u(x, y) = x 1 3 y v(p, q, I) = u(x(p, q, I), y(p, q, I))

Size: px
Start display at page:

Download "u(x, y) = x 1 3 y v(p, q, I) = u(x(p, q, I), y(p, q, I))"

Transcription

1 December 4, 207 Let p, q, I > 0. We try to maximize the utility function u(x, y) = x y under the constraint I px qy = 0 () Find the statinary point of f(x, y subject to g(x, y = 0 to find (2) We define the indirect utility function by x(p, q, I) = I 2p, y(p, q, I) = I 2q, λ = 2 pqi v(p, q, I) = u(x(p, q, I), y(p, q, I)) and show () Show that the Roy s identy holds. I = λ(p, q, I) x + x(p, q, I) = 0 I Solution Assume that the function u(x, y) is maximal or minimal at (x, y) subject to g(x, y) = 0. Then there exists λ R satisfying It follows from () x and (2) y that Since () or (2) implies λ 0, we can derive x 2 y λp = () x y 2 λq = (2) I px qy = () λpx = x y, λqy = x y Moreover thanks to (), we find px = qy = λ x y Then it follows from () and (2) that px = qy = I 2 thus x = I 2p, y = I 2q 9 x y λ 2 pq = 0 2

2 and Accordingly Remark that () implies λ > 0. (2) The indirect utility function is λ 2 = 4pq 9pq I 2 = p 2 q 2 I 2 λ = 2 pqi We differentiate it in I to get Remark v(p, q, I) = I = 2 ( ) ( ) I I I 2 = 2p 2q 2 2 p q I 2 = 2 2 p q = λ p q I This is the reason why the function λ(p, q, I) is called the marginal utility of the income. () We partially differentiate v(p, q, I) を p to get p = I p 4 q = I 2p 2p I = I 2p 2 p q I I p 4 q This is Roy s identity. = I 2p λ = x I II Let p, q, I > 0. We try to maximize the utility function u(x, y) = log x + log y subject to the constraint I px qy = 0 Find the demand functions x(p, q, I) and y(p, q, I) and the marginal utility function of the budget λ(p, q, I). Solution Assume that the function u(x, y) is maximal or minimal at (x, y) subject to g(x, y) = 0. Then there exists λ R satisfying x λp = () y λq = (2) I px qy = () It folloes from () and (2) that { λp = x () λq = y (2) 22

3 and then from () /(2) that Moreover () implies p q = y x i.e. px = qy px = qy = I 2 Then the the marginal utility of the income is 従って x = I 2p, y = I 2q III Optimize under the constraint λ = p 2p I = 2 I z = f(x, y) = x + y g(x, y) := x 2 + 2y 2 24 = 0 Solution Assume that the function u(x, y) is maximal or minimal at (x, y) subject to g(x, y) = 0. Then there exists λ R satisfying + λ 2x = () + λ 4y = (2) x 2 + 2y 2 24 = () If λ = 0, it follows from () that = 0. Accordingly we find that λ 0 and from () and (2) that x = 2λ, y = 4λ We eliminate x and y in () by using these indentities to get Hence we find λ = ±8 and The statinary points of f under g(x, y) = 0 are where the double signs correspond. 4λ 2 + 8λ 2 = 24 i.e. 8λ 2 = 24 x = 4, y = mp2 (x, y, λ) = ( 4, 2, ± 8 ) IV Let p, q, I > 0. We try to maximize the utility function u(x, y) = x y 2 under the constraint g(x, y) := I px qy = 0 Find the demand functions x(p, q, I) and y(p, q, I) and the marginal utility function of the budget λ(p, q, I). 2

4 Solution If u is maximal or minimal at (x, y) subject to g(x, y) = 0, there exists λ R satisfying Then it follows from () and (2) that x 2 y 2 λp = () 2 x y λq = (2) I px qy = () { λp = x 2 y () λq = 2 x y (2) Moreover () /(2) leads to We substitute this to () to get p q = 2 y x thus px = 2 qy I 2 qy qy = I 2 qy = 0 Accordingly we get the demand functions Moreover the marginal utility of the budget is x = I p, y = 2I p λ = q ( I ) p = 2I q 2q2 p V We consider z = f(x, y) = x 2 y subject to the constraint g(x, y) := 2x 2 + y 2 = 0. Solution We find g x = 4x, g y = 2y, f x = 2xy, f y = x 2 If f is maximal or minimal subject to g(x, y) = 0 at (x, y), there exists λ R satisfying 2xy + λ 4x = 0 (i) x 2 + λ 2y = 0 (ii) 2x 2 + y 2 = 0 (iii) First we remark that (i) (x = 0 OR y + 2λ = 0) and divide the analysis into the following two cases. ()In case x = 0 (ii) implies λy = 0 which is equivallent to λ = 0 OR y = 0 If y = 0, we find (x, y) = (0, 0). It is, however, doesn t satisfies (iii). Accordingly we find y 0 hence λ = 0. We substitute x = 0 in (iii) to get y = ± 24

