Analysis of dynamic characteristics of a HDD spindle system supported by ball bearing due to temperature variation

Size: px
Start display at page:

Download "Analysis of dynamic characteristics of a HDD spindle system supported by ball bearing due to temperature variation"

Transcription

1 Analysis of dynamic characteristics of a HDD spindle system supported by ball bearing due to temperature variation G. H. Jang, D. K. Kim, J. H. Han, C. S. Kim Microsystem Technologies 9 (2003) Ó Springer-Verlag 2003 DOI /s Abstract This paper presents a method to investigate the characteristics of a ball bearing and the dynamics of a HDD spindle system due to temperature variation. Finite element model is developed for the rotating and stationary parts of a HDD spindle system separately to determine their thermal deformations by using ANSYS, a finite element program. Then, the relative position of the rotating part with respect to the stationary part is determined by solving the equilibrium equation of the contact force between upper and lower ball bearings. The validity of the proposed method is verified by comparing the theoretical natural frequencies of a HDD spindle system with the experimental ones before and after temperature variation. The proposed method makes it possible to predict the characteristics of a ball bearing and the dynamics of a HDD spindle system due to temperature variation. It shows that the elevated temperature results in the increase of contact angle and the decrease of bearing deformation, contact force and bearing stiffness, which result in the decrease of the natural frequencies of a HDD spindle system. 1 Introduction Nonrepeatable runout (NRRO) is one of the major obstacles to achieve high track density in a computer hard disk drive (HDD). One of its sources is the waviness of a ball bearing in a HDD spindle system, and it generates bearing frequencies and the excessive vibration especially when one of the bearing frequencies matches with one of the natural frequencies of HDD spindle system [1 4]. In HDD industry, this resonance has been avoided by designing the natural frequencies of a HDD spindle system not to coincide with bearing frequencies. However, the operating temperature inside a HDD has thermal cycles, starting Received: 20 June 2002 / Accepted: 28 August 2002 G. H. Jang (&), D. K. Kim, J. H. Han PREM, Department of Mechanical Engineering, Hanyang University, 17, Haengdang-dong, Sungdong-ku, Seoul, , Korea ghjang@hanyang.ac.kr C. S. Kim Nano Storage Lab., Samsung Advanced Institute of Technology, Suwon, Korea Paper Presented at the 13th Annual Symposium on Information Storage and Processing Systems, Santa Clara, CA, USA, June, 2002 from room temperature up to 80 C. This may result in looseness of a ball bearing, natural frequency shifts of a HDD spindle vibration, coincidence with bearing frequencies, and eventually read/write errors. Several researchers have investigated the sources of natural frequency shifts of a HDD spindle system due to temperature rise, i.e. disk media and ball bearing. Jr-Yi Shen et al. (2000) studied both experimentally and theoretically how temperature variations affect natural frequencies of disk media [5]. They pointed out that natural frequency shifts of aluminum and glass disks at elevated temperatures result primarily from residual stresses and thermal membrane stresses of the disks, respectively. Chaw-Wu Tseng et al. studied how temperature variation affects natural frequencies of rocking vibration of a rotating disk and spindle system through mathematical modeling and experimental measurement [6]. They pointed out that frequency shifts of rocking modes at elevated temperature primarily result from relaxation of bearing stiffness. In their mathematical thermal model, they only included the radial displacement of the outer race with respect to the inner race at the elevated temperature without taking account of the axial displacement. In addition to radial displacement, axial displacement of the outer race with respect to the inner race at the elevated temperature affects significantly the characteristics of a ball bearing and natural frequency shifts of a HDD spindle system. This paper presents a method to investigate the characteristics of ball bearings and the dynamics of a HDD spindle system due to temperature variation. The characteristics of ball bearings at the elevated temperature are calculated by the bearing displacement due to temperature variation, which is obtained by the finite element analysis of thermal expansion and the force equilibrium equation between upper and lower bearings. The proposed method is verified by comparing the shifts of natural frequencies of a finite element model with those of the experimental modal testing of a HDD spindle system before and after temperature variation. It investigates rigorously how temperature variation affects the characteristics of a ball bearing and the dynamics of a HDD spindle system. 2 Method of analysis A HDD spindle system as shown Fig. 1 is composed of several components with different thermal expansion coefficients. In this model, base, flange and hub are made of aluminum, and shaft and ball bearings are made of steel. 243

2 244 Fig. 1. HDD spindle system Fig. 3. Change of contact angle before and after temperature variation Fig. 2. Bearing displacement due to temperature variation As the operating temperature changes, so does the clearance between ball and races. This affects the deformation and stiffness of a ball bearing. Also, upper and lower ball bearings in a HDD spindle system do not undergo the same deformation due to the geometric asymmetry in the axial direction. This section consists of two parts. In the first part, the bearing characteristics are determined in a single row ball bearing by using the kinematics and the Hertz contact theory with the assumption that the radial and axial displacements of a ball bearing due to temperature variation are known. In the second part, the radial and axial displacements of a ball bearing are determined in double row ball bearings by using a finite element analysis for the thermal deformation and the force equilibrium condition between the upper and lower ball bearings. 2.1 Determination of bearing characteristics in a single row ball bearing due to temperature variation Figure 2 shows the change of bearing displacement before and after temperature variation. In Fig. 2, Dr I ; Dh I ; Dr O ; Dh O A; B; A 0 and B 0 are the radial and axial displacements and the curvature centers of inner and outer races before and after temperature variation, respectively. Figure 3 shows the change of contact angles due to temperature variation, i.e. the relative displacement of the curvature center of the outer race with respect to the same curvature center of the inner race. The new contact angle after temperature variation (a 0 ) can be expressed with respect to the old contact angle before temperature variation (a) as follows. a 0 ¼ tan 1 AB sin a þ ðdh O Dh I Þ ð1þ AB cos a ðdr O Dr I Þ In Eq. (1), AB is the distance between the curvature centers of inner and outer race before temperature variation, and it can be expressed in terms of inner and outer race conformity (f i and f o ), ball diameter (d B ), and bearing deformation (d) as follows. AB ¼ d B ðf i þ f o 1Þþd ð2þ The bearing deformation after temperature variation (d 0 ) is the sum of the bearing deformation before temperature variation (d), the distance difference between the curvature centers of inner and outer race before and after temperature variation (A 0 B 0 AB), and the thermal expansion of ball (db 0 d B) after temperature variation as follows. d 0 ¼ d þ A 0 B 0 AB þ d 0 B d B ð3þ In Eq. (3), A 0 B 0 and db 0 are the distance between the curvature centers of inner and outer race, and ball diameter after temperature variation. They can be expressed in the following equations. A 0 B 0 qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2þ 2 ¼ ABcosa ðdr O Dr I Þ ABsina þ ð DhO Dh I Þ d 0 B ¼ d B þ a TB DT d B ð4þ ð5þ In Eq. (5), a TB and DT are the thermal expansion coefficient of the ball and the temperature variation, respectively. According to the Hertz contact theory, the contact force between ball and race (F) can be represented with loaddeflection constant (K) and bearing deformation (d) as follows. F ¼ Kd 3=2 ð6þ

