Causal Modeling with Generative Neural Networks Causal Modeling with Generative Neural Networks Michele Sebag TAO, CNRS INRIA LRI Université Paris-Sud Joint work: D. Kalainathan, O. Goudet, I. Guyon, M. Hajaiej, A. Decelle, C. Furtlehner https://arxiv.org/abs/1709.05321

More information

FAST ADAPTATION IN GENERATIVE MODELS WITH GENERATIVE MATCHING NETWORKS

FAST ADAPTATION IN GENERATIVE MODELS WITH GENERATIVE MATCHING NETWORKS FAST ADAPTATION IN GENERATIVE MODELS WITH GENERATIVE MATCHING NETWORKS Sergey Bartunov & Dmitry P. Vetrov National Research University Higher School of Economics (HSE), Yandex Moscow, Russia ABSTRACT We

More information

Cheng Soon Ong & Christian Walder. Canberra February June 2017

Cheng Soon Ong & Christian Walder. Canberra February June 2017 Cheng Soon Ong & Christian Walder Research Group and College of Engineering and Computer Science Canberra February June 2017 (Many figures from C. M. Bishop, "Pattern Recognition and ") 1of 679 Part XIX

More information

ON THE DIFFERENCE BETWEEN BUILDING AND EX-

ON THE DIFFERENCE BETWEEN BUILDING AND EX- ON THE DIFFERENCE BETWEEN BUILDING AND EX- TRACTING PATTERNS: A CAUSAL ANALYSIS OF DEEP GENERATIVE MODELS. Anonymous authors Paper under double-blind review ABSTRACT Generative models are important tools

More information

Citation for published version (APA): Kingma, D. P. (2017). Variational inference & deep learning: A new synthesis

Citation for published version (APA): Kingma, D. P. (2017). Variational inference & deep learning: A new synthesis UvA-DARE (Digital Academic Repository) Variational inference & deep learning Kingma, D.P. Link to publication Citation for published version (APA): Kingma, D. P. (2017). Variational inference & deep learning:

More information

Variational Attention for Sequence-to-Sequence Models

Variational Attention for Sequence-to-Sequence Models Variational Attention for Sequence-to-Sequence Models Hareesh Bahuleyan, 1 Lili Mou, 1 Olga Vechtomova, Pascal Poupart University of Waterloo March, 2018 Outline 1 Introduction 2 Background & Motivation

More information

Expectation Maximization (EM)

Expectation Maximization (EM) Expectation Maximization (EM) The EM algorithm is used to train models involving latent variables using training data in which the latent variables are not observed (unlabeled data). This is to be contrasted

More information

Singing Voice Separation using Generative Adversarial Networks

Singing Voice Separation using Generative Adversarial Networks Singing Voice Separation using Generative Adversarial Networks Hyeong-seok Choi, Kyogu Lee Music and Audio Research Group Graduate School of Convergence Science and Technology Seoul National University

More information

Part 4: Conditional Random Fields

Part 4: Conditional Random Fields Part 4: Conditional Random Fields Sebastian Nowozin and Christoph H. Lampert Colorado Springs, 25th June 2011 1 / 39 Problem (Probabilistic Learning) Let d(y x) be the (unknown) true conditional distribution.

More information

arxiv: v1 [cs.lg] 15 Jun 2016

arxiv: v1 [cs.lg] 15 Jun 2016 Improving Variational Inference with Inverse Autoregressive Flow arxiv:1606.04934v1 [cs.lg] 15 Jun 2016 Diederik P. Kingma, Tim Salimans and Max Welling OpenAI, San Francisco University of Amsterdam, University

More information

Normalized Random Measure Mixture Models in Variational Autoencoders

Normalized Random Measure Mixture Models in Variational Autoencoders JMLR: Workshop and Conference Proceedings 1 6 Normalized Random Measure Mixture Models in Variational Autoencoders Rahul Mehta mehta5@uic.edu and Hui Lu huilu@uic.edu Department of Bioengineering University