5 We find the stationary points in this case are (x, y, λ) = (0, ±, 0) (2)In case y + 2λ = 00 We substitute 2λ = y in (ii) to get x 2 y 2 = 0 i.e. (x = y OR x = y) (2a)In case x = y it follows from (iii) that (x, y) = (±, ± ) (Double Signs Correspond) and thus from λ = 2 ythat λ = 2 (DSC). The statinary points in this case are (2b)In case x = y it follows from (iii) that (x, y, λ) = (±, ±, 2 ) (DSC) (x, y) = (±, ) (DSC) and thus from λ = 2 y that λ = ± 2 (DSC) (x, y, λ) = (±,, ± 2 ) (DSC) VI A function in x, y = ϕ(x) satisfies the identity x 2 + ϕ(x) 2 xϕ(x) = 0 Express ϕ (x) and ϕ (x) by x and ϕ(x). Solution We diffferentiate the both sides of (#) to get 2x + 2ϕ(x)ϕ (x) ϕ(x) xϕ (x) = 0 ($) Namely from which it follows (2ϕ(x) x)ϕ (x) = 2x + ϕ(x) ϕ (x) = ϕ(x) 2x 2ϕ(x) x We differentiate the both sides of ($) to get 2 + 2(ϕ (x)) 2 + 2ϕ(x)ϕ (x) ϕ (x) ϕ (x) xϕ (x) = 0 25

6 Namely (2ϕ(x) x) = 2 2(ϕ (x)) 2 + 6ϕ (x) = 0ϕ(x)2 0xϕ(x) + 0x 2 (2ϕ(x) x) 2 0 = (2ϕ(x) x) 2 from which it follows ϕ (x) = 0 (2ϕ(x) x) 26

The Utility Frontier

The Utility Frontier The Utility Frontier Any allocation (x i ) n 1 to a set N = {1,..., n} of individuals with utility functions u 1 ( ),..., u n ( ) yields a profile (u 1,..., u n ) of resulting utility levels, as depicted

More information

Maximum Value Functions and the Envelope Theorem

Maximum Value Functions and the Envelope Theorem Lecture Notes for ECON 40 Kevin Wainwright Maximum Value Functions and the Envelope Theorem A maximum (or minimum) value function is an objective function where the choice variables have been assigned

More information

Tangent Plane. Nobuyuki TOSE. October 02, Nobuyuki TOSE. Tangent Plane

Tangent Plane. Nobuyuki TOSE. October 02, Nobuyuki TOSE. Tangent Plane October 02, 2017 The Equation of a plane Given a plane α passing through P 0 perpendicular to n( 0). For any point P on α, we have n PP 0 = 0 When P 0 has the coordinates (x 0, y 0, z 0 ), P 0 (x, y, z)

More information

Week 7: The Consumer (Malinvaud, Chapter 2 and 4) / Consumer November Theory 1, 2015 (Jehle and 1 / Reny, 32

Week 7: The Consumer (Malinvaud, Chapter 2 and 4) / Consumer November Theory 1, 2015 (Jehle and 1 / Reny, 32 Week 7: The Consumer (Malinvaud, Chapter 2 and 4) / Consumer Theory (Jehle and Reny, Chapter 1) Tsun-Feng Chiang* *School of Economics, Henan University, Kaifeng, China November 1, 2015 Week 7: The Consumer

More information

The Envelope Theorem

The Envelope Theorem The Envelope Theorem In an optimization problem we often want to know how the value of the objective function will change if one or more of the parameter values changes. Let s consider a simple example:

More information

Homework 3 Suggested Answers

Homework 3 Suggested Answers Homework 3 Suggested Answers Answers from Simon and Blume are on the back of the book. Answers to questions from Dixit s book: 2.1. We are to solve the following budget problem, where α, β, p, q, I are

More information

GS/ECON 5010 section B Answers to Assignment 1 September Q1. Are the preferences described below transitive? Strictly monotonic? Convex?

GS/ECON 5010 section B Answers to Assignment 1 September Q1. Are the preferences described below transitive? Strictly monotonic? Convex? GS/ECON 5010 section B Answers to Assignment 1 September 2011 Q1. Are the preferences described below transitive? Strictly monotonic? Convex? Explain briefly. The person consumes 2 goods, food and clothing.

More information

Last Revised: :19: (Fri, 12 Jan 2007)(Revision:

Last Revised: :19: (Fri, 12 Jan 2007)(Revision: 0-0 1 Demand Lecture Last Revised: 2007-01-12 16:19:03-0800 (Fri, 12 Jan 2007)(Revision: 67) a demand correspondence is a special kind of choice correspondence where the set of alternatives is X = { x

More information

Lecture Notes for Chapter 12

Lecture Notes for Chapter 12 Lecture Notes for Chapter 12 Kevin Wainwright April 26, 2014 1 Constrained Optimization Consider the following Utility Max problem: Max x 1, x 2 U = U(x 1, x 2 ) (1) Subject to: Re-write Eq. 2 B = P 1

More information

Optimization: Problem Set Solutions

Optimization: Problem Set Solutions Optimization: Problem Set Solutions Annalisa Molino University of Rome Tor Vergata annalisa.molino@uniroma2.it Fall 20 Compute the maxima minima or saddle points of the following functions a. f(x y) =

More information

Economics 121b: Intermediate Microeconomics Midterm Suggested Solutions 2/8/ (a) The equation of the indifference curve is given by,

Economics 121b: Intermediate Microeconomics Midterm Suggested Solutions 2/8/ (a) The equation of the indifference curve is given by, Dirk Bergemann Department of Economics Yale University Economics 121b: Intermediate Microeconomics Midterm Suggested Solutions 2/8/12 1. (a) The equation of the indifference curve is given by, (x 1 + 2)

More information

Constrained optimization.