3 Then the stiffness of a single ball can be expressed by the partial derivative of the contact force with respect to the bearing deformation as follows. k single ball ¼ of od ¼ 3 2 Kd1=2 ð7þ In Eqs. (6) and (7), the load-deflection constant is a function of the geometry and the material properties of ball and race [7, 8]. Once the temperature changes, it has to be recalculated because the geometry of ball and race changes, too. 2.2 Determination of bearing displacement in double row ball bearings due to temperature variation Finite element analysis in thermal expansion and the force equilibrium equation between upper and lower bearings are used to determine the radial and axial displacements of inner and outer race due to temperature variation. In the finite element analysis, thermal expansion due to temperature variation is calculated for two parts, i.e. the stationary and rotating parts, separately. Figure 4 shows the finite element models developed using ANSYS. In Fig. 4, the stationary part consists of base, flange, shaft and inner race, and the rotating part consists of outer race and hub. The radial displacements of inner and outer races and the axial displacements of inner races of upper and lower ball bearings due to temperature variation (DrI U, DrU O, DrL I, DrL O, Dh U I and Dh L I ) can be easily determined by subtracting the initial positions of inner and outer races before temperature variation from the final positions after temperature variation, because a HDD spindle system has axisymmetric geometry with respect to the shaft. But the same method cannot be applied to determine the axial displacements of outer races of upper and lower ball bearings (Dh U O and Dh L O ) because outer races of upper and lower ball bearings in a HDD spindle system undergo the thermal expansion as well as the axial movement of hub in such a way that the bearing forces between the upper and lower ball bearings should satisfy the force equilibrium condition. A HDD spindle system is not symmetric with respect to the span center of upper and lower bearings. This asymmetry results in the different thermal expansion of upper and lower bearings. It also makes the axial forces of the two bearings different, which moves the hub in the axial direction until the axial forces of upper and lower bearings are the same. Eq. (8) is the equilibrium equation of the axial forces between upper and lower ball bearings, and it is used to determine the axial movement of the hub. X F 0 A ¼ n F 0L sin a 0L þ n F 0U sin a 0U ¼ 0 ð8þ Figure 5 shows the numerical procedures to determine the axial displacements of the outer races of upper and lower 245 Fig. 4a, b. Finite element models of a HDD spindle system for thermal analysis. a Stationary part. b Rotating part Fig. 5. Numerical procedure to determine the axial displacements of outer races of upper and lower ball bearings

4 246 ball bearings by using the Secant method. First, the finite element model of outer race and hub as shown in Fig. 4b is used to determine the axial displacements of the outer races of upper and lower ball bearings due to temperature variation only (Dh U OT ; DhL OT ). Second, an initial guess of an axial hub movement is made, and the axial displacements of outer races of upper and lower ball bearings (Dh U O ; DhL O ) are obtained by adding the axial movement of a hub. Third, the bearing contact forces of upper and lower bearings after temperature variation (F 0U ; F 0L ) are determined by applying the changed geometric parameters of ball and race after temperature variation to Eq. (6). Then, the Secant method is applied to Eq. (8) in order to determine the final axial displacements of outer races of upper and lower ball bearings. 3 Verification The proposed method is verified by comparing the natural frequencies of the finite element model with those of the experimental modal testing. Table 1 shows the major design specifications of a ball bearing used in this analysis. This research does not include a disk in a HDD spindle system in order to exclude the frequency shifts due to the residual stress of the disk [5]. Once the displacements of inner and outer races of upper and lower ball bearings in a HDD spindle motor due to temperature variation are determined by using the finite element analysis for thermal expansion and the force equilibrium condition, the stiffness of a ball bearing is calculated by using Eq. (7). ANSYS is used to develop a finite element model of a HDD spindle system as shown in Fig. 6, and the natural frequencies of a HDD spindle system are calculated. Figure 7 shows the experimental setup to measure the natural frequencies of a HDD spindle system before and after temperature variation. Inside the glass thermal chamber, a hot air blower is used to increase the temperature, which is measured by thermocouples. Impact hammer excites the hub and base and the laser doppler vibrometer measures the frequency response function of the HDD spindle system at the hub and base at 20 and 60 C, respectively, as shown Fig. 8. Table 2 shows the natural frequency shift of a HDD spindle system due to the temperature variation from 20 to 60 C in the experimental modal test and the finite element analysis, respectively. It shows that the experimental results match closely with the analytical ones. Natural frequency shifts of Fig. 7. Experimental setup to measure the natural frequencies of a HDD spindle system Table 1. Major design specifications of a ball bearing Number of balls 10 Ball diameter (mm) Pitch diameter (mm) 9.1 Contact angle ( ) Preload (N) 16 Inner race conformity Outer race conformity Radial clearance (mm) Fig. 6. Finite element model of a HDD spindle system Fig. 8a, b. Frequency response function of a HDD spindle system. a Frequency response function measured at hub. b Frequency response function measured at base

5 Table 2. Experimental and analytical results of natural frequency shifts of a HDD spindle system due to temperature variation Index Vibration mode Major source of flexibility Experiment Analysis 20 C 60 C Shift 20 C 60 C Shift 1 Axial mode Base )1 2 Axial mode Base ) )3 3 Rocking mode Ball bearing ) )24 4 Rocking mode Ball bearing ) )21 5 Axial mode Ball bearing ) )14 a HDD spindle system due to temperature variation will be discussed in the next section in detail Results and discussion 4.1 Bearing characteristics due to temperature variation Bearing characteristics in a HDD spindle system are calculated by using the proposed method whenever the operating temperature increases 10 C in the range from 20 to 60 C. Figure 9 shows the change of contact angle due to temperature variation. It shows that contact angle increases as temperature increases. The thermal expansion rate of the rotating part is larger than that of the stationary part, because the former is made of aluminum and the latter steel. Therefore, the curvature center of the outer race is moved in the outward direction with respect to that of the inner race, increasing the contact angle. Figure 9 also shows that the increase rate of the contact angle of the upper bearing is larger than that of the lower bearing. One of the reasons is the yoke and permanent magnet located in the lower part of the hub. They have a smaller thermal expansion coefficient than aluminum, which decreases the thermal expansion of the lower bearing. Another source is the upward axial movement of a hub to satisfy the force equilibrium, which increases and decreases the contact angle of upper and lower bearings, respectively. Figure 10 shows the change of bearing deformation, contact force and stiffness of a single ball due to temperature variation. They decrease as temperature increases. It also shows that the bearing deformation, contact force and stiffness of the single ball of lower bearing are larger than those of the upper bearing due to the small thermal expansion coefficients of permanent magnet and yoke. Figure 11 shows the change of preload due to temperature variation. It is equal to the axial force in upper or lower bearing. It decreases as temperature increases, and it decreases almost to half when the temperature increases up to 60 C. Figure 12 shows the change of equivalent radial and axial stiffness due to temperature variation. They are calculated with the following equations [9]. k RR ¼ K n 2 k AA ¼ K n! d 3=2 d þ AB þ d1=2 d þ 3AB cos 2 a 2 d þ AB! d 3=2 d þ AB þ d1=2 d þ 3AB sin 2 a 2 d þ AB ð9þ ð10þ Fig. 9. Contact angle due to temperature variation of a HDD spindle system In Eqs. (9) and (10), k RR, k AA and n are the equivalent radial and axial stiffness and the number of balls, respectively. The stiffnesses decrease as temperature increases, but the equivalent radial stiffness decreases more rapidly than the equivalent axial stiffness. 4.2 Dynamics of a HDD spindle system due to temperature variation The decrease of bearing stiffness due to temperature rise results in the decrease of the natural frequencies of a HDD spindle system. As shown in Fig. 8 and Table 2, the first two vibration modes are the axial modes mostly governed by the stiffness of the base, so that their frequency shifts are very small because the stiffness change of base due to temperature variation is negligible. The next three vibration modes are two rocking and axial modes mostly governed by the stiffness of the ball bearing. These frequencies decrease significantly because the stiffness of the ball bearing decreases due to temperature rise. Also, the frequencies of rocking vibration modes decrease more rapidly than that of the axial vibration mode because the equivalent radial stiffness decreases more rapidly than the equivalent axial stiffness as shown in Fig Conclusions (a) In the case where the thermal expansion coefficient of the stationary part of a HDD spindle system is smaller than that of the rotating part, elevated temperature

