The SCFD task: Performance of a Nb3Sn Superconducting Quadrupole in an External Solenoid Field

Size: px
Start display at page:

Download "The SCFD task: Performance of a Nb3Sn Superconducting Quadrupole in an External Solenoid Field"

Transcription

1 The SCFD task: Performance of a Nb3Sn Superconducting Quadrupole in an External Solenoid Field O. Delferrière 1, M. Durante 1, F. Kircher 1, O. Napoly 1, M. Segreti 1 December 30, 2008 Abstract The magnetic feasibility of the ILC interaction region based on a large aperture large gradient superconducting quadrupole magnet embedded in the field of a detector solenoid is investigated. Connected to this issue, the status of the fabrication at CEA-Saclay of a 211 T/m Nb3Sn quadrupole is described, and the progress in the design and optimisation of the ILD (former LCD) detector solenoid is reported. This report is the deliverable of the EUROTeV Superconducting Final Doublet technology R&D task (SCFD) and gives an overview of the results. 1 IRFU/SACM, CEA-Saclay, Gif-sur-Yvette, France - 1 -

2 1 Introduction The SCFD task was to deliver the test of the high gradient performance and mechanical stability of a Nb3Sn superconducting large aperture quadrupole in a external field of 2 T parallel to its axis. This test is motivated by the need to operate a large gradient superconducting doublet a few meters from to the interaction point of the ILC linear collider in order to achieve small beam spot sizes and to deliver a large luminosity. The last quadrupole magnet is consequently embedded in the large field region of the detector solenoid designed to produce 4 T peak field in the inner central region of the detector. It is therefore essential to check that the maximum magnetic field on the quadrupole conductor stays significantly below the critical magnetic field corresponding to its the operating current density (see Fig.1). In a first approximation, the module of the applied magnetic field can be calculated from the orthogonal superposition of the longitudinal 4 T solenoid field to the transverse maximum field on the quadrupole straight section. However, this approximation assumes that both magnets are infinitely long and ignores the end field or fringe field magnitude and orientation. Actually, in the quadrupole region the solenoid field bears a non-zero radial component which may add linearly to the quadrupole field, while the quadrupole return conductor at both ends generates a field which is not purely transverse. This issue can therefore be studied by a 3D magnetic calculation taking into account the size and orientation of the solenoid field in the quadrupole region, and the realistic fields of the quadrupole ends. Such a calculation, described in Section 3, should ideally be complemented by an experimental test of a high gradient quadrupole embedded in a large solenoid field, as envisioned at CEA-Saclay using the quadrupole prototype whose construction is described in Section 2. This quadrupole is made of a Nb3Sn conductor developed for the ITER project which leads to higher critical fields that the standard NbTi conductor technology (see Fig.1). Finally, in Section 4, the design and optimisation of the 4 T solenoid of the LDC-ILD detector concept, is described. Figure 1: Maximum magnetic field on the quadrupole coils for 0 and 4 T external longitudinal field B S as compared to B vs. J critical lines for the NbTi and ITER-like Nb3Sn conductors

3 2 Status of the fabrication of the large aperture Nb3Sn quadrupole at CEA-Saclay Although it is an independent R&D project which has not been funded by the EUROTeV programme, it is worth reviewing the status of the construction of the Nb3Sn superconducting quadrupole prototype which was foreseen to undergo the high field test described in the introduction. The design parameters of the quadrupole prototype are as follows: Length 1 m Aperture diameter 56 mm Gradient 211 T/m Current A Peak field on conductor 7.65 T The coils are made of two layers of Nb3Sn conductors developed for the ITER project with a critical current density J c =765 A/mm2 at 12 T and 4.2 K, leading to higher critical fields that the standard NbTi conductor technology at both 4.2 K and 1.8 K operating temperatures (see Fig.1). The cross-section of the quadrupole cold mass (see Fig.2) is based on the LHC arc quadrupoles developed at CEA-Saclay using NbTi conductors. The 1 m long prototype (see Fig.3) will be tested at high gradient at both 4.2 K and 1.8 K temperatures in dedicated cryostat in the horizontal test cryogenic station which was used for the first LHC two-in-one 3 m long quadrupole prototypes about 10 years ago. Figure 2: Cross-section of the Nb3Sn quadrupole cold mass

4 Figure 3: CAD 3D models of the Nb3Sn quadrupole magnet (top) in its Helium tank (bottom). Two dummy coils and six certified coils have been manufactured between August 2004 and February While one coil was damaged during fabrication, two coils with short circuit have been successfully repaired in April 2007 by inserting additional insulating kapton foils between the faulty cables. This technique which is routine for NbTi cables, was applied successfully for the first time on very brittle Nb3Sn cables. The four best coils have been assembled and collared in November 2007 (see Fig. 4). Figure 4: Nb3Sn quadrupole magnet (return end) - 4 -

5 Warm field measurements of the magnet made early 2008 confirmed the absence of shortcircuit and the viability of the assembled quadrupole cold mass. Cold tests at high current will establish if the coil repair operations have degraded the superconductor, or not. The cryostating of the cold mass in its LHe tank including cryogenic and electric connections (see Fig.5) has then been realized and finally the quadrupole has been inserted in the horizontal test cryostat at Saclay in December 2008 (see Fig.6). Figure 5: Cryostating of the cold mass for Nb3Sn quadrupole The cold test at high gradient (211 T/m) will be performed in the spring of 2009 at 4.2 K and 1.8 K. Figure 6: Quadrupole cold mass in Helium tank ready for test in the horizontal test station - 5 -

6 3 Magnetic field calculations of the solenoid-quadrupole configuration 3.1 Preparation of the experimental test The test of the high gradient performance and mechanical stability of a Nb3Sn superconducting large aperture quadrupole in a external field of 2 T parallel to its axis was originally foreseen in the warm bore of a 2 T MNR solenoid. However this coil has been destroyed by a major electrical breakdown in It was then foreseen to make this test with an 8 T facility SEHT using a 1 m long superconducting coil assembled at CEA-Saclay for the NeuroSpin project. The 1 m long quadrupole would have been inserted vertically half-way along the 1 m long solenoid (see Fig.7) operated from 2 T up to 4 T to allow a complete study of the superposition of the quadrupole transverse and end fields with the solenoid field, representative of the ILC final doublet conditions under various values of l*. In order to prepare these tests, a finite element modelling of the quadrupole have been done with the code OPERA 3D (see Fig.8). This modelling has allowed magnetic calculations of the quadrupole inside of the 2 T-MNR solenoid and the 4 T solenoid to be completed (see Fig.9), including the calculation of the forces applied on the poles and their resultant. This is a necessary step to design the quadrupole support structure in the test cryostat and to check that forces applied on the solenoid coil are safe. These calculations have been repeated in the case of the stronger 8 T SEHT coil as reported (in French) in the Appendix. Since the cold test of the quadrupole will fall out of the EUROTeV programme duration ( ), the experimental test in an external field is cancelled. Figure 7: Vertical test configuration of the Nb3Sn quadrupole inserted in the 4T solenoid

7 Figure 8: Finite element OPERA-3D model of both ends of the Nb3Sn quadrupole prototype (top) and 0.5 mt boundary (bottom). Figure 9: Magnetic 3 Model of the 2 T MNR coil and quadrupole - 7 -