Constrained optimization. ams/econ 11b supplementary notes ucsc Constrained optimization. c 2016, Yonatan Katznelson 1. Constraints In many of the optimization problems that arise in economics, there are restrictions on the values

More information

Microeconomics, Block I Part 1

Microeconomics, Block I Part 1 Microeconomics, Block I Part 1 Piero Gottardi EUI Sept. 26, 2016 Piero Gottardi (EUI) Microeconomics, Block I Part 1 Sept. 26, 2016 1 / 53 Choice Theory Set of alternatives: X, with generic elements x,

More information

Solutions. F x = 2x 3λ = 0 F y = 2y 5λ = 0. λ = 2x 3 = 2y 5 = x = 3y 5. 2y 1/3 z 1/6 x 1/2 = 5x1/2 z 1/6. 3y 2/3 = 10x1/2 y 1/3

Solutions. F x = 2x 3λ = 0 F y = 2y 5λ = 0. λ = 2x 3 = 2y 5 = x = 3y 5. 2y 1/3 z 1/6 x 1/2 = 5x1/2 z 1/6. 3y 2/3 = 10x1/2 y 1/3 econ 11b ucsc ams 11b Review Questions 3 Solutions Note: In these problems, you may generally assume that the critical point(s) you find produce the required optimal value(s). At the same time, you should

More information

How to Characterize Solutions to Constrained Optimization Problems

How to Characterize Solutions to Constrained Optimization Problems How to Characterize Solutions to Constrained Optimization Problems Michael Peters September 25, 2005 1 Introduction A common technique for characterizing maximum and minimum points in math is to use first

More information

Notes I Classical Demand Theory: Review of Important Concepts

Notes I Classical Demand Theory: Review of Important Concepts Notes I Classical Demand Theory: Review of Important Concepts The notes for our course are based on: Mas-Colell, A., M.D. Whinston and J.R. Green (1995), Microeconomic Theory, New York and Oxford: Oxford

More information

i) This is simply an application of Berge s Maximum Theorem, but it is actually not too difficult to prove the result directly.

i) This is simply an application of Berge s Maximum Theorem, but it is actually not too difficult to prove the result directly. Bocconi University PhD in Economics - Microeconomics I Prof. M. Messner Problem Set 3 - Solution Problem 1: i) This is simply an application of Berge s Maximum Theorem, but it is actually not too difficult

More information

Optimization. A first course on mathematics for economists Problem set 4: Classical programming

Optimization. A first course on mathematics for economists Problem set 4: Classical programming Optimization. A first course on mathematics for economists Problem set 4: Classical programming Xavier Martinez-Giralt Academic Year 2015-2016 4.1 Let f(x 1, x 2 ) = 2x 2 1 + x2 2. Solve the following

More information

Name: Final Exam EconS 527 (December 12 th, 2016)

Name: Final Exam EconS 527 (December 12 th, 2016) Name: Final Exam EconS 527 (December 12 th, 2016) Question #1 [20 Points]. Consider the car industry in which there are only two firms operating in the market, Trotro (T) and Fido (F). The marginal production

More information

CHAPTER 4: HIGHER ORDER DERIVATIVES. Likewise, we may define the higher order derivatives. f(x, y, z) = xy 2 + e zx. y = 2xy.

CHAPTER 4: HIGHER ORDER DERIVATIVES. Likewise, we may define the higher order derivatives. f(x, y, z) = xy 2 + e zx. y = 2xy. April 15, 2009 CHAPTER 4: HIGHER ORDER DERIVATIVES In this chapter D denotes an open subset of R n. 1. Introduction Definition 1.1. Given a function f : D R we define the second partial derivatives as

More information

Consumer theory Topics in consumer theory. Microeconomics. Joana Pais. Fall Joana Pais

Consumer theory Topics in consumer theory. Microeconomics. Joana Pais. Fall Joana Pais Microeconomics Fall 2016 Indirect utility and expenditure Properties of consumer demand The indirect utility function The relationship among prices, incomes, and the maximised value of utility can be summarised

More information

Chapter 4 Differentiation

Chapter 4 Differentiation Chapter 4 Differentiation 08 Section 4. The derivative of a function Practice Problems (a) (b) (c) 3 8 3 ( ) 4 3 5 4 ( ) 5 3 3 0 0 49 ( ) 50 Using a calculator, the values of the cube function, correct

More information

Functions. Paul Schrimpf. October 9, UBC Economics 526. Functions. Paul Schrimpf. Definition and examples. Special types of functions

Functions. Paul Schrimpf. October 9, UBC Economics 526. Functions. Paul Schrimpf. Definition and examples. Special types of functions of Functions UBC Economics 526 October 9, 2013 of 1. 2. of 3.. 4 of Functions UBC Economics 526 October 9, 2013 of Section 1 Functions of A function from a set A to a set B is a rule that assigns to each

More information

Notes on Consumer Theory

Notes on Consumer Theory Notes on Consumer Theory Alejandro Saporiti Alejandro Saporiti (Copyright) Consumer Theory 1 / 65 Consumer theory Reference: Jehle and Reny, Advanced Microeconomic Theory, 3rd ed., Pearson 2011: Ch. 1.