6 248 Fig. 11. Preload due to temperature variation Fig. 12. Equivalent radial and axial stiffness due to temperature variation Fig. 10. a Bearing deformation, b contact force and c stiffness of single ball due to temperature variation results in the increases of contact angle and the decrease of the bearing deformation, contact force and bearing stiffness. (b) The rate of increase of the contact angle of the upper bearing due to temperature rise is larger than that of the lower bearing because of the small thermal expansion coefficients of the yoke and permanent magnet located in the lower part of the hub and the upward axial movement of a hub to satisfy the force equilibrium. (c) The bearing deformation, contact force and stiffness of the single ball of lower bearing after temperature rise are larger than those of the upper bearing because of the small thermal expansion coefficients of the permanent magnet and yoke located in the lower part of the hub. (d) The decrease of bearing stiffness due to temperature rise results in the decrease of the natural frequencies of a HDD spindle system only affected by bearing stiffness. (e) The frequencies of rocking vibration modes decrease more rapidly than the axial vibration mode because the equivalent radial stiffness decreases more rapidly than the equivalent axial stiffness. References 1. Richter WO; Talke FE (1988) Nonrepeatable radial and axial runout of 5 1/4 00 disk drive spindles. IEEE Trans Magn 24: Ono K; Saiki N; Sanada Y; Kumano A (1991) Analysis of nonrepeatable radial vibration of magnetic disk spindles. Trans ASME J Vibration Acoust 133: Jang GH; Kim DK; Han JH (2001) Characterization of NRRO in a HDD spindle system due to ball bearing excitation. IEEE Trans Magn 37: Jang GH; Jeong SW (2002) Nonlinear excitation model of ball bearing waviness in a rigid rotor supported by two or more ball bearings considering five degrees of freedom. ASME J Tribology 124: 82 90

7 5. Shen Jr- Yi; Tseng Chaw-Wu; Shen IY; Ku C-PR (2000) Vibration of disk media at elevated temperatures. J Info Storage Proc Syst 2: Tseng Chaw Wu; Shen Jr- Yi; Ku C PR; Shen IY Effects of elevated temperatures on rocking vibration of rotating disk and spindle systems. ASME J Tribology 7. Harris TA (1991) Rolling bearing analysis. 3rd edn. John Wiley & Sons 8. Hamrock BJ; Dowson D (1981) Ball Bearing Lubrication. John Wiley & Sons 9. Jones AB (1960) A general theory for elastically constrained ball and roller bearing under arbitrary load and speed conditions. ASME J Basic Eng June:

Robust shaft design to compensate deformation in the hub press fitting and disk clamping process of 2.5 HDDs

Robust shaft design to compensate deformation in the hub press fitting and disk clamping process of 2.5 HDDs DOI 10.1007/s00542-016-2850-2 TECHNICAL PAPER Robust shaft design to compensate deformation in the hub press fitting and disk clamping process of 2.5 HDDs Bumcho Kim 1,2 Minho Lee 3 Gunhee Jang 3 Received:

More information

Finite element modal analysis of an HDD considering the flexibility of spinning disk spindle, head suspension actuator and supporting structure

Finite element modal analysis of an HDD considering the flexibility of spinning disk spindle, head suspension actuator and supporting structure DOI 10.1007/s00542-006-0276-y TECHNICAL PAPER Finite element modal analysis of an HDD considering the flexibility of spinning disk spindle, head suspension actuator and supporting structure G. H. Jang

More information

Kyungmoon Jung, Gunhee Jang & Juho Kim

Kyungmoon Jung, Gunhee Jang & Juho Kim Behavior of fluid lubricant and air oil interface of operating FDBs due to operating condition and seal design Kyungmoon Jung, Gunhee Jang & Juho Kim Microsystem Technologies Micro- and Nanosystems Information

More information

Effect of an hourglass shaped sleeve on the performance of the fluid dynamic bearings of a HDD spindle motor

Effect of an hourglass shaped sleeve on the performance of the fluid dynamic bearings of a HDD spindle motor DOI 10.1007/s00542-014-2136-5 Technical Paper Effect of an hourglass shaped sleeve on the performance of the fluid dynamic bearings of a HDD spindle motor Jihoon Lee Minho Lee Gunhee Jang Received: 14

More information

Stability Analysis of a Hydrodynamic Journal Bearing With Rotating Herringbone Grooves

Stability Analysis of a Hydrodynamic Journal Bearing With Rotating Herringbone Grooves G. H. Jang e-mail: ghjang@hanyang.ac.kr J. W. Yoon PREM, Department of Mechanical Engineering, Hanyang University, Seoul, 33-79, Korea Stability Analysis of a Hydrodynamic Journal Bearing With Rotating

More information

Dynamic analysis of a HDD spindle system with FDBs due to the bearing width and asymmetric grooves of journal bearing

Dynamic analysis of a HDD spindle system with FDBs due to the bearing width and asymmetric grooves of journal bearing Microsystem Technologies Micro- and Nanosystems Information Storage and Pro Springer-Verlag 2005 10.1007/s00542-005-0606-5 Technical paper Dynamic analysis of a HDD spindle system with FDBs due to the

More information

Hakwoon Kim Gunhee Jang Sanghoon Lee. 1 Introduction

Hakwoon Kim Gunhee Jang Sanghoon Lee. 1 Introduction Microsyst Technol (2011) 17:749 759 DOI 10.1007/s00542-010-1188-4 TECHNICAL PAPER Complete determination of the dynamic coefficients of coupled journal and thrust bearings considering five degrees of freedom

More information

ON NUMERICAL ANALYSIS AND EXPERIMENT VERIFICATION OF CHARACTERISTIC FREQUENCY OF ANGULAR CONTACT BALL-BEARING IN HIGH SPEED SPINDLE SYSTEM

ON NUMERICAL ANALYSIS AND EXPERIMENT VERIFICATION OF CHARACTERISTIC FREQUENCY OF ANGULAR CONTACT BALL-BEARING IN HIGH SPEED SPINDLE SYSTEM ON NUMERICAL ANALYSIS AND EXPERIMENT VERIFICATION OF CHARACTERISTIC FREQUENCY OF ANGULAR CONTACT BALL-BEARING IN HIGH SPEED SPINDLE SYSTEM Tian-Yau Wu and Chun-Che Sun Department of Mechanical Engineering,

More information

APVC2009. Forced Vibration Analysis of the Flexible Spinning Disk-spindle System Represented by Asymmetric Finite Element Equations

APVC2009. Forced Vibration Analysis of the Flexible Spinning Disk-spindle System Represented by Asymmetric Finite Element Equations Forced Vibration Analysis of the Flexible Spinning Disk-spindle System Represented by Asymmetric Finite Element Equations Kiyong Park, Gunhee Jang* and Chanhee Seo Department of Mechanical Engineering,

More information

Optimal design of fluid dynamic bearings to develop a robust disk-spindle system in a hard disk drive utilizing modal analysis

Optimal design of fluid dynamic bearings to develop a robust disk-spindle system in a hard disk drive utilizing modal analysis DOI 10.1007/s00542-013-1844-6 TECHNICAL PAPER Optimal design of fluid dynamic bearings to develop a robust disk-spindle system in a hard disk drive utilizing modal analysis Jihoon Lee Gunhee Jang Kyungmoon

More information

Stability analysis of a whirling disk-spindle system supported by FDBs with rotating grooves

Stability analysis of a whirling disk-spindle system supported by FDBs with rotating grooves Microsyst Technol (011) 17:787 797 DOI 10.1007/s0054-010-111-9 TECHNICAL PAPER Stability analysis of a whirling disk-spindle system supported by FDBs with rotating grooves Jihoon Lee Gunhee Jang Kyungmoon

More information

Development of Measuring System for the Non-Repetitive Run-Out(NRRO) of Ball Bearing

Development of Measuring System for the Non-Repetitive Run-Out(NRRO) of Ball Bearing Journal of Engineering Mechanics and Machinery (207) Vol. 2, Num. Clausius Scientific Press, Canada Development of Measuring System for the Non-Repetitive Run-Out(NRRO) of Ball Bearing Y. Chen,a,*, G.F.

