1 Radiative transfer etc

Size: px
Start display at page:

Download "1 Radiative transfer etc"

Transcription

1 Radiative transfer etc Last time we derived the transfer equation dτ ν = S ν I v where I ν is the intensity, S ν = j ν /α ν is the source function and τ ν = R α ν dl is the optical depth. The formal solution is I ν (τ) = I ν ()e τ +. Special cases: No emission Z τ S ν (τ )e (τ τ ) dτ () If S ν, then the intensity is given by the first term in equation. The intensity decreases exponentially. The Earth s atmosphere provides an example. The optical depth varies with angle: τ = τ secθ where τ is the otpical depth along a vertical path. Scattering is very important in this situation, so we ll defer further discussion for the moment..2 Optically thin source When τ, the solution reduces to: I ν (τ) = I ν () + Z τ S ν (τ )dτ ¼ I ν () + S ν τ = I ν () + j ν L where L is the total path length through the source. Example: HII region in the radio. The emission is due to thermal bremsstrahlung (more later) 39 n2 j ν = 6 erg/(cm 3 s ster Hz) (2) T /2e hν/kt and in the radio (hν kt, T ¼ 4 K) α ν '. T 3/2 ν 2 cm (3) Thus for typical values of n» 7 cm 3, T» 4 K, and ν» 2 GHz, we have 7 2 α ν» cm =.2 9 cm and for a path length of /2 pc, n 2 τ = =.8 Thus we can compute the emitted intensity by a straightforward multiplication of emission coefficient times path length.

2 .3 Optically thick source If the source function is a constant, and τ À, then I ν (τ) = I ν () e τ + ' S ν Z τ and so the intensity equals the source function in this case..4 Thermal emission S ν (τ ) e (τ τ ) dτ = I ν () e τ + S ν e τ In thermal equilibrium, we reach a situation in which the intensity does not change within the source, and thus I ν = S ν Thus very large optical depth corresponds to thermal equilibrium. We know what the intensity is in this case: it is just the black body (Planck) function: I ν = B ν (T) = S ν = 2hν3 /c 2 e hν/kt and thus when we have thermal radiation, the source function equals the planck function. This is a fundamental relation, sincej ν and α ν involve only the microphysics of the emission and absorption processes. It follows that j ν = α ν B ν (T) (4) Thus once we find j, we can find α immediately (or vice versa). That is how I obtained equation (3) from equation (2). Now the transfer equation for a medium in thermal equilibrium has become = B ν (T) I v (τ) dτ ν Now R&L equation.3 for a uniformly bright sphere becomes: F ν = πb ν µ R r 2 and integrating over frequency 2 µ R F = σt 4 r where σ = erg/(cm 2 deg 4 s) Sometimes we use the relation I ν B ν (T b ) to define a temperature called the brightness temperature T b. Radio astronomers like to do this. The brightness tempertaure equals the thermodynamic temperature only in the optically thick case. The general solution may be written as: T b = T bo e τ + T e τ or, if there is no background source, T b = T e τ 2

3 from which it is clear that the brightness temperature can never exceed the thermodynamic temperature, and T b approaches T as τ!. (Never is a strong word. Perhaps we shouldbe more careful. Exceptions may occur if the source is not at least locally in thermodynamic equilibrium. More later) low frequency limit: hv/kt. We obtain the Rayleigh Jeans law: B ν (T) ' 2ν2 c 2 kt high frequency limit: hv/kt À. Here we obtain the Wien law B ν (T) ' 2hν3 c 2 e hν/kt which shows that the spectrum decreases exponentially at high frequencies. Wien displacement law The peak of the spectrum is found by setting the derivative to zero: c 2 db ν 2h dν = = 3ν 2 e hν/kt ν 2 e hν/kt 2 We can solve this equation numerically: hν 3 e hν/kt kt e hν/kt 2 µ ³ 3 e hν/kt hν kt ehν/kt = e x = x 3 where x = hν/kt. Since e x is small for x >, we expect that x ' 3. So use this as a first guess, and then evaluate x next = 3 e x The results are: try x x next 3 3 e 3 = e = e = e = e = e = e = so the result is hν = kT. The algorithm converges quickly. Now try the same thing to find wavelength of the maximum. Write the spectrum as B λ = x5 e x 3

4 where x = hc/λkt. Use a similar numerical algorithm to show that x max = and thus λ max T =.29 cm K This is the Wien displacement law. Suppose we calculate the wavelength corresponding to the frequency maximum. We d get hc λ max T = =.5 cm K k Why do we not obtain the same value for λ max in the two cases? Is one preferable to the other? 2 The Einstein coefficients In applying our results to atomic absorption and emission, it is convenient to use the Einstein coefficients. They are defined as follows: The Einstein B coefficient B describes absorption: σ ν = hv 4π B φ v the function φ ν is the line profile function. It describes how the absorption is distributed around the line center frequency. Broadening is due to natural broadening (radiation damping), Doppler effect due to motion of the atoms, etc. We must also include stimulated emission, described by B. In terms of the Bs, the absorption coeficient is: α ν = hv 4π φ v (n B n B ) where n and n are the number of atoms in the lower (upper) level respectively. The Boltzmann relation relates the two populations: = g e hν/kt n g where g and g are the statistical weights of the two levels. Thus α ν = hv µ 4π n g φ v B B e hν/kt g Emission is described by the EinsteinAcoefficient: n j ν = hv 4π n A φ ν where A is the transition probability per unit time for spontaneous emission. Now we know that j ν α ν = B ν (T) = n A n ³B hν/kt = g B g e A g g e hν/kt = B B 2hν 3 /c2 e hν/kt 4

5 Thus we obtain the relations and or B = g g B A = 2hv3 c 2 B B = λ2 2hν A Interesting things can happen when the populations are not goverened by the Boltzmann relation, i.e. when some non thermal process operates. For example, if the population is inverted (n > n ), the stimulated emission dominates and we can obtain maser emission. 3 Scattering As we have mentioned, scattering can increase the intensity (due to scattering from other directions) and can decrease the intensity (due to scattering out). We can define an emission coefficient for scattering as j ν,scatt = n s σ ν J ν where n s is the number density of scatterers and σ ν is the scattering cross section. Notice that the mean intensity appears here, since photons going in any direction can be scattered into the beam. For the moment I shall assume that the scattering cross section has no dependence on direction. This is close to the truth for Thomson (electron) scattering. Then the transfer equation for scattering only becomes: ds = n sσ ν (J ν I ν ) Including both absorption and scattering, we have: = n s σ ν (J ν I ν ) + j ν α ν I ν ds = n s σ ν J ν + j ν (α ν + n s σ ν ) I ν We can write n s σ ν = α s Then ds = α sj ν + α ν B ν ( )I ν Now let s define a source function S ν αsj ν + α ν B ν so that the equation takes the form ds = ( )(S ν I ν ) Defining dτ = ( ) ds, we retrieve the previous transfer equation in terms of τ and S. The solution is more complicated, however, because S ν depends on J ν, and hence on I ν. 5

6 Note here that /( ) is the average distance a photon will travel before being removed from the beam by either an absorption or a scattering event. l = On the other hand, the photon will travel a longer distance l a = αν before being absorbed. The path will be a random walk. Each step of the walk will end by a scattering, with probability p s = or with an absorption, with probability Thus the source function is 3. Theory of random walks α s α ν p a = S ν = ( p a )J ν + p a B ν A particle has a mean step length l. The total displacement is NX D = D i and the mean distance travelled is v p à u N! à X N! X < D >=< D D >=< t D i D i v ux = < t N D i D i + = p Nl 2 = p Nl = L NX NX j=,j6=i D i D j > since the directions of D i and D j are not correlated, and thus the average value of D i D j is zero. In our problem, the walk starts when the photon is created and ends when it is absorbed. The step length is l = /( ). The probability that the path ends, at any one event, is p a. Thus the total number of steps expected is /p a. The mean distance travelled is: L = r p a ( ) = r αν + α s α ν ( ) = p αν ( ) Thus the effective optical depth due to absorption and scattering is τ eff = L = p α ν ( ) 6

If light travels past a system faster than the time scale for which the system evolves then t I ν = 0 and we have then

If light travels past a system faster than the time scale for which the system evolves then t I ν = 0 and we have then 6 LECTURE 2 Equation of Radiative Transfer Condition that I ν is constant along rays means that di ν /dt = 0 = t I ν + ck I ν, (29) where ck = di ν /ds is the ray-path derivative. This is equation is the

More information

de = j ν dvdωdtdν. (1)

de = j ν dvdωdtdν. (1) Transfer Equation and Blackbodies Initial questions: There are sources in the centers of some galaxies that are extraordinarily bright in microwaves. What s going on? The brightest galaxies in the universe

More information

Lecture 3: Emission and absorption

Lecture 3: Emission and absorption Lecture 3: Emission and absorption Senior Astrophysics 2017-03-10 Senior Astrophysics Lecture 3: Emission and absorption 2017-03-10 1 / 35 Outline 1 Optical depth 2 Sources of radiation 3 Blackbody radiation

More information

Chapter 2 Bremsstrahlung and Black Body

Chapter 2 Bremsstrahlung and Black Body Chapter 2 Bremsstrahlung and Black Body 2.1 Bremsstrahlung We will follow an approximate derivation. For a more complete treatment see [2] and [1]. We will consider an electron proton plasma. Definitions:

More information

Interstellar Medium Physics

Interstellar Medium Physics Physics of gas in galaxies. Two main parts: atomic processes & hydrodynamic processes. Atomic processes deal mainly with radiation Hydrodynamics is large scale dynamics of gas. Start small Radiative transfer

More information

Radiation Processes. Black Body Radiation. Heino Falcke Radboud Universiteit Nijmegen. Contents:

Radiation Processes. Black Body Radiation. Heino Falcke Radboud Universiteit Nijmegen. Contents: Radiation Processes Black Body Radiation Heino Falcke Radboud Universiteit Nijmegen Contents: Planck Spectrum Kirchoff & Stefan-Boltzmann Rayleigh-Jeans & Wien Einstein Coefficients Literature: Based heavily

More information

Lecture 2 Line Radiative Transfer for the ISM

Lecture 2 Line Radiative Transfer for the ISM Lecture 2 Line Radiative Transfer for the ISM Absorption lines in the optical & UV Equation of transfer Absorption & emission coefficients Line broadening Equivalent width and curve of growth Observations

More information

Chemistry 795T. Lecture 7. Electromagnetic Spectrum Black body Radiation. NC State University

Chemistry 795T. Lecture 7. Electromagnetic Spectrum Black body Radiation. NC State University Chemistry 795T Lecture 7 Electromagnetic Spectrum Black body Radiation NC State University Black body Radiation An ideal emitter of radiation is called a black body. Observation: that peak of the energy

More information

Chemistry 795T. Black body Radiation. The wavelength and the frequency. The electromagnetic spectrum. Lecture 7

Chemistry 795T. Black body Radiation. The wavelength and the frequency. The electromagnetic spectrum. Lecture 7 Chemistry 795T Lecture 7 Electromagnetic Spectrum Black body Radiation NC State University Black body Radiation An ideal emitter of radiation is called a black body. Observation: that peak of the energy

More information

2. NOTES ON RADIATIVE TRANSFER The specific intensity I ν

2. NOTES ON RADIATIVE TRANSFER The specific intensity I ν 1 2. NOTES ON RADIATIVE TRANSFER 2.1. The specific intensity I ν Let f(x, p) be the photon distribution function in phase space, summed over the two polarization states. Then fdxdp is the number of photons

More information

I ν. di ν. = α ν. = (ndads) σ ν da α ν. = nσ ν = ρκ ν

I ν. di ν. = α ν. = (ndads) σ ν da α ν. = nσ ν = ρκ ν Absorption Consider a beam passing through an absorbing medium. Define the absorption coefficient, α ν, by ie the fractional loss in intensity in travelling a distance ds is α ν ds (convention: positive

More information

Radiation in the Earth's Atmosphere. Part 1: Absorption and Emission by Atmospheric Gases

Radiation in the Earth's Atmosphere. Part 1: Absorption and Emission by Atmospheric Gases Radiation in the Earth's Atmosphere Part 1: Absorption and Emission by Atmospheric Gases Electromagnetic Waves Electromagnetic waves are transversal. Electric and magnetic fields are perpendicular. In

More information

Lecture 2 Solutions to the Transport Equation

Lecture 2 Solutions to the Transport Equation Lecture 2 Solutions to the Transport Equation Equation along a ray I In general we can solve the static transfer equation along a ray in some particular direction. Since photons move in straight lines

More information

1. Why photons? 2. Photons in a vacuum

1. Why photons? 2. Photons in a vacuum Photons and Other Messengers 1. Why photons? Ask class: most of our information about the universe comes from photons. What are the reasons for this? Let s compare them with other possible messengers,

More information

ATMO/OPTI 656b Spring 2009

ATMO/OPTI 656b Spring 2009 Nomenclature and Definition of Radiation Quantities The various Radiation Quantities are defined in Table 2-1. Keeping them straight is difficult and the meanings may vary from textbook to textbook. I

More information

Some fundamentals. Statistical mechanics. The non-equilibrium ISM. = g u

Some fundamentals. Statistical mechanics. The non-equilibrium ISM. = g u Some fundamentals Statistical mechanics We have seen that the collision timescale for gas in this room is very small relative to radiative timesscales such as spontaneous emission. The frequent collisions

More information

Outline. Today we will learn what is thermal radiation

Outline. Today we will learn what is thermal radiation Thermal Radiation & Outline Today we will learn what is thermal radiation Laws Laws of of themodynamics themodynamics Radiative Radiative Diffusion Diffusion Equation Equation Thermal Thermal Equilibrium

More information

Opacity and Optical Depth

Opacity and Optical Depth Opacity and Optical Depth Absorption dominated intensity change can be written as di λ = κ λ ρ I λ ds with κ λ the absorption coefficient, or opacity The initial intensity I λ 0 of a light beam will be

More information

Sources of radiation

Sources of radiation Sources of radiation Most important type of radiation is blackbody radiation. This is radiation that is in thermal equilibrium with matter at some temperature T. Lab source of blackbody radiation: hot

More information

The formation of stars and planets. Day 1, Topic 2: Radiation physics. Lecture by: C.P. Dullemond

The formation of stars and planets. Day 1, Topic 2: Radiation physics. Lecture by: C.P. Dullemond The formation of stars and planets Day 1, Topic 2: Radiation physics Lecture by: C.P. Dullemond Astronomical Constants CGS units used throughout lecture (cm,erg,s...) AU = Astronomical Unit = distance

More information

1/30/11. Astro 300B: Jan. 26, Thermal radia+on and Thermal Equilibrium. Thermal Radia0on, and Thermodynamic Equilibrium

1/30/11. Astro 300B: Jan. 26, Thermal radia+on and Thermal Equilibrium. Thermal Radia0on, and Thermodynamic Equilibrium Astro 300B: Jan. 26, 2011 Thermal radia+on and Thermal Equilibrium Thermal Radia0on, and Thermodynamic Equilibrium 1 Thermal radiation is radiation emitted by matter in thermodynamic equilibrium. When

More information

Spectroscopy Lecture 2

Spectroscopy Lecture 2 Spectroscopy Lecture 2 I. Atomic excitation and ionization II. Radiation Terms III. Absorption and emission coefficients IV. Einstein coefficients V. Black Body radiation I. Atomic excitation and ionization

More information

φ(ν)dν = 1. (1) We can define an average intensity over this profile, J =

φ(ν)dν = 1. (1) We can define an average intensity over this profile, J = Ask about final Saturday, December 14 (avoids day of ASTR 100 final, Andy Harris final). Decided: final is 1 PM, Dec 14. Rate Equations and Detailed Balance Blackbodies arise if the optical depth is big

More information

Radiation Transport in a Gas

Radiation Transport in a Gas Radiation Transport in a Gas By analogy to a particle gas, define a photon distribution function by, f ν ν, Ω; r, t)dvdωd r = Number of photons of a frequency in ν, ν + dν), in a volume at rd r), with

More information

Lecture 10. Lidar Effective Cross-Section vs. Convolution

Lecture 10. Lidar Effective Cross-Section vs. Convolution Lecture 10. Lidar Effective Cross-Section vs. Convolution q Introduction q Convolution in Lineshape Determination -- Voigt Lineshape (Lorentzian Gaussian) q Effective Cross Section for Single Isotope --

More information

Properties of Electromagnetic Radiation Chapter 5. What is light? What is a wave? Radiation carries information

Properties of Electromagnetic Radiation Chapter 5. What is light? What is a wave? Radiation carries information Concepts: Properties of Electromagnetic Radiation Chapter 5 Electromagnetic waves Types of spectra Temperature Blackbody radiation Dual nature of radiation Atomic structure Interaction of light and matter

More information

Chapter 13. Phys 322 Lecture 34. Modern optics

Chapter 13. Phys 322 Lecture 34. Modern optics Chapter 13 Phys 3 Lecture 34 Modern optics Blackbodies and Lasers* Blackbodies Stimulated Emission Gain and Inversion The Laser Four-level System Threshold Some lasers Pump Fast decay Laser Fast decay

More information

Relations between the Einstein coefficients

Relations between the Einstein coefficients Relations between the Einstein coefficients Additional reading: Böhm-Vitense Ch 13.1, 13.2 In thermodynamic equilibrium, transition rate (per unit time per unit volume) from level 1 to level 2 must equal

More information

ν is the frequency, h = ergs sec is Planck s constant h S = = x ergs sec 2 π the photon wavelength λ = c/ν

ν is the frequency, h = ergs sec is Planck s constant h S = = x ergs sec 2 π the photon wavelength λ = c/ν 3-1 3. Radiation Nearly all our information about events beyond the Solar system is brought to us by electromagnetic radiation radio, submillimeter, infrared, visual, ultraviolet, X-rays, γ-rays. The particles

More information

The Nature of Light I: Electromagnetic Waves Spectra Kirchoff s Laws Temperature Blackbody radiation

The Nature of Light I: Electromagnetic Waves Spectra Kirchoff s Laws Temperature Blackbody radiation The Nature of Light I: Electromagnetic Waves Spectra Kirchoff s Laws Temperature Blackbody radiation Electromagnetic Radiation (How we get most of our information about the cosmos) Examples of electromagnetic

More information

Lecture 2: Transfer Theory

Lecture 2: Transfer Theory Lecture 2: Transfer Theory Why do we study transfer theory? The light we detect arrives at us in two steps: - first, it is created by some radiative process (e.g., blackbody, synchrotron, etc etc ) -

More information

Some HI is in reasonably well defined clouds. Motions inside the cloud, and motion of the cloud will broaden and shift the observed lines!

Some HI is in reasonably well defined clouds. Motions inside the cloud, and motion of the cloud will broaden and shift the observed lines! Some HI is in reasonably well defined clouds. Motions inside the cloud, and motion of the cloud will broaden and shift the observed lines Idealized 21cm spectra Example observed 21cm spectra HI densities

More information

Equilibrium Properties of Matter and Radiation

Equilibrium Properties of Matter and Radiation Equilibrium Properties of Matter and Radiation Temperature What is it? A measure of internal energy in a system. Measure from (1) velocities of atoms/molecules () population of excited/ionized states (3)

More information

The Electromagnetic Spectrum

The Electromagnetic Spectrum Astr 102: Introduction to Astronomy Fall Quarter 2009, University of Washington, Željko Ivezić Lecture 4: The Electromagnetic Spectrum 1 Understanding Stellar and Galaxy Properties, and Cosmology Four

More information

The Stellar Opacity. F ν = D U = 1 3 vl n = 1 3. and that, when integrated over all energies,

The Stellar Opacity. F ν = D U = 1 3 vl n = 1 3. and that, when integrated over all energies, The Stellar Opacity The mean absorption coefficient, κ, is not a constant; it is dependent on frequency, and is therefore frequently written as κ ν. Inside a star, several different sources of opacity

More information

Chapter 3 Energy Balance and Temperature. Astro 9601

Chapter 3 Energy Balance and Temperature. Astro 9601 Chapter 3 Energy Balance and Temperature Astro 9601 1 Topics to be covered Energy Balance and Temperature (3.1) - All Conduction (3..1), Radiation (3.. and 3...1) Convection (3..3), Hydrostatic Equilibrium

More information

Preliminary Examination: Astronomy

Preliminary Examination: Astronomy Preliminary Examination: Astronomy Department of Physics and Astronomy University of New Mexico Spring 2017 Instructions: Answer 8 of the 10 questions (10 points each) Total time for the test is three

More information

Electromagnetic Spectra. AST443, Lecture 13 Stanimir Metchev

Electromagnetic Spectra. AST443, Lecture 13 Stanimir Metchev Electromagnetic Spectra AST443, Lecture 13 Stanimir Metchev Administrative Homework 2: problem 5.4 extension: until Mon, Nov 2 Reading: Bradt, chapter 11 Howell, chapter 6 Tenagra data: see bottom of Assignments

More information

With certain caveats (described later) an object absorbs as effectively as it emits

With certain caveats (described later) an object absorbs as effectively as it emits Figure 1: A blackbody defined by a cavity where emission and absorption are in equilibrium so as to maintain a constant temperature Blackbody radiation The basic principles of thermal emission are as follows:

More information

Weighting Functions and Atmospheric Soundings: Part I

Weighting Functions and Atmospheric Soundings: Part I Weighting Functions and Atmospheric Soundings: Part I Ralf Bennartz Cooperative Institute for Meteorological Satellite Studies University of Wisconsin Madison Outline What we want to know and why we need

More information

What are Lasers? Light Amplification by Stimulated Emission of Radiation LASER Light emitted at very narrow wavelength bands (monochromatic) Light

What are Lasers? Light Amplification by Stimulated Emission of Radiation LASER Light emitted at very narrow wavelength bands (monochromatic) Light What are Lasers? What are Lasers? Light Amplification by Stimulated Emission of Radiation LASER Light emitted at very narrow wavelength bands (monochromatic) Light emitted in a directed beam Light is coherenent

More information

Stars AS4023: Stellar Atmospheres (13) Stellar Structure & Interiors (11)

Stars AS4023: Stellar Atmospheres (13) Stellar Structure & Interiors (11) Stars AS4023: Stellar Atmospheres (13) Stellar Structure & Interiors (11) Kenneth Wood, Room 316 kw25@st-andrews.ac.uk http://www-star.st-and.ac.uk/~kw25 What is a Stellar Atmosphere? Transition from dense

More information

Chapter 3 Energy Balance and Temperature. Topics to be covered

Chapter 3 Energy Balance and Temperature. Topics to be covered Chapter 3 Energy Balance and Temperature Astro 9601 1 Topics to be covered Energy Balance and Temperature (3.1) - All Conduction (3..1), Radiation (3.. and31) 3...1) Convection (3..3), Hydrostatic Equilibrium

More information

Lecture 3: Specific Intensity, Flux and Optical Depth

Lecture 3: Specific Intensity, Flux and Optical Depth Lecture 3: Specific Intensity, Flux and Optical Depth We begin a more detailed look at stellar atmospheres by defining the fundamental variable, which is called the Specific Intensity. It may be specified

More information

THE ELECTROMAGNETIC SPECTRUM. (We will go into more detail later but we need to establish some basic understanding here)

THE ELECTROMAGNETIC SPECTRUM. (We will go into more detail later but we need to establish some basic understanding here) What is color? THE ELECTROMAGNETIC SPECTRUM. (We will go into more detail later but we need to establish some basic understanding here) Light isn t just white: colors is direct evidence that light has

More information

3: Interstellar Absorption Lines: Radiative Transfer in the Interstellar Medium. James R. Graham University of California, Berkeley

3: Interstellar Absorption Lines: Radiative Transfer in the Interstellar Medium. James R. Graham University of California, Berkeley 3: Interstellar Absorption Lines: Radiative Transfer in the Interstellar Medium James R. Graham University of California, Berkeley Interstellar Absorption Lines Example of atomic absorption lines Structure

More information

Einstein s Approach to Planck s Law

Einstein s Approach to Planck s Law Supplement -A Einstein s Approach to Planck s Law In 97 Albert Einstein wrote a remarkable paper in which he used classical statistical mechanics and elements of the old Bohr theory to derive the Planck

More information

Goal: The theory behind the electromagnetic radiation in remote sensing. 2.1 Maxwell Equations and Electromagnetic Waves

Goal: The theory behind the electromagnetic radiation in remote sensing. 2.1 Maxwell Equations and Electromagnetic Waves Chapter 2 Electromagnetic Radiation Goal: The theory behind the electromagnetic radiation in remote sensing. 2.1 Maxwell Equations and Electromagnetic Waves Electromagnetic waves do not need a medium to

More information

Physics Lecture 6

Physics Lecture 6 Physics 3313 - Lecture 6 Monday February 8, 2010 Dr. Andrew Brandt 1. HW1 Due today HW2 weds 2/10 2. Electron+X-rays 3. Black body radiation 4. Compton Effect 5. Pair Production 2/8/10 3313 Andrew Brandt

More information

Recap Lecture + Thomson Scattering. Thermal radiation Blackbody radiation Bremsstrahlung radiation

Recap Lecture + Thomson Scattering. Thermal radiation Blackbody radiation Bremsstrahlung radiation Recap Lecture + Thomson Scattering Thermal radiation Blackbody radiation Bremsstrahlung radiation LECTURE 1: Constancy of Brightness in Free Space We use now energy conservation: de=i ν 1 da1 d Ω1 dt d

More information

SISD Training Lectures in Spectroscopy

SISD Training Lectures in Spectroscopy SISD Training Lectures in Spectroscopy Anatomy of a Spectrum Visual Spectrum of the Sun Blue Spectrum of the Sun Morphological Features in Spectra λ 2 Line Flux = Fλ dλ λ1 (Units: erg s -1 cm -2 ) Continuum

More information

Phys 322 Lecture 34. Chapter 13. Modern optics. Note: 10 points will be given for attendance today and for the rest of the semester.

Phys 322 Lecture 34. Chapter 13. Modern optics. Note: 10 points will be given for attendance today and for the rest of the semester. Chapter 13 Phys 322 Lecture 34 Modern optics Note: 10 points will be given for attendance today and for the rest of the semester. Presentation schedule Name Topic Date Alip, Abylaikhan lasers Nov. 30th

More information

Blackbody radiation. Main Laws. Brightness temperature. 1. Concepts of a blackbody and thermodynamical equilibrium.

Blackbody radiation. Main Laws. Brightness temperature. 1. Concepts of a blackbody and thermodynamical equilibrium. Lecture 4 lackbody radiation. Main Laws. rightness temperature. Objectives: 1. Concepts of a blackbody, thermodynamical equilibrium, and local thermodynamical equilibrium.. Main laws: lackbody emission:

More information

Atomic Physics 3 ASTR 2110 Sarazin

Atomic Physics 3 ASTR 2110 Sarazin Atomic Physics 3 ASTR 2110 Sarazin Homework #5 Due Wednesday, October 4 due to fall break Test #1 Monday, October 9, 11-11:50 am Ruffner G006 (classroom) You may not consult the text, your notes, or any

More information

Ay121 Problem Set 1. TA: Kathryn Plant. October Some parts are based on solutions by previous TAs Yuguang Chen and Rachel Theios.

Ay121 Problem Set 1. TA: Kathryn Plant. October Some parts are based on solutions by previous TAs Yuguang Chen and Rachel Theios. Ay2 Problem Set TA: Kathryn Plant October 28 Some parts are based on solutions by previous TAs Yuguang Chen and Rachel Theios. Temperatures One point for each part. (a) Since we are observing at MHz and

More information

Assignment 4 Solutions [Revision : 1.4]

Assignment 4 Solutions [Revision : 1.4] Assignment 4 Solutions [Revision : 1.4] Q9.7 We typically see a optical distance τ 2/3 through an opaque medium. Using τ = κρs, for constant κ = 0.03 m 2 kg 1 and ρ = 1.2 kgm 3, gives a physical distance

More information

Lecture 2 Interstellar Absorption Lines: Line Radiative Transfer

Lecture 2 Interstellar Absorption Lines: Line Radiative Transfer Lecture 2 Interstellar Absorption Lines: Line Radiative Transfer 1. Atomic absorption lines 2. Application of radiative transfer to absorption & emission 3. Line broadening & curve of growth 4. Optical/UV

More information

Chapter 7: Quantum Statistics

Chapter 7: Quantum Statistics Part II: Applications SDSMT, Physics 2014 Fall 1 Introduction Photons, E.M. Radiation 2 Blackbody Radiation The Ultraviolet Catastrophe 3 Thermal Quantities of Photon System Total Energy Entropy 4 Radiation

More information

a few more introductory subjects : equilib. vs non-equil. ISM sources and sinks : matter replenishment, and exhaustion Galactic Energetics

a few more introductory subjects : equilib. vs non-equil. ISM sources and sinks : matter replenishment, and exhaustion Galactic Energetics Today : a few more introductory subjects : equilib. vs non-equil. ISM sources and sinks : matter replenishment, and exhaustion Galactic Energetics photo-ionization of HII assoc. w/ OB stars ionization

More information

3 Some Radiation Basics

3 Some Radiation Basics 12 Physics 426 Notes Spring 29 3 Some Radiation Basics In this chapter I ll store some basic tools we need for working with radiation astrophysically. This material comes directly from Rybicki & Lightman

More information

Physics 221 Lecture 31 Line Radiation from Atoms and Molecules March 31, 1999

Physics 221 Lecture 31 Line Radiation from Atoms and Molecules March 31, 1999 Physics 221 Lecture 31 Line Radiation from Atoms and Molecules March 31, 1999 Reading Meyer-Arendt, Ch. 20; Möller, Ch. 15; Yariv, Ch.. Demonstrations Analyzing lineshapes from emission and absorption

More information

[09] Light and Matter (9/26/17)

[09] Light and Matter (9/26/17) 1 [09] Light and Matter (9/26/17) Upcoming Items 1. Homework #4 due now. 2. Midterm #1 on Tuesday, October 10. Ch. 1 6. 3. Read Ch. 5.4 by next class and do the selfstudy quizzes Galileo spacecraft images

More information

Radiation processes and mechanisms in astrophysics I. R Subrahmanyan Notes on ATA lectures at UWA, Perth 18 May 2009

Radiation processes and mechanisms in astrophysics I. R Subrahmanyan Notes on ATA lectures at UWA, Perth 18 May 2009 Radiation processes and mechanisms in astrophysics I R Subrahmanyan Notes on ATA lectures at UWA, Perth 18 May 009 Light of the night sky We learn of the universe around us from EM radiation, neutrinos,

More information

FIBER OPTICS. Prof. R.K. Shevgaonkar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture: 15. Optical Sources-LASER

FIBER OPTICS. Prof. R.K. Shevgaonkar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture: 15. Optical Sources-LASER FIBER OPTICS Prof. R.K. Shevgaonkar Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture: 15 Optical Sources-LASER Fiber Optics, Prof. R.K. Shevgaonkar, Dept. of Electrical

More information

OPTI 511, Spring 2016 Problem Set 9 Prof. R. J. Jones

OPTI 511, Spring 2016 Problem Set 9 Prof. R. J. Jones OPTI 5, Spring 206 Problem Set 9 Prof. R. J. Jones Due Friday, April 29. Absorption and thermal distributions in a 2-level system Consider a collection of identical two-level atoms in thermal equilibrium.

More information

Monte Carlo Radiation Transfer I

Monte Carlo Radiation Transfer I Monte Carlo Radiation Transfer I Monte Carlo Photons and interactions Sampling from probability distributions Optical depths, isotropic emission, scattering Monte Carlo Basics Emit energy packet, hereafter

More information

5. Light-matter interactions: Blackbody radiation

5. Light-matter interactions: Blackbody radiation 5. Light-matter interactions: Blackbody radiation REMINDER: no lecture on Monday Feb. 6th The electromagnetic spectrum Sources of light Boltzmann's Law Blackbody radiation The cosmic microwave background

More information

External (differential) quantum efficiency Number of additional photons emitted / number of additional electrons injected

External (differential) quantum efficiency Number of additional photons emitted / number of additional electrons injected Semiconductor Lasers Comparison with LEDs The light emitted by a laser is generally more directional, more intense and has a narrower frequency distribution than light from an LED. The external efficiency

More information

Order of Magnitude Astrophysics - a.k.a. Astronomy 111. Photon Opacities in Matter

Order of Magnitude Astrophysics - a.k.a. Astronomy 111. Photon Opacities in Matter 1 Order of Magnitude Astrophysics - a.k.a. Astronomy 111 Photon Opacities in Matter If the cross section for the relevant process that scatters or absorbs radiation given by σ and the number density of

More information

TRANSFER OF RADIATION

TRANSFER OF RADIATION TRANSFER OF RADIATION Under LTE Local Thermodynamic Equilibrium) condition radiation has a Planck black body) distribution. Radiation energy density is given as U r,ν = 8πh c 3 ν 3, LTE), tr.1) e hν/kt

More information

Electromagnetic Radiation.

Electromagnetic Radiation. Electromagnetic Radiation http://apod.nasa.gov/apod/astropix.html CLASSICALLY -- ELECTROMAGNETIC RADIATION Classically, an electromagnetic wave can be viewed as a self-sustaining wave of electric and magnetic

More information

Astro 305 Lecture Notes Wayne Hu

Astro 305 Lecture Notes Wayne Hu Astro 305 Lecture Notes Wayne Hu Set 1: Radiative Transfer Radiation Observables From an empiricist s point of view there are 4 observables for radiation Energy Flux Direction Color Polarization Energy

More information

2. Basic assumptions for stellar atmospheres

2. Basic assumptions for stellar atmospheres . Basic assumptions for stellar atmospheres 1. geometry, stationarity. conservation of momentum, mass 3. conservation of energy 4. Local Thermodynamic Equilibrium 1 1. Geometry Stars as gaseous spheres

More information

Chemistry 431. Lecture 1. Introduction Statistical Averaging Electromagnetic Spectrum Black body Radiation. NC State University

Chemistry 431. Lecture 1. Introduction Statistical Averaging Electromagnetic Spectrum Black body Radiation. NC State University Chemistry 431 Lecture 1 Introduction Statistical Averaging Electromagnetic Spectrum Black body Radiation NC State University Overview Quantum Mechanics Failure of classical physics Wave equation Rotational,

More information

Manuel Gonzalez (IRAM) September 14 th Radiative transfer basics

Manuel Gonzalez (IRAM) September 14 th Radiative transfer basics Manuel Gonzalez (IRAM) September 14 th 2013 Radiative transfer basics What is radiation? Introduction Introduction In Astrophysics radiation from the sources can give us very important information: - Spatial

More information

Components of Galaxies Gas The Importance of Gas

Components of Galaxies Gas The Importance of Gas Components of Galaxies Gas The Importance of Gas Fuel for star formation (H 2 ) Tracer of galaxy kinematics/mass (HI) Tracer of dynamical history of interaction between galaxies (HI) The Two-Level Atom

More information

Spontaneous Emission, Stimulated Emission, and Absorption

Spontaneous Emission, Stimulated Emission, and Absorption Chapter Six Spontaneous Emission, Stimulated Emission, and Absorption In this chapter, we review the general principles governing absorption and emission of radiation by absorbers with quantized energy

More information

Addition of Opacities and Absorption

Addition of Opacities and Absorption Addition of Opacities and Absorption If the only way photons could interact was via simple scattering, there would be no blackbodies. We ll go into that in much more detail in the next lecture, but the

More information

Infrared thermography

Infrared thermography Infrared thermography In microwave radiometry hν

More information

Description of radiation field

Description of radiation field Description of radiation field Qualitatively, we know that characterization should involve energy/time frequency all functions of x,t. direction We also now that radiation is not altered by passing through

More information

Preface to the Second Edition. Preface to the First Edition

Preface to the Second Edition. Preface to the First Edition Contents Preface to the Second Edition Preface to the First Edition iii v 1 Introduction 1 1.1 Relevance for Climate and Weather........... 1 1.1.1 Solar Radiation.................. 2 1.1.2 Thermal Infrared

More information

5. Light-matter interactions: Blackbody radiation

5. Light-matter interactions: Blackbody radiation 5. Light-matter interactions: Blackbody radiation The electromagnetic spectrum Sources of light Boltzmann's Law Blackbody radiation why do hot things glow? The cosmic microwave background The electromagnetic

More information

Quantum Electronics/Laser Physics Chapter 4 Line Shapes and Line Widths

Quantum Electronics/Laser Physics Chapter 4 Line Shapes and Line Widths Quantum Electronics/Laser Physics Chapter 4 Line Shapes and Line Widths 4.1 The Natural Line Shape 4.2 Collisional Broadening 4.3 Doppler Broadening 4.4 Einstein Treatment of Stimulated Processes Width

More information

The Light of Your Life. We can see the universe because atoms emit photons

The Light of Your Life. We can see the universe because atoms emit photons The Light of Your Life We can see the universe because atoms emit photons Astronomy is an observational science Our messengers are Light (electromagnetic waves) Gravitational waves Cosmic rays (particles)

More information

ICPY471. November 20, 2017 Udom Robkob, Physics-MUSC

ICPY471. November 20, 2017 Udom Robkob, Physics-MUSC ICPY471 19 Laser Physics and Systems November 20, 2017 Udom Robkob, Physics-MUSC Topics Laser light Stimulated emission Population inversion Laser gain Laser threshold Laser systems Laser Light LASER=

More information

point, corresponding to the area it cuts out: θ = (arc length s) / (radius of the circle r) in radians Babylonians:

point, corresponding to the area it cuts out: θ = (arc length s) / (radius of the circle r) in radians Babylonians: Astronomische Waarneemtechnieken (Astronomical Observing Techniques) 1 st Lecture: 1 September 11 This lecture: Radiometry Radiative transfer Black body radiation Astronomical magnitudes Preface: The Solid

More information

Ay Fall 2004 Lecture 6 (given by Tony Travouillon)

Ay Fall 2004 Lecture 6 (given by Tony Travouillon) Ay 122 - Fall 2004 Lecture 6 (given by Tony Travouillon) Stellar atmospheres, classification of stellar spectra (Many slides c/o Phil Armitage) Formation of spectral lines: 1.excitation Two key questions:

More information

CHAPTER 27. Continuum Emission Mechanisms

CHAPTER 27. Continuum Emission Mechanisms CHAPTER 27 Continuum Emission Mechanisms Continuum radiation is any radiation that forms a continuous spectrum and is not restricted to a narrow frequency range. In what follows we briefly describe five

More information

Laser Types Two main types depending on time operation Continuous Wave (CW) Pulsed operation Pulsed is easier, CW more useful

Laser Types Two main types depending on time operation Continuous Wave (CW) Pulsed operation Pulsed is easier, CW more useful What Makes a Laser Light Amplification by Stimulated Emission of Radiation Main Requirements of the Laser Laser Gain Medium (provides the light amplification) Optical Resonator Cavity (greatly increase

More information

THREE MAIN LIGHT MATTER INTERRACTION

THREE MAIN LIGHT MATTER INTERRACTION Chapters: 3and 4 THREE MAIN LIGHT MATTER INTERRACTION Absorption: converts radiative energy into internal energy Emission: converts internal energy into radiative energy Scattering; Radiative energy is

More information

Review from last class:

Review from last class: Review from last class: Properties of photons Flux and luminosity, apparent magnitude and absolute magnitude, colors Spectroscopic observations. Doppler s effect and applications Distance measurements

More information

II. HII Regions (Ionization State)

II. HII Regions (Ionization State) 1 AY230-HIIReg II. HII Regions (Ionization State) A. Motivations Theoretical: HII regions are intamitely linked with past, current and future starforming regions in galaxies. To build theories of star-formation

More information

Astro 201 Radiative Processes Solution Set 1. by Roger O Brient and Eugene Chiang

Astro 201 Radiative Processes Solution Set 1. by Roger O Brient and Eugene Chiang Astro 21 Radiative Processes Solution Set 1 by Roger O Brient and Eugene Chiang Readings: Rybicki & Lightman Chapter 1 except the last section 1.8. Problem 1. Blackbody Flux Derive the blackbody flux formula

More information

Chapter 9: Quantization of Light

Chapter 9: Quantization of Light Chapter 9: Quantization of Light Max Planck started the revolution of quantum theory by challenging the classical physics and the classical wave theory of light. He proposed the concept of quantization

More information

The term "black body" was introduced by Gustav Kirchhoff in The light emitted by a black body is called black-body radiation.

The term black body was introduced by Gustav Kirchhoff in The light emitted by a black body is called black-body radiation. Black body (Redirected from Black-body radiation) As the temperature decreases, the peak of the black body radiation curve moves to lower intensities and longer wavelengths. The black-body radiation graph

More information

Set 3: Thermal Physics

Set 3: Thermal Physics Set 3: Thermal Physics Equilibrium Thermal physics describes the equilibrium distribution of particles for a medium at temperature T Expect that the typical energy of a particle by equipartition is E kt,

More information

Theory of optically thin emission line spectroscopy

Theory of optically thin emission line spectroscopy Theory of optically thin emission line spectroscopy 1 Important definitions In general the spectrum of a source consists of a continuum and several line components. Processes which give raise to the continuous

More information

2. Basic assumptions for stellar atmospheres

2. Basic assumptions for stellar atmospheres . Basic assumptions for stellar atmospheres 1. geometry, stationarity. conservation of momentum, mass 3. conservation of energy 4. Local Thermodynamic Equilibrium 1 1. Geometry Stars as gaseous spheres

More information

PHYS 231 Lecture Notes Week 3

PHYS 231 Lecture Notes Week 3 PHYS 231 Lecture Notes Week 3 Reading from Maoz (2 nd edition): Chapter 2, Sec. 3.1, 3.2 A lot of the material presented in class this week is well covered in Maoz, and we simply reference the book, with

More information

Thermal Bremsstrahlung

Thermal Bremsstrahlung Thermal Bremsstrahlung ''Radiation due to the acceleration of a charge in the Coulomb field of another charge is called bremsstrahlung or free-free emission A full understanding of the process requires

More information