More information

Compatible Systems and Charpit s Method

Compatible Systems and Charpit s Method MODULE 2: FIRST-ORDER PARTIAL DIFFERENTIAL EQUATIONS 28 Lecture 5 Compatible Systems Charpit s Method In this lecture, we shall study compatible systems of first-order PDEs the Charpit s method for solving

More information

Advanced Microeconomic Analysis Solutions to Midterm Exam

Advanced Microeconomic Analysis Solutions to Midterm Exam Advanced Microeconomic Analsis Solutions to Midterm Exam Q1. (0 pts) An individual consumes two goods x 1 x and his utilit function is: u(x 1 x ) = [min(x 1 + x x 1 + x )] (a) Draw some indifference curves

More information

Hicksian Demand and Expenditure Function Duality, Slutsky Equation

Hicksian Demand and Expenditure Function Duality, Slutsky Equation Hicksian Demand and Expenditure Function Duality, Slutsky Equation Econ 2100 Fall 2017 Lecture 6, September 14 Outline 1 Applications of Envelope Theorem 2 Hicksian Demand 3 Duality 4 Connections between

More information

Chapter 6: Rational Expr., Eq., and Functions Lecture notes Math 1010

Chapter 6: Rational Expr., Eq., and Functions Lecture notes Math 1010 Section 6.1: Rational Expressions and Functions Definition of a rational expression Let u and v be polynomials. The algebraic expression u v is a rational expression. The domain of this rational expression

More information

Properties of Walrasian Demand

Properties of Walrasian Demand Properties of Walrasian Demand Econ 2100 Fall 2017 Lecture 5, September 12 Problem Set 2 is due in Kelly s mailbox by 5pm today Outline 1 Properties of Walrasian Demand 2 Indirect Utility Function 3 Envelope

More information

MATH150-E01 Test #2 Summer 2016 Show all work. Name 1. Find an equation in slope-intercept form for the line through (4, 2) and (1, 3).

MATH150-E01 Test #2 Summer 2016 Show all work. Name 1. Find an equation in slope-intercept form for the line through (4, 2) and (1, 3). 1. Find an equation in slope-intercept form for the line through (4, 2) and (1, 3). 2. Let the supply and demand functions for sugar be given by p = S(q) = 1.4q 0.6 and p = D(q) = 2q + 3.2 where p is the

More information

Econ 101A Problem Set 1 Solution

Econ 101A Problem Set 1 Solution Econ 101A Problem Set 1 Solution Problem 1. Univariate unconstrained maximization. (10 points) Consider the following maximization problem: max x f(x; x 0)=exp( (x x 0 ) 2 ) 1. Write down the first order

More information

Advanced Microeconomics

Advanced Microeconomics Welfare measures and aggregation October 17, 2010 The plan: 1 Welfare measures 2 Example: 1 Our consumer has initial wealth w and is facing the initial set of market prices p 0. 2 Now he is faced with

More information

ECON 4117/5111 Mathematical Economics Fall 2005

ECON 4117/5111 Mathematical Economics Fall 2005 Test 1 September 30, 2005 Read Me: Please write your answers on the answer book provided. Use the rightside pages for formal answers and the left-side pages for your rough work. Do not forget to put your

More information

Final Examination with Answers: Economics 210A

Final Examination with Answers: Economics 210A Final Examination with Answers: Economics 210A December, 2016, Ted Bergstrom, UCSB I asked students to try to answer any 7 of the 8 questions. I intended the exam to have some relatively easy parts and

More information

Money Metric Measures of Individual and Social Welfare Allowing for Environmental Externalities

Money Metric Measures of Individual and Social Welfare Allowing for Environmental Externalities Reprinted (with minor corrections) from the TEX file used to create the camera-ready copy for: Wolfgang Eichhorn (Ed.) Models and Measurement of Welfare and Inequality,pp. 694 724 c Springer-Verlag 1994

More information

Consumer Theory. Ichiro Obara. October 8, 2012 UCLA. Obara (UCLA) Consumer Theory October 8, / 51

Consumer Theory. Ichiro Obara. October 8, 2012 UCLA. Obara (UCLA) Consumer Theory October 8, / 51 Consumer Theory Ichiro Obara UCLA October 8, 2012 Obara (UCLA) Consumer Theory October 8, 2012 1 / 51 Utility Maximization Utility Maximization Obara (UCLA) Consumer Theory October 8, 2012 2 / 51 Utility

More information

Implicit Differentiation

Implicit Differentiation Implicit Differentiation Sometimes we have a curve in the plane defined by a function Fxy= (, ) 0 (1) that involves both x and y, possibly in complicated ways. Examples. We show below the graphs of the

More information

Econ 110: Introduction to Economic Theory. 8th Class 2/7/11

Econ 110: Introduction to Economic Theory. 8th Class 2/7/11 Econ 110: Introduction to Economic Theory 8th Class 2/7/11 go over problem answers from last time; no new problems today given you have your problem set to work on; we'll do some problems for these concepts

More information

Queen s University. Department of Economics. Instructor: Kevin Andrew

Queen s University. Department of Economics. Instructor: Kevin Andrew Figure 1: 1b) GDP Queen s University Department of Economics Instructor: Kevin Andrew Econ 320: Math Assignment Solutions 1. (10 Marks) On the course website is provided an Excel file containing quarterly

More information

Tutorial 3: Optimisation

Tutorial 3: Optimisation Tutorial : Optimisation ECO411F 011 1. Find and classify the extrema of the cubic cost function C = C (Q) = Q 5Q +.. Find and classify the extreme values of the following functions (a) y = x 1 + x x 1x

More information

Recitation #2 (August 31st, 2018)

Recitation #2 (August 31st, 2018) Recitation #2 (August 1st, 2018) 1. [Checking properties of the Cobb-Douglas utility function.] Consider the utility function u(x) = n i=1 xα i i, where x denotes a vector of n different goods x R n +,

More information

3. Find the slope of the tangent line to the curve given by 3x y e x+y = 1 + ln x at (1, 1).

3. Find the slope of the tangent line to the curve given by 3x y e x+y = 1 + ln x at (1, 1). 1. Find the derivative of each of the following: (a) f(x) = 3 2x 1 (b) f(x) = log 4 (x 2 x) 2. Find the slope of the tangent line to f(x) = ln 2 ln x at x = e. 3. Find the slope of the tangent line to