More information

Investigation of the electromechanical variables of the spindle motor and the actuator of a HDD due to positioning and free fall

Investigation of the electromechanical variables of the spindle motor and the actuator of a HDD due to positioning and free fall Microsyst Technol (2007) 13:797 809 DOI 10.1007/s00542-006-0281-1 TECHNICAL PAPER Investigation of the electromechanical variables of the spindle motor and the actuator of a HDD due to positioning and

More information

New Representation of Bearings in LS-DYNA

New Representation of Bearings in LS-DYNA 13 th International LS-DYNA Users Conference Session: Aerospace New Representation of Bearings in LS-DYNA Kelly S. Carney Samuel A. Howard NASA Glenn Research Center, Cleveland, OH 44135 Brad A. Miller

More information

Reduction of windage loss of an optical disk drive utilizing air-flow analysis and response surface methodology. Y. H. Jung & G. H.

Reduction of windage loss of an optical disk drive utilizing air-flow analysis and response surface methodology. Y. H. Jung & G. H. Reduction of windage loss of an optical disk drive utilizing air-flow analysis and response surface methodology Y. H. Jung & G. H. Jang Microsystem Technologies Micro- and Nanosystems Information Storage

More information

Tribology International

Tribology International Tribology International ] (]]]]) ]]] ]]] Contents lists available at SciVerse ScienceDirect Tribology International journal homepage: www.elsevier.com/locate/triboint A generalized Reynolds equation and

More information

Nonlinear Dynamic Analysis of a Hydrodynamic Journal Bearing Considering the Effect of a Rotating or Stationary Herringbone Groove

Nonlinear Dynamic Analysis of a Hydrodynamic Journal Bearing Considering the Effect of a Rotating or Stationary Herringbone Groove G. H. Jang e-mail: ghjang@hanyang.ac.kr J. W. Yoon PREM, Department of Mechanical Engineering, Hanyang University, Seoul, 133-791, Korea Nonlinear Dynamic Analysis of a Hydrodynamic Journal Bearing Considering

More information

Robust optimal design of a magnetizer to reduce the harmonic components of cogging torque in a HDD spindle motor

Robust optimal design of a magnetizer to reduce the harmonic components of cogging torque in a HDD spindle motor Microsyst Technol (2014) 20:1497 1504 DOI 10.1007/s00542-014-2153-4 Technical Paper Robust optimal design of a magnetizer to reduce the harmonic components of cogging torque in a HDD spindle motor Changjin

More information

COGGING torque is one of the major sources of vibration

COGGING torque is one of the major sources of vibration IEEE TRANSACTIONS ON MAGNETICS, VOL. 47, NO. 7, JULY 2011 1923 Cogging Torque of Brushless DC Motors Due to the Interaction Between the Uneven Magnetization of a Permanent Magnet and Teeth Curvature S.

More information

Finite element modal analysis of a rotating disk spindle. system in a HDD with hydrodynamic bearings (HDBs) c

Finite element modal analysis of a rotating disk spindle. system in a HDD with hydrodynamic bearings (HDBs) c Microsystem Technologies Micro- and Nanosystems Information Storage and Proc Springer-Verlag 2005 10.1007/s00542-005-0597-2 Technical paper Finite element modal analysis of a rotating disk spindle system

More information

1 Introduction. Minho Lee 1 Jihoon Lee 1 Gunhee Jang 1

1 Introduction. Minho Lee 1 Jihoon Lee 1 Gunhee Jang 1 DOI 10.1007/s005-015-5-5 TECHNICAL PAPER Stability analysis of a whirling rigid rotor supported by stationary grooved FDBs considering the five degrees of freedom of a general rotor bearing system Minho

More information

Journal of Physics: Conference Series. Related content. Recent citations PAPER OPEN ACCESS

Journal of Physics: Conference Series. Related content. Recent citations PAPER OPEN ACCESS Journal of Physics: Conference Series PAPER OPEN ACCESS Ball's motion, sliding friction, and internal load distribution in a high-speed ball bearing subjected to a combined radial, thrust, and moment load,

More information

Ball Bearing Model Performance on Various Sized Rotors with and without Centrifugal and Gyroscopic Forces

Ball Bearing Model Performance on Various Sized Rotors with and without Centrifugal and Gyroscopic Forces Ball Bearing Model Performance on Various Sized Rotors with and without Centrifugal and Gyroscopic Forces Emil Kurvinen a,, Jussi Sopanen a, Aki Mikkola a a Lappeenranta University of Technology, Department

More information

( ) 5. Bearing internal load distribution and displacement. 5.1 Bearing internal load distribution

( ) 5. Bearing internal load distribution and displacement. 5.1 Bearing internal load distribution 5. internal load distribution and displacement 5. internal load distribution This section will begin by examing the effect of a radial load F r and an axial load F a applied on a single-row bearing with

More information

Parameter Design of High Speed Coupling for 6 MW Wind Turbine Considering Torsional Vibration

Parameter Design of High Speed Coupling for 6 MW Wind Turbine Considering Torsional Vibration Parameter Design of High Speed Coupling for 6 MW Wind Turbine Considering Torsional Vibration JongHun Kang 1, Junwoo Bae 2, Seungkeun Jeong 3, SooKeun Park 4 and Hyoung Woo Lee 1 # 1 Department of Mechatronics

More information

VIBRATION TRANSMISSION THROUGH SELF-ALIGNING (SPHERICAL) ROLLING ELEMENT BEARINGS: THEORY AND EXPERIMENT

VIBRATION TRANSMISSION THROUGH SELF-ALIGNING (SPHERICAL) ROLLING ELEMENT BEARINGS: THEORY AND EXPERIMENT Journal of Sound and Vibration (1998) 215(5), 997 1014 Article No. sv981579 VIBRATION TRANSMISSION THROUGH SELF-ALIGNING (SPHERICAL) ROLLING ELEMENT BEARINGS: THEORY AND EXPERIMENT T. J. ROYSTON AND I.

More information

Reduction of Magnetically Induced Vibration of a Spoke-Type IPM Motor Using Magnetomechanical Coupled Analysis and Optimization

Reduction of Magnetically Induced Vibration of a Spoke-Type IPM Motor Using Magnetomechanical Coupled Analysis and Optimization IEEE TRANSACTIONS ON MAGNETICS, VOL. 49, NO. 9, SEPTEMBER 2013 5097 Reduction of Magnetically Induced Vibration of a Spoke-Type IPM Motor Using Magnetomechanical Coupled Analysis and Optimization D. Y.