8 3.2 Magnetic field calculations of the solenoid-quadrupole configuration The priority was set in 2006 to calculating the maximum magnetic field on the conductor the last quadrupole QD0, using the current conceptual design of the European Large Detector Concept (LDC) (see Fig. 10). The objective is to determine the quadrupole conductor technology, standard NbTi or advanced Nb3Sn if this field is larger than 10 T, and hence the quadrupole engineered design. With the assumed l*=4 m, the quadrupole is embedded in the fringe field of the 6.6 m long solenoid coil. Figure 11 shows the OPERA 3D model of this magnetic configuration and the challenge posed by this calculation in term of using a mesh compatible with the respective sizes of the solenoid and quadrupole coils. Figure 12 shows the magnitude of the magnetic field on every element of the quadrupole coils as a result of this calculation. The maximum field is of the order of 8.0 T, which is small enough to validate the NbTi conductor technology for the construction of the final doublet quadrupoles. This OPERA3D model and their calculation techniques will later be used to derive the field map of the ILC interaction region in order to accurately calculate the incoming beam transport. It is foreseen to repeat the model with the other detector solenoids (SiD) and to eventually introduce a crossing-angle. This important result was later confirmed by a simple 2 D calculation of the solenoid field alone, namely its longitudinal component B z along the axis (see Fig.13) and, related to it through the Maxwell equation B= 0, its radial component B r (see Fig.14). Figure 10: Conceptual design of the LDC detector - 8 -

9 Figure 11: Magnetic 3D modelling of the ILC-LDC superconducting solenoid with the final QD0 quadrupole inserted at l* = 4m. Figure 12: Magnitude of the magnetic field on the quadrupole coils embedded in the LDC solenoid From these field profiles, one concludes on the one hand that the longitudinal component of the solenoid field is below 2 T in quadrupole region for l* <3 m, while, on the other hand, the radial component of the solenoid field is more than two orders of magnitude smaller that the 7.65 T peak field on the quadrupole alone, and hence negligible. Adding quadratically the longitudinal 2 T to the 7.65 T transverse components, one reproduces a peak field of about 8 T on the quadrupole coil as obtained in the 3D calculation

10 Figure 13: Magnetic field profile along the axis (r=0) of the LDC solenoid Figure 14: Radial magnetic field profile at the quadrupole bore radius along the LDC solenoid In conclusion, thanks to the OPERA3D Modeller license, a complete magnetic 3D calculation of the insertion of a 250 T/m superconducting final focus quadrupole in the LDC (then ILD) detector 4 T solenoid magnet has been performed. It has shown that for l* > 3m the added longitudinal and radial components of the solenoid fringe field are small enough not to exceed the critical magnetic field on the quadrupole coils even for a NbTi conductor. 4 Design and optimisation of the LDC-ILD detector solenoid Optimisation of the European Large Detector Concept (LDC) solenoid was aimed at achieving a homogeneous 4 T field in the central TPC region of the detector while reducing the costs e.g. reducing the Iron yoke in the calorimeter end cap, and adapting to the

11 calorimeter design (see Fig.15). This work was continued in 2007 and 2008 in the context of the merging of the LDC and Asian GLD detector designs into the so-called ILD detector concept. Figure 15: Magnetic 3D modelling of the ILC-LDC superconducting solenoid New magnetic calculations have been done with the ILD Collaboration LoI parameters summarized below: Magnetic field : B 0 = 4 T nominal, 3.5 T operation Internal coil radius : R int = mm External coil radius : R ext = mm Length : L = ( ) mm Stray fields at 3.5 T: Bext 200 z=10 m from I.P. Bext 200 at (Rout m) in the radial direction A solution, so called ILD-v2, which meets the specifications, has been found (see Fig.16). This work has been presented at the ILD workshop at Cambridge (Great Britain) in September

12 B z (r=0) [T] B(z) (8m<r<9.5m) [T] Figure 16: ILD-v2 detector solenoid design at 4 T 5 Conclusion This task did not deliver the cold test of the Nb3Sn superconducting quadrupole embedded in the 2-4 T solenoid field. The main reason is that the time needed to build the quadrupole was underestimated due to manpower resources and technical problems. Although these problems have been overcome, the cold test of the quadrupole will fall out of the EUROTeV contract duration. However, the 3D magnetic and mechanical modelling efforts initiated by this task, both for the quadrupole and for the solenoid magnets, lead the way to a successful investigation of the ILC interaction region properties. Firstly, it was shown that final focus quadrupole doublets fabricated from the cheap and well proven NbTi conductor technology would be able to sustain the external magnetic field of the 4 T solenoid field foreseen in the LDC-ILC detector with 20% operational margin. Secondly, the design and the optimisation of this solenoid, namely the coil and its Iron yoke, were also made possible by the resources available for this task thus producing a continuously improving design over the EUROTeV period. It has allowed the European LDC collaboration to propose a solid conceptual design at the basis of the proposal for the ILD detector Letter of Intend, merging the LDC and GLD collaborations. This design has been recently improved to include new requirements like stray field limits. Acknowledgement This work is supported by the Commission of the European Communities under the 6 th Framework Programme Structuring the European Research Area, contract number RIDS Appendix: Forces applied to the 8 T coil SEHT in presence of the Nb3Sn quadrupole

13 COMMISSARIAT À L ÉNERGIE ATOMIQUE DEPARTEMENT D ASTROPHYSIQUE, DE PHYSIQUE DES PARTICULES, DE PHYSIQUE NUCLÉAIRE ET DE L INSTRUMENTATION ASSOCIÉE Service d'ingénierie des Systèmes DIRECTION DES SCIENCES DE LA MATIÈRE Emetteur JM Baze Note de Calcul Projet SEHT Ref : DAPNIA/SIS/888/06 JMB Destinataires : M. Durante,Ph Chesny,P. Vedrine FORCES VUES DANS LA STATION SEHT EN PRESENCE DU QUADRIPOLE NB3SN 1. Calcul des densités de courant sur les pôles Sensibilité a un décalage des axes solénoïde et Qpôle axes confondus Qpôle décalé de 10cm par rapport à l axe du solénoïde de 10 cm dans la direction OY pôle en court circuit?? Calcul inverse : action d un Q pôle sur le solénoïde L induction due au pôle Z Les forces Calcul de l influence du Q pôle complet...4 Pour un pole à 90 degrés du précédent (inversion du sens de I)...4 Pour l ensemble des poles Inductance du Q pôle (avec l aide du professeur FP Juster ) Energie stockée Inductance...5 P A 20/ JMBaze Statut indice date rédacteur vérificateur approbateur DAPNIA/SIS/888/06/JMB 1/5 date 22/09/2006 Fichier SEHT/Note_forces

14 1. Calcul des densités de courant sur les pôles Ce calcul a été fait au préalable dans le cadre de la modélisation du Qpôle On a donc injecté un courant total de A dans le câble Figure 1-1 Répartition des courants dans le pôles Les différences dans les têtes viennent du mode de calcul : résolution d un problème de potentiel sur les brins, la densité de courant se renforce dans l intérieur des coudes. Il n est pas possible de rendre compte de la transposition des câbles à l intérieur du Rutherford. Néanmoins l intégrale du courant est conservé dans les sections droites ce qui doit conduire a une erreur faible (dans le cas présent) Cet aimant est placé dans le champ du solénoïde de la station développant un champ au centre de 8T ( Nota ce champ n est pas purement axial vu le rapport longueur ouverture du solénoïde). Si le champ max du solénoïde est inferieur il suffit de faire une règle de 3 les forces étant proportionnelles à Bsol ) Aucune présence de fer doux dans le système 2. Sensibilité à un décalage des axes solénoïde et Qpôle On suppose ici le Qpôle en situation normale de fonctionnement Comme il n y a pas de fer l intégrale de Jq*Bsq sur le volume des conducteurs donne la distribution des forces sur les pôles 2.1. axes confondus Dans cette configuration les forces vues par les pôles s équilibrent parfaitement Résultante générale en Newtons E E E Qpôle décalé de 10cm par rapport à l axe du solénoïde de 10 cm dans la direction OY Les forces restent négligeables De toute façon il est impensable d en arriver a ces extrémités et dans ce cas il est inutile de recalculer l effet d un pôle en court circuit DAPNIA/SIS/888/06/JMB 2/5 date 22/09/2006 Fichier SEHT/Note_forces