More information

Math Final Solutions - Spring Jaimos F Skriletz 1

Math Final Solutions - Spring Jaimos F Skriletz 1 Math 160 - Final Solutions - Spring 2011 - Jaimos F Skriletz 1 Answer each of the following questions to the best of your ability. To receive full credit, answers must be supported by a sufficient amount

More information

Universidad Carlos III de Madrid June Microeconomics Grade

Universidad Carlos III de Madrid June Microeconomics Grade Universidad Carlos III de Madrid June 2017 Microeconomics Name: Group: 1 2 3 4 5 Grade You have 2 hours and 45 minutes to answer all the questions. 1. Multiple Choice Questions. (Mark your choice with

More information

Midterm Exam, Econ 210A, Fall 2008

Midterm Exam, Econ 210A, Fall 2008 Midterm Exam, Econ 0A, Fall 008 ) Elmer Kink s utility function is min{x, x }. Draw a few indifference curves for Elmer. These are L-shaped, with the corners lying on the line x = x. Find each of the following

More information

Advanced Microeconomics

Advanced Microeconomics Welfare measures and aggregation October 30, 2012 The plan: 1 Welfare measures 2 Example: 1 Our consumer has initial wealth w and is facing the initial set of market prices p 0. 2 Now he is faced with

More information

Lecture Notes on Partial Dierential Equations (PDE)/ MaSc 221+MaSc 225

Lecture Notes on Partial Dierential Equations (PDE)/ MaSc 221+MaSc 225 Lecture Notes on Partial Dierential Equations (PDE)/ MaSc 221+MaSc 225 Dr. Asmaa Al Themairi Assistant Professor a a Department of Mathematical sciences, University of Princess Nourah bint Abdulrahman,

More information

Microeconomic Theory-I Washington State University Midterm Exam #1 - Answer key. Fall 2016

Microeconomic Theory-I Washington State University Midterm Exam #1 - Answer key. Fall 2016 Microeconomic Theory-I Washington State University Midterm Exam # - Answer key Fall 06. [Checking properties of preference relations]. Consider the following preference relation de ned in the positive

More information

REVIEW OF MATHEMATICAL CONCEPTS

REVIEW OF MATHEMATICAL CONCEPTS REVIEW OF MATHEMATICAL CONCEPTS Variables, functions and slopes: A Variable is any entity that can take different values such as: price, output, revenue, cost, etc. In economics we try to 1. Identify the

More information

Advanced Microeconomic Analysis, Lecture 6

Advanced Microeconomic Analysis, Lecture 6 Advanced Microeconomic Analysis, Lecture 6 Prof. Ronaldo CARPIO April 10, 017 Administrative Stuff Homework # is due at the end of class. I will post the solutions on the website later today. The midterm

More information

Econ 101A Midterm 1 Th 29 September 2004.

Econ 101A Midterm 1 Th 29 September 2004. Econ 0A Midterm Th 29 September 2004. You have approximately hour 20 minutes to answer the questions in the midterm. I will collect the exams at 2.30 sharp. Show your work, good luck! Problem. Utility

More information

Generalized Convexity in Economics

Generalized Convexity in Economics Generalized Convexity in Economics J.E. Martínez-Legaz Universitat Autònoma de Barcelona, Spain 2nd Summer School: Generalized Convexity Analysis Introduction to Theory and Applications JULY 19, 2008 KAOHSIUNG

More information

Math 251 December 14, 2005 Final Exam. 1 18pt 2 16pt 3 12pt 4 14pt 5 12pt 6 14pt 7 14pt 8 16pt 9 20pt 10 14pt Total 150pt

Math 251 December 14, 2005 Final Exam. 1 18pt 2 16pt 3 12pt 4 14pt 5 12pt 6 14pt 7 14pt 8 16pt 9 20pt 10 14pt Total 150pt Math 251 December 14, 2005 Final Exam Name Section There are 10 questions on this exam. Many of them have multiple parts. The point value of each question is indicated either at the beginning of each question

More information

LECTURE 2. Convexity and related notions. Last time: mutual information: definitions and properties. Lecture outline

LECTURE 2. Convexity and related notions. Last time: mutual information: definitions and properties. Lecture outline LECTURE 2 Convexity and related notions Last time: Goals and mechanics of the class notation entropy: definitions and properties mutual information: definitions and properties Lecture outline Convexity

More information

Sample Math 115 Midterm Exam Spring, 2014

Sample Math 115 Midterm Exam Spring, 2014 Sample Math 5 Midterm Exam Spring, 04 The midterm examination is on Wednesday, March at 5:45PM 7:45PM The midterm examination will be in Budig 0 Look for your instructor who will direct you where to sit

More information

ECONOMICS 207 SPRING 2006 LABORATORY EXERCISE 5 KEY. 8 = 10(5x 2) = 9(3x + 8), x 50x 20 = 27x x = 92 x = 4. 8x 2 22x + 15 = 0 (2x 3)(4x 5) = 0

ECONOMICS 207 SPRING 2006 LABORATORY EXERCISE 5 KEY. 8 = 10(5x 2) = 9(3x + 8), x 50x 20 = 27x x = 92 x = 4. 8x 2 22x + 15 = 0 (2x 3)(4x 5) = 0 ECONOMICS 07 SPRING 006 LABORATORY EXERCISE 5 KEY Problem. Solve the following equations for x. a 5x 3x + 8 = 9 0 5x 3x + 8 9 8 = 0(5x ) = 9(3x + 8), x 0 3 50x 0 = 7x + 7 3x = 9 x = 4 b 8x x + 5 = 0 8x