More information

PARAMETER ESTIMATION IN IMBALANCED NON-LINEAR ROTOR-BEARING SYSTEMS FROM RANDOM RESPONSE

PARAMETER ESTIMATION IN IMBALANCED NON-LINEAR ROTOR-BEARING SYSTEMS FROM RANDOM RESPONSE Journal of Sound and Vibration (1997) 208(1), 1 14 PARAMETER ESTIMATION IN IMBALANCED NON-LINEAR ROTOR-BEARING SYSTEMS FROM RANDOM RESPONSE Department of Mechanical Engineering, Indian Institute of Technology,

More information

Modeling and Performance Analysis of a Flywheel Energy Storage System Prince Owusu-Ansah, 1, Hu Yefa, 1, Philip Agyeman, 1 Adam Misbawu 2

Modeling and Performance Analysis of a Flywheel Energy Storage System Prince Owusu-Ansah, 1, Hu Yefa, 1, Philip Agyeman, 1 Adam Misbawu 2 International Conference on Electromechanical Control Technology and Transportation (ICECTT 2015) Modeling and Performance Analysis of a Flywheel Energy Storage System Prince Owusu-Ansah, 1, Hu Yefa, 1,

More information

Nonlinear Rolling Element Bearings in MADYN 2000 Version 4.3

Nonlinear Rolling Element Bearings in MADYN 2000 Version 4.3 - 1 - Nonlinear Rolling Element Bearings in MADYN 2000 Version 4.3 In version 4.3 nonlinear rolling element bearings can be considered for transient analyses. The nonlinear forces are calculated with a

More information

Experimental Assessment of Unbalanced Magnetic Force according to Rotor Eccentricity in Permanent Magnet Machine

Experimental Assessment of Unbalanced Magnetic Force according to Rotor Eccentricity in Permanent Magnet Machine Journal of Magnetics 23(1), 68-73 (218) ISSN (Print) 1226-175 ISSN (Online) 2233-6656 https://doi.org/1.4283/jmag.218.23.1.68 Experimental Assessment of Unbalanced Magnetic Force according to Rotor Eccentricity

More information

Non-contact tape tension measurement and correlation of lateral tape motion and tape tension transients

Non-contact tape tension measurement and correlation of lateral tape motion and tape tension transients Microsyst Technol (2006) 12: 814 821 DOI 10.1007/s00542-006-0205-0 TECHICAL PAPER Bart Raeymaekers Æ Ryan J. Taylor Æ Frank E. Talke on-contact tape tension measurement and correlation of lateral tape

More information

Unbalanced magnetic force and cogging torque of PM motors due to the interaction between PM magnetization and stator eccentricity

Unbalanced magnetic force and cogging torque of PM motors due to the interaction between PM magnetization and stator eccentricity Microsyst Technol (2016) 22:129 1255 DOI 10.1007/s0052-016-2839-x TECHNICAL PAPER Unbalanced magnetic force and cogging torque of PM motors due to the interaction between PM magnetization and stator eccentricity

More information

NON-LINEAR BEARING STIFFNESS PARAMETER EXTRACTION FROM RANDOM RESPONSE IN FLEXIBLE ROTOR-BEARING SYSTEMS

NON-LINEAR BEARING STIFFNESS PARAMETER EXTRACTION FROM RANDOM RESPONSE IN FLEXIBLE ROTOR-BEARING SYSTEMS Journal of Sound and Vibration (1997) 3(3), 389 48 NON-LINEAR BEARING STIFFNESS PARAMETER EXTRACTION FROM RANDOM RESPONSE IN FLEXIBLE ROTOR-BEARING SYSTEMS Department of Mechanical Engineering, Indian

More information

Observation and analysis of the vibration and displacement signature of defective bearings due to various speeds and loads

Observation and analysis of the vibration and displacement signature of defective bearings due to various speeds and loads Observation and analysis of the vibration and displacement signature of defective bearings due to various speeds and loads Alireza-Moazen ahmadi a) Carl Howard b) Department of Mechanical Engineering,

More information

Ball bearing skidding under radial and axial loads

Ball bearing skidding under radial and axial loads Mechanism and Machine Theory 37 2002) 91±113 www.elsevier.com/locate/mechmt Ball bearing skidding under radial and axial loads Neng Tung Liao a, Jen Fin Lin b,* a Department of Mechanical Engineering,

More information

EFFECT OF HYDRODYNAMIC THRUST BEARINGS ON ROTORDYNAMICS

EFFECT OF HYDRODYNAMIC THRUST BEARINGS ON ROTORDYNAMICS The 12th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery Honolulu, Hawaii, February 17-22, 2008 ISROMAC12-2008-20076 EFFECT OF HYDRODYNAMIC THRUST BEARINGS ON ROTORDYNAMICS

More information

The basic dynamic load rating C is a statistical number and it is based on 90% of the bearings surviving 50 km of travel carrying the full load.

The basic dynamic load rating C is a statistical number and it is based on 90% of the bearings surviving 50 km of travel carrying the full load. Technical data Load Rating & Life Under normal conditions, the linear rail system can be damaged by metal fatigue as the result of repeated stress. The repeated stress causes flaking of the raceways and

More information

Key words: Polymeric Composite Bearing, Clearance, FEM

Key words: Polymeric Composite Bearing, Clearance, FEM A study on the effect of the clearance on the contact stresses and kinematics of polymeric composite journal bearings under reciprocating sliding conditions Abstract The effect of the clearance on the

More information

Dynamic Analysis of Rotor-Ball Bearing System of Air Conditioning Motor of Electric Vehicle

Dynamic Analysis of Rotor-Ball Bearing System of Air Conditioning Motor of Electric Vehicle International Journal of Mechanical Engineering and Applications 2015; 3(3-1): 22-28 Published online February 13, 2015 (http://www.sciencepublishinggroup.com/j/ijmea) doi: 10.11648/j.ijmea.s.2015030301.14

More information

Dynamics of Rotor Systems with Clearance and Weak Pedestals in Full Contact

Dynamics of Rotor Systems with Clearance and Weak Pedestals in Full Contact Paper ID No: 23 Dynamics of Rotor Systems with Clearance and Weak Pedestals in Full Contact Dr. Magnus Karlberg 1, Dr. Martin Karlsson 2, Prof. Lennart Karlsson 3 and Ass. Prof. Mats Näsström 4 1 Department

More information

Analysis of High Speed Spindle with a Double Helical Cooling Channel R.Sathiya Moorthy, V. Prabhu Raja, R.Lakshmipathi

Analysis of High Speed Spindle with a Double Helical Cooling Channel R.Sathiya Moorthy, V. Prabhu Raja, R.Lakshmipathi International Journal of Scientific & Engineering Research Volume 3, Issue 5, May-2012 1 Analysis of High Speed Spindle with a Double Helical Cooling Channel R.Sathiya Moorthy, V. Prabhu Raja, R.Lakshmipathi

More information

SAMCEF For ROTORS. Chapter 1 : Physical Aspects of rotor dynamics. This document is the property of SAMTECH S.A. MEF A, Page 1

SAMCEF For ROTORS. Chapter 1 : Physical Aspects of rotor dynamics. This document is the property of SAMTECH S.A. MEF A, Page 1 SAMCEF For ROTORS Chapter 1 : Physical Aspects of rotor dynamics This document is the property of SAMTECH S.A. MEF 101-01-A, Page 1 Table of Contents rotor dynamics Introduction Rotating parts Gyroscopic

More information

1541. A fast and reliable numerical method for analyzing loaded rolling element bearing displacements and stiffness

1541. A fast and reliable numerical method for analyzing loaded rolling element bearing displacements and stiffness 1541. A fast and reliable numerical method for analyzing loaded rolling element bearing displacements and stiffness Yu Zhang 1 Guohua Sun 2 Teik C. Lim 3 Liyang Xie 4 1 4 School of Mechanical Engineering

More information

A Dynamic Analysis of a Flexible Rotor in Ball Bearings

A Dynamic Analysis of a Flexible Rotor in Ball Bearings Rotating Machinery 1997, Vol. 3, No. 2, pp. 73-80 Reprints available directly from the publisher Photocopying permitted by license only (C) 1997 OPA (Overseas Publishers Association) Amsterdam B.V. Published

More information

PERFORMANCE EVALUATION OF OVERLOAD ABSORBING GEAR COUPLINGS

PERFORMANCE EVALUATION OF OVERLOAD ABSORBING GEAR COUPLINGS International Journal of Mechanical Engineering and Technology (IJMET) Volume 9, Issue 12, December 2018, pp. 1240 1255, Article ID: IJMET_09_12_126 Available online at http://www.ia aeme.com/ijmet/issues.asp?jtype=ijmet&vtype=

More information

A nonlinear dynamic vibration model of defective bearings: The importance of modelling the finite size of rolling elements

A nonlinear dynamic vibration model of defective bearings: The importance of modelling the finite size of rolling elements A nonlinear dynamic vibration model of defective bearings: The importance of modelling the finite size of rolling elements Alireza Moazenahmadi, Dick Petersen and Carl Howard School of Mechanical Engineering,

More information

The Influence of location of balls and ball diameter difference in rolling bearings on the nonrepetitive runout (NRRO) of retainer revolution

The Influence of location of balls and ball diameter difference in rolling bearings on the nonrepetitive runout (NRRO) of retainer revolution Precision Engineering 9 (005) 8 The Influence of location of balls and ball diameter difference in rolling bearings on the nonrepetitive runout (NRRO) of retainer revolution Shoji Noguchi a,, Kentaro Hiruma

More information

Bearing Internal Clearance and Preload

Bearing Internal Clearance and Preload . Bearing Internal Clearance and Preload. Bearing internal clearance Bearing internal clearance is the amount of internal free movement before mounting. As shown in Fig.., when either the inner ring or

More information

A novel technique of friction and material property measurement by tip test in cold forging

A novel technique of friction and material property measurement by tip test in cold forging A novel technique of friction and material property measurement by tip test in cold forging Y T Im*, S H Kang, and J S Cheon Department of Mechanical Engineering, Korea Advanced Institute of Science and

More information

The influence of bearing stiffness on the vibration properties of statically overdetermined gearboxes

The influence of bearing stiffness on the vibration properties of statically overdetermined gearboxes The influence of bearing stiffness on the vibration properties of statically overdetermined gearboxes M. Razpotnik, T. Bischof a, M. Boltežar Faculty of Mechanical Engineering, University of Ljubljana,

More information

Experiment Two (2) Torsional testing of Circular Shafts

Experiment Two (2) Torsional testing of Circular Shafts Experiment Two (2) Torsional testing of Circular Shafts Introduction: Torsion occurs when any shaft is subjected to a torque. This is true whether the shaft is rotating (such as drive shafts on engines,

More information

Design, Modelling and Analysis of a Single Raw Four Point Angular Contact Split Ball Bearing to Increase its Life.

Design, Modelling and Analysis of a Single Raw Four Point Angular Contact Split Ball Bearing to Increase its Life. Design, Modelling and Analysis of a Single Raw Four Point Angular Contact Split Ball Bearing to Increase its Life. Pranav B. Bhatt #1, Prof. N. L. Mehta *2 #1 M. E. Mechanical (CAD/CAM) Student, Department

More information

Improved 2D model of a ball bearing for the simulation of vibrations due to faults during run-up

Improved 2D model of a ball bearing for the simulation of vibrations due to faults during run-up Journal of Physics: Conference Series Improved D model of a ball bearing for the simulation of vibrations due to faults during run-up To cite this article: Matej Tadina and Miha Boltežar J. Phys.: Conf.

More information

Analysis of Halbach magnet array and its application to linear motor

Analysis of Halbach magnet array and its application to linear motor Mechatronics 14 (2004) 115 128 Analysis of Halbach magnet array and its application to linear motor Moon G. Lee, Sung Q. Lee, Dae-Gab Gweon * Department of Mechanical Engineering, Korea Advanced Institute

More information

Comparison of Models for Rolling Bearing Dynamic Capacity and Life

Comparison of Models for Rolling Bearing Dynamic Capacity and Life 2013 STLE Annual Meeting & Exhibition May 5-9, 2013 Detroit Marriott at the Renaissance Center Detroit, Michigan, USA Comparison of Models for Rolling Bearing Dynamic Capacity and Life Rolling-Element

More information

Experimental dynamic characterizations and modelling of disk vibrations for HDDs

Experimental dynamic characterizations and modelling of disk vibrations for HDDs ISA Transactions 47 (2008) 85 93 www.elsevier.com/locate/isatrans Experimental dynamic characterizations and modelling of disk vibrations for HDDs Chee Khiang Pang a,b,, Eng Hong Ong a, Guoxiao Guo a,

More information

Transient Vibration Prediction for Rotors on Ball Bearings Using Load-Dependent Nonlinear Bearing Stiffness

Transient Vibration Prediction for Rotors on Ball Bearings Using Load-Dependent Nonlinear Bearing Stiffness Rotating Machinery, 10(6): 489 494, 2004 Copyright c Taylor & Francis Inc. ISSN: 1023-621X print / 1542-3034 online DOI: 10.1080/10236210490504102 Transient Vibration Prediction for Rotors on Ball Bearings

More information

Vibratory Behavior of Rolling Element Bearings: a Lagrangian Approach

Vibratory Behavior of Rolling Element Bearings: a Lagrangian Approach Cleveland State University EngagedScholarship@CSU ETD Archive 2011 Vibratory Behavior of Rolling Element Bearings: a Lagrangian Approach Phani Krishna Kalapala Cleveland State University How does access

More information

Heat Transfer Analysis of Machine Tool Main Spindle

Heat Transfer Analysis of Machine Tool Main Spindle Technical Paper Heat Transfer Analysis of Machine Tool Main Spindle oshimitsu HIRASAWA Yukimitsu YAMAMOTO CAE analysis is very useful for shortening development time and reducing the need for development

More information

CHAPTER 7 FINITE ELEMENT ANALYSIS OF DEEP GROOVE BALL BEARING

CHAPTER 7 FINITE ELEMENT ANALYSIS OF DEEP GROOVE BALL BEARING 113 CHAPTER 7 FINITE ELEMENT ANALYSIS OF DEEP GROOVE BALL BEARING 7. 1 INTRODUCTION Finite element computational methodology for rolling contact analysis of the bearing was proposed and it has several

More information

A new computational method for threaded connection stiffness

A new computational method for threaded connection stiffness Research Article A new computational method for threaded connection stiffness Advances in Mechanical Engineering 2016, Vol. 8(12) 1 9 Ó The Author(s) 2016 DOI: 10.1177/1687814016682653 aime.sagepub.com

More information

THE EFFECT OF GEOMETRY ON FATIGUE LIFE FOR BELLOWS

THE EFFECT OF GEOMETRY ON FATIGUE LIFE FOR BELLOWS Advanced Materials Development and Performance (AMDP2011) International Journal of Modern Physics: Conference Series Vol. 6 (2012) 343-348 World Scientific Publishing Company DOI: 10.1142/S2010194512003418

More information

A Study on the Tube of Integral Propeller Shaft for the Rear-wheel Drive Automobile Using Carbon Composite Fiber

A Study on the Tube of Integral Propeller Shaft for the Rear-wheel Drive Automobile Using Carbon Composite Fiber A Study on the Tube of Integral Propeller Shaft for the Rear-wheel Drive Automobile Using Carbon Composite Fiber Kibong Han Mechatronics Department, Jungwon University, 85 Munmu-ro, Goesan-gun, South Korea.

More information

Not all thin-section bearings are created equal. KAYDON new capacity calculations. Robert Roos, Scott Hansen

Not all thin-section bearings are created equal. KAYDON new capacity calculations. Robert Roos, Scott Hansen Not all thin-section bearings are created equal KAYDON new capacity calculations Robert Roos, Scott Hansen A white paper from KAYDON Bearings Division Table of Contents Abstract... pg. Introduction...

More information

Development of a Compressor for a Miniature Pulse Tube Cryocooler of 2.5 W at 65 K

Development of a Compressor for a Miniature Pulse Tube Cryocooler of 2.5 W at 65 K Development of a Compressor for a Miniature Pulse Tube Cryocooler of 2.5 W at 65 K N. Matsumoto, Y. Yasukawa, K. Ohshima, T. Takeuchi, K. Yoshizawa, T. Matsushita, Y. Mizoguchi, and A. Ikura Fuji Electric

More information

INVESTIGATION OF BALL SCREWS FOR FEED DRIVE 1. INTRODUCTION

INVESTIGATION OF BALL SCREWS FOR FEED DRIVE 1. INTRODUCTION Journal of Machine Engineering, Vol. 3, No. 4, 203 ball screws, machine tools, rigidity, impact forces Jerzy Z. SOBOLEWSKI INVESTIGATION OF BALL SCEWS FO FEED DIVE The paper presents a method which enables

More information

Analysis and Experiments of the Linear Electrical Generator in Wave Energy Farm utilizing Resonance Power Buoy System

Analysis and Experiments of the Linear Electrical Generator in Wave Energy Farm utilizing Resonance Power Buoy System Journal of Magnetics 18(3), 250-254 (2013) ISSN (Print) 1226-1750 ISSN (Online) 2233-6656 http://dx.doi.org/10.4283/jmag.2013.18.3.250 Analysis and Experiments of the Linear Electrical Generator in Wave

More information

Structural Dynamics Lecture Eleven: Dynamic Response of MDOF Systems: (Chapter 11) By: H. Ahmadian

Structural Dynamics Lecture Eleven: Dynamic Response of MDOF Systems: (Chapter 11) By: H. Ahmadian Structural Dynamics Lecture Eleven: Dynamic Response of MDOF Systems: (Chapter 11) By: H. Ahmadian ahmadian@iust.ac.ir Dynamic Response of MDOF Systems: Mode-Superposition Method Mode-Superposition Method:

More information

VIBRATION ANALYSIS OF TIE-ROD/TIE-BOLT ROTORS USING FEM

VIBRATION ANALYSIS OF TIE-ROD/TIE-BOLT ROTORS USING FEM VIBRATION ANALYSIS OF TIE-ROD/TIE-BOLT ROTORS USING FEM J. E. Jam, F. Meisami Composite Materials and Technology Center Tehran, IRAN jejaam@gmail.com N. G. Nia Iran Polymer & Petrochemical Institute, Tehran,

More information

A Smooth Contact-State Transition in a Dynamic Model of Rolling-Element Bearings

A Smooth Contact-State Transition in a Dynamic Model of Rolling-Element Bearings A Smooth Contact-State Transition in a Dynamic Model of Rolling-Element Bearings Mate Razpotnik a, Gregor Čepona,, Miha Boltežar a a University of Lublana, Faculty of Mechanical Engineering Abstract We

More information

Methods of Analysis. Force or Flexibility Method

Methods of Analysis. Force or Flexibility Method INTRODUCTION: The structural analysis is a mathematical process by which the response of a structure to specified loads is determined. This response is measured by determining the internal forces or stresses

More information

ROLLER BEARING FAILURES IN REDUCTION GEAR CAUSED BY INADEQUATE DAMPING BY ELASTIC COUPLINGS FOR LOW ORDER EXCITATIONS

ROLLER BEARING FAILURES IN REDUCTION GEAR CAUSED BY INADEQUATE DAMPING BY ELASTIC COUPLINGS FOR LOW ORDER EXCITATIONS ROLLER BEARIG FAILURES I REDUCTIO GEAR CAUSED BY IADEQUATE DAMPIG BY ELASTIC COUPLIGS FOR LOW ORDER EXCITATIOS ~by Herbert Roeser, Trans Marine Propulsion Systems, Inc. Seattle Flexible couplings provide

More information

3D Finite Element Modeling and Vibration Analysis of Gas Turbine Structural Elements

3D Finite Element Modeling and Vibration Analysis of Gas Turbine Structural Elements 3D Finite Element Modeling and Vibration Analysis of Gas Turbine Structural Elements Alexey I. Borovkov Igor A. Artamonov Computational Mechanics Laboratory, St.Petersburg State Polytechnical University,

More information

Parametrically Excited Vibration in Rolling Element Bearings

Parametrically Excited Vibration in Rolling Element Bearings Parametrically Ecited Vibration in Rolling Element Bearings R. Srinath ; A. Sarkar ; A. S. Sekhar 3,,3 Indian Institute of Technology Madras, India, 636 ABSTRACT A defect-free rolling element bearing has

More information

Modeling Method Analysis of the Friction Torque for High Speed Spindle Bearing

Modeling Method Analysis of the Friction Torque for High Speed Spindle Bearing MATEC Web of Conferences 75, 0308 (08) https://doi.org/0.05/matecconf/08750308 IFCAE-IOT 08 Modeling Method Analysis of the Friction Torque for High Speed Spindle Bearing Songsheng Li,, HuihangChen,, Haibing

More information

Sound Reduction Of Rotary Compressor Using Topology Optimization

Sound Reduction Of Rotary Compressor Using Topology Optimization Purdue University Purdue e-pubs International Compressor Engineering Conference School of Mechanical Engineering 2002 Sound Reduction Of Rotary Compressor Using Topology Optimization S. Wang Kwangju Institute

More information

Experimental test of static and dynamic characteristics of tilting-pad thrust bearings

Experimental test of static and dynamic characteristics of tilting-pad thrust bearings Special Issue Article Experimental test of static and dynamic characteristics of tilting-pad thrust bearings Advances in Mechanical Engineering 2015, Vol. 7(7) 1 8 Ó The Author(s) 2015 DOI: 10.1177/1687814015593878

More information

Study on Nonlinear Dynamic Response of an Unbalanced Rotor Supported on Ball Bearing

Study on Nonlinear Dynamic Response of an Unbalanced Rotor Supported on Ball Bearing G. Chen College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P.R.C. e-mail: cgzyx@263.net Study on Nonlinear Dynamic Response of an Unbalanced Rotor Supported

More information

Effects of Residual Imbalance on the Rotordynamic Performance of Variable-Speed Turbo Blower

Effects of Residual Imbalance on the Rotordynamic Performance of Variable-Speed Turbo Blower Effects of Residual Imbalance on the Rotordynamic Performance of Variable-Speed urbo Blower Sena Jeong 1,3, Eojin Kim 1,4, Kyungho Jeong 2, Doyoung Jeon 3, Yong Bok Lee 1 * ISROMAC 2016 International Symposium

More information

On The Finite Element Modeling Of Turbo Machinery Rotors In Rotor Dynamic Analysis

On The Finite Element Modeling Of Turbo Machinery Rotors In Rotor Dynamic Analysis Proceedings of The Canadian Society for Mechanical Engineering International Congress 2018 CSME International Congress 2018 May 27-30, 2018, Toronto, On, Canada On The Finite Element Modeling Of Turbo

More information

Dept.of Mechanical Engg, Defence Institute of Advanced Technology, Pune. India

Dept.of Mechanical Engg, Defence Institute of Advanced Technology, Pune. India Applied Mechanics and Materials Submitted: 2014-04-23 ISSN: 1662-7482, Vols. 592-594, pp 1084-1088 Revised: 2014-05-16 doi:10.4028/www.scientific.net/amm.592-594.1084 Accepted: 2014-05-19 2014 Trans Tech