More information

Introduction to Machine Learning Midterm Exam Solutions

Introduction to Machine Learning Midterm Exam Solutions 10-701 Introduction to Machine Learning Midterm Exam Solutions Instructors: Eric Xing, Ziv Bar-Joseph 17 November, 2015 There are 11 questions, for a total of 100 points. This exam is open book, open notes,

More information

AdaGAN: Boosting Generative Models

AdaGAN: Boosting Generative Models AdaGAN: Boosting Generative Models Ilya Tolstikhin ilya@tuebingen.mpg.de joint work with Gelly 2, Bousquet 2, Simon-Gabriel 1, Schölkopf 1 1 MPI for Intelligent Systems 2 Google Brain Radford et al., 2015)

More information

Posterior Regularization

Posterior Regularization Posterior Regularization 1 Introduction One of the key challenges in probabilistic structured learning, is the intractability of the posterior distribution, for fast inference. There are numerous methods

More information

VAE with a VampPrior. Abstract. 1 Introduction

VAE with a VampPrior. Abstract. 1 Introduction Jakub M. Tomczak University of Amsterdam Max Welling University of Amsterdam Abstract Many different methods to train deep generative models have been introduced in the past. In this paper, we propose

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Cyber Rodent Project Some slides from: David Silver, Radford Neal CSC411: Machine Learning and Data Mining, Winter 2017 Michael Guerzhoy 1 Reinforcement Learning Supervised learning:

More information

EM Algorithm LECTURE OUTLINE

EM Algorithm LECTURE OUTLINE EM Algorithm Lukáš Cerman, Václav Hlaváč Czech Technical University, Faculty of Electrical Engineering Department of Cybernetics, Center for Machine Perception 121 35 Praha 2, Karlovo nám. 13, Czech Republic

More information

STA 414/2104: Lecture 8

STA 414/2104: Lecture 8 STA 414/2104: Lecture 8 6-7 March 2017: Continuous Latent Variable Models, Neural networks With thanks to Russ Salakhutdinov, Jimmy Ba and others Outline Continuous latent variable models Background PCA

More information

Cheng Soon Ong & Christian Walder. Canberra February June 2018

Cheng Soon Ong & Christian Walder. Canberra February June 2018 Cheng Soon Ong & Christian Walder Research Group and College of Engineering and Computer Science Canberra February June 218 Outlines Overview Introduction Linear Algebra Probability Linear Regression 1

More information

Probabilistic Reasoning in Deep Learning

Probabilistic Reasoning in Deep Learning Probabilistic Reasoning in Deep Learning Dr Konstantina Palla, PhD palla@stats.ox.ac.uk September 2017 Deep Learning Indaba, Johannesburgh Konstantina Palla 1 / 39 OVERVIEW OF THE TALK Basics of Bayesian

More information

arxiv: v3 [stat.ml] 31 Jul 2018

arxiv: v3 [stat.ml] 31 Jul 2018 Training VAEs Under Structured Residuals Garoe Dorta 1,2 Sara Vicente 2 Lourdes Agapito 3 Neill D.F. Campbell 1 Ivor Simpson 2 1 University of Bath 2 Anthropics Technology Ltd. 3 University College London

More information

AUTOREGRESSIVE IMPLICIT QUANTILE NETWORKS FOR TIME SERIES GENERATION MAXIMILIEN BAUDRY *

AUTOREGRESSIVE IMPLICIT QUANTILE NETWORKS FOR TIME SERIES GENERATION MAXIMILIEN BAUDRY * AUTOREGRESSIVE IMPLICIT QUANTILE NETWORKS FOR TIME SERIES GENERATION MAXIMILIEN BAUDRY * *DAMI Chair & Université Lyon 1 - ISFA http://chaire-dami.fr/ AKNOWLEDGEMENTS 2 ACKNOWLEDGEMENTS TO Christian Y.