More information

T e c h n i c u e. SOUTH'S LIVEST COLLEGE WEEKLY Georgia School of Technology. Phi Kappa Tau Frat Installed With WeekEnd of Activity mm

T e c h n i c u e. SOUTH'S LIVEST COLLEGE WEEKLY Georgia School of Technology. Phi Kappa Tau Frat Installed With WeekEnd of Activity mm V X V U' V KY y,!!j[»jqu,, Y, 9 Y, 99 6 J K B B U U q : p B B By VV Y Kpp vy Y 7-8 y p p Kpp, z, p y, y, y p y, Kpp,, y p p p y p v y y y p, p, K, B, y y, B v U, Uvy, x, ; v y,, Uvy ; J, p p ( 5),, v y

More information

Econ 5150: Applied Econometrics Empirical Demand Analysis. Sung Y. Park CUHK

Econ 5150: Applied Econometrics Empirical Demand Analysis. Sung Y. Park CUHK Econ 5150: Applied Econometrics Empirical Analysis Sung Y. Park CUHK Marshallian demand Under some mild regularity conditions on preferences the preference relation x ર z ( the bundle x us weakly preferred

More information

LESSON 25: LAGRANGE MULTIPLIERS OCTOBER 30, 2017

LESSON 25: LAGRANGE MULTIPLIERS OCTOBER 30, 2017 LESSON 5: LAGRANGE MULTIPLIERS OCTOBER 30, 017 Lagrange multipliers is another method of finding minima and maxima of functions of more than one variable. In fact, many of the problems from the last homework

More information

CH 5 More on the analysis of consumer behavior

CH 5 More on the analysis of consumer behavior 個體經濟學一 M i c r o e c o n o m i c s (I) CH 5 More on the analysis of consumer behavior Figure74 An increase in the price of X, P x P x1 P x2, P x2 > P x1 Assume = 1 and m are fixed. m =e(p X2,, u 1 ) m=e(p

More information

Math 0312 EXAM 2 Review Questions

Math 0312 EXAM 2 Review Questions Name Decide whether the ordered pair is a solution of the given system. 1. 4x + y = 2 2x + 4y = -20 ; (2, -6) Solve the system by graphing. 2. x - y = 6 x + y = 16 Solve the system by substitution. If

More information

Solutions. ams 11b Study Guide 9 econ 11b

Solutions. ams 11b Study Guide 9 econ 11b ams 11b Study Guide 9 econ 11b Solutions 1. A monopolistic firm sells one product in two markets, A and B. The daily demand equations for the firm s product in these markets are given by Q A = 100 0.4P

More information

Partial Differentiation

Partial Differentiation CHAPTER 7 Partial Differentiation From the previous two chapters we know how to differentiate functions of one variable But many functions in economics depend on several variables: output depends on both

More information

ECON2285: Mathematical Economics

ECON2285: Mathematical Economics ECON2285: Mathematical Economics Yulei Luo SEF of HKU September 9, 2017 Luo, Y. (SEF of HKU) ME September 9, 2017 1 / 81 Constrained Static Optimization So far we have focused on nding the maximum or minimum

More information

Ch3. Generating Random Variates with Non-Uniform Distributions

Ch3. Generating Random Variates with Non-Uniform Distributions ST4231, Semester I, 2003-2004 Ch3. Generating Random Variates with Non-Uniform Distributions This chapter mainly focuses on methods for generating non-uniform random numbers based on the built-in standard

More information

ECON 582: Dynamic Programming (Chapter 6, Acemoglu) Instructor: Dmytro Hryshko

ECON 582: Dynamic Programming (Chapter 6, Acemoglu) Instructor: Dmytro Hryshko ECON 582: Dynamic Programming (Chapter 6, Acemoglu) Instructor: Dmytro Hryshko Indirect Utility Recall: static consumer theory; J goods, p j is the price of good j (j = 1; : : : ; J), c j is consumption

More information

32. Use a graphing utility to find the equation of the line of best fit. Write the equation of the line rounded to two decimal places, if necessary.

32. Use a graphing utility to find the equation of the line of best fit. Write the equation of the line rounded to two decimal places, if necessary. Pre-Calculus A Final Review Part 2 Calculator Name 31. The price p and the quantity x sold of a certain product obey the demand equation: p = x + 80 where r = xp. What is the revenue to the nearest dollar

More information

Lecture 5 - Information theory

Lecture 5 - Information theory Lecture 5 - Information theory Jan Bouda FI MU May 18, 2012 Jan Bouda (FI MU) Lecture 5 - Information theory May 18, 2012 1 / 42 Part I Uncertainty and entropy Jan Bouda (FI MU) Lecture 5 - Information

More information

The Consumer, the Firm, and an Economy

The Consumer, the Firm, and an Economy Andrew McLennan October 28, 2014 Economics 7250 Advanced Mathematical Techniques for Economics Second Semester 2014 Lecture 15 The Consumer, the Firm, and an Economy I. Introduction A. The material discussed

More information

First order wave equations. Transport equation is conservation law with J = cu, u t + cu x = 0, < x <.

First order wave equations. Transport equation is conservation law with J = cu, u t + cu x = 0, < x <. First order wave equations Transport equation is conservation law with J = cu, u t + cu x = 0, < x

More information

Economics 401 Sample questions 2

Economics 401 Sample questions 2 Economics 401 Sample questions 1. What does it mean to say that preferences fit the Gorman polar form? Do quasilinear preferences fit the Gorman form? Do aggregate demands based on the Gorman form have

More information

Optimization, constrained optimization and applications of integrals.