15 pôle en court circuit?? En l absence de tout cahier des charge et information en provenance du SACM au sujet d éventuelles situations exceptionnelles On examine les cas d un pôle en court circuit ( Ici le pôle supérieur haut ) Dans ces conditions il apparaît une force transverse Z X Y Figure 2-1 distribution des forces sur le pole RESULTANTE FORCES 9.339E E E E+04 RESULTANTE MOMENTS E E E E Calcul inverse : action d un Q pôle sur le solénoïde 3.1. L induction due au pôle Z+ Z Y Y Figure 3-1 Le champ du Qpôle sur le solénoïde DAPNIA/SIS/888/06/JMB 3/5 date 22/09/2006 Fichier SEHT/Note_forces

16 3.2. Les forces Figure 3-2 Les forces du pôle Z+ sur le solénoïde RESULTANTE FORCES E E E E+04 RESULTANTE MOMENTS E E E E+04 On constate une différence entre les résultats des deux calculs qui est due certainement au peu de raffinement du maillage du solénoïde mais l ordre de grandeur est correct 3.3. Calcul de l influence du Q pôle complet Dans la mesure ou le maillage du solénoïde est régulier et si le Q pôle est centré sur l axe du solénoïde on peut calculer l action générale par de simples rotations des champs de forces et inversions de signes Pour un pole à 90 degrés du précédent (inversion du sens de I) Figure 3-3 Force dues au pôle a 90 degrés du précédent DAPNIA/SIS/888/06/JMB 4/5 date 22/09/2006 Fichier SEHT/Note_forces

17 Pour l ensemble des poles Figure 3-4 Forces dues a l'ensemble des 4 pôles Le comportement mécanique du solénoïde peut être abordé a partir de cette distribution des forces ( il faudra y adjoindre évidement sa contribution propre ) Nota les forces calculées ici sont relatives a un solénoïde donnant 8T au centre et a un Qpole voyant un courant de 11800A donc a rectifier si ces valeurs sont ne sont inferieures 4. Inductance du Q pôle (avec l aide du professeur FP Juster ) C est un sous produit des modélisations effectues pour NB3Sn 4.1. Energie stockée A partir du potentiel vecteur produit par le Q pôle sur lui même on calcule l énergie stockée soit L intégrale. Adv 1 2 J. Adv J donne J pour 1 quart de pôle Donc l énergie totale stockée est (0.5*7127.8) * 4*4 = J 4.2. Inductance C est également 1/2LI 2 avec I = Ampères D ou L = H soit 0.8 mh DAPNIA/SIS/888/06/JMB 5/5 date 22/09/2006 Fichier SEHT/Note_forces

PUBLICATION. Thermal Design of an Nb3Sn High Field Accelerator Magnet

PUBLICATION. Thermal Design of an Nb3Sn High Field Accelerator Magnet EuCARD-CON-2011-057 European Coordination for Accelerator Research and Development PUBLICATION Thermal Design of an Nb3Sn High Field Accelerator Magnet Pietrowicz, S (CEA-irfu, on leave from Wroclaw University

More information

DETERMINING HIGH VOLTAGE CABLE CONDUCTOR TEMPERATURES. Guy Van der Veken. Euromold, Belgium. INVESTIGATIONS. INTRODUCTION.

DETERMINING HIGH VOLTAGE CABLE CONDUCTOR TEMPERATURES. Guy Van der Veken. Euromold, Belgium. INVESTIGATIONS. INTRODUCTION. DETERMINING HIGH VOLTAGE CABLE CONDUCTOR TEMPERATURES. Guy Van der Veken. Euromold, Belgium. INTRODUCTION. INVESTIGATIONS. Type tests on MV cable accessories are described in CENELEC HD68 and HD69 documents.

More information

R&D ON FUTURE CIRCULAR COLLIDERS

R&D ON FUTURE CIRCULAR COLLIDERS R&D ON FUTURE CIRCULAR COLLIDERS Double Chooz ALICE Edelweiss HESS Herschel CMS Detecting radiations from the Universe. Conseil Scientifique de l Institut 2015 Antoine Chance and Maria Durante MOTIVATIONS

More information

BEAM DYNAMICS STUDIES FOR HILUMI LHC

BEAM DYNAMICS STUDIES FOR HILUMI LHC BEAM DYNAMICS STUDIES FOR HILUMI LHC BARBARA DALENA IN COLLABORATION WITH: J. PAYET, A. CHANCÉ, O. GABOUEV The HiLumi LHC Design Study is included in the High Luminosity LHC project and is partly funded

More information

Report CERN-ACC Considerations for a QD0 with Hybrid Technology in ILC

Report CERN-ACC Considerations for a QD0 with Hybrid Technology in ILC CERN-ACC-2014-0197 Michele.Modena@cern.ch Report Considerations for a QD0 with Hybrid Technology in ILC M. Modena, A. Aloev #, H. Garcia, L. Gatignon, R. Tomas CERN, Geneva, Switzerland Keywords: ILC Abstract

More information

Outils de Recherche Opérationnelle en Génie MTH Astuce de modélisation en Programmation Linéaire

Outils de Recherche Opérationnelle en Génie MTH Astuce de modélisation en Programmation Linéaire Outils de Recherche Opérationnelle en Génie MTH 8414 Astuce de modélisation en Programmation Linéaire Résumé Les problèmes ne se présentent pas toujours sous une forme qui soit naturellement linéaire.

More information

Helium two-phase flow in a thermosiphon open loop

Helium two-phase flow in a thermosiphon open loop Presented at the COMSOL Conference 2009 Milan COMSOL Conference 2009 Milan October 14-16 2009 Helium two-phase flow in a thermosiphon open loop Florian Visentin, Bertrand Baudouy CEA Saclay Accelerator,

More information

New European Accelerator Project EuCARD: Work Package on High Field Magnets

New European Accelerator Project EuCARD: Work Package on High Field Magnets New European Accelerator Project EuCARD: Work Package on High Field Magnets Gijs de Rijk CERN, Technology Department, 1211 Genève 23, Switzerland; Phone: +41-22767 5261; Fax: +41-22-767-6300; email: gijs.de.rijk@cern.ch

More information

Solenoids MAGNETS. Antoine DAËL, CEA, Saclay, france. CERN Accelerator School. Bruges, Belgium June 16-25, 2009

Solenoids MAGNETS. Antoine DAËL, CEA, Saclay, france. CERN Accelerator School. Bruges, Belgium June 16-25, 2009 CERN Accelerator School Bruges, Belgium June 16-25, 2009 MAGNETS Solenoids Antoine DAËL, CEA, Saclay, france CERN Accelerator School (CAS) Bruges, Belgium June 16-25, 2009 - Antoine DAËL 1 A few things

More information

Superconducting Magnet with a Minimal Steel Yoke for the Future Circular Collider Detector