More information

Unraveling the mysteries of stochastic gradient descent on deep neural networks

Unraveling the mysteries of stochastic gradient descent on deep neural networks Unraveling the mysteries of stochastic gradient descent on deep neural networks Pratik Chaudhari UCLA VISION LAB 1 The question measures disagreement of predictions with ground truth Cat Dog... x = argmin

More information

Cheng Soon Ong & Christian Walder. Canberra February June 2018

Cheng Soon Ong & Christian Walder. Canberra February June 2018 Cheng Soon Ong & Christian Walder Research Group and College of Engineering and Computer Science Canberra February June 2018 Outlines Overview Introduction Linear Algebra Probability Linear Regression

More information

A Variance Modeling Framework Based on Variational Autoencoders for Speech Enhancement

A Variance Modeling Framework Based on Variational Autoencoders for Speech Enhancement A Variance Modeling Framework Based on Variational Autoencoders for Speech Enhancement Simon Leglaive 1 Laurent Girin 1,2 Radu Horaud 1 1: Inria Grenoble Rhône-Alpes 2: Univ. Grenoble Alpes, Grenoble INP,

More information

Lecture 17: Neural Networks and Deep Learning

Lecture 17: Neural Networks and Deep Learning UVA CS 6316 / CS 4501-004 Machine Learning Fall 2016 Lecture 17: Neural Networks and Deep Learning Jack Lanchantin Dr. Yanjun Qi 1 Neurons 1-Layer Neural Network Multi-layer Neural Network Loss Functions

More information

Sandwiching the marginal likelihood using bidirectional Monte Carlo. Roger Grosse

Sandwiching the marginal likelihood using bidirectional Monte Carlo. Roger Grosse Sandwiching the marginal likelihood using bidirectional Monte Carlo Roger Grosse Ryan Adams Zoubin Ghahramani Introduction When comparing different statistical models, we d like a quantitative criterion

More information

arxiv: v1 [cs.it] 26 Oct 2018

arxiv: v1 [cs.it] 26 Oct 2018 Outlier Detection using Generative Models with Theoretical Performance Guarantees arxiv:1810.11335v1 [cs.it] 6 Oct 018 Jirong Yi Anh Duc Le Tianming Wang Xiaodong Wu Weiyu Xu October 9, 018 Abstract This

More information

1 Machine Learning Concepts (16 points)

1 Machine Learning Concepts (16 points) CSCI 567 Fall 2018 Midterm Exam DO NOT OPEN EXAM UNTIL INSTRUCTED TO DO SO PLEASE TURN OFF ALL CELL PHONES Problem 1 2 3 4 5 6 Total Max 16 10 16 42 24 12 120 Points Please read the following instructions

More information

Bayesian Deep Generative Models for Semi-Supervised and Active Learning

Bayesian Deep Generative Models for Semi-Supervised and Active Learning Bayesian Deep Generative Models for Semi-Supervised and Active Learning Jonathan Gordon Supervisor: Dr José Miguel Hernández-Lobato Department of Engineering University of Cambridge This dissertation is

More information

Semi-Supervised Learning with the Deep Rendering Mixture Model

Semi-Supervised Learning with the Deep Rendering Mixture Model Semi-Supervised Learning with the Deep Rendering Mixture Model Tan Nguyen 1,2 Wanjia Liu 1 Ethan Perez 1 Richard G. Baraniuk 1 Ankit B. Patel 1,2 1 Rice University 2 Baylor College of Medicine 6100 Main

More information

CSCI-567: Machine Learning (Spring 2019)

CSCI-567: Machine Learning (Spring 2019) CSCI-567: Machine Learning (Spring 2019) Prof. Victor Adamchik U of Southern California Mar. 19, 2019 March 19, 2019 1 / 43 Administration March 19, 2019 2 / 43 Administration TA3 is due this week March

More information

Introduction to Machine Learning Midterm Exam

Introduction to Machine Learning Midterm Exam 10-701 Introduction to Machine Learning Midterm Exam Instructors: Eric Xing, Ziv Bar-Joseph 17 November, 2015 There are 11 questions, for a total of 100 points. This exam is open book, open notes, but

More information