Optimization, constrained optimization and applications of integrals. ams 11b Study Guide econ 11b Optimization, constrained optimization and applications of integrals. (*) In all the constrained optimization problems below, you may assume that the critical values you find

More information

Lakehead University ECON 4117/5111 Mathematical Economics Fall 2002

Lakehead University ECON 4117/5111 Mathematical Economics Fall 2002 Test 1 September 20, 2002 1. Determine whether each of the following is a statement or not (answer yes or no): (a) Some sentences can be labelled true and false. (b) All students should study mathematics.

More information

Our task The optimization principle Available choices Preferences and utility functions Describing the representative consumer preferences

Our task The optimization principle Available choices Preferences and utility functions Describing the representative consumer preferences X Y U U(x, y), x X y Y (x, y ) U(x, y ) (x, y ) (x, y ) (x, y ) (x, y ) (x, y ) U(x, y ) > U(x, y ) (x, y ) (x, y ) U(x, y ) < U(x, y ) U(x, y ) = U(x, y ) X Y U x y U x > x 0 U(x, y) U(x 0, y), y y >

More information

" W I T H M I A L I O E T O W A R D istolste A N D O H A P l t T Y F O B, A I j L. ; " * Jm MVERSEO IT.

 W I T H M I A L I O E T O W A R D istolste A N D O H A P l t T Y F O B, A I j L. ;  * Jm MVERSEO IT. P Y V V 9 G G G -PP - P V P- P P G P -- P P P Y Y? P P < PG! P3 ZZ P? P? G X VP P P X G - V G & X V P P P V P» Y & V Q V V Y G G G? Y P P Y P V3»! V G G G G G # G G G - G V- G - +- - G G - G - G - - G

More information

Microeconomic Theory: Lecture 2 Choice Theory and Consumer Demand

Microeconomic Theory: Lecture 2 Choice Theory and Consumer Demand Microeconomic Theory: Lecture 2 Choice Theory and Consumer Demand Summer Semester, 2014 De nitions and Axioms Binary Relations I Examples: taller than, friend of, loves, hates, etc. I Abstract formulation:

More information

Beyond CES: Three Alternative Classes of Flexible Homothetic Demand Systems

Beyond CES: Three Alternative Classes of Flexible Homothetic Demand Systems Beyond CES: Three Alternative Classes of Flexible Homothetic Demand Systems Kiminori Matsuyama 1 Philip Ushchev 2 December 19, 2017, Keio University December 20. 2017, University of Tokyo 1 Department

More information

Division of the Humanities and Social Sciences. Supergradients. KC Border Fall 2001 v ::15.45

Division of the Humanities and Social Sciences. Supergradients. KC Border Fall 2001 v ::15.45 Division of the Humanities and Social Sciences Supergradients KC Border Fall 2001 1 The supergradient of a concave function There is a useful way to characterize the concavity of differentiable functions.

More information

GARP and Afriat s Theorem Production

GARP and Afriat s Theorem Production GARP and Afriat s Theorem Production Econ 2100 Fall 2017 Lecture 8, September 21 Outline 1 Generalized Axiom of Revealed Preferences 2 Afriat s Theorem 3 Production Sets and Production Functions 4 Profits

More information

PS4-Solution. Mehrdad Esfahani. Fall Arizona State University. Question 1 Question 2 Question 3 Question 4 Question 5

PS4-Solution. Mehrdad Esfahani. Fall Arizona State University. Question 1 Question 2 Question 3 Question 4 Question 5 PS4-Solution Mehrdad Esfahani Arizona State University Fall 2016 Mehrdad Esfahani PS4-Solution 1 / 13 Part d Part e Question 1 Choose some 1 k l and fix the level of consumption of the goods index by i

More information

Math 2a Prac Lectures on Differential Equations

Math 2a Prac Lectures on Differential Equations Math 2a Prac Lectures on Differential Equations Prof. Dinakar Ramakrishnan 272 Sloan, 253-37 Caltech Office Hours: Fridays 4 5 PM Based on notes taken in class by Stephanie Laga, with a few added comments

More information

Chapter 4. Maximum Theorem, Implicit Function Theorem and Envelope Theorem

Chapter 4. Maximum Theorem, Implicit Function Theorem and Envelope Theorem Chapter 4. Maximum Theorem, Implicit Function Theorem and Envelope Theorem This chapter will cover three key theorems: the maximum theorem (or the theorem of maximum), the implicit function theorem, and

More information

Recitation 2-09/01/2017 (Solution)

Recitation 2-09/01/2017 (Solution) Recitation 2-09/01/2017 (Solution) 1. Checking properties of the Cobb-Douglas utility function. Consider the utility function u(x) Y n i1 x i i ; where x denotes a vector of n di erent goods x 2 R n +,

More information

CS/Ph120 Homework 4 Solutions

CS/Ph120 Homework 4 Solutions CS/Ph10 Homework 4 Solutions November 3, 016 Problem 1: Robustness of GHZ and W states, part Solution: Due to Bolton Bailey a For the GHZ state, we have T r N GHZ N GHZ N = 1 0 N 1 0 N 1 + 1 N 1 1 N 1

More information

MA6351-TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS. Question Bank. Department of Mathematics FATIMA MICHAEL COLLEGE OF ENGINEERING & TECHNOLOGY

MA6351-TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS. Question Bank. Department of Mathematics FATIMA MICHAEL COLLEGE OF ENGINEERING & TECHNOLOGY MA6351-TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS Question Bank Department of Mathematics FATIMA MICHAEL COLLEGE OF ENGINEERING & TECHNOLOGY MADURAI 625 020, Tamilnadu, India 1. Define PDE and Order

More information

1 Introduction to Predicate Resolution

1 Introduction to Predicate Resolution 1 Introduction to Predicate Resolution The resolution proof system for Predicate Logic operates, as in propositional case on sets of clauses and uses a resolution rule as the only rule of inference. The

More information

MSc Economics: Economic Theory and Applications I. Consumer Theory

MSc Economics: Economic Theory and Applications I. Consumer Theory MSc Economics: Economic Theory and Applications I Consumer Theory Dr Ken Hori Birkbeck College Autumn 2006 1 1 Utility Max Problem Basic hypothesis: a rational consumer will always choose a most preferred

More information

Lagrange Multipliers

Lagrange Multipliers Calculus 3 Lia Vas Lagrange Multipliers Constrained Optimization for functions of two variables. To find the maximum and minimum values of z = f(x, y), objective function, subject to a constraint g(x,

More information

Exercises for Chapter 7

Exercises for Chapter 7 Exercises for Chapter 7 Exercise 7.1 The following simple macroeconomic model has four equations relating government policy variables to aggregate income and investment. Aggregate income equals consumption

More information

MAC 2233, Survey of Calculus, Exam 3 Review This exam covers lectures 21 29,

MAC 2233, Survey of Calculus, Exam 3 Review This exam covers lectures 21 29, MAC 2233, Survey of Calculus, Exam 3 Review This exam covers lectures 21 29, This review includes typical exam problems. It is not designed to be comprehensive, but to be representative of topics covered

More information

STEP Support Programme. Pure STEP 1 Questions

STEP Support Programme. Pure STEP 1 Questions STEP Support Programme Pure STEP 1 Questions 2012 S1 Q4 1 Preparation Find the equation of the tangent to the curve y = x at the point where x = 4. Recall that x means the positive square root. Solve the

More information

1 + x 1/2. b) For what values of k is g a quasi-concave function? For what values of k is g a concave function? Explain your answers.

1 + x 1/2. b) For what values of k is g a quasi-concave function? For what values of k is g a concave function? Explain your answers. Questions and Answers from Econ 0A Final: Fall 008 I have gone to some trouble to explain the answers to all of these questions, because I think that there is much to be learned b working through them

More information

Solve the equation for c: 8 = 9c (c + 24). Solve the equation for x: 7x (6 2x) = 12.

Solve the equation for c: 8 = 9c (c + 24). Solve the equation for x: 7x (6 2x) = 12. 1 Solve the equation f x: 7x (6 2x) = 12. 1a Solve the equation f c: 8 = 9c (c + 24). Inverse Operations 7x (6 2x) = 12 Given 7x 1(6 2x) = 12 Show distributing with 1 Change subtraction to add (-) 9x =

More information

OWELL WEEKLY JOURNAL

OWELL WEEKLY JOURNAL Y \»< - } Y Y Y & #»»» q ] q»»»>) & - - - } ) x ( - { Y» & ( x - (» & )< - Y X - & Q Q» 3 - x Q Y 6 \Y > Y Y X 3 3-9 33 x - - / - -»- --

More information

Problem set 2 solutions Prof. Justin Marion Econ 100M Winter 2012

Problem set 2 solutions Prof. Justin Marion Econ 100M Winter 2012 Problem set 2 solutions Prof. Justin Marion Econ 100M Winter 2012 1. I+S effects Recognize that the utility function U =min{2x 1,4x 2 } represents perfect complements, and that the goods will be consumed

More information

Integration of Rational Functions by Partial Fractions

Integration of Rational Functions by Partial Fractions Title Integration of Rational Functions by Partial Fractions MATH 1700 December 6, 2016 MATH 1700 Partial Fractions December 6, 2016 1 / 11 Readings Readings Readings: Section 7.4 MATH 1700 Partial Fractions

More information

MATH529 Fundamentals of Optimization Constrained Optimization I

MATH529 Fundamentals of Optimization Constrained Optimization I MATH529 Fundamentals of Optimization Constrained Optimization I Marco A. Montes de Oca Mathematical Sciences, University of Delaware, USA 1 / 26 Motivating Example 2 / 26 Motivating Example min cost(b)

More information

Chapter 2. First-Order Partial Differential Equations. Prof. D. C. Sanyal

Chapter 2. First-Order Partial Differential Equations. Prof. D. C. Sanyal BY Prof. D. C. Sanyal Retired Professor Of Mathematics University Of Kalyani West Bengal, India E-mail : dcs klyuniv@yahoo.com 1 Module-2: Quasi-Linear Equations of First Order 1. Introduction In this

More information

1 Objective. 2 Constrained optimization. 2.1 Utility maximization. Dieter Balkenborg Department of Economics

1 Objective. 2 Constrained optimization. 2.1 Utility maximization. Dieter Balkenborg Department of Economics BEE020 { Basic Mathematical Economics Week 2, Lecture Thursday 2.0.0 Constrained optimization Dieter Balkenborg Department of Economics University of Exeter Objective We give the \ rst order conditions"

More information

EC /11. Math for Microeconomics September Course, Part II Problem Set 1 with Solutions. a11 a 12. x 2

EC /11. Math for Microeconomics September Course, Part II Problem Set 1 with Solutions. a11 a 12. x 2 LONDON SCHOOL OF ECONOMICS Professor Leonardo Felli Department of Economics S.478; x7525 EC400 2010/11 Math for Microeconomics September Course, Part II Problem Set 1 with Solutions 1. Show that the general

More information