One-week Course on Genetic Analysis and Plant Breeding January 2013, CIMMYT, Mexico LOD Threshold and QTL Detection Power Simulation

Size: px
Start display at page:

Download "One-week Course on Genetic Analysis and Plant Breeding January 2013, CIMMYT, Mexico LOD Threshold and QTL Detection Power Simulation"

Transcription

1 One-week Course on Genetic Analysis and Plant Breeding 21-2 January 213, CIMMYT, Mexico LOD Threshold and QTL Detection Power Simulation Jiankang Wang, CIMMYT China and CAAS Web: 1

2 Outlines Hypothesis testing and two types of associated error LOD threshold in QTL mapping QTL detection power simulation Avoid the over fitting problem in 2

3 Hypothesis testing and two types of associated error 3

4 Hypothesis testing A hypothesis is a statement that something is true. Null hypothesis: A hypothesis to be tested. We use the symbol H to represent the null hypothesis Alternative hypothesis: A hypothesis to be considered as an alternative to the null hypothesis. We use the symbol H a to represent the alternative hypothesis. The alternative hypothesis is the one believe to be true, or what you are trying to prove is true.

5 Two types of error We may make mistakes in the test. Type I error: reject the null hypothesis when it is true. Probability of type I error is denoted by α Type II error: accept the null hypothesis when it is wrong. Probability of type II error is denoted by β

6 Power of a statistical test P(reject the null hypothesis when it is false)=1-β (1-α) is the probability we accept the null when it was in fact true (1-β) is the probability we reject when the null is in fact false - this is the power of the test. The power changes depending on what the actual population parameter is.

7 Factors affecting power For example: H : µ=µ, H a : µ>µ Test statistic Z X µ σ n If we want to reject H, we need X σ µ n = Z So the power depends on δ =, σ, n, and α α x µ

8 δ is small δ is large The larger the difference δ is, the higher the power is X ~ N(µ,σ 2 /n) If H is true, X ~N(µ,σ 2 /n) If H a is true, X ~N(µ +δ,σ 2 /n) H H α α μ μ Ha Ha β 1-β β 1-β μ+δ μ+δ

9 Large standard error or small population size Small standard error or large population size The smaller the standard error or the larger the population size is, the higher the power is H H α α μ μ Ha Ha β 1-β β 1-β μ+δ μ+δ

10 Small α Large α The larger α is, the higher the power is H H α α μ Ha Ha β 1-β β 1-β μ+δ

11 Let s find some Type I and II errors Consider the Binomial distribution H: p=.; Ha: p.; n=6, X~B(n=6, p) Reject H when X=, or 6 Accept H when X=1,..., α =P(X= p=.) + P(X=6 p=.) = =.312 Given p=.7, find the Type II error β, and the statistical power β= P(1<=X<= p=.7)=.8218; Power=.1782 Given p=.9, find the Type II error β, and the statistical power β= P(1<=X<= p=.9)=.4686; Power=.314

12 X~Binomial (n, p), n=6 {, } is the rejection region, i.e. EstP=. or 1. {1,2,3,4} is the acceptance region X H: p=. p=.7 p= Type I error Power Power Type II error Type II error

13 Let s find some Type I and II errors Binomial distribution H: p=.; Ha: p.; n=3, X~B(3, p) Reject H when X<=9, or >=21 Accept H when X=1,..., 2 Find α Given p=.7, find the Type II error β, and the statistical power Given p=.9, find the Type II error β, and the statistical power

14 X H: p=. p=.7 p= Type I error Power Power Type II error Type II error

15 LOD threshold in QTL mapping Sun, Z., H. Li, L. Zhang, J. Wang* Properties of the test statistic under null hypothesis and the calculation of LOD threshold in quantitative trait loci (QTL) mapping. Acta Agronomica Sinica (accepted) 1

16 Threshold is used to control Type I error, say no greater than..1 Probability density Pr{T>T. )=α=. α=. T α=. =18.3 Say we know a test under H hypothesis has the χ 2 (df=1) distribution, the use of threshold 18.3 can make sure the Type I error <. 16

17 The reason to control Type I error High LOD score can be simply caused by chance! We simulated five DH populations and five F2 population. But we did not assume any QTL on the six chromosomes 17

18 LOD LOD LOD LOD LOD No QTL in DH populations No QTL on the six chromosomes, DH population

19 LOD LOD LOD LOD LOD No QTL in F2 populations No QTL on the six chromosomes, F2 population

20 Distribution of LRT under H at each scanning position Probability DH population LRT Probability In DH populations, LRT ~ χ 2 (df=1) In F2 populations, LRT ~ χ 2 (df=2) D.F. is equal to the number of independent genetic effects to be estimated F2 population LRT

21 Number of independent tests DH population, genome-wide Type I error =. DH population, genome-wide Type I error =.1 Indepedent tests MD=1 cm MD=2 cm MD= cm MD=1 cm MD=2 cm Length of chromosome (cm) y =.13x y =.126x y =.99x y =.72x y =.4x Indepedent tests MD=1 cm MD=2 cm MD= cm MD=1 cm MD=2 cm Length of chromosome (cm) y =.213x y =.16x y =.113x y =.84x y =.82x 21

22 LOD threshold, assuming marker density is 1 cm Genome Genome-wide α=. Genome-wide α=.1 size DH RIL F2 DH RIL F

23 LOD threshold from permutation test Highest LOD per test Barly DH population LOD threshold = 2.72 at level. Highest LOD per test Soybean F2 population LOD threshold = 2.44 at level Permutation tests Permutation test 23

24 QTL detection power simulation Zhang, L., H. Li, J. Wang* Statistical power of inclusive composite interval mapping in detecting digenic epistasis showing common F2 segregation ratios. Journal of Integrative Plant Biology 4: Li, H., S. Hearne, M. Bänziger, Z. Li, and J. Wang*. 21. Statistical properties of QTL linkage mapping in biparental genetic populations. Heredity 1:

25 Two independent QTL models Chromosome Position (cm) Additive PVE (%) Independent model I Q Q Q Q Genetic variance 1. Error variance 1. Heritability. Independent model II Q Q Q Q Genetic variance 1. Error variance 1. Heritability. 2

26 Two linked QTL models Chromosome Position (cm) Additive PVE (%) Linkage model I Q Q Q Q Genetic variance 1.3 Error variance 1. Heritability.66 Linkage model II Q Q Q Q Genetic variance.46 Error variance 1. Heritability

27 LOD LOD LOD LOD LOD QTL mapping in simulation runs of the two independent models Independent model I Run 1 IM Run 2 IM Run Run 4 IM Run IM IM LOD score LOD score LOD score LOD score LOD score Independent model II Run 1 IM Run 2 IM Run 3 IM Run 4 IM Run IM

28 LOD score LOD score LOD score LOD score LOD score QTL mapping in simulation runs of the two linkage models Linkage model I Run 1 IM Run 2 IM Run Run 4 IM Run IM IM LOD score LOD score LOD score LOD score LOD score Linkage model II Run 1 IM Run 2 IM Run 3 IM Run 4 IM Run IM

29 Count of power and false QTL for IM Run QTL identified Support interval Chrom. Position LOD PVE (%) Additive 1 cm 1 cm False Q Q3 Q Q4 Q Q2 Q Q3 Q Q4 Q Q1 Q Q2 Q False False Q4 Q False Q Q2 Q Q3 Q Q4 Q Q3 Q Q4 Q4 29

30 Count of power and false QTL for Run QTL identified Support interval Chrom. Position LOD PVE (%) Additive 1 cm 1 cm False False Q2 Q Q3 Q Q4 Q Q1 Q Q2 Q Q3 Q False Q Q1 Q Q2 Q Q3 Q Q4 Q Q1 Q Q2 Q Q3 Q Q4 Q Q1 Q False False Q3 Q Q4 Q4 3

31 Power and false QTL from the runs Method QTL Times to be detected Detection power (%) 1cM 2cM 1cM 2cM IM Q Q Q Q4 1 1 False QTL Q Q Q3 1 1 Q False QTL

32 The best method Has the highest power Has the lowest false discovery rate 32

33 Independent model I Method QTL Power Pos. (%) (cm) SE LOD SE Additive SE IM Q Q Q Q FDR (%) 32.4 Q Q Q Q FDR (%)

34 Independent model II Method QTL Power Pos. (%) (cm) SE LOD SE Additive SE IM Q Q Q Q FDR (%) 31.1 Q Q Q Q FDR (%)

35 Linkage model I Method QTL Power Pos. (%) (cm) SE LOD SE Additive SE IM Q Q Q Q FDR (%) 3.1 Q Q Q Q FDR (%)

36 Linkage model II Method QTL Power Pos. (%) (cm) SE LOD SE Additive SE IM Q Q Q Q FDR (%) 38.9 Q Q Q Q FDR (%)

37 Size of the mapping population PVE (%) Marker density cm Marker density 1 cm Power.8 Power.9 Power.8 Power >

38 Avoid the over fitting problem in 38

39 Over-fitting can cause fake QTL LOD 6 4 QTL by overfitting qkwt2h-2 qkwt2h-1 qkwt2h-3 qkwt3h QTL by overfitting qkwth QTL by overfitting qkwt7h-1 qkwt7h H 1H 1H 1H 1H 1H 1H 2H 2H 2H 2H 2H 2H 2H 2H 3H 3H 3H 3H 3H 3H 3H 4H 4H 4H 4H 4H 4H H H H H H H H H H H 6H 6H 6H 6H 6H 6H 7H 7H 7H 7H 7H 7H 7H 7H Additive effect H 1H 1H 1H 1H 1H 1H 2H 2H 2H 2H 2H 2H 2H 2H 3H 3H 3H 3H 3H 3H 3H 4H 4H 4H 4H 4H 4H H H H H H H H H H H 6H 6H 6H 6H 6H 6H 7H 7H 7H 7H 7H 7H 7H 7H One-dimensional scaning on the barley genome, step = 1 cm 39

40 How can I know there is an overfitting problem? R 2 in step-wise regression exceeds the broadsense heritability There are closely linked QTL identified, especially the QTL are linked in repulsion PIN in step-wise regression R Use smaller PIN to avoid over-fitting problem 4

Single Marker Analysis and Interval Mapping

Single Marker Analysis and Interval Mapping Single Marker Analysis and Interval Mapping Jiankang Wang, CIMMYT China and CAAS E-mail: jkwang@cgiar.org; wangjiankang@caas.cn Web: http://www.isbreeding.net 1 Comparison of Estimated Recombination Frequency

More information

Multiple QTL mapping

Multiple QTL mapping Multiple QTL mapping Karl W Broman Department of Biostatistics Johns Hopkins University www.biostat.jhsph.edu/~kbroman [ Teaching Miscellaneous lectures] 1 Why? Reduce residual variation = increased power

More information

QTL Model Search. Brian S. Yandell, UW-Madison January 2017

QTL Model Search. Brian S. Yandell, UW-Madison January 2017 QTL Model Search Brian S. Yandell, UW-Madison January 2017 evolution of QTL models original ideas focused on rare & costly markers models & methods refined as technology advanced single marker regression

More information

R/qtl workshop. (part 2) Karl Broman. Biostatistics and Medical Informatics University of Wisconsin Madison. kbroman.org

R/qtl workshop. (part 2) Karl Broman. Biostatistics and Medical Informatics University of Wisconsin Madison. kbroman.org R/qtl workshop (part 2) Karl Broman Biostatistics and Medical Informatics University of Wisconsin Madison kbroman.org github.com/kbroman @kwbroman Example Sugiyama et al. Genomics 71:70-77, 2001 250 male

More information

Mapping multiple QTL in experimental crosses

Mapping multiple QTL in experimental crosses Mapping multiple QTL in experimental crosses Karl W Broman Department of Biostatistics and Medical Informatics University of Wisconsin Madison www.biostat.wisc.edu/~kbroman [ Teaching Miscellaneous lectures]

More information

Introduction to QTL mapping in model organisms

Introduction to QTL mapping in model organisms Introduction to QTL mapping in model organisms Karl W Broman Department of Biostatistics and Medical Informatics University of Wisconsin Madison www.biostat.wisc.edu/~kbroman [ Teaching Miscellaneous lectures]

More information

Introduction to QTL mapping in model organisms

Introduction to QTL mapping in model organisms Introduction to QTL mapping in model organisms Karl Broman Biostatistics and Medical Informatics University of Wisconsin Madison kbroman.org github.com/kbroman @kwbroman Backcross P 1 P 2 P 1 F 1 BC 4

More information

Eiji Yamamoto 1,2, Hiroyoshi Iwata 3, Takanari Tanabata 4, Ritsuko Mizobuchi 1, Jun-ichi Yonemaru 1,ToshioYamamoto 1* and Masahiro Yano 5,6

Eiji Yamamoto 1,2, Hiroyoshi Iwata 3, Takanari Tanabata 4, Ritsuko Mizobuchi 1, Jun-ichi Yonemaru 1,ToshioYamamoto 1* and Masahiro Yano 5,6 Yamamoto et al. BMC Genetics 2014, 15:50 METHODOLOGY ARTICLE Open Access Effect of advanced intercrossing on genome structure and on the power to detect linked quantitative trait loci in a multi-parent

More information

Introduction to QTL mapping in model organisms

Introduction to QTL mapping in model organisms Human vs mouse Introduction to QTL mapping in model organisms Karl W Broman Department of Biostatistics Johns Hopkins University www.biostat.jhsph.edu/~kbroman [ Teaching Miscellaneous lectures] www.daviddeen.com

More information

Statistical issues in QTL mapping in mice

Statistical issues in QTL mapping in mice Statistical issues in QTL mapping in mice Karl W Broman Department of Biostatistics Johns Hopkins University http://www.biostat.jhsph.edu/~kbroman Outline Overview of QTL mapping The X chromosome Mapping

More information

Linkage Mapping. Reading: Mather K (1951) The measurement of linkage in heredity. 2nd Ed. John Wiley and Sons, New York. Chapters 5 and 6.

Linkage Mapping. Reading: Mather K (1951) The measurement of linkage in heredity. 2nd Ed. John Wiley and Sons, New York. Chapters 5 and 6. Linkage Mapping Reading: Mather K (1951) The measurement of linkage in heredity. 2nd Ed. John Wiley and Sons, New York. Chapters 5 and 6. Genetic maps The relative positions of genes on a chromosome can

More information

Introduction to QTL mapping in model organisms

Introduction to QTL mapping in model organisms Introduction to QTL mapping in model organisms Karl W Broman Department of Biostatistics Johns Hopkins University kbroman@jhsph.edu www.biostat.jhsph.edu/ kbroman Outline Experiments and data Models ANOVA

More information

Users Manual of QTL IciMapping v3.1

Users Manual of QTL IciMapping v3.1 8 6 4 2 0 0 0 0 0 0 0 0 0 0 0 0 0 Users Manual of QTL IciMapping v3.1 Jiankang Wang, Huihui Li, Luyan Zhang, Chunhui Li and Lei Meng QZ10 QZ9 QZ8 QZ7 QZ6 QZ5 QZ4 QZ3 QZ2 QZ1 L 120 90 60 30 0 120 90 60

More information

QTL Mapping I: Overