Tail probability of linear combinations of chi-square variables and its application to influence analysis in QTL detection

Size: px
Start display at page:

Download "Tail probability of linear combinations of chi-square variables and its application to influence analysis in QTL detection"

Transcription

1 Tail probability of linear combinations of chi-square variables and its application to influence analysis in QTL detection Satoshi Kuriki and Xiaoling Dou (Inst. Statist. Math., Tokyo) ISM Cooperative Research Symposium: Extreme value theory and applications Fri 7 July, 01 1 / 3

2 Contents of talk 1. Some theoretical results. Application to the statistical genetics. Summary / 3

3 1. Some theoretical results 3 / 3

4 Quadratic form of a Gaussian vector Canonical form: T = n a i ξi, i=1 ξ i N(0, 1) i.i.d. Note that: ai s are not necessarily positive. Some of a i s take the same values. Our purpose is to obtain the tail probability: F (x) = Pr(T > x) (x ) We propose a PP-plot for this tail probability. For the case where the numbers of the same a i s are all even, i.e., T is a linear combination of chi-square distributions with d.f., see Imhof (1961, Biometrika). 4 / 3

5 The case where a i s are positive Proposition 1 Let a 1 = = a m > a m+1 a n > 0. Then, ( n ) F (x) = Pr a i ξi > x i=1 Pr (χ m > x ) a 1 i m+1 ( 1 a ) i 1 a 1 (x ) Note that Pr ( χ m > x ) 1 m 1 Γ( m 1 e x (x ) )xm For m = 1, e.g., Beran (1975, AS) 5 / 3

6 An intuitive explanation of Proposition 1 Let a 1 = = a m (= 1) > a m+1 a n > 0 for simplicity. We want to prove F (x) C Γ( m 1 e x (x ) )xm where Equivalently C = 1 m 1 e x F (x) i m+1 (1 a i ) 1 C Γ( m )xm 1 (x ) By Tauberian theorem, it suffices to show that 0 e sx e x F (x)dx Cs m (s 0) if the regularity condition (ultimate monotonicity) is ensured. 6 / 3

7 An intuitive explanation of Proposition 1 (contd) By integration by parts, LHS = e (s 1 )x F (x)dx 0 = 1 [ s 1 e (s 1 )x F (x) + 0 = 1 φ(s 1 ) s 1, φ(s) = Actually, in our case, 0 0 ] e (s 1 )x df (x) e sx df (x) φ(s) = E [ e s P ] a i ξi = (1 + sai ) 1, and LHS = 1 {1 + (s 1 )} m i m+1 (1 + (s 1 )a i) 1 s 1 s m m 1 a i ) i m+1(1 1 = Cs m = RHS (s 0) 7 / 3

8 An approach to prove Proposition 1 Recall that T = n a i ξi, i=1 ξ i N(0, 1) i.i.d. Define a Gaussian process on S n 1 (the set of unit vectors in R n ) by Z(h) = n h i ai ξ i, h = (h i ) S n 1. i=1 Then, max Z(h) = T. h S n 1 Various methods for approximating the tail probability of the maximum of a Gaussian process are applicable. 8 / 3

9 An approach to prove Proposition 1 (contd) One approach is Euler-characteristic heuristic (volume-of-tube method) is ( ) Pr max Z(h) x E[χ(A x )] (x ) h Sn 1 where A x = { h S n 1 Z(h) x } (excursion set) χ( ): Euler characteristic. Thanks to Morse s theorem (see, e.g., Worsley, 1995; K & Takemura, 009), [ E[χ(A x )] = 1(Z(h) x) det ( Z(h) ) ] Ż(h) = 0 S n 1 E θ(0) ds n 1 (h) where θ(0) is the density function of Ż(h) evaluated at Ż(h) = 0. Details are omitted. 9 / 3

10 The case where a i s are not necessarily positive Proposition Let a 1 = = a m > a m+1 a n >. Then, ( n ) F (x) = Pr a i ξi > x i=1 Pr (χ m > x ) a 1 i m+1 ( 1 a ) i 1 a 1 (x ) Note that Pr ( χ m > x ) 1 m 1 Γ( m 1 e x (x ) )xm Of the same form as Proposition / 3

11 Proof of Proposition Assume that a 1 = = a m > a m+1 > 0 > b m +1 > b m = = b 1 Let We evaluate T = a i ξ i b j ξ j =: Y Z F (x) = Pr(T > x) = E Z [Pr(Y Z > x Z)] = E Z [ F Y (x+z)] where F Y (x) = Pr(Y > x) Lemma Let Z be a nonnegative r.v. If F 1 (x) F (x) (x ), then E Z [ F 1 (x + Z)] E Z [ F (x + Z)]. 11 / 3

12 Proof of Proposition (contd) Applying Lemma together with the result of Proposition 1 (D 1 m F Y (x) D m x m 1 e x a 1 = (a 1 ) m 1 Γ( m )), we have i m+1 ( 1 a ) i 1 a 1 F (x) D m e x a 1 E Z[ (x + Z) m 1 e Z a 1 ] D m e x a 1 x m 1 E Z[ e Z a 1 ] i m+1 Pr (χ m > x ) ( 1 + b ) j 1 a 1 a 1 j 1 i m+1 ( 1 a ) i 1 a 1 ( 1 a ) i 1 a 1 i m+1 ( 1 a ) i 1 a 1 1 / 3

13 Example Double exponential distribution: On the other hand, f(x) = 1 e x { 1 F (x) = e x (x 0) 1 1 e x (x < 0) T =Y Z, Y, Z Exp(1) 4 ( 1 = a i ξi, (a i ) =, 1, 1 ), 1, i=1 ( F (x) Pr χ > ( x ) ) (1 ( 1/) ) 1/ (1/) = 1 e x (x ) 13 / 3

14 PP-plot Let Assume that X 1,..., X N L( λi ξ i ) i.i.d. λ max = max λ i > 0 > λ min = min λ i, the multiplicities of max λ i and min λ i are 1. The order statistics X (1) < < X (N) 14 / 3

15 PP-plot (contd) PP-plot: ( ( X(i) ) log Ḡ1 + log ( 1 λ ) ( i, log 1 i ) ) λ max λ max N + 1 i max for i such that X (i) > 0 ( ( X(i) ) log Ḡ1 log ( 1 λ ) ( i, log 1 i ) ) λ min λ min N + 1 where Ḡ1(x) = Pr ( χ 1 > x) i min for i such that X (i) < 0 15 / 3

16 . Application to the influence analysis in QTL detection 16 / 3

17 What is QTL analysis? N individuals (e.g., mice) data: # phenotype genotype 1 y 1 z i1,..., z 1M.. i y i z i1,..., z im.. N y N z N1,..., z NM Phenotype y i : The measurement of interesting feature of individual i. Genotype z ij : The type of gene at the locus j of individual i. Purpose of the analysis: To identify j (index of loci) such that z ij is highly correlated to y i. Such locus j is called QTL. 17 / 3

18 LOD Score 5 4 LOD Test positions on the chromosomes H j (QTL at j) : y i N(µ + αz ij, σ ) H 0 (no QTL) : y i N(µ, σ ) LOD(j) = const log σ (H 0 ) σ (H j ) (LRT H 0 vs. H j ) 18 / 3

19 Influence function Empirical influence function of LOD(j) for the individual i (Dou, et al., 01): { ε i (H0 ) EIF i (j) = const σ (H ε } i (H j ) 0 ) σ (H j ) where ε i (Hj ) =y i µ (Hj ) α (Hj )z ij ε i (H0 ) =y i µ (H0 ) are residuals under H j and H 0. EIF of the weighted LOD score j J c jlod(j): c j EIF i (j) (Weighted EIF) j J Available for detecting individuals that affect the shape of LOD score specified by the coefficients (c i ). 19 / 3

20 Influence function (contd) (c j ) = (1.04,.356, 1.314) Weighted EIF ( ) Index We want to make sure whether No. 60 mouse is influential. 0 / 3

21 Influence function (contd) Approximation: Suppose that in { ε i (H0 ) EIF i (j) = const σ (H ε } i (H j ) 0 ) σ (H, j ) ε (Hj ) and ε (H0 ) are Gaussian random variables, and σ (H j ), σ (H 0 ) are constants. Then, c j EIF i (j) d a j ξj, ξ j N(0, 1) j J j J (a j ) = (16.143,.69, ) 1 / 3

22 PP-plot The PP-plot suggests that No. 60 is influential. q.y q.x / 3

23 Concluding remarks In Propositions 1 and, we provide the upper tail probability formula for a linear combination of chi-square random variables (a quadratic form of a Gaussian vector). We applied PP-plot to the influence analysis in QTL detection. We want to extend our result to the case where the number n of terms in T is infinite. Acknowledgment: The authors thank Hsien-Kuei Hwang for his comments on the original version of slides. 3 / 3

Tube formula approach to testing multivariate normality and testing uniformity on the sphere

Tube formula approach to testing multivariate normality and testing uniformity on the sphere Tube formula approach to testing multivariate normality and testing uniformity on the sphere Akimichi Takemura 1 Satoshi Kuriki 2 1 University of Tokyo 2 Institute of Statistical Mathematics December 11,

More information

Anderson-Darling Type Goodness-of-fit Statistic Based on a Multifold Integrated Empirical Distribution Function

Anderson-Darling Type Goodness-of-fit Statistic Based on a Multifold Integrated Empirical Distribution Function Anderson-Darling Type Goodness-of-fit Statistic Based on a Multifold Integrated Empirical Distribution Function S. Kuriki (Inst. Stat. Math., Tokyo) and H.-K. Hwang (Academia Sinica) Bernoulli Society

More information

Association studies and regression

Association studies and regression Association studies and regression CM226: Machine Learning for Bioinformatics. Fall 2016 Sriram Sankararaman Acknowledgments: Fei Sha, Ameet Talwalkar Association studies and regression 1 / 104 Administration

More information

Extreme Value Theory and Applications. Abstracts

Extreme Value Theory and Applications. Abstracts The Institute of Statistical Mathematics Cooperative Research Symposium 2012 Extreme Value Theory and Applications Abstracts 26th(Thu.)12:45-28th(Sat.)12:15 July, 2012 The Institute of Statistical Mathematics,

More information

2 Functions of random variables

2 Functions of random variables 2 Functions of random variables A basic statistical model for sample data is a collection of random variables X 1,..., X n. The data are summarised in terms of certain sample statistics, calculated as

More information

where r n = dn+1 x(t)

where r n = dn+1 x(t) Random Variables Overview Probability Random variables Transforms of pdfs Moments and cumulants Useful distributions Random vectors Linear transformations of random vectors The multivariate normal distribution

More information

Introduction to QTL mapping in model organisms

Introduction to QTL mapping in model organisms Introduction to QTL mapping in model organisms Karl W Broman Department of Biostatistics and Medical Informatics University of Wisconsin Madison www.biostat.wisc.edu/~kbroman [ Teaching Miscellaneous lectures]

More information

Economics 520. Lecture Note 19: Hypothesis Testing via the Neyman-Pearson Lemma CB 8.1,

Economics 520. Lecture Note 19: Hypothesis Testing via the Neyman-Pearson Lemma CB 8.1, Economics 520 Lecture Note 9: Hypothesis Testing via the Neyman-Pearson Lemma CB 8., 8.3.-8.3.3 Uniformly Most Powerful Tests and the Neyman-Pearson Lemma Let s return to the hypothesis testing problem

More information

Introduction to QTL mapping in model organisms

Introduction to QTL mapping in model organisms Introduction to QTL mapping in model organisms Karl Broman Biostatistics and Medical Informatics University of Wisconsin Madison kbroman.org github.com/kbroman @kwbroman Backcross P 1 P 2 P 1 F 1 BC 4

More information

Multiple Random Variables

Multiple Random Variables Multiple Random Variables Joint Probability Density Let X and Y be two random variables. Their joint distribution function is F ( XY x, y) P X x Y y. F XY ( ) 1, < x

More information

Mapping multiple QTL in experimental crosses

Mapping multiple QTL in experimental crosses Human vs mouse Mapping multiple QTL in experimental crosses Karl W Broman Department of Biostatistics & Medical Informatics University of Wisconsin Madison www.biostat.wisc.edu/~kbroman www.daviddeen.com

More information

Introduction to QTL mapping in model organisms

Introduction to QTL mapping in model organisms Human vs mouse Introduction to QTL mapping in model organisms Karl W Broman Department of Biostatistics Johns Hopkins University www.biostat.jhsph.edu/~kbroman [ Teaching Miscellaneous lectures] www.daviddeen.com

More information

for all subintervals I J. If the same is true for the dyadic subintervals I D J only, we will write ϕ BMO d (J). In fact, the following is true

for all subintervals I J. If the same is true for the dyadic subintervals I D J only, we will write ϕ BMO d (J). In fact, the following is true 3 ohn Nirenberg inequality, Part I A function ϕ L () belongs to the space BMO() if sup ϕ(s) ϕ I I I < for all subintervals I If the same is true for the dyadic subintervals I D only, we will write ϕ BMO

More information

Multiple QTL mapping

Multiple QTL mapping Multiple QTL mapping Karl W Broman Department of Biostatistics Johns Hopkins University www.biostat.jhsph.edu/~kbroman [ Teaching Miscellaneous lectures] 1 Why? Reduce residual variation = increased power

More information

Brownian survival and Lifshitz tail in perturbed lattice disorder

Brownian survival and Lifshitz tail in perturbed lattice disorder Brownian survival and Lifshitz tail in perturbed lattice disorder Ryoki Fukushima Kyoto niversity Random Processes and Systems February 16, 2009 6 B T 1. Model ) ({B t t 0, P x : standard Brownian motion

More information

Lecture 1: August 28

Lecture 1: August 28 36-705: Intermediate Statistics Fall 2017 Lecturer: Siva Balakrishnan Lecture 1: August 28 Our broad goal for the first few lectures is to try to understand the behaviour of sums of independent random

More information

4 Integration 4.1 Integration of non-negative simple functions

4 Integration 4.1 Integration of non-negative simple functions 4 Integration 4.1 Integration of non-negative simple functions Throughout we are in a measure space (X, F, µ). Definition Let s be a non-negative F-measurable simple function so that s a i χ Ai, with disjoint

More information

Better Bootstrap Confidence Intervals

Better Bootstrap Confidence Intervals by Bradley Efron University of Washington, Department of Statistics April 12, 2012 An example Suppose we wish to make inference on some parameter θ T (F ) (e.g. θ = E F X ), based on data We might suppose

More information

A Brief Analysis of Central Limit Theorem. SIAM Chapter Florida State University

A Brief Analysis of Central Limit Theorem. SIAM Chapter Florida State University 1 / 36 A Brief Analysis of Central Limit Theorem Omid Khanmohamadi (okhanmoh@math.fsu.edu) Diego Hernán Díaz Martínez (ddiazmar@math.fsu.edu) Tony Wills (twills@math.fsu.edu) Kouadio David Yao (kyao@math.fsu.edu)

More information

1 Complete Statistics

1 Complete Statistics Complete Statistics February 4, 2016 Debdeep Pati 1 Complete Statistics Suppose X P θ, θ Θ. Let (X (1),..., X (n) ) denote the order statistics. Definition 1. A statistic T = T (X) is complete if E θ g(t

More information

LECTURE 5: THE METHOD OF STATIONARY PHASE

LECTURE 5: THE METHOD OF STATIONARY PHASE LECTURE 5: THE METHOD OF STATIONARY PHASE Some notions.. A crash course on Fourier transform For j =,, n, j = x j. D j = i j. For any multi-index α = (α,, α n ) N n. α = α + + α n. α! = α! α n!. x α =

More information

Gaussian vectors and central limit theorem

Gaussian vectors and central limit theorem Gaussian vectors and central limit theorem Samy Tindel Purdue University Probability Theory 2 - MA 539 Samy T. Gaussian vectors & CLT Probability Theory 1 / 86 Outline 1 Real Gaussian random variables

More information

Stat 451 Lecture Notes Numerical Integration

Stat 451 Lecture Notes Numerical Integration Stat 451 Lecture Notes 03 12 Numerical Integration Ryan Martin UIC www.math.uic.edu/~rgmartin 1 Based on Chapter 5 in Givens & Hoeting, and Chapters 4 & 18 of Lange 2 Updated: February 11, 2016 1 / 29

More information

Similar to sequence, note that a series converges if and only if its tail converges, that is, r 1 r ( 1 < r < 1), ( 1) k k. r k =

Similar to sequence, note that a series converges if and only if its tail converges, that is, r 1 r ( 1 < r < 1), ( 1) k k. r k = Infinite Series We say an infinite series a k converges to s if its sequence of initial sums converges to s, that is, lim( n a k : n N) = s. Similar to sequence, note that a series converges if and only

More information

Solution Set for Homework #1

Solution Set for Homework #1 CS 683 Spring 07 Learning, Games, and Electronic Markets Solution Set for Homework #1 1. Suppose x and y are real numbers and x > y. Prove that e x > ex e y x y > e y. Solution: Let f(s = e s. By the mean

More information

R/qtl workshop. (part 2) Karl Broman. Biostatistics and Medical Informatics University of Wisconsin Madison. kbroman.org

R/qtl workshop. (part 2) Karl Broman. Biostatistics and Medical Informatics University of Wisconsin Madison. kbroman.org R/qtl workshop (part 2) Karl Broman Biostatistics and Medical Informatics University of Wisconsin Madison kbroman.org github.com/kbroman @kwbroman Example Sugiyama et al. Genomics 71:70-77, 2001 250 male

More information

Basic Math Review for CS4830

Basic Math Review for CS4830 Basic Math Review for CS4830 Dr. Mihail August 18, 2016 (Dr. Mihail) Math Review for CS4830 August 18, 2016 1 / 35 Sets Definition of a set A set is a collection of distinct objects, considered as an object

More information

Lecture 9. QTL Mapping 2: Outbred Populations

Lecture 9. QTL Mapping 2: Outbred Populations Lecture 9 QTL Mapping 2: Outbred Populations Bruce Walsh. Aug 2004. Royal Veterinary and Agricultural University, Denmark The major difference between QTL analysis using inbred-line crosses vs. outbred

More information

Formulas for probability theory and linear models SF2941

Formulas for probability theory and linear models SF2941 Formulas for probability theory and linear models SF2941 These pages + Appendix 2 of Gut) are permitted as assistance at the exam. 11 maj 2008 Selected formulae of probability Bivariate probability Transforms

More information

Chapter 9: Hypothesis Testing Sections

Chapter 9: Hypothesis Testing Sections Chapter 9: Hypothesis Testing Sections 9.1 Problems of Testing Hypotheses 9.2 Testing Simple Hypotheses 9.3 Uniformly Most Powerful Tests Skip: 9.4 Two-Sided Alternatives 9.6 Comparing the Means of Two

More information

Mapping QTL to a phylogenetic tree

Mapping QTL to a phylogenetic tree Mapping QTL to a phylogenetic tree Karl W Broman Department of Biostatistics & Medical Informatics University of Wisconsin Madison www.biostat.wisc.edu/~kbroman Human vs mouse www.daviddeen.com 3 Intercross

More information

Infinitely iterated Brownian motion

Infinitely iterated Brownian motion Mathematics department Uppsala University (Joint work with Nicolas Curien) This talk was given in June 2013, at the Mittag-Leffler Institute in Stockholm, as part of the Symposium in honour of Olav Kallenberg

More information

Mapping multiple QTL in experimental crosses

Mapping multiple QTL in experimental crosses Mapping multiple QTL in experimental crosses Karl W Broman Department of Biostatistics and Medical Informatics University of Wisconsin Madison www.biostat.wisc.edu/~kbroman [ Teaching Miscellaneous lectures]

More information

Chapter 2 Continuous Distributions

Chapter 2 Continuous Distributions Chapter Continuous Distributions Continuous random variables For a continuous random variable X the probability distribution is described by the probability density function f(x), which has the following

More information

EEL 5544 Noise in Linear Systems Lecture 30. X (s) = E [ e sx] f X (x)e sx dx. Moments can be found from the Laplace transform as

EEL 5544 Noise in Linear Systems Lecture 30. X (s) = E [ e sx] f X (x)e sx dx. Moments can be found from the Laplace transform as L30-1 EEL 5544 Noise in Linear Systems Lecture 30 OTHER TRANSFORMS For a continuous, nonnegative RV X, the Laplace transform of X is X (s) = E [ e sx] = 0 f X (x)e sx dx. For a nonnegative RV, the Laplace

More information

Quantitative Introduction ro Risk and Uncertainty in Business Module 5: Hypothesis Testing

Quantitative Introduction ro Risk and Uncertainty in Business Module 5: Hypothesis Testing Quantitative Introduction ro Risk and Uncertainty in Business Module 5: Hypothesis Testing M. Vidyasagar Cecil & Ida Green Chair The University of Texas at Dallas Email: M.Vidyasagar@utdallas.edu October

More information

Composite Hypotheses and Generalized Likelihood Ratio Tests

Composite Hypotheses and Generalized Likelihood Ratio Tests Composite Hypotheses and Generalized Likelihood Ratio Tests Rebecca Willett, 06 In many real world problems, it is difficult to precisely specify probability distributions. Our models for data may involve

More information

Introduction to QTL mapping in model organisms

Introduction to QTL mapping in model organisms Introduction to QTL mapping in model organisms Karl W Broman Department of Biostatistics Johns Hopkins University kbroman@jhsph.edu www.biostat.jhsph.edu/ kbroman Outline Experiments and data Models ANOVA

More information

Lecture 15. Hypothesis testing in the linear model

Lecture 15. Hypothesis testing in the linear model 14. Lecture 15. Hypothesis testing in the linear model Lecture 15. Hypothesis testing in the linear model 1 (1 1) Preliminary lemma 15. Hypothesis testing in the linear model 15.1. Preliminary lemma Lemma

More information

Completeness. On the other hand, the distribution of an ancillary statistic doesn t depend on θ at all.

Completeness. On the other hand, the distribution of an ancillary statistic doesn t depend on θ at all. Completeness A minimal sufficient statistic achieves the maximum amount of data reduction while retaining all the information the sample has concerning θ. On the other hand, the distribution of an ancillary

More information

A Probability Review

A Probability Review A Probability Review Outline: A probability review Shorthand notation: RV stands for random variable EE 527, Detection and Estimation Theory, # 0b 1 A Probability Review Reading: Go over handouts 2 5 in

More information

Institute of Actuaries of India

Institute of Actuaries of India Institute of Actuaries of India Subject CT3 Probability & Mathematical Statistics May 2011 Examinations INDICATIVE SOLUTION Introduction The indicative solution has been written by the Examiners with the

More information

Probability Background

Probability Background Probability Background Namrata Vaswani, Iowa State University August 24, 2015 Probability recap 1: EE 322 notes Quick test of concepts: Given random variables X 1, X 2,... X n. Compute the PDF of the second

More information

Quantitative trait evolution with mutations of large effect

Quantitative trait evolution with mutations of large effect Quantitative trait evolution with mutations of large effect May 1, 2014 Quantitative traits Traits that vary continuously in populations - Mass - Height - Bristle number (approx) Adaption - Low oxygen

More information

Application of tube formula to distributional problems in multiway layouts

Application of tube formula to distributional problems in multiway layouts Application of tube formula to distributional problems in multiway layouts Satoshi Kuriki Institute of Statistical Mathematics and Akimichi Takemura Graduate School of Information Science and Technology

More information

Generalization Bounds in Machine Learning. Presented by: Afshin Rostamizadeh

Generalization Bounds in Machine Learning. Presented by: Afshin Rostamizadeh Generalization Bounds in Machine Learning Presented by: Afshin Rostamizadeh Outline Introduction to generalization bounds. Examples: VC-bounds Covering Number bounds Rademacher bounds Stability bounds

More information

Tutorial Session 2. MCMC for the analysis of genetic data on pedigrees:

Tutorial Session 2. MCMC for the analysis of genetic data on pedigrees: MCMC for the analysis of genetic data on pedigrees: Tutorial Session 2 Elizabeth Thompson University of Washington Genetic mapping and linkage lod scores Monte Carlo likelihood and likelihood ratio estimation

More information

Estimation of the Bivariate and Marginal Distributions with Censored Data

Estimation of the Bivariate and Marginal Distributions with Censored Data Estimation of the Bivariate and Marginal Distributions with Censored Data Michael Akritas and Ingrid Van Keilegom Penn State University and Eindhoven University of Technology May 22, 2 Abstract Two new

More information

One-week Course on Genetic Analysis and Plant Breeding January 2013, CIMMYT, Mexico LOD Threshold and QTL Detection Power Simulation

One-week Course on Genetic Analysis and Plant Breeding January 2013, CIMMYT, Mexico LOD Threshold and QTL Detection Power Simulation One-week Course on Genetic Analysis and Plant Breeding 21-2 January 213, CIMMYT, Mexico LOD Threshold and QTL Detection Power Simulation Jiankang Wang, CIMMYT China and CAAS E-mail: jkwang@cgiar.org; wangjiankang@caas.cn

More information

Reduction of Variance. Importance Sampling

Reduction of Variance. Importance Sampling Reduction of Variance As we discussed earlier, the statistical error goes as: error = sqrt(variance/computer time). DEFINE: Efficiency = = 1/vT v = error of mean and T = total CPU time How can you make

More information

False discovery rate control for non-positively regression dependent test statistics

False discovery rate control for non-positively regression dependent test statistics Journal of Statistical Planning and Inference ( ) www.elsevier.com/locate/jspi False discovery rate control for non-positively regression dependent test statistics Daniel Yekutieli Department of Statistics

More information

1. Stochastic Processes and filtrations

1. Stochastic Processes and filtrations 1. Stochastic Processes and 1. Stoch. pr., A stochastic process (X t ) t T is a collection of random variables on (Ω, F) with values in a measurable space (S, S), i.e., for all t, In our case X t : Ω S

More information

DS-GA 1002 Lecture notes 2 Fall Random variables

DS-GA 1002 Lecture notes 2 Fall Random variables DS-GA 12 Lecture notes 2 Fall 216 1 Introduction Random variables Random variables are a fundamental tool in probabilistic modeling. They allow us to model numerical quantities that are uncertain: the

More information

1 Probability Model. 1.1 Types of models to be discussed in the course

1 Probability Model. 1.1 Types of models to be discussed in the course Sufficiency January 18, 016 Debdeep Pati 1 Probability Model Model: A family of distributions P θ : θ Θ}. P θ (B) is the probability of the event B when the parameter takes the value θ. P θ is described

More information

Introduction to QTL mapping in model organisms

Introduction to QTL mapping in model organisms Introduction to QTL mapping in model organisms Karl W Broman Department of Biostatistics Johns Hopkins University kbroman@jhsph.edu www.biostat.jhsph.edu/ kbroman Outline Experiments and data Models ANOVA

More information

Basic Math Review for CS1340

Basic Math Review for CS1340 Basic Math Review for CS1340 Dr. Mihail January 15, 2015 (Dr. Mihail) Math Review for CS1340 January 15, 2015 1 / 34 Sets Definition of a set A set is a collection of distinct objects, considered as an

More information

10. Composite Hypothesis Testing. ECE 830, Spring 2014

10. Composite Hypothesis Testing. ECE 830, Spring 2014 10. Composite Hypothesis Testing ECE 830, Spring 2014 1 / 25 In many real world problems, it is difficult to precisely specify probability distributions. Our models for data may involve unknown parameters

More information

ECE 275B Homework # 1 Solutions Version Winter 2015

ECE 275B Homework # 1 Solutions Version Winter 2015 ECE 275B Homework # 1 Solutions Version Winter 2015 1. (a) Because x i are assumed to be independent realizations of a continuous random variable, it is almost surely (a.s.) 1 the case that x 1 < x 2

More information

Order Statistics and Distributions

Order Statistics and Distributions Order Statistics and Distributions 1 Some Preliminary Comments and Ideas In this section we consider a random sample X 1, X 2,..., X n common continuous distribution function F and probability density

More information

Integration of Rational Functions by Partial Fractions

Integration of Rational Functions by Partial Fractions Title Integration of Rational Functions by MATH 1700 MATH 1700 1 / 11 Readings Readings Readings: Section 7.4 MATH 1700 2 / 11 Rational functions A rational function is one of the form where P and Q are

More information

Overview. Background

Overview. Background Overview Implementation of robust methods for locating quantitative trait loci in R Introduction to QTL mapping Andreas Baierl and Andreas Futschik Institute of Statistics and Decision Support Systems

More information

MAS223 Statistical Inference and Modelling Exercises

MAS223 Statistical Inference and Modelling Exercises MAS223 Statistical Inference and Modelling Exercises The exercises are grouped into sections, corresponding to chapters of the lecture notes Within each section exercises are divided into warm-up questions,

More information

Proportional Variance Explained by QLT and Statistical Power. Proportional Variance Explained by QTL and Statistical Power

Proportional Variance Explained by QLT and Statistical Power. Proportional Variance Explained by QTL and Statistical Power Proportional Variance Explained by QTL and Statistical Power Partitioning the Genetic Variance We previously focused on obtaining variance components of a quantitative trait to determine the proportion

More information

Qualifying Exam CS 661: System Simulation Summer 2013 Prof. Marvin K. Nakayama

Qualifying Exam CS 661: System Simulation Summer 2013 Prof. Marvin K. Nakayama Qualifying Exam CS 661: System Simulation Summer 2013 Prof. Marvin K. Nakayama Instructions This exam has 7 pages in total, numbered 1 to 7. Make sure your exam has all the pages. This exam will be 2 hours

More information

Mean-field dual of cooperative reproduction

Mean-field dual of cooperative reproduction The mean-field dual of systems with cooperative reproduction joint with Tibor Mach (Prague) A. Sturm (Göttingen) Friday, July 6th, 2018 Poisson construction of Markov processes Let (X t ) t 0 be a continuous-time

More information

3. Convex functions. basic properties and examples. operations that preserve convexity. the conjugate function. quasiconvex functions

3. Convex functions. basic properties and examples. operations that preserve convexity. the conjugate function. quasiconvex functions 3. Convex functions Convex Optimization Boyd & Vandenberghe basic properties and examples operations that preserve convexity the conjugate function quasiconvex functions log-concave and log-convex functions

More information

Terminology Suppose we have N observations {x(n)} N 1. Estimators as Random Variables. {x(n)} N 1

Terminology Suppose we have N observations {x(n)} N 1. Estimators as Random Variables. {x(n)} N 1 Estimation Theory Overview Properties Bias, Variance, and Mean Square Error Cramér-Rao lower bound Maximum likelihood Consistency Confidence intervals Properties of the mean estimator Properties of the

More information

A Pieri-type formula and a factorization formula for K-k-Schur February functions 22, / 37

A Pieri-type formula and a factorization formula for K-k-Schur February functions 22, / 37 A Pieri-type formula and a factorization formula for K-k-Schur functions Motoki TAKIGIKU The University of Tokyo February 22, 2018 A Pieri-type formula and a factorization formula for K-k-Schur February

More information

Bivariate Uniqueness in the Logistic Recursive Distributional Equation

Bivariate Uniqueness in the Logistic Recursive Distributional Equation Bivariate Uniqueness in the Logistic Recursive Distributional Equation Antar Bandyopadhyay Technical Report # 629 University of California Department of Statistics 367 Evans Hall # 3860 Berkeley CA 94720-3860

More information

at time t, in dimension d. The index i varies in a countable set I. We call configuration the family, denoted generically by Φ: U (x i (t) x j (t))

at time t, in dimension d. The index i varies in a countable set I. We call configuration the family, denoted generically by Φ: U (x i (t) x j (t)) Notations In this chapter we investigate infinite systems of interacting particles subject to Newtonian dynamics Each particle is characterized by its position an velocity x i t, v i t R d R d at time

More information

Math 273 (51) - Final

Math 273 (51) - Final Name: Id #: Math 273 (5) - Final Autumn Quarter 26 Thursday, December 8, 26-6: to 8: Instructions: Prob. Points Score possible 25 2 25 3 25 TOTAL 75 Read each problem carefully. Write legibly. Show all

More information

Chapter 3 : Likelihood function and inference

Chapter 3 : Likelihood function and inference Chapter 3 : Likelihood function and inference 4 Likelihood function and inference The likelihood Information and curvature Sufficiency and ancilarity Maximum likelihood estimation Non-regular models EM

More information

Question: If mating occurs at random in the population, what will the frequencies of A 1 and A 2 be in the next generation?

Question: If mating occurs at random in the population, what will the frequencies of A 1 and A 2 be in the next generation? October 12, 2009 Bioe 109 Fall 2009 Lecture 8 Microevolution 1 - selection The Hardy-Weinberg-Castle Equilibrium - consider a single locus with two alleles A 1 and A 2. - three genotypes are thus possible:

More information

Probability and Distributions

Probability and Distributions Probability and Distributions What is a statistical model? A statistical model is a set of assumptions by which the hypothetical population distribution of data is inferred. It is typically postulated

More information

BTRY 4830/6830: Quantitative Genomics and Genetics

BTRY 4830/6830: Quantitative Genomics and Genetics BTRY 4830/6830: Quantitative Genomics and Genetics Lecture 23: Alternative tests in GWAS / (Brief) Introduction to Bayesian Inference Jason Mezey jgm45@cornell.edu Nov. 13, 2014 (Th) 8:40-9:55 Announcements

More information

Econ 2148, fall 2017 Gaussian process priors, reproducing kernel Hilbert spaces, and Splines

Econ 2148, fall 2017 Gaussian process priors, reproducing kernel Hilbert spaces, and Splines Econ 2148, fall 2017 Gaussian process priors, reproducing kernel Hilbert spaces, and Splines Maximilian Kasy Department of Economics, Harvard University 1 / 37 Agenda 6 equivalent representations of the

More information

Integration of Rational Functions by Partial Fractions

Integration of Rational Functions by Partial Fractions Title Integration of Rational Functions by Partial Fractions MATH 1700 December 6, 2016 MATH 1700 Partial Fractions December 6, 2016 1 / 11 Readings Readings Readings: Section 7.4 MATH 1700 Partial Fractions

More information

Appendix for "O shoring in a Ricardian World"

Appendix for O shoring in a Ricardian World Appendix for "O shoring in a Ricardian World" This Appendix presents the proofs of Propositions - 6 and the derivations of the results in Section IV. Proof of Proposition We want to show that Tm L m T

More information

The Quantitative TDT

The Quantitative TDT The Quantitative TDT (Quantitative Transmission Disequilibrium Test) Warren J. Ewens NUS, Singapore 10 June, 2009 The initial aim of the (QUALITATIVE) TDT was to test for linkage between a marker locus

More information

Lecture 11: Probability, Order Statistics and Sampling

Lecture 11: Probability, Order Statistics and Sampling 5-75: Graduate Algorithms February, 7 Lecture : Probability, Order tatistics and ampling Lecturer: David Whitmer cribes: Ilai Deutel, C.J. Argue Exponential Distributions Definition.. Given sample space

More information

Theory of Statistical Tests

Theory of Statistical Tests Ch 9. Theory of Statistical Tests 9.1 Certain Best Tests How to construct good testing. For simple hypothesis H 0 : θ = θ, H 1 : θ = θ, Page 1 of 100 where Θ = {θ, θ } 1. Define the best test for H 0 H

More information

Additive functionals of infinite-variance moving averages. Wei Biao Wu The University of Chicago TECHNICAL REPORT NO. 535

Additive functionals of infinite-variance moving averages. Wei Biao Wu The University of Chicago TECHNICAL REPORT NO. 535 Additive functionals of infinite-variance moving averages Wei Biao Wu The University of Chicago TECHNICAL REPORT NO. 535 Departments of Statistics The University of Chicago Chicago, Illinois 60637 June

More information

Linear DifferentiaL Equation

Linear DifferentiaL Equation Linear DifferentiaL Equation Massoud Malek The set F of all complex-valued functions is known to be a vector space of infinite dimension. Solutions to any linear differential equations, form a subspace

More information

STAT 200C: High-dimensional Statistics

STAT 200C: High-dimensional Statistics STAT 200C: High-dimensional Statistics Arash A. Amini May 30, 2018 1 / 57 Table of Contents 1 Sparse linear models Basis Pursuit and restricted null space property Sufficient conditions for RNS 2 / 57

More information

Large sample covariance matrices and the T 2 statistic

Large sample covariance matrices and the T 2 statistic Large sample covariance matrices and the T 2 statistic EURANDOM, the Netherlands Joint work with W. Zhou Outline 1 2 Basic setting Let {X ij }, i, j =, be i.i.d. r.v. Write n s j = (X 1j,, X pj ) T and

More information

The Multivariate Gaussian Distribution

The Multivariate Gaussian Distribution The Multivariate Gaussian Distribution Chuong B. Do October, 8 A vector-valued random variable X = T X X n is said to have a multivariate normal or Gaussian) distribution with mean µ R n and covariance

More information

Separation of Variables in Linear PDE: One-Dimensional Problems

Separation of Variables in Linear PDE: One-Dimensional Problems Separation of Variables in Linear PDE: One-Dimensional Problems Now we apply the theory of Hilbert spaces to linear differential equations with partial derivatives (PDE). We start with a particular example,

More information

1 Presessional Probability

1 Presessional Probability 1 Presessional Probability Probability theory is essential for the development of mathematical models in finance, because of the randomness nature of price fluctuations in the markets. This presessional

More information

Bayesian decision theory Introduction to Pattern Recognition. Lectures 4 and 5: Bayesian decision theory

Bayesian decision theory Introduction to Pattern Recognition. Lectures 4 and 5: Bayesian decision theory Bayesian decision theory 8001652 Introduction to Pattern Recognition. Lectures 4 and 5: Bayesian decision theory Jussi Tohka jussi.tohka@tut.fi Institute of Signal Processing Tampere University of Technology

More information

conditional cdf, conditional pdf, total probability theorem?

conditional cdf, conditional pdf, total probability theorem? 6 Multiple Random Variables 6.0 INTRODUCTION scalar vs. random variable cdf, pdf transformation of a random variable conditional cdf, conditional pdf, total probability theorem expectation of a random

More information

Econ 508B: Lecture 5

Econ 508B: Lecture 5 Econ 508B: Lecture 5 Expectation, MGF and CGF Hongyi Liu Washington University in St. Louis July 31, 2017 Hongyi Liu (Washington University in St. Louis) Math Camp 2017 Stats July 31, 2017 1 / 23 Outline

More information

ECE 275B Homework # 1 Solutions Winter 2018

ECE 275B Homework # 1 Solutions Winter 2018 ECE 275B Homework # 1 Solutions Winter 2018 1. (a) Because x i are assumed to be independent realizations of a continuous random variable, it is almost surely (a.s.) 1 the case that x 1 < x 2 < < x n Thus,

More information

Review of Mathematical Concepts. Hongwei Zhang

Review of Mathematical Concepts. Hongwei Zhang Review of Mathematical Concepts Hongwei Zhang http://www.cs.wayne.edu/~hzhang Outline Limits of real number sequences A fixed-point theorem Probability and random processes Probability model Random variable

More information

Random Bernstein-Markov factors

Random Bernstein-Markov factors Random Bernstein-Markov factors Igor Pritsker and Koushik Ramachandran October 20, 208 Abstract For a polynomial P n of degree n, Bernstein s inequality states that P n n P n for all L p norms on the unit

More information

McGill University. Faculty of Science MATH 204 PRINCIPLES OF STATISTICS II. Final Examination

McGill University. Faculty of Science MATH 204 PRINCIPLES OF STATISTICS II. Final Examination McGill University Faculty of Science MATH 204 PRINCIPLES OF STATISTICS II Final Examination Date: 20th April 2009 Time: 9am-2pm Examiner: Dr David A Stephens Associate Examiner: Dr Russell Steele Please

More information

Unbiased Estimation. Binomial problem shows general phenomenon. An estimator can be good for some values of θ and bad for others.

Unbiased Estimation. Binomial problem shows general phenomenon. An estimator can be good for some values of θ and bad for others. Unbiased Estimation Binomial problem shows general phenomenon. An estimator can be good for some values of θ and bad for others. To compare ˆθ and θ, two estimators of θ: Say ˆθ is better than θ if it

More information

Evgeny Spodarev WIAS, Berlin. Limit theorems for excursion sets of stationary random fields

Evgeny Spodarev WIAS, Berlin. Limit theorems for excursion sets of stationary random fields Evgeny Spodarev 23.01.2013 WIAS, Berlin Limit theorems for excursion sets of stationary random fields page 2 LT for excursion sets of stationary random fields Overview 23.01.2013 Overview Motivation Excursion

More information

Continuous Probability Distributions

Continuous Probability Distributions Continuous Probability Distributions Called a Probability density function. The probability is interpreted as "area under the curve." 1) The random variable takes on an infinite # of values within a given

More information

David Hilbert was old and partly deaf in the nineteen thirties. Yet being a diligent

David Hilbert was old and partly deaf in the nineteen thirties. Yet being a diligent Chapter 5 ddddd dddddd dddddddd ddddddd dddddddd ddddddd Hilbert Space The Euclidean norm is special among all norms defined in R n for being induced by the Euclidean inner product (the dot product). A

More information

Brownian motion. Samy Tindel. Purdue University. Probability Theory 2 - MA 539

Brownian motion. Samy Tindel. Purdue University. Probability Theory 2 - MA 539 Brownian motion Samy Tindel Purdue University Probability Theory 2 - MA 539 Mostly taken from Brownian Motion and Stochastic Calculus by I. Karatzas and S. Shreve Samy T. Brownian motion Probability Theory

More information