More information

Aeroelastic effects of large blade deflections for wind turbines

Aeroelastic effects of large blade deflections for wind turbines Aeroelastic effects of large blade deflections for wind turbines Torben J. Larsen Anders M. Hansen Risoe, National Laboratory Risoe, National Laboratory P.O. Box 49, 4 Roskilde, Denmark P.O. Box 49, 4

More information

COUPLED USE OF FEA AND EMA FOR THE INVESTIGATION OF DYNAMIC BEHAVIOUR OF AN INJECTION PUMP

COUPLED USE OF FEA AND EMA FOR THE INVESTIGATION OF DYNAMIC BEHAVIOUR OF AN INJECTION PUMP COUPLED USE OF FEA AND EMA FOR THE INVESTIGATION OF DYNAMIC BEHAVIOUR OF AN INJECTION PUMP Yasar Deger Wolfram Lienau Peter Sandford Sulzer Markets & Sulzer Pumps Ltd Sulzer Pumps (UK) Ltd Technology Ltd

More information

Study of the influence of the resonance changer on the longitudinal vibration of marine propulsion shafting system

Study of the influence of the resonance changer on the longitudinal vibration of marine propulsion shafting system Study of the influence of the resonance changer on the longitudinal vibration of marine propulsion shafting system Zhengmin Li 1, Lin He 2, Hanguo Cui 3, Jiangyang He 4, Wei Xu 5 1, 2, 4, 5 Institute of

More information

Position and Velocity Profile Tracking Control for New Generation Servo Track Writing

Position and Velocity Profile Tracking Control for New Generation Servo Track Writing Preprints of the 9th World Congress The International Federation of Automatic Control Cape Town, South Africa. August 24-29, 24 Position and Velocity Profile Tracking Control for New Generation Servo Track

More information

Mechanics of Materials II. Chapter III. A review of the fundamental formulation of stress, strain, and deflection

Mechanics of Materials II. Chapter III. A review of the fundamental formulation of stress, strain, and deflection Mechanics of Materials II Chapter III A review of the fundamental formulation of stress, strain, and deflection Outline Introduction Assumtions and limitations Axial loading Torsion of circular shafts

More information

Experimental Tests and Efficiency Improvement of Surface Permanent Magnet Magnetic Gear

Experimental Tests and Efficiency Improvement of Surface Permanent Magnet Magnetic Gear IEEJ Journal of Industry Applications Vol.3 No.1 pp.62 67 DOI: 10.1541/ieejjia.3.62 Paper Experimental Tests and Efficiency Improvement of Surface Permanent Magnet Magnetic Gear Michinari Fukuoka a) Student

More information

Elastic-plastic deformation near the contact surface of the circular disk under high loading

Elastic-plastic deformation near the contact surface of the circular disk under high loading Elastic-plastic deformation near the contact surface of the circular disk under high loading T. Sawada & M. Horiike Department of Mechanical Systems Engineering Tokyo University of Agriculture and Technology,

More information

Influence of the Meniscus Force for Contact Recording Head Dynamics Over a Randomly Undulating Disk Surface

Influence of the Meniscus Force for Contact Recording Head Dynamics Over a Randomly Undulating Disk Surface 864 IEEE TRANSACTIONS ON MAGNETICS, VOL. 39, NO. 2, MARCH 2003 Influence of the Meniscus Force for Contact Recording Head Dynamics Over a Randomly Undulating Disk Surface Hiroshige Matsuoka, Shigehisa

More information

SHAPE DESIGN OPTIMIZATION OF INTERIOR PERMANENT MAGNET MOTOR FOR VIBRATION MITIGATION USING LEVEL SET METHOD

SHAPE DESIGN OPTIMIZATION OF INTERIOR PERMANENT MAGNET MOTOR FOR VIBRATION MITIGATION USING LEVEL SET METHOD International Journal of Automotive Technology, Vol. 17, No. 5, pp. 917 922 (2016) DOI 10.1007/s12239 016 0089 7 Copyright 2016 KSAE/ 092 17 pissn 1229 9138/ eissn 1976 3832 SHAPE DESIGN OPTIMIZATION OF

More information

Modeling and Design Optimization of Permanent Magnet Linear Synchronous Motor with Halbach Array

Modeling and Design Optimization of Permanent Magnet Linear Synchronous Motor with Halbach Array Modeling and Design Optimization of Permanent Magnet Linear Synchronous Motor with Halbach Array N. Roshandel Tavana, and A. Shoulaie nroshandel@ee.iust.ir, and shoulaie@ee.iust.ac.ir Department of Electrical

More information

Chapter 12 Elastic Stability of Columns

Chapter 12 Elastic Stability of Columns Chapter 12 Elastic Stability of Columns Axial compressive loads can cause a sudden lateral deflection (Buckling) For columns made of elastic-perfectly plastic materials, P cr Depends primarily on E and

More information

Chapter 2: Rigid Bar Supported by Two Buckled Struts under Axial, Harmonic, Displacement Excitation..14

Chapter 2: Rigid Bar Supported by Two Buckled Struts under Axial, Harmonic, Displacement Excitation..14 Table of Contents Chapter 1: Research Objectives and Literature Review..1 1.1 Introduction...1 1.2 Literature Review......3 1.2.1 Describing Vibration......3 1.2.2 Vibration Isolation.....6 1.2.2.1 Overview.

More information

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each.

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each. GTE 2016 Q. 1 Q. 9 carry one mark each. D : SOLID MECHNICS Q.1 single degree of freedom vibrating system has mass of 5 kg, stiffness of 500 N/m and damping coefficient of 100 N-s/m. To make the system

More information

Design and analysis of Axial Flux Permanent Magnet Generator for Direct-Driven Wind Turbines

Design and analysis of Axial Flux Permanent Magnet Generator for Direct-Driven Wind Turbines Design and analysis of Axial Flux Permanent Magnet Generator for Direct-Driven Wind Turbines Sung-An Kim, Jian Li, Da-Woon Choi, Yun-Hyun Cho Dep. of Electrical Engineering 37, Nakdongdae-ro, 55beon-gil,

More information

The SKF model for calculating the frictional moment

The SKF model for calculating the frictional moment The SKF model for calculating the frictional moment The SKF model for calculating the frictional moment Bearing friction is not constant and depends on certain tribological phenomena that occur in the

More information

Journal of Chemical and Pharmaceutical Research, 2014, 6(7): Research Article

Journal of Chemical and Pharmaceutical Research, 2014, 6(7): Research Article Available online www.jocpr.com Journal of Chemical and Pharmaceutical Research, 4, 6(7): 44-4 Research Article ISSN : 975-784 CODEN(USA) : JCPRC5 Analysis on static characteristics of linear rolling guide

More information

Microelectronics Reliability

Microelectronics Reliability Microelectronics Reliability 52 (2012) 735 743 Contents lists available at SciVerse ScienceDirect Microelectronics Reliability journal homepage: www.elsevier.com/locate/microrel Failure mechanism of FBGA

More information

Stability of Water-Lubricated, Hydrostatic, Conical Bearings With Spiral Grooves for High-Speed Spindles

Stability of Water-Lubricated, Hydrostatic, Conical Bearings With Spiral Grooves for High-Speed Spindles S. Yoshimoto Professor Science University of Tokyo, Department of Mechanical Engineering, 1-3 Kagurazaka Shinjuku-ku, Tokyo 16-8601 Japan S. Oshima Graduate Student Science University of Tokyo, Department

More information