Superconducting Magnet with a Minimal Steel Yoke for the Future Circular Collider Detector Superconducting Magnet with a Minimal Steel Yoke for the Future Circular Collider Detector V. I. Klyukhin Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, 119992, Russia

More information

High Field Dipoles for GTeV Experiment at the Tevatron

High Field Dipoles for GTeV Experiment at the Tevatron TD-03-051 December 12, 2003 Introduction High Field Dipoles for GTeV Experiment at the Tevatron A.V. Zlobin, V.V. Kashikhin, A. Drozhdin Abstract This note discusses the possibilities of creating the necessary

More information

Gesellschaft für Schwerionenforschung mbh (GSI), Planckstrasse 1, D Darmstadt, Germany

Gesellschaft für Schwerionenforschung mbh (GSI), Planckstrasse 1, D Darmstadt, Germany Proceedings of ICEC 22ICMC 2008, edited by HoMyung CHANG et al. c 2009 The Korea Institute of Applied Superconductivity and Cryogenics 9788995713822 Cold electrical connection for FAIR/ SIS100 Kauschke,

More information

Analysis of Coupled Electromagnetic-Thermal Effects in Superconducting Accelerator Magnets

Analysis of Coupled Electromagnetic-Thermal Effects in Superconducting Accelerator Magnets Analysis of Coupled Electromagnetic-Thermal Effects in Superconducting Accelerator Magnets Egbert Fischer 1, Roman Kurnyshov 2 and Petr Shcherbakov 3 1 Gesellschaft fuer Schwerionenforschung mbh, Darmstadt,

More information

Machine Detector Interface at Electron Colliders. Hongbo Zhu (IHEP, Beijing)

Machine Detector Interface at Electron Colliders. Hongbo Zhu (IHEP, Beijing) Machine Detector Interface at Electron Colliders Hongbo Zhu (IHEP, Beijing) Outline Introduction Interaction Regions Single ring, pretzel scheme, head-on collision Radiation Backgrounds Final Focusing

More information

Φ B. , into the page. 2π ln(b/a).

Φ B. , into the page. 2π ln(b/a). Chapitre 29 Induction électromagnétique [13 au 15 juin] DEVOIR : 29.8; 29.20; 29.22; 29.30; 29.36 29.1. Expériences d'induction Il n est pas nécessaire de lire cette section. Ce qu il faut retenir de la

More information

Design of Superconducting Magnet System for SuperKEKB Interaction Region

Design of Superconducting Magnet System for SuperKEKB Interaction Region Design of Superconducting Magnet System for SuperKEKB Interaction Region Norihito Ohuchi On behalf of SuperKEKB Accelerator Gp and BNL SC Magnet Gp 2013/9/29-10/4 NA-PAC 2013 1 Contents 1. SC magnet system

More information

Electron beams magnetic field is not a result of electron motion but of their intrinsic magnetic moment.

Electron beams magnetic field is not a result of electron motion but of their intrinsic magnetic moment. Electron beams magnetic field is not a result of electron motion but of their intrinsic magnetic moment. (May 2014) Jean de Climont jeandeclimont@yahoo.ca Abstract : This paper proposes an experiment intended

More information

( ) 2 ( kg) ( 9.80 m/s 2

( ) 2 ( kg) ( 9.80 m/s 2 Chapitre 1 Charges et champs électriques [9 au 1 mai] DEVOIR : 1.78, 1.84, 1.56, 1.90, 1.71 1.1. Charge électrique et structure de la matière À lire rapidement. Concepts déjà familiers. 1.. Conducteurs,

More information

A 5 Tesla Solenoid for SiD

A 5 Tesla Solenoid for SiD 2005 International Linear Collider Workshop Stanford, U.S.A A 5 Tesla Solenoid for SiD R. P. Smith, R. Wands FNAL, Batavia, IL 60510, USA A conceptual design study for a 5 Tesla superconducting solenoid

More information

DEVELOPMENT AND PRODUCTION OF SUPERCONDUCTING AND CRYOGENIC EQUIPMENT AND SYSTEMS FOR ACCELERATORS BY IHEP

DEVELOPMENT AND PRODUCTION OF SUPERCONDUCTING AND CRYOGENIC EQUIPMENT AND SYSTEMS FOR ACCELERATORS BY IHEP I DEVELOPMENT AND PRODUCTION OF SUPERCONDUCTING AND CRYOGENIC EQUIPMENT AND SYSTEMS FOR ACCELERATORS BY IHEP K. Myznikov, A. Ageyev, V. Sytnik, I. Bogdanov, S. Kozub, E. Kashtanov, A. Orlov, V. Sytchev,

More information

20 T Block Dipole: Features and Challenges

20 T Block Dipole: Features and Challenges 20 T Block Dipole: Features and Challenges GianLuca Sabbi, Xiaorong Wang, LBNL Acknowledgment: Daniel R. Dietderich, LBNL Emmanuele Ravaioli and Jonas Blomberg Ghini, CERN ICFA Mini Workshop on High Field

More information

NORME INTERNATIONALE INTERNATIONAL STANDARD

NORME INTERNATIONALE INTERNATIONAL STANDARD NORME INTERNATIONALE INTERNATIONAL STANDARD CEI IEC 60027-1 1992 AMENDEMENT 1 AMENDMENT 1 1997-05 Amendement 1 Symboles littéraux à utiliser en électrotechnique Partie 1: Généralités Amendment 1 Letter

More information

Exercise sheet n Compute the eigenvalues and the eigenvectors of the following matrices. C =

Exercise sheet n Compute the eigenvalues and the eigenvectors of the following matrices. C = L2 - UE MAT334 Exercise sheet n 7 Eigenvalues and eigenvectors 1. Compute the eigenvalues and the eigenvectors of the following matrices. 1 1 1 2 3 4 4 1 4 B = 1 1 1 1 1 1 1 1 1 C = Which of the previous

More information

Apprentissage automatique Méthodes à noyaux - motivation

Apprentissage automatique Méthodes à noyaux - motivation Apprentissage automatique Méthodes à noyaux - motivation MODÉLISATION NON-LINÉAIRE prédicteur non-linéaire On a vu plusieurs algorithmes qui produisent des modèles linéaires (régression ou classification)

More information

Design Aspects of High-Field Block-Coil Superconducting Dipole Magnets

Design Aspects of High-Field Block-Coil Superconducting Dipole Magnets Design Aspects of High-Field Block-Coil Superconducting Dipole Magnets E. I. Sfakianakis August 31, 2006 Abstract Even before the construction of the Large Hadron Collider at CERN is finished, ideas about

More information

High Field HTS SMES Coil

High Field HTS SMES Coil High Field HTS SMES Coil R. Gupta, M. Anerella, P. Joshi, J. Higgins, S. Lakshmi, W. Sampson, J. Schmalzle, P. Wanderer Brookhaven National Laboratory, NY, USA December 1, 2014 High Field HTS SMES Coil

More information

Tools of Particle Physics I Accelerators

Tools of Particle Physics I Accelerators Tools of Particle Physics I Accelerators W.S. Graves July, 2011 MIT W.S. Graves July, 2011 1.Introduction to Accelerator Physics 2.Three Big Machines Large Hadron Collider (LHC) International Linear Collider

More information

Field Quality Measurements in a Single-Aperture 11 T Nb 3 Sn Demonstrator Dipole for LHC Upgrades

Field Quality Measurements in a Single-Aperture 11 T Nb 3 Sn Demonstrator Dipole for LHC Upgrades 1LPN-03 FERMILAB-12-547-TD 1 Field Quality Measurements in a Single-Aperture 11 T Nb 3 Sn Demonstrator Dipole for LHC Upgrades N. Andreev, G. Apollinari, B. Auchmann, E. Barzi, R. Bossert, G. Chlachidze,

More information

APPROXIMATE EXPRESSION OF THE "THREE HALVES LAW" FOR A BOUNDED CATHODE IN A UNIFORM FIELD

APPROXIMATE EXPRESSION OF THE THREE HALVES LAW FOR A BOUNDED CATHODE IN A UNIFORM FIELD A translation from Atomic Energy of Canada Limited APPROXIMATE EXPRESSION OF THE "THREE HALVES LAW" FOR A BOUNDED CATHODE IN A UNIFORM FIELD (INTRODUCED BY ACADEMICIAN N.N. SEMENOV 3 JULY 1952) by I.I.

More information

Superconducting Magnets for Future Electron-Ion Collider. Yuhong Zhang Thomas Jefferson National Accelerator Facility, USA

Superconducting Magnets for Future Electron-Ion Collider. Yuhong Zhang Thomas Jefferson National Accelerator Facility, USA Superconducting Magnets for Future Electron-Ion Collider Yuhong Zhang Thomas Jefferson National Accelerator Facility, USA Mini-workshop on Accelerator, IAS, HKUST, Hong Kong, January 18-19, 2018 1 Outline

More information

Modélisation & simulation de la génération de champs magnetiques par des écoulements de métaux liquides. Wietze Herreman

Modélisation & simulation de la génération de champs magnetiques par des écoulements de métaux liquides. Wietze Herreman Modélisation & simulation de la génération de champs magnetiques par des écoulements de métaux liquides Wietze Herreman 19ième Colloque Alain Bouyssy!!"#$%&'()*+(,#-*.#*+( )/01+"2(!!!!!!! Origine des champs

More information

CONCEPTUAL DESIGN FOR THE FINAL FOCUS QUADRUPOLE MAGNETS FOR TESLA

CONCEPTUAL DESIGN FOR THE FINAL FOCUS QUADRUPOLE MAGNETS FOR TESLA FEB 19, 2001 TESLA-2001-17 CONCEPTUAL DESIGN FOR THE FINAL FOCUS QUADRUPOLE MAGNETS FOR TESLA A. Devred, C. Gourdin, F. Kircher, J.P. Lottin and J.M. Rifflet (arnaud.devred@cea.fr) Commissariat à l'energie

More information

Apprentissage automatique Machine à vecteurs de support - motivation

Apprentissage automatique Machine à vecteurs de support - motivation Apprentissage automatique Machine à vecteurs de support - motivation RÉGRESSION À NOYAU régression à noyau Algorithme de régression à noyau entraînement : prédiction : a = (K + λi N ) 1 t. y(x) =k(x) T

More information

Large Hadron Collider at CERN

Large Hadron Collider at CERN Large Hadron Collider at CERN Steve Playfer 27km circumference depth 70-140m University of Edinburgh 15th Novemebr 2008 17.03.2010 Status of the LHC - Steve Playfer 1 17.03.2010 Status of the LHC - Steve

More information

A Method for Greatly Reduced Edge Effects and Crosstalk in CCT Magnets

A Method for Greatly Reduced Edge Effects and Crosstalk in CCT Magnets Wed-Af-Po3.01 1 A Method for Greatly Reduced Edge Effects and Crosstalk in CCT Magnets M. Koratzinos, ETH Zurich, G. Kirby, J. Van Nugteren, CERN, E. R. Bielert, Univ. Illinois at Urbana Abstract Iron-free

More information

HiLumi LHC FP7 High Luminosity Large Hadron Collider Design Study. Milestone Report. Cryogenic Scenarios for the Cold Powering System

HiLumi LHC FP7 High Luminosity Large Hadron Collider Design Study. Milestone Report. Cryogenic Scenarios for the Cold Powering System CERN-ACC-2014-0065 HiLumi LHC FP7 High Luminosity Large Hadron Collider Design Study Milestone Report Cryogenic Scenarios for the Cold Powering System Ballarino, A (CERN) et al 27 May 2014 The HiLumi LHC

More information

SUPERCONDUCTIVITY APPLIED TO PARTICLE ACCELERATOR MAGNETS

SUPERCONDUCTIVITY APPLIED TO PARTICLE ACCELERATOR MAGNETS SUPERCONDUCTIVITY APPLIED TO PARTICLE ACCELERATOR MAGNETS Arnaud Devred CEA/Saclay Snowmass Lectures on Magnets, Revisited July 2001 1 Contents Accelerator Magnet Technologies On the Use of Superconducting

More information

Magnetic Force on a Moving Charge

Magnetic Force on a Moving Charge Magnetic Force on a Moving Charge Electric charges moving in a magnetic field experience a force due to the magnetic field. Given a charge Q moving with velocity u in a magnetic flux density B, the vector

More information

Helium two-phase flow in a thermosiphon open loop

Helium two-phase flow in a thermosiphon open loop Presented at the COMSOL Conference 2009 Milan COMSOL Conference 2009 Milan October 14-16 2009 Helium two-phase flow in a thermosiphon open loop Florian Visentin, Bertrand Baudouy CEA Saclay Accelerator,

More information

Magnet and Cryostat Configurations For a Multi-port Quadrupole Array*

Magnet and Cryostat Configurations For a Multi-port Quadrupole Array* Magnet and Cryostat Configurations For a Multi-port Quadrupole Array* LBNL-46587 SCMAG-728 M. A. Green, and R. O. Bangerter Lawrence Berkeley NationalLaboratory Berkeley CA 94720, USA August 2000 Presented

More information

The SIS100 Superconducting Magnets

The SIS100 Superconducting Magnets The SIS100 Superconducting Magnets Anna Mierau Workshop Beam physics for FAIR 2012 May 10 11, 2012 Hotel Haus Schönblick 1. Overview of superconducting beam guiding magnets of the SIS100 - Requirements

More information

FAST-PULSED SUPERCONDUCTING MAGNETS

FAST-PULSED SUPERCONDUCTING MAGNETS FAST-PULSED SUPERCONDUCTING MAGNETS Abstract Up to now only one synchrotron (Nuclotron at JINR, Dubna) has been equipped with fast-pulsed superconducting magnets. The demand for high beam intensities leads

More information

MAGNETS. Magnet types and performances Part 1

MAGNETS. Magnet types and performances Part 1 CERN Accelerator School Bruges, Belgium June 16-25, 2009 MAGNETS Magnet types and performances Part 1 Antoine DAËL CEA, Saclay, france CERN Accelerator School (CAS) Bruges, Belgium June 16-25, 2009 - Antoine

More information

CONCEPTUAL DESIGN FOR THE FINAL FOCUS QUADRUPOLE MAGNETS FOR TESLA

CONCEPTUAL DESIGN FOR THE FINAL FOCUS QUADRUPOLE MAGNETS FOR TESLA FEB 19, 2001 TESLA-2001-17 CONCEPTUAL DESIGN FOR THE FINAL FOCUS QUADRUPOLE MAGNETS FOR TESLA A. Devred, C. Gourdin, F. Kircher, J.P. Lottin and J.M. Rifflet (arnaud.devred@cea.fr) Commissariat à l'energie

More information

Protecting a Full-Scale Nb3Sn Magnet with CLIQ, the New Coupling-Loss Induced Quench System

Protecting a Full-Scale Nb3Sn Magnet with CLIQ, the New Coupling-Loss Induced Quench System Protecting a Full-Scale Nb3Sn Magnet with CLIQ, the New Coupling-Loss Induced Quench System Emmanuele Ravaiolia,b H. Bajasa, V. I. Datskova, V. Desbiollesa, J. Feuvriera, G. Kirbya, M. Maciejewskia,c,

More information

EUCARD MAGNET DEVELOPMENT

EUCARD MAGNET DEVELOPMENT Paper selected from the Proceedings of the EuCARD - HE-LHC'10 AccNet Mini-Workshop on a "High Energy LHC" EUCARD MAGNET DEVELOPMENT Gijs de Rijk, CERN, Geneva, Switzerland. Abstract The FP7-EuCARD work

More information

CERN, 1211 Geneva 23, Switzerland *Laboratoire des Signaux et Systèmes, UMR 8506 CNRS-Supélec, Gif-sur-Yvette, France

CERN, 1211 Geneva 23, Switzerland *Laboratoire des Signaux et Systèmes, UMR 8506 CNRS-Supélec, Gif-sur-Yvette, France Proceedings of ICEC 22-ICMC 2008, edited by Ho-Myung CHANG et al. c 2009 The Korea Institute of Applied Superconductivity and Cryogenics 978-89-957138-2-2 Dynamic Simulation of a 1.8K Refrigeration Unit

More information

Parameters and Requirements of Superconducting Focusing Quadrupoles for Heavy Ion Fusion

Parameters and Requirements of Superconducting Focusing Quadrupoles for Heavy Ion Fusion 1530 IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 13, NO. 2, JUNE 2003 Parameters and Requirements of Superconducting Focusing Quadrupoles for Heavy Ion Fusion Roger Bangerter, John Barnard, Tom

More information

Influence of micropile inclination on the performance of a micropile network

Influence of micropile inclination on the performance of a micropile network Ground Improvement (6), No., 6 7 6 Influence of micropile inclination on the performance of a micropile network M. SADEK, I. SHAHROUR and H. MROUEH Laboratoire de Mécanique de Lille, Université des Sciences

More information

Random variables. Florence Perronnin. Univ. Grenoble Alpes, LIG, Inria. September 28, 2018

Random variables. Florence Perronnin. Univ. Grenoble Alpes, LIG, Inria. September 28, 2018 Random variables Florence Perronnin Univ. Grenoble Alpes, LIG, Inria September 28, 2018 Florence Perronnin (UGA) Random variables September 28, 2018 1 / 42 Variables aléatoires Outline 1 Variables aléatoires

More information

JOINTS FOR SUPERCONDUCTING MAGNETS

JOINTS FOR SUPERCONDUCTING MAGNETS JOINTS FOR SUPERCONDUCTING MAGNETS Patrick DECOOL Association EURATOM-CEA, CEA/DSM/IRFM 0 Large machines for fusion deals with Cable In Conduit Conductors (CICC) ITER Each conductor is composed of 1000

More information

HB Magnet Quench Calculation. R. Rajput-Ghoshal P. Ghoshal R. Fair

HB Magnet Quench Calculation. R. Rajput-Ghoshal P. Ghoshal R. Fair HB Magnet Quench Calculation R. Rajput-Ghoshal P. Ghoshal R. Fair 1.14.215 Content: 1. Magnet Details Coil Construction Operating parameters DC circuit 2. MIITs calculations Assumptions Temp vs MIITS Temp

More information

Mad Max DESY October 2017 Design of the Magnet System

Mad Max DESY October 2017 Design of the Magnet System Mad Max Workshop @ DESY 18-19 October 2017 Design of the Magnet System C. Boffo, H. Wu Babcock Noell GmbH Outline Introduction Framework of the study Magnetic designs Comparison Conclusion Page 2 Babcock

More information

Evaluation of the Current Sharing Temperature of the ITER Toroidal Field Model Coil

Evaluation of the Current Sharing Temperature of the ITER Toroidal Field Model Coil IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 13, NO. 2, JUNE 2003 1447 Evaluation of the Current Sharing Temperature of the ITER Toroidal Field Model Coil R. Heller, D. Ciazynski, J. L. Duchateau,

More information

Interaction Region Magnets. Eugenio Paoloni INFN & Università di Pisa

Interaction Region Magnets. Eugenio Paoloni INFN & Università di Pisa Interaction Region Magnets Eugenio Paoloni INFN & Università di Pisa 1 Forewords & Talk Outline Caveat: my experience comes from SuperB (i.e. 4 GeV on 7 GeV) which is a quite different regime w.r.t. a

More information

Compensation of the effects of a detector solenoid on the vertical beam orbit in a linear collider

Compensation of the effects of a detector solenoid on the vertical beam orbit in a linear collider PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS 8, 411 (25) Compensation of the effects of a detector solenoid on the vertical beam orbit in a linear collider Brett Parker* Brookhaven National

More information

Jan. 5, 2006 Development of a Helical Undulator for ILC Positron Source

Jan. 5, 2006 Development of a Helical Undulator for ILC Positron Source Jan. 5, 2006 Development of a Helical Undulator for ILC Positron Source Abstract. The long-term goal of this research is the development of a polarized positron source able to satisfy the demands of the

More information

Bilinear Modelling of Cellulosic Orthotropic Nonlinear Materials

Bilinear Modelling of Cellulosic Orthotropic Nonlinear Materials Bilinear Modelling of Cellulosic Orthotropic Nonlinear Materials E.P. SALIKLIS, T.J. URBANIK and B. TOKYAY The proposed method of modelling orthotropic solids that have a nonlinear constitutive material

More information

SPPC Study and R&D Planning. Jingyu Tang for the SPPC study group IAS Program for High Energy Physics January 18-21, 2016, HKUST

SPPC Study and R&D Planning. Jingyu Tang for the SPPC study group IAS Program for High Energy Physics January 18-21, 2016, HKUST SPPC Study and R&D Planning Jingyu Tang for the SPPC study group IAS Program for High Energy Physics January 18-21, 2016, HKUST Main topics Pre-conceptual design study Studies on key technical issues R&D

More information

1 Introduction + = Bdipole

1 Introduction + = Bdipole Design and fabrication of a 2.5T superconducting dipole prototype based on tilted solenoids CHEN Yu-Quan( 陈玉泉 ) 1,2:1) MA Li-Zhen( 马力祯 ) 1 WU-Wei( 吴巍 ) 1 WU Bei-Min( 吴北民 ) 1 YANG Tong-Jun( 杨通军 ) 1 LIANG

More information

Status and Plans of the Large TPC Prototype for the ILC

Status and Plans of the Large TPC Prototype for the ILC EUDET Status and Plans of the Large TPC Prototype for the ILC T. Behnke, R. Diener, L. Hallermann, P. Schade May 20, 2008 Abstract Within the EUDET programme, the FLC TPC Group at DESY in collaboration

More information

A DIFFERENT APPROACH TO MULTIPLE CORRESPONDENCE ANALYSIS (MCA) THAN THAT OF SPECIFIC MCA. Odysseas E. MOSCHIDIS 1

A DIFFERENT APPROACH TO MULTIPLE CORRESPONDENCE ANALYSIS (MCA) THAN THAT OF SPECIFIC MCA. Odysseas E. MOSCHIDIS 1 Math. Sci. hum / Mathematics and Social Sciences 47 e année, n 86, 009), p. 77-88) A DIFFERENT APPROACH TO MULTIPLE CORRESPONDENCE ANALYSIS MCA) THAN THAT OF SPECIFIC MCA Odysseas E. MOSCHIDIS RÉSUMÉ Un

More information

Simulation of the ILC Collimation System using BDSIM, MARS15 and STRUCT

Simulation of the ILC Collimation System using BDSIM, MARS15 and STRUCT Simulation of the ILC Collimation System using BDSIM, MARS5 and STRUCT J. Carter, I. Agapov, G. A. Blair, L. Deacon, A. I. Drozhdin, N. V. Mokhov, Y. Nosochkov, A. Seryi August, 006 Abstract The simulation

More information

3-D METROLOGY APPLIED TO SUPERCONDUCTING DIPOLE MAGNETS FOR LHC

3-D METROLOGY APPLIED TO SUPERCONDUCTING DIPOLE MAGNETS FOR LHC 3-D METROLOGY APPLIED TO SUPERCONDUCTING DIPOLE MAGNETS FOR LHC M. DUPONT*, D. MISSIAEN, L. PEGUIRON CERN, European Laboratory for Particle Physics, Geneva, Switzerland 1. INTRODUCTION The construction

More information

Content. Content. Introduction. T. Chateau. Computer Vision. Introduction. Outil projectif permettant l acquisition d une scène 3D sur un plan 2D

Content. Content. Introduction. T. Chateau. Computer Vision. Introduction. Outil projectif permettant l acquisition d une scène 3D sur un plan 2D Content Modèle de caméra T Chateau Lamea/Gravir/ComSee, Blaie Pacal Univerit Computer Viion 2 Content La projection perpective Changement de repère objet/caméra Changement de repère caméra/image Changement

More information

CERN R&D on Linear Collider Detectors. Lucie Linssen CERN

CERN R&D on Linear Collider Detectors. Lucie Linssen CERN CERN R&D on Linear Collider Detectors Lucie Linssen CERN 1 Outline Outline: Introduction CLIC physics Detector issues Comparison between ILC and CLIC Linear Collider Detector R&D plans Outlook 2 Introduction

More information

100 TeV Collider Magnets

100 TeV Collider Magnets 100 TeV Collider Magnets Alexander Zlobin Fermilab 1st CFHEP Symposium on circular collider physics 23-25 February 2014 IHEP, Beijing (China) Introduction v Circular collider energy scales with the strength

More information

SOUTH AFRICAN NATIONAL STANDARD

SOUTH AFRICAN NATIONAL STANDARD ISBN 978-0-626-33006-4 IEC 62233:2005 SOUTH AFRICAN NATIONAL STANDARD Measurement methods for electromagnetic fields of household appliances and similar apparatus with regard to human exposure This national

More information

Final-Focus Superconducting Magnets for SuperKEKB

Final-Focus Superconducting Magnets for SuperKEKB Final-Focus Superconducting Magnets for SuperKEKB N. Ohuchi KEK: Y. Arimoto, K. Aoki, M. Kawai, T. Kawamoto, H. Koiso, Y. Kondo, M. Masuzawa, A. Morita, S. Nakamura, Y. Ohnishi, T. Oki, Y. Ohsawa, H. Sugimoto,

More information

Accurate critical exponents from the ϵ-expansion

Accurate critical exponents from the ϵ-expansion Accurate critical exponents from the ϵ-expansion J.C. Le Guillou, J. Zinn-Justin To cite this version: J.C. Le Guillou, J. Zinn-Justin. Accurate critical exponents from the ϵ-expansion. Journal de Physique

More information

An Early Separation Scheme for the LHC Luminosity Upgrade

An Early Separation Scheme for the LHC Luminosity Upgrade Guido Sterbini Publications of the Publishing House of Warsaw University of Technology (OWPW Oficyna Wydawnicza Politechniki Warszawskiej) and its publication catalogues are available in most technical-scientific

More information

Beam. RF antenna. RF cable

Beam. RF antenna. RF cable Status of LEP2 J. Wenninger, SL Operation for the SL division LEPC September 1998 Outline Optics and RF for 1998 Beam current limitations Injection and ramp Performance at high energy Conclusions LEPC/15-09-98

More information

FP7 Eucard2 WP on HTS Magnets term of reference: edms doc Lucio Rossi CERN Task 1 : conductor at EUCAS2011

FP7 Eucard2 WP on HTS Magnets term of reference: edms doc Lucio Rossi CERN Task 1 : conductor at EUCAS2011 FP7 Eucard2 WP on HTS Magnets term of reference: edms doc. 1152224 Lucio Rossi CERN Task 1 : conductor Mee@ng at EUCAS2011 Use of Bi- 2212 and YBCO: both are promising so far 10,000 YBCO B _ Tape Plane

More information

Lecture #2 Design Guide to Superconducting Magnet

Lecture #2 Design Guide to Superconducting Magnet Lecture #2 Design Guide to Superconducting Magnet Yukikazu Iwasa Francis Bitter Magnet Laboratory Plasma Science and Fusion Center Massachusetts Institute of Technology Cambridge MA 02139 CEA Saclay June

More information

Effect of CTOF, CND, and HTCC Detector Shield on the Hall-B Solenoid Magnet

Effect of CTOF, CND, and HTCC Detector Shield on the Hall-B Solenoid Magnet Effect of CTOF, CND, and HTCC Detector Shield on the Hall-B Solenoid Magnet, Engineering Division, JLAB October 14 th 2013; Revision-0 1. Introduction This document is based on the calculations done for

More information

MICE: The Trackers and Magnets

MICE: The Trackers and Magnets MICE: The Trackers and Magnets M.A.Uchida Imperial College (Dated: April 5, 2016) 348 Abstract The Muon Ionization Cooling experiment (MICE) has been designed to demonstrate the reduction of the phase

More information

Results with Micromegas modules at LP-TPC

Results with Micromegas modules at LP-TPC Results with Micromegas modules at LP-TPC D. Attié 1, P. Colas 1, M. Dixit 2,3, M. Riallot 1, YunHa Shin 2, S. Turnbull 2, W. Wang *1 Abstract For the International Linear Collider (ILC), the transverse

More information

MAGNETIC MEASUREMENTS OF QUADRUPOLE FOCUSING MAGNETS AT SLAC*

MAGNETIC MEASUREMENTS OF QUADRUPOLE FOCUSING MAGNETS AT SLAC* WAC-PUB-562 1 August 1991 @> MAGNETIC MEASUREMENTS OF QUADRUPOLE FOCUSING MAGNETS AT SLAC* Richard L. Taylor Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309 and J. J. Pearce

More information

Improved final doublet designs for the ILC baseline small crossing angle scheme

Improved final doublet designs for the ILC baseline small crossing angle scheme Improved final doublet designs for the ILC baseline small crossing angle scheme R. Appleby, P. Bambade August 1, 2006 Abstract The ILC baseline consists of two interaction regions, one with a 20mrad crossing

More information

Vibration damping in polygonal plates using the acoustic black hole effect: model based on the image source method

Vibration damping in polygonal plates using the acoustic black hole effect: model based on the image source method Vibration damping in polygonal plates using the acoustic black hole effect: model based on the image source method Jacques Cuenca a,b, Adrien Pelat a, François Gautier a a. Laboratoire d Acoustique de

More information

The International Axion Observatory (IAXO) 8 th Patras Workshop on Axions, WIMPs and WISPs 22 July 2012, Chicago, IL, USA

The International Axion Observatory (IAXO) 8 th Patras Workshop on Axions, WIMPs and WISPs 22 July 2012, Chicago, IL, USA The International Axion Observatory (IAXO) 8 th Patras Workshop on Axions, WIMPs and WISPs 22 July 2012, Chicago, IL, USA This work was performed under the auspices of the U.S. Department of Energy by

More information

Modelling of Specimen Interaction with Ferrite Cored Coils by Coupling Semi-Analytical and Numerical Techniques

Modelling of Specimen Interaction with Ferrite Cored Coils by Coupling Semi-Analytical and Numerical Techniques Modelling of Specimen Interaction with Ferrite Cored Coils by Coupling Semi-Analytical and Numerical Techniques A. Skarlatos, E. Demaldent, A. Vigneron and C. Reboud 25 th 28 th of June, Bratislava, Slovak

More information

3 rd ILSF Advanced School on Synchrotron Radiation and Its Applications

3 rd ILSF Advanced School on Synchrotron Radiation and Its Applications 3 rd ILSF Advanced School on Synchrotron Radiation and Its Applications September 14-16, 2013 Electromagnets in Synchrotron Design and Fabrication Prepared by: Farhad Saeidi, Jafar Dehghani Mechanic Group,Magnet

More information

Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory

Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Title The Mechanical and Thermal Design for the MICE Focusing Solenoid Magnet System Permalink https://escholarship.org/uc/item/7652n8md

More information

CURRENT LEADS FOR THE LHC MAGNET SYSTEM

CURRENT LEADS FOR THE LHC MAGNET SYSTEM EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH European Laboratory for Particle Physics Large Hadron Collider Project LHC Project Report 526 CURRENT LEADS FOR THE LHC MAGNET SYSTEM A. Ballarino Abstract The

More information

Magnet Power Converters and Accelerators

Magnet Power Converters and Accelerators Magnet Power Converters and Accelerators Neil Marks, DLS/CCLRC, Daresbury Laboratory, Warrington WA4 4AD, U.K. The accelerator lattice. Magnets: dipoles; quadrupole; sextupoles. Contents Magnet excitation

More information

LHC Luminosity Upgrades Using Close-In Magnets

LHC Luminosity Upgrades Using Close-In Magnets LHC Luminosity Upgrades Using Close-In Magnets Peter J. Limon, CERN, Geneva, Switzerland and Fermilab, Batavia, IL, USA Abstract Among luminosity upgrades presently being considered for the LHC are those

More information

JLEIC forward detector design and performance

JLEIC forward detector design and performance Jefferson Lab E-mail: ryoshida@jlab.org A major part of the physics program at the Electron-Ion Collider being planned in the US is the exploration of nucleon and nuclear structure. This program means

More information

QUALIFICATION OF A CFD CODE FOR REACTOR APPLICATIONS

QUALIFICATION OF A CFD CODE FOR REACTOR APPLICATIONS QUALIFICATION OF A CFD CODE FOR REACTOR APPLICATIONS Ulrich BIEDER whole TrioCFD Team DEN-STMF, CEA, UNIVERSITÉ PARIS-SACLAY www.cea.fr SÉMINAIRE ARISTOTE, NOVEMBER 8, 2016 PAGE 1 Outline Obective: analysis

More information

Inelastic scattering of 30 Mev polarized protons from 112Cd

Inelastic scattering of 30 Mev polarized protons from 112Cd Inelastic scattering of 30 Mev polarized protons from 112Cd R. De Swiniarski, G. Bagieu, DinhLien Pham, M. Massaad, J.Y. Grossiord, A. Guichard To cite this version: R. De Swiniarski, G. Bagieu, DinhLien

More information

THE OLYMPIAD CORNER No. 305

THE OLYMPIAD CORNER No. 305 THE OLYMPIAD CORNER / 67 THE OLYMPIAD CORNER No. 305 Nicolae Strungaru The solutions to the problems are due to the editor by 1 January 014. Each problem is given in English and French, the official languages

More information

The Design and Fabrication of a 6 Tesla EBIT Solenoid

The Design and Fabrication of a 6 Tesla EBIT Solenoid LBNL-40462 SCMAG-593 The Design and Fabrication of a 6 Tesla EBIT Solenoid 1. Introduction M. A. Green a, S. M. Dardin a, R. E. Marrs b, E. Magee b, S. K. Mukhergee a a Lawrence Berkeley National Laboratory,

More information

MAGNETIC MEASUREMENTS ON THE GUN FOCUSING SOLENOID

MAGNETIC MEASUREMENTS ON THE GUN FOCUSING SOLENOID SPARC-MM-05/003 20 September 2005 MAGNETIC MEASUREMENTS ON THE GUN FOCUSING SOLENOID B. Bolli, S. Ceravolo,M. Esposito, F. Iungo, M. Paris, M.Preger, C. Sanelli, F.Sardone, F. Sgamma, M. Troiani, P.Musumeci,

More information

Limits to high field magnets for particle accelerators

Limits to high field magnets for particle accelerators IEEE/CSC & ESAS EUROPEAN SUPERCONDUCTIVITY NEWS FORUM, No. 19, January 212 Submitted to ESNF Nov. 16, 211; accepted Nov. 3, 212. Reference No. ST286, Category 6 The published version of this manuscript

More information

La question posée (en français, avec des mots justes ; pour un calcul, l'objectif doit être clairement écrit formellement)

La question posée (en français, avec des mots justes ; pour un calcul, l'objectif doit être clairement écrit formellement) Exercise : You have to make one ton of mayonnaise sauce using 95 % oil, 2.5 % egg yolk, 2.5 % vinegar. What is the minimum energy that you have to spend? Calculation for mayonnaise Hervé 4th October 2013

More information

Poisson s ratio effect of slope stability calculations

Poisson s ratio effect of slope stability calculations Poisson s ratio effect of slope stability calculations Murray Fredlund, & Robert Thode SoilVision Systems Ltd., Saskatoon, SK, Canada ABSTRACT This paper presents the results of a study on the effect of

More information

Physics 610. Adv Particle Physics. April 7, 2014

Physics 610. Adv Particle Physics. April 7, 2014 Physics 610 Adv Particle Physics April 7, 2014 Accelerators History Two Principles Electrostatic Cockcroft-Walton Van de Graaff and tandem Van de Graaff Transformers Cyclotron Betatron Linear Induction

More information

Simulation of PEP-II Accelerator Backgrounds Using TURTLE

Simulation of PEP-II Accelerator Backgrounds Using TURTLE Simulation of PEP-II Accelerator Backgrounds Using TURTLE R.J. Barlow, T. Fieguth, W. Kozanecki, S.A. Majewski, P. Roudeau, A. Stocchi To cite this version: R.J. Barlow, T. Fieguth, W. Kozanecki, S.A.

More information

Local Power Distribution from Particle Losses. in the LHC Inner Triplet Magnet Q1. A. Morsch. CERN LIBRHRIES. sawzvq

Local Power Distribution from Particle Losses. in the LHC Inner Triplet Magnet Q1. A. Morsch. CERN LIBRHRIES. sawzvq EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH... 6 I Cf /QCKA/ /ll M7$L+~O Dm 3 MJ 9% V/f 5 CERN AT/94-06 (DI) LHC Note 265 Local Power Distribution from Particle Losses in the LHC Inner Triplet Magnet Q1

More information

Progress Towards A High-field HTS Solenoid

Progress Towards A High-field HTS Solenoid Progress Towards A High-field HTS Solenoid Ramesh Gupta For PBL/BNL Team Ramesh Gupta, BNL, Progress towards a high-field HTS solenoid, Jefferson Lab, March 3, 2011 Slide No. 1 Overview High Field HTS

More information