Atomic Spectral Lines

Size: px
Start display at page:

Download "Atomic Spectral Lines"

Transcription

1 Han Uitenbroek National Solar Observatory/Sacramento Peak Sunspot, USA Hale COLLAGE, Boulder, Feb 18, 216

2 Today s Lecture How do we get absorption and emission lines in the spectrum? Atomic line- and continuum transitions Non-LTE radiative transfer in atomic models Real world examples: Ca i H& K lines He i 183 nm line

3 Some History 182 Wollaston was the first to observe dark gaps in spectrum: spectral lines Fraunhofer rediscovers lines. Assigns names that we still use, e.g., C (Hα), D (Na i), F (Hβ), G (CH molecules), and H (Ca i).

4 The spectrum at much better resolution

5 Remember: Eddington-Barbier approximation a I = S(τ=μ) b Ia > Ib τ=1 τ=μ

6 Limb Darkening Explained b a θ S ν a I ν a b b h sin θ 1 r/r = sin θ

7 Can we now explain the Darkening in the Cores of Spectral Lines? Intensity [J m 2 s 1 Hz 1 sr 1 ] Wavelength [nm] Intensity [J m 2 s 1 Hz 1 sr 1 ] Wavelength [nm]

8 Explanation of Absorption Lines in the Spectrum α ν total τ ν ν ν 1 ν ν 1 ν 1 h I ν Sν ν 1 ν ν h

9 In the UltraViolet the Spectral Lines are in Emission 1..8 Intensity Wavelength [nm]

10 Explanation of Emission in Spectral Lines total α ν τ ν ν ν 1 ν ν 1 ν 1 h I ν Sν ν 1 ν ν h

11 Explanation of the Shape of the CaII Resonance Lines log total α ν h ( ) log τ ν ν ν 1 ν 1 ν ν h h I ν S ν total B ν ν 1 ν ν h

12 Hα Spectral Line Intensity [J m 2 s 1 Hz 1 sr 1 ] Disk center Wavelength [nm]

13 Image of the Sun in the light of Hα

14 Energy Levels and Transitions in Hydrogen Atom E = hν = hc λ Energy [ev]

15 Energy Levels and Transitions in Hydrogen Atom E = hν = hc λ Energy [ev]

16 Energy Levels and Transitions in Hydrogen Atom E = hν = hc λ Energy [ev]

17 Energy Levels and Transitions in Hydrogen Atom E = hν = hc λ Energy [ev]

18 Radiative bound bound Transitions E 2 Radiative bound - bound hν ΔE = E 2 - E 1 = hν = hc/λ E 1 absorption hν hν hν hν Spontaneous emission Stimulated emission

19 Collisional bound bound Transitions E 2 e - E b e - E a Collisional bound - bound E 1 collisional excitation E 2 - E 1 = E b - E a E 2 e - E b e - E a E 1 collisional de-excitation

20 Radiative bound free Transitions Radiative bound - free e - E e E cont hν E e = hν - (E cont - E 1 ) E 1 radiative ionization e - E e e - E e E cont E cont hν E 1 radiative recombination hν hν E 1 hν stimulated radiative recombination

21 Collisional bound free Transitions Collisional bound - free e - E a E cont e- e - E b E c E a - (E b + E c ) = (E cont - E 1 ) E 1 collisional ionization E a e - E c e - E b E cont E 1 collisional recombination

22 Absorption and Emission Coefficients for bound-bound Transitions Spontaneous emission j i: j spont ν Stimulated emission j i: = n j (A ji hν ij /4π)φ ν j stim ν = n j (B ji hν ij /4π)φ ν I ν, A ji = (2hν 3 /c 2 )B ji Absorption i j: α ν = n i (B ij hν ij /4π)ϕ ν, g i B ij = g j B ji

23 Source Function of bound bound Transition Transfer equation: di ν ds = jspont ν + jν stim α ν I ν = n j (A ji hν ij /4π)φ ν hν ij /4πφ ν (n i B ij n j B ji )I ν Source function: S ν = j ν α ν = = 2hν3 ij c 2 n j A ji n i B ij n j B ji n j g j /g i n i n j = (1 ɛ)j + ɛb ν ɛ C ji C ji + A ji + B ji J ; J J ν φ ν dν; B ν 2hν3 c 2 1 e hν/kt 1

24 Radiative Rates Radiative excitation R ij = B i j hν 4π dν dω hν I νφ ν = B i jj; J 1 4π dω dνi ν φ ν Radiative de-excitation hν R ij = Aji + B ji 4π = A ji + B ji J dν dω hν I νφ ν

25 Basic Equation: Statistical Equilibrium Consider and atom (or molecule) with levels i =,..., N 1. Statistical equilibrium for level i: 12 N 1 j= n j (Cji + Rji) = CA III 3P6 1SE N 1 j= n i (Cij + Rij) 1 8 Energy [ev] 6 4 CA II 3P6 4P CA II 3P6 4S SE 2PO 2DE CA II 3P6 3D The set of equations for all levels forms a, generally non-linear, and non-local, set of equations for the population numbers n i

26 Complicated Termdiagram for Magnesium Energy [ev] MG II 2P6 3S 2SE 1/2 MG MG I MG 2P6 MG I 2P6 MG 3S I 2P6 3S 1S 9S 2P6 MG I 2P6 MG 3S 8S 2P6 MG 3S 3S I 7S MG 3S I 1P 6S 2P6 MG 9P 8P 2P6 MG 3S I 7P 2P6 MG 3S 6P 2P6 MG 3S I 9D MG 3S 8D 7D 2P6 I 6D 2P6 MG 3S 2P6 MG 3S I 1S 9S 2P6 MG 3S I 5D MG 3S 8S 2P6 MG I 7S 2P6 MG 3S MG I 3S 9P I 8P 2P6 7P 2P6 MG 2P6 MG 3S 3S I 3S 9D 8D 7D 2P6 6D 2P6 MG MG 3S 3S I 9F 8F 7F 2P6 6F 2P6 MG MG 3S 3S I 9G 8G 7G 2P6 6G 2P6 MG MG 3S 3S I 9H 8H 7H 2P6 6H 2P6 MG 3S 3S I 9I 8I 7I 2P6 MG 3S I 9K 8K 2P6 3S 9L 2P6 2P6 3S 6S MG 3S 6P 2P6 MG 3S I 5D 2P6 MG 3S I 5F 2P6 3S 5G MG I 2P6 3S 5P MG I 2P6 MG I 2P6 3S 5S MG I 2P6 3S 4D MG 3S I 5P 2P6 MG 3S I 4D 2P6 3S 4F MG I 2P6 3S 5S MG I 2P6 3S 4P MG I 2P6 MG 3S I 4P 2P6 3S 3D MG I 2P6 3S 3D MG I 2P6 3S 4S MG I 2P6 3S 4S MG I 2P6 3S 3P MG I 2P6 3S 3P MG I 2P6 3S 3S 1SE 1PO 1DE 3SE 3PO 3DE 3FO 3GE 3HO 3IE 3KO 3LE

27 We want to Reproduce the Spectrum of the Ca i H&K Intensity [J m 2 s 1 Hz 1 sr 1 ] Disk center Wavelength [nm]

28 Ingredients for Reproducing the Ca i H&K spectrum Atomic Model: Atmospheric Model: 12 CA III 3P6 1SE Energy [ev] CA II 3P6 4S CA II 3P6 4P CA II 3P6 3D temperature [1 K] 1 5 2SE 2PO 2DE log column mass [kg m 2 ] Solve Equations for radiative transfer and statistical equilibrium simultaneously.

29 Collisional and Radiative Excitation in a realistic Case Photosphere Chromosphere e - hν e - hν deep high deep high

30 Source function Ca i K line (Non-LTE) S total S total S active S backgr B Planck J 1 7 S active S backgr B Planck J S, J [J m 2 s 1 Hz 1 sr 1 ] λ[nm] S, J [J m 2 s 1 Hz 1 sr 1 ] λ[nm] Column Mass [kg m 2 ] Column Mass [kg m 2 ] 1 6 S total 1 6 S total S active S active S backgr S backgr 1 7 B Planck J 1 7 B Planck J S, J [J m 2 s 1 Hz 1 sr 1 ] λ[nm] S, J [J m 2 s 1 Hz 1 sr 1 ] λ[nm] Column Mass [kg m 2 ] Column Mass [kg m 2 ]

31 Full disk images of He i equivalent width and B

32 Full disk images of He i EQW and Fe xii 19.3 nm

33 Line profiles of the He i 183 nm triplet Intensity [J m 2 s 1 Hz 1 sr 1 ] Intensity [J m 2 s 1 Hz 1 sr 1 ] Disk center Disk center Wavelength [nm] Wavelength [nm]

34 The He i 183. nm line: chromospheric? Courtesy Bernhard Fleck

35 The He i 183. nm termdiagram HE III HE II 3S HE II 3P HE II 3D HE II 2S HE II 2P 6 Energy [ev] HE I 1S 3S 4SHE I 1S 3P HE I 1S 3D 4DHE II 1S HE I 1S 2SHE 1S 2P HE I 1S 3S 4S HE I 1S 3PHE 4PHE I 1S 3D 4D HE I 1S 2S HE I 1S 2P HE I 1S2 1SE 1PO 1DE 2SE 2PO 2DE 3SE 3PO 3DE

36 The He i 183. nm termdiagram, triplet system HE I 1S 4S HE I 1S 4P HE I 1S 4D Energy [ev] HE I 1S 3S HE I 1S 3P HE I 1S 3D HE I 1S 2S HE I 1S 2P 3SE 3PO 3DE

37 EUV irradiation from Corona populates triplet levels

38 The He i 183. nm contribution function Height [km] Wavelength [nm] Contribution function [J m 2 s 1 Hz 1 sr 1 km 1 ] Contribution function: τ dτ C S(τ)e dh

39 He i Line contribution function Height [km] Contribution function [J m 2 s 1 Hz 1 sr 1 km 1 ] Line contribution function: Wavelength [nm] S tot = (η l + η c ) (χ l + χ c ) [ C = η l (χ l + χ c ) + η c (χ l + χ c ) ] τ dτ e dh

40 He i Line contribution function with irradiation 1x 1x Height [km] Contribution function [J m 2 s 1 Hz 1 sr 1 km 1 ] Height [km] Contribution function [J m 2 s 1 Hz 1 sr 1 km 1 ] Wavelength [nm] Wavelength [nm]

41 Next lecture: Molecular line formation

42 Details of the CaII K line Intensity [J m 2 s 1 Hz 1 sr 1 ] Wavelength [nm] Back

43 Voigt Functions log H(a, v) / sqrt(π) a = 1.E 4 1.E 3 5.E 3 1.E 2 1.E 1 H(a, v) φ(ν ν ) = π νd ν D ν 2kT c m Γ a = 4π ν D v [Doppler units] Back

Introduction to Solar Radiative Transfer II Non-LTE Radiative Transfer

Introduction to Solar Radiative Transfer II Non-LTE Radiative Transfer Introduction to olar Radiative Transfer II Non-LTE Radiative Transfer Han Uitenbroek National olar Observatory/acramento Peak unspot NM Overview I Basic Radiative Transfer Intensity, emission, absorption,

More information

Radiative Transfer with Polarization

Radiative Transfer with Polarization The Radiative Transfer Equation with Polarization Han Uitenbroek National Solar Observatory/Sacramento Peak Sunspot, USA Hale COLLAGE, Boulder, Feb 16, 2016 Today s Lecture Equation of transfer with polarization

More information

Introduction to Solar Radiative Transfer IBasicRadiativeTransfer

Introduction to Solar Radiative Transfer IBasicRadiativeTransfer Introduction to Solar Radiative Transfer IBasicRadiativeTransfer Han Uitenbroek National Solar Observatory/Sacramento Peak Sunspot NM George Ellery Hale CGEP, CU Boulder Lecture 13, Mar 5 13 Wy Radiative

More information

The Solar Chromosphere

The Solar Chromosphere The Solar Chromosphere Han Uitenbroek National Solar Observatory/Sacramento Peak Sunspot NM, USA IUGG, Session GAiv.01, Sapporo, Japan, 2003 July 1 Summary The chromosphere as part of the transition between

More information

Opacity and Optical Depth

Opacity and Optical Depth Opacity and Optical Depth Absorption dominated intensity change can be written as di λ = κ λ ρ I λ ds with κ λ the absorption coefficient, or opacity The initial intensity I λ 0 of a light beam will be

More information

(c) Sketch the ratio of electron to gas pressure for main sequence stars versus effective temperature. [1.5]

(c) Sketch the ratio of electron to gas pressure for main sequence stars versus effective temperature. [1.5] 1. (a) The Saha equation may be written in the form N + n e N = C u+ u T 3/2 exp ( ) χ kt where C = 4.83 1 21 m 3. Discuss its importance in the study of stellar atmospheres. Carefully explain the meaning

More information

Lecture 3: Emission and absorption

Lecture 3: Emission and absorption Lecture 3: Emission and absorption Senior Astrophysics 2017-03-10 Senior Astrophysics Lecture 3: Emission and absorption 2017-03-10 1 / 35 Outline 1 Optical depth 2 Sources of radiation 3 Blackbody radiation

More information

Lecture 2 Line Radiative Transfer for the ISM

Lecture 2 Line Radiative Transfer for the ISM Lecture 2 Line Radiative Transfer for the ISM Absorption lines in the optical & UV Equation of transfer Absorption & emission coefficients Line broadening Equivalent width and curve of growth Observations

More information

SOLAR SPECTRUM FORMATION

SOLAR SPECTRUM FORMATION SOLAR SPECTRUM FORMATION Robert J. Rutten [Sterrekundig Instituut Utrecht & Institutt for Teoretisk Astrofysikk Oslo] Texts: R.J. Rutten, Radiative Transfer in Stellar Atmospheres (RTSA), my website D.

More information

2. Stellar atmospheres: Structure

2. Stellar atmospheres: Structure 2. Stellar atmospheres: Structure 2.1. Assumptions Plane-parallel geometry Hydrostatic equilibrium, i.e. o no large-scale accelerations comparable to surface gravity o no dynamically significant mass loss

More information

Spectroscopy Lecture 2

Spectroscopy Lecture 2 Spectroscopy Lecture 2 I. Atomic excitation and ionization II. Radiation Terms III. Absorption and emission coefficients IV. Einstein coefficients V. Black Body radiation I. Atomic excitation and ionization

More information

Stars AS4023: Stellar Atmospheres (13) Stellar Structure & Interiors (11)

Stars AS4023: Stellar Atmospheres (13) Stellar Structure & Interiors (11) Stars AS4023: Stellar Atmospheres (13) Stellar Structure & Interiors (11) Kenneth Wood, Room 316 kw25@st-andrews.ac.uk http://www-star.st-and.ac.uk/~kw25 What is a Stellar Atmosphere? Transition from dense

More information

Interstellar Medium Physics

Interstellar Medium Physics Physics of gas in galaxies. Two main parts: atomic processes & hydrodynamic processes. Atomic processes deal mainly with radiation Hydrodynamics is large scale dynamics of gas. Start small Radiative transfer

More information

Lecture Notes: Basic Equations

Lecture Notes: Basic Equations Basic Equations Lecture Notes: INTRODUCTION TO NON-LTE RADIATIVE TRANSFER AND ATMOSPHERIC MODELING Eugene H. Avrett Harvard-Smithsonian Center for Astrophysics July 2008 The specific intensity of radiation

More information

ATMO/OPTI 656b Spring 2009

ATMO/OPTI 656b Spring 2009 Nomenclature and Definition of Radiation Quantities The various Radiation Quantities are defined in Table 2-1. Keeping them straight is difficult and the meanings may vary from textbook to textbook. I

More information

3: Interstellar Absorption Lines: Radiative Transfer in the Interstellar Medium. James R. Graham University of California, Berkeley

3: Interstellar Absorption Lines: Radiative Transfer in the Interstellar Medium. James R. Graham University of California, Berkeley 3: Interstellar Absorption Lines: Radiative Transfer in the Interstellar Medium James R. Graham University of California, Berkeley Interstellar Absorption Lines Example of atomic absorption lines Structure

More information

SISD Training Lectures in Spectroscopy

SISD Training Lectures in Spectroscopy SISD Training Lectures in Spectroscopy Anatomy of a Spectrum Visual Spectrum of the Sun Blue Spectrum of the Sun Morphological Features in Spectra λ 2 Line Flux = Fλ dλ λ1 (Units: erg s -1 cm -2 ) Continuum

More information

Electromagnetic Spectra. AST443, Lecture 13 Stanimir Metchev

Electromagnetic Spectra. AST443, Lecture 13 Stanimir Metchev Electromagnetic Spectra AST443, Lecture 13 Stanimir Metchev Administrative Homework 2: problem 5.4 extension: until Mon, Nov 2 Reading: Bradt, chapter 11 Howell, chapter 6 Tenagra data: see bottom of Assignments

More information

Lecture 2 Solutions to the Transport Equation

Lecture 2 Solutions to the Transport Equation Lecture 2 Solutions to the Transport Equation Equation along a ray I In general we can solve the static transfer equation along a ray in some particular direction. Since photons move in straight lines

More information

PHYS 231 Lecture Notes Week 3

PHYS 231 Lecture Notes Week 3 PHYS 231 Lecture Notes Week 3 Reading from Maoz (2 nd edition): Chapter 2, Sec. 3.1, 3.2 A lot of the material presented in class this week is well covered in Maoz, and we simply reference the book, with

More information

5. Atomic radiation processes

5. Atomic radiation processes 5. Atomic radiation processes Einstein coefficients for absorption and emission oscillator strength line profiles: damping profile, collisional broadening, Doppler broadening continuous absorption and

More information

Optical Depth & Radiative transfer

Optical Depth & Radiative transfer University of Naples Federico II, Academic Year 2011-2012 Istituzioni di Astrofisica, read by prof. Massimo Capaccioli Lecture 8 Optical Depth & Radiative transfer Learning outcomes The student will :

More information

ν is the frequency, h = ergs sec is Planck s constant h S = = x ergs sec 2 π the photon wavelength λ = c/ν

ν is the frequency, h = ergs sec is Planck s constant h S = = x ergs sec 2 π the photon wavelength λ = c/ν 3-1 3. Radiation Nearly all our information about events beyond the Solar system is brought to us by electromagnetic radiation radio, submillimeter, infrared, visual, ultraviolet, X-rays, γ-rays. The particles

More information

Spontaneous Emission, Stimulated Emission, and Absorption

Spontaneous Emission, Stimulated Emission, and Absorption Chapter Six Spontaneous Emission, Stimulated Emission, and Absorption In this chapter, we review the general principles governing absorption and emission of radiation by absorbers with quantized energy

More information

Supporting Calculations for NASA s IRIS Mission. I. Overview

Supporting Calculations for NASA s IRIS Mission. I. Overview Supporting Calculations for NASA s IRIS Mission. I. Overview Eugene Avrett Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 Understanding the solar chromosphere continues

More information

Limb Darkening. Limb Darkening. Limb Darkening. Limb Darkening. Empirical Limb Darkening. Betelgeuse. At centre see hotter gas than at edges

Limb Darkening. Limb Darkening. Limb Darkening. Limb Darkening. Empirical Limb Darkening. Betelgeuse. At centre see hotter gas than at edges Limb Darkening Sun Betelgeuse Limb Darkening Stars are both redder and dimmer at the edges Sun Limb Darkening Betelgeuse Limb Darkening Can also be understood in terms of temperature within the solar photosphere.

More information

1 Radiative transfer etc

1 Radiative transfer etc Radiative transfer etc Last time we derived the transfer equation dτ ν = S ν I v where I ν is the intensity, S ν = j ν /α ν is the source function and τ ν = R α ν dl is the optical depth. The formal solution

More information

Astronomy 421. Lecture 14: Stellar Atmospheres III

Astronomy 421. Lecture 14: Stellar Atmospheres III Astronomy 421 Lecture 14: Stellar Atmospheres III 1 Lecture 14 - Key concepts: Spectral line widths and shapes Curve of growth 2 There exists a stronger jump, the Lyman limit, occurring at the wavelength

More information

Emitted Spectrum Summary of emission processes Emissivities for emission lines: - Collisionally excited lines - Recombination cascades Emissivities

Emitted Spectrum Summary of emission processes Emissivities for emission lines: - Collisionally excited lines - Recombination cascades Emissivities Emitted Spectrum Summary of emission processes Emissivities for emission lines: - Collisionally excited lines - Recombination cascades Emissivities for continuum processes - recombination - brehmsstrahlung

More information

Lecture 2 Interstellar Absorption Lines: Line Radiative Transfer

Lecture 2 Interstellar Absorption Lines: Line Radiative Transfer Lecture 2 Interstellar Absorption Lines: Line Radiative Transfer 1. Atomic absorption lines 2. Application of radiative transfer to absorption & emission 3. Line broadening & curve of growth 4. Optical/UV

More information

Lecture 4: Absorption and emission lines

Lecture 4: Absorption and emission lines Lecture 4: Absorption and emission lines Senior Astrophysics 2018-03-13 Senior Astrophysics () Lecture 4: Absorption and emission lines 2018-03-13 1 / 35 Outline 1 Absorption and emission line spectra

More information

2 The solar atmosphere

2 The solar atmosphere 1 The solar atmosphere 1.1 Introduction The solar atmosphere may be broadly defined as that part of the Sun extending outwards from a level known as the photosphere where energy generated at the Sun s

More information

AGN Physics of the Ionized Gas Physical conditions in the NLR Physical conditions in the BLR LINERs Emission-Line Diagnostics High-Energy Effects

AGN Physics of the Ionized Gas Physical conditions in the NLR Physical conditions in the BLR LINERs Emission-Line Diagnostics High-Energy Effects AGN Physics of the Ionized Gas Physical conditions in the NLR Physical conditions in the BLR LINERs Emission-Line Diagnostics High-Energy Effects 1 Evidence for Photoionization - continuum and Hβ luminosity

More information

Scales of solar convection

Scales of solar convection Solar convection In addition to radiation, convection is the main form of energy transport in solar interior and lower atmosphere. Convection dominates just below the solar surface and produces most structures

More information

Atomic Physics 3 ASTR 2110 Sarazin

Atomic Physics 3 ASTR 2110 Sarazin Atomic Physics 3 ASTR 2110 Sarazin Homework #5 Due Wednesday, October 4 due to fall break Test #1 Monday, October 9, 11-11:50 am Ruffner G006 (classroom) You may not consult the text, your notes, or any

More information

Substellar Atmospheres II. Dust, Clouds, Meteorology. PHY 688, Lecture 19 Mar 11, 2009

Substellar Atmospheres II. Dust, Clouds, Meteorology. PHY 688, Lecture 19 Mar 11, 2009 Substellar Atmospheres II. Dust, Clouds, Meteorology PHY 688, Lecture 19 Mar 11, 2009 Outline Review of previous lecture substellar atmospheres: opacity, LTE, chemical species, metallicity Dust, Clouds,

More information

Stellar Atmospheres: Basic Processes and Equations

Stellar Atmospheres: Basic Processes and Equations Stellar Atmospheres: Basic Processes and Equations Giovanni Catanzaro Abstract The content of this chapter is a very quick summary of key concepts that concern the interaction between photons created in

More information

The Sun as a Typical Star. Stellar Spectra. Stellar Spectroscopy

The Sun as a Typical Star. Stellar Spectra. Stellar Spectroscopy Stellar Spectroscopy Resolved observa7ons of the sun allow us to look at varia7ons across the surface, but we can only look at (almost all) other stars in integrated light. In the visible, we see the photosphere

More information

a few more introductory subjects : equilib. vs non-equil. ISM sources and sinks : matter replenishment, and exhaustion Galactic Energetics

a few more introductory subjects : equilib. vs non-equil. ISM sources and sinks : matter replenishment, and exhaustion Galactic Energetics Today : a few more introductory subjects : equilib. vs non-equil. ISM sources and sinks : matter replenishment, and exhaustion Galactic Energetics photo-ionization of HII assoc. w/ OB stars ionization

More information

3. Stellar Atmospheres: Opacities

3. Stellar Atmospheres: Opacities 3. Stellar Atmospheres: Opacities 3.1. Continuum opacity The removal of energy from a beam of photons as it passes through matter is governed by o line absorption (bound-bound) o photoelectric absorption

More information

Example: model a star using a two layer model: Radiation starts from the inner layer as blackbody radiation at temperature T in. T out.

Example: model a star using a two layer model: Radiation starts from the inner layer as blackbody radiation at temperature T in. T out. Next, consider an optically thick source: Already shown that in the interior, radiation will be described by the Planck function. Radiation escaping from the source will be modified because the temperature

More information

Accretion Disks. 1. Accretion Efficiency. 2. Eddington Luminosity. 3. Bondi-Hoyle Accretion. 4. Temperature profile and spectrum of accretion disk

Accretion Disks. 1. Accretion Efficiency. 2. Eddington Luminosity. 3. Bondi-Hoyle Accretion. 4. Temperature profile and spectrum of accretion disk Accretion Disks Accretion Disks 1. Accretion Efficiency 2. Eddington Luminosity 3. Bondi-Hoyle Accretion 4. Temperature profile and spectrum of accretion disk 5. Spectra of AGN 5.1 Continuum 5.2 Line Emission

More information

Electron temperature is the temperature that describes, through Maxwell's law, the kinetic energy distribution of the free electrons.

Electron temperature is the temperature that describes, through Maxwell's law, the kinetic energy distribution of the free electrons. 10.3.1.1 Excitation and radiation of spectra 10.3.1.1.1 Plasmas A plasma of the type occurring in spectrochemical radiation sources may be described as a gas which is at least partly ionized and contains

More information

Section 11.5 and Problem Radiative Transfer. from. Astronomy Methods A Physical Approach to Astronomical Observations Pages , 377

Section 11.5 and Problem Radiative Transfer. from. Astronomy Methods A Physical Approach to Astronomical Observations Pages , 377 Section 11.5 and Problem 11.51 Radiative Transfer from Astronomy Methods A Physical Approach to Astronomical Observations Pages 365-375, 377 Cambridge University Press 24 by Hale Bradt Hale Bradt 24 11.5

More information

Solar radiation and plasma diagnostics. Nicolas Labrosse School of Physics and Astronomy, University of Glasgow

Solar radiation and plasma diagnostics. Nicolas Labrosse School of Physics and Astronomy, University of Glasgow Solar radiation and plasma diagnostics Nicolas Labrosse School of Physics and Astronomy, University of Glasgow 0 Radiation basics Radiation field in the solar atmosphere Amount of radiant energy flowing

More information

2. NOTES ON RADIATIVE TRANSFER The specific intensity I ν

2. NOTES ON RADIATIVE TRANSFER The specific intensity I ν 1 2. NOTES ON RADIATIVE TRANSFER 2.1. The specific intensity I ν Let f(x, p) be the photon distribution function in phase space, summed over the two polarization states. Then fdxdp is the number of photons

More information

Some recent work I. Cosmic microwave background, seeds of large scale structure (Planck) Formation and evolution of galaxies (Figure: Simpson et al.

Some recent work I. Cosmic microwave background, seeds of large scale structure (Planck) Formation and evolution of galaxies (Figure: Simpson et al. Radio astronomy Radio astronomy studies celestial objects at wavelengths longward of λ 100 µm (frequencies below ν 3 THz) A radio telecope can see cold gas and dust (Wien s displacement law of BB emision,

More information

Relations between the Einstein coefficients

Relations between the Einstein coefficients Relations between the Einstein coefficients Additional reading: Böhm-Vitense Ch 13.1, 13.2 In thermodynamic equilibrium, transition rate (per unit time per unit volume) from level 1 to level 2 must equal

More information

Lecture 7: Molecular Transitions (2) Line radiation from molecular clouds to derive physical parameters

Lecture 7: Molecular Transitions (2) Line radiation from molecular clouds to derive physical parameters Lecture 7: Molecular Transitions (2) Line radiation from molecular clouds to derive physical parameters H 2 CO (NH 3 ) See sections 5.1-5.3.1 and 6.1 of Stahler & Palla Column density Volume density (Gas

More information

Components of Galaxies Gas The Importance of Gas

Components of Galaxies Gas The Importance of Gas Components of Galaxies Gas The Importance of Gas Fuel for star formation (H 2 ) Tracer of galaxy kinematics/mass (HI) Tracer of dynamical history of interaction between galaxies (HI) The Two-Level Atom

More information

Photoionized Gas Ionization Equilibrium

Photoionized Gas Ionization Equilibrium Photoionized Gas Ionization Equilibrium Ionization Recombination H nebulae - case A and B Strömgren spheres H + He nebulae Heavy elements, dielectronic recombination Ionization structure 1 Ionization Equilibrium

More information

Fundamental Stellar Parameters

Fundamental Stellar Parameters Fundamental Stellar Parameters Radiative Transfer Specific Intensity, Radiative Flux and Stellar Luminosity Observed Flux, Emission and Absorption of Radiation Radiative Transfer Equation, Solution and

More information

Solar and Stellar Atmospheric Modeling Using the Pandora Computer Program

Solar and Stellar Atmospheric Modeling Using the Pandora Computer Program **TITLE** ASP Conference Series, Vol. **VOLUME**, **PUBLICATION YEAR** **EDITORS** Solar and Stellar Atmospheric Modeling Using the Pandora Computer Program Eugene H. Avrett and Rudolf Loeser Smithsonian

More information

If light travels past a system faster than the time scale for which the system evolves then t I ν = 0 and we have then

If light travels past a system faster than the time scale for which the system evolves then t I ν = 0 and we have then 6 LECTURE 2 Equation of Radiative Transfer Condition that I ν is constant along rays means that di ν /dt = 0 = t I ν + ck I ν, (29) where ck = di ν /ds is the ray-path derivative. This is equation is the

More information

The Sun. Basic Properties. Radius: Mass: Luminosity: Effective Temperature:

The Sun. Basic Properties. Radius: Mass: Luminosity: Effective Temperature: The Sun Basic Properties Radius: Mass: 5 R Sun = 6.96 km 9 R M Sun 5 30 = 1.99 kg 3.33 M ρ Sun = 1.41g cm 3 Luminosity: L Sun = 3.86 26 W Effective Temperature: L Sun 2 4 = 4πRSunσTe Te 5770 K The Sun

More information

The formation of stars and planets. Day 1, Topic 2: Radiation physics. Lecture by: C.P. Dullemond

The formation of stars and planets. Day 1, Topic 2: Radiation physics. Lecture by: C.P. Dullemond The formation of stars and planets Day 1, Topic 2: Radiation physics Lecture by: C.P. Dullemond Astronomical Constants CGS units used throughout lecture (cm,erg,s...) AU = Astronomical Unit = distance

More information

Chemistry 795T. Lecture 7. Electromagnetic Spectrum Black body Radiation. NC State University

Chemistry 795T. Lecture 7. Electromagnetic Spectrum Black body Radiation. NC State University Chemistry 795T Lecture 7 Electromagnetic Spectrum Black body Radiation NC State University Black body Radiation An ideal emitter of radiation is called a black body. Observation: that peak of the energy

More information

Chemistry 795T. Black body Radiation. The wavelength and the frequency. The electromagnetic spectrum. Lecture 7

Chemistry 795T. Black body Radiation. The wavelength and the frequency. The electromagnetic spectrum. Lecture 7 Chemistry 795T Lecture 7 Electromagnetic Spectrum Black body Radiation NC State University Black body Radiation An ideal emitter of radiation is called a black body. Observation: that peak of the energy

More information

arxiv: v1 [astro-ph.sr] 30 Nov 2014

arxiv: v1 [astro-ph.sr] 30 Nov 2014 Heliophysics Research Institute Proceedings of the Summer Program 2014 arxiv:1412.0288v1 [astro-ph.sr] 30 Nov 2014 USING MHD SIMULATIONS TO MODEL Hα AND UV SPECTRAL LINES FOR INTERPRETATION OF IRIS AND

More information

The Interstellar Medium

The Interstellar Medium http://www.strw.leidenuniv.nl/~pvdwerf/teaching/ The Interstellar Medium Lecturer: Dr. Paul van der Werf Fall 2014 Oortgebouw 565, ext 5883 pvdwerf@strw.leidenuniv.nl Assistant: Kirstin Doney Huygenslaboratorium

More information

LECTURE NOTES. Ay/Ge 132 ATOMIC AND MOLECULAR PROCESSES IN ASTRONOMY AND PLANETARY SCIENCE. Geoffrey A. Blake. Fall term 2016 Caltech

LECTURE NOTES. Ay/Ge 132 ATOMIC AND MOLECULAR PROCESSES IN ASTRONOMY AND PLANETARY SCIENCE. Geoffrey A. Blake. Fall term 2016 Caltech LECTURE NOTES Ay/Ge 132 ATOMIC AND MOLECULAR PROCESSES IN ASTRONOMY AND PLANETARY SCIENCE Geoffrey A. Blake Fall term 2016 Caltech Acknowledgment Part of these notes are based on lecture notes from the

More information

Collisional radiative model

Collisional radiative model Lenka Dosoudilová Lenka Dosoudilová 1 / 14 Motivation Equations Approximative models Emission coefficient Particles J ij = 1 4π n j A ij hν ij, atoms in ground state atoms in excited states resonance metastable

More information

Radiative Transfer Plane-Parallel Frequency-Dependent

Radiative Transfer Plane-Parallel Frequency-Dependent 4 Radiative Transfer Plane-Parallel Frequency-Dependent variables I ν J ν H ν K ν in astronomy 4. Basic Equations After Fukue, J. 2, PASJ, 63, in press We here assume the followings: i) The disk is steady

More information

Collisionally Excited Spectral Lines (Cont d) Diffuse Universe -- C. L. Martin

Collisionally Excited Spectral Lines (Cont d) Diffuse Universe -- C. L. Martin Collisionally Excited Spectral Lines (Cont d) Please Note: Contrast the collisionally excited lines with the H and He lines in the Orion Nebula spectrum. Preview: Pure Recombination Lines Recombination

More information

Lecture 10. Lidar Effective Cross-Section vs. Convolution

Lecture 10. Lidar Effective Cross-Section vs. Convolution Lecture 10. Lidar Effective Cross-Section vs. Convolution q Introduction q Convolution in Lineshape Determination -- Voigt Lineshape (Lorentzian Gaussian) q Effective Cross Section for Single Isotope --

More information

6. Stellar spectra. excitation and ionization, Saha s equation stellar spectral classification Balmer jump, H -

6. Stellar spectra. excitation and ionization, Saha s equation stellar spectral classification Balmer jump, H - 6. Stellar spectra excitation and ionization, Saha s equation stellar spectral classification Balmer jump, H - 1 Occupation numbers: LTE case Absorption coefficient: κ ν = n i σ ν$ à calculation of occupation

More information

II. HII Regions (Ionization State)

II. HII Regions (Ionization State) 1 AY230-HIIReg II. HII Regions (Ionization State) A. Motivations Theoretical: HII regions are intamitely linked with past, current and future starforming regions in galaxies. To build theories of star-formation

More information

Astrochemistry and Molecular Astrophysics Paola Caselli

Astrochemistry and Molecular Astrophysics Paola Caselli School of Physics and Astronomy FACULTY OF MATHEMATICS & PHYSICAL SCIENCES Astrochemistry and Molecular Astrophysics Paola Caselli Outline 1. The formation of H 2 2. The formation of H 3 + 3. The chemistry

More information

6. Stellar spectra. excitation and ionization, Saha s equation stellar spectral classification Balmer jump, H -

6. Stellar spectra. excitation and ionization, Saha s equation stellar spectral classification Balmer jump, H - 6. Stellar spectra excitation and ionization, Saha s equation stellar spectral classification Balmer jump, H - 1 Occupation numbers: LTE case Absorption coefficient: = n i calculation of occupation numbers

More information

Quantum Electronics/Laser Physics Chapter 4 Line Shapes and Line Widths

Quantum Electronics/Laser Physics Chapter 4 Line Shapes and Line Widths Quantum Electronics/Laser Physics Chapter 4 Line Shapes and Line Widths 4.1 The Natural Line Shape 4.2 Collisional Broadening 4.3 Doppler Broadening 4.4 Einstein Treatment of Stimulated Processes Width

More information

7. Non-LTE basic concepts

7. Non-LTE basic concepts 7. Non-LTE basic concepts LTE vs NLTE occupation numbers rate equation transition probabilities: collisional and radiative examples: hot stars, A supergiants 1 Equilibrium: LTE vs NLTE LTE each volume

More information

ATMO 551a Fall Resonant Electromagnetic (EM) Interactions in Planetary atmospheres. Electron transition between different electron orbits

ATMO 551a Fall Resonant Electromagnetic (EM) Interactions in Planetary atmospheres. Electron transition between different electron orbits Resonant Electromagnetic (EM) Interactions in Planetary atmospheres There are three classes of energy states that interact with EM radiation that we are interested in to understand how light (EM radiation)

More information

Preliminary Examination: Astronomy

Preliminary Examination: Astronomy Preliminary Examination: Astronomy Department of Physics and Astronomy University of New Mexico Spring 2017 Instructions: Answer 8 of the 10 questions (10 points each) Total time for the test is three

More information

5.111 Lecture Summary #5 Friday, September 12, 2014

5.111 Lecture Summary #5 Friday, September 12, 2014 5.111 Lecture Summary #5 Friday, September 12, 2014 Readings for today: Section 1.3 Atomic Spectra, Section 1.7 up to equation 9b Wavefunctions and Energy Levels, Section 1.8 The Principle Quantum Number.

More information

6. Stellar spectra. excitation and ionization, Saha s equation stellar spectral classification Balmer jump, H -

6. Stellar spectra. excitation and ionization, Saha s equation stellar spectral classification Balmer jump, H - 6. Stellar spectra excitation and ionization, Saha s equation stellar spectral classification Balmer jump, H - 1 Occupation numbers: LTE case Absorption coefficient: = n i calculation of occupation numbers

More information

Lecture 06. Fundamentals of Lidar Remote Sensing (4) Physical Processes in Lidar

Lecture 06. Fundamentals of Lidar Remote Sensing (4) Physical Processes in Lidar Lecture 06. Fundamentals of Lidar Remote Sensing (4) Physical Processes in Lidar Physical processes in lidar (continued) Doppler effect (Doppler shift and broadening) Boltzmann distribution Reflection

More information

Beer-Lambert (cont.)

Beer-Lambert (cont.) The Beer-Lambert Law: Optical Depth Consider the following process: F(x) Absorbed flux df abs F(x + dx) Scattered flux df scat x x + dx The absorption or scattering of radiation by an optically active

More information

Plumes as seen in the Ultraviolet

Plumes as seen in the Ultraviolet Plumes as seen in the Ultraviolet L. Teriaca Max Planck Institut für Sonnensystemforschung Introduction Plumes have been observed and studied since long time in white light during total eclipses (Abbot

More information

ASTR240: Radio Astronomy

ASTR240: Radio Astronomy AST24: adio Astronomy HW#1 Due Feb 6, 213 Problem 1 (6 points) (Adapted from Kraus Ch 8) A radio source has flux densities of S 1 12.1 Jy and S 2 8.3 Jy at frequencies of ν 1 6 MHz and ν 2 1415 MHz, respectively.

More information

Astronomy 1 Winter 2011

Astronomy 1 Winter 2011 Astronomy 1 Winter 2011 Lecture 8; January 24 2011 Previously on Astro 1 Light as a wave The Kelvin Temperature scale What is a blackbody? Wien s law: λ max (in meters) = (0.0029 K m)/t. The Stefan-Boltzmann

More information

September 8, Tuesday 2. The Sun as a star

September 8, Tuesday 2. The Sun as a star September 8, Tuesday 2. The Sun as a star General properties, place in the Hertzsprung- Russell diagram. Distance, mass, radius, luminosity, composition, age, evolution, spectral energy distribution. General

More information

12.815/12.816: RADIATIVE TRANSFER PROBLEM SET #1 SOLUTIONS

12.815/12.816: RADIATIVE TRANSFER PROBLEM SET #1 SOLUTIONS 12.815/12.816: RADIATIVE TRANSFER PROBLEM SET #1 SOLUTIONS TA: NIRAJ INAMDAR 1) Radiation Terminology. We are asked to define a number of standard terms. See also Table 1. Intensity: The amount of energy

More information

I ν. di ν. = α ν. = (ndads) σ ν da α ν. = nσ ν = ρκ ν

I ν. di ν. = α ν. = (ndads) σ ν da α ν. = nσ ν = ρκ ν Absorption Consider a beam passing through an absorbing medium. Define the absorption coefficient, α ν, by ie the fractional loss in intensity in travelling a distance ds is α ν ds (convention: positive

More information

Physics 221 Lecture 31 Line Radiation from Atoms and Molecules March 31, 1999

Physics 221 Lecture 31 Line Radiation from Atoms and Molecules March 31, 1999 Physics 221 Lecture 31 Line Radiation from Atoms and Molecules March 31, 1999 Reading Meyer-Arendt, Ch. 20; Möller, Ch. 15; Yariv, Ch.. Demonstrations Analyzing lineshapes from emission and absorption

More information

Physics Homework Set I Su2015

Physics Homework Set I Su2015 1) The particles which enter into chemical reactions are the atom's: 1) _ A) protons. B) positrons. C) mesons. D) electrons. E) neutrons. 2) Which of the following type of electromagnetic radiation has

More information

(c) (a) 3kT/2. Cascade

(c) (a) 3kT/2. Cascade 1 AY30-HIITemp IV. Temperature of HII Regions A. Motivations B. History In star-forming galaxies, most of the heating + cooling occurs within HII regions Heating occurs via the UV photons from O and B

More information

arxiv: v1 [astro-ph.sr] 14 May 2010

arxiv: v1 [astro-ph.sr] 14 May 2010 Non-LTE Line Formation for Trace Elements in Stellar Atmospheres Editors : will be set by the publisher EAS Publications Series, Vol.?, 2010 arxiv:1005.2458v1 [astro-ph.sr] 14 May 2010 STATISTICAL EQUILIBRIUM

More information

Radiation in the Earth's Atmosphere. Part 1: Absorption and Emission by Atmospheric Gases

Radiation in the Earth's Atmosphere. Part 1: Absorption and Emission by Atmospheric Gases Radiation in the Earth's Atmosphere Part 1: Absorption and Emission by Atmospheric Gases Electromagnetic Waves Electromagnetic waves are transversal. Electric and magnetic fields are perpendicular. In

More information

Ay Fall 2004 Lecture 6 (given by Tony Travouillon)

Ay Fall 2004 Lecture 6 (given by Tony Travouillon) Ay 122 - Fall 2004 Lecture 6 (given by Tony Travouillon) Stellar atmospheres, classification of stellar spectra (Many slides c/o Phil Armitage) Formation of spectral lines: 1.excitation Two key questions:

More information

Overview of Astronomical Concepts III. Stellar Atmospheres; Spectroscopy. PHY 688, Lecture 5 Stanimir Metchev

Overview of Astronomical Concepts III. Stellar Atmospheres; Spectroscopy. PHY 688, Lecture 5 Stanimir Metchev Overview of Astronomical Concepts III. Stellar Atmospheres; Spectroscopy PHY 688, Lecture 5 Stanimir Metchev Outline Review of previous lecture Stellar atmospheres spectral lines line profiles; broadening

More information

Next quiz: Monday, October 24

Next quiz: Monday, October 24 No homework for Wednesday Read Chapter 8! Next quiz: Monday, October 24 1 Chapter 7 Atoms and Starlight Types of Spectra: Pictorial Some light sources are comprised of all colors (white light). Other light

More information

Notes on Photoionized Regions Wednesday, January 12, 2011

Notes on Photoionized Regions Wednesday, January 12, 2011 Notes on Photoionized Regions Wednesday, January 12, 2011 CONTENTS: 1. Introduction 2. Hydrogen Nebulae A. Ionization equations B. Recombination coefficients and cross sections C. Structure of the hydrogen

More information

Physics of Primordial Star Formation

Physics of Primordial Star Formation Physics of Primordial Star Formation Naoki Yoshida University of Tokyo SFDE17 Bootcamp, Quy Nhon, August 6th So far, we learned 1. The standard cosmological model 2. Growth of density fluctuations 3. Assembly

More information

Radiation Processes. Black Body Radiation. Heino Falcke Radboud Universiteit Nijmegen. Contents:

Radiation Processes. Black Body Radiation. Heino Falcke Radboud Universiteit Nijmegen. Contents: Radiation Processes Black Body Radiation Heino Falcke Radboud Universiteit Nijmegen Contents: Planck Spectrum Kirchoff & Stefan-Boltzmann Rayleigh-Jeans & Wien Einstein Coefficients Literature: Based heavily

More information

Theory of optically thin emission line spectroscopy

Theory of optically thin emission line spectroscopy Theory of optically thin emission line spectroscopy 1 Important definitions In general the spectrum of a source consists of a continuum and several line components. Processes which give raise to the continuous

More information

M.Phys., M.Math.Phys., M.Sc. MTP Radiative Processes in Astrophysics and High-Energy Astrophysics

M.Phys., M.Math.Phys., M.Sc. MTP Radiative Processes in Astrophysics and High-Energy Astrophysics M.Phys., M.Math.Phys., M.Sc. MTP Radiative Processes in Astrophysics and High-Energy Astrophysics Professor Garret Cotter garret.cotter@physics.ox.ac.uk Office 756 in the DWB & Exeter College Radiative

More information

Lecture 6 - spectroscopy

Lecture 6 - spectroscopy Lecture 6 - spectroscopy 1 Light Electromagnetic radiation can be thought of as either a wave or as a particle (particle/wave duality). For scattering of light by particles, air, and surfaces, wave theory

More information

5. Atomic radiation processes

5. Atomic radiation processes 5. Atomic radiation processes Einstein coefficients for absorption and emission oscillator strength line profiles: damping profile, collisional broadening, Doppler broadening continuous absorption and

More information

The Solar Chromosphere

The Solar Chromosphere 1 / 29 The Solar Chromosphere Recent Advances in Determining the Magnetic Fine Structure Andreas Lagg Max-Planck-Institut für Sonnensystemforschung Katlenburg-Lindau, Germany Rocks n Stars 2012 2 / 29

More information

Influence of Mass Flows on the Energy Balance and Structure of the Solar Transition Region

Influence of Mass Flows on the Energy Balance and Structure of the Solar Transition Region **TITLE** ASP Conference Series, Vol. **VOLUME***, **YEAR OF PUBLICATION** **NAMES OF EDITORS** Influence of Mass Flows on the Energy Balance and Structure of the Solar Transition Region E. H. Avrett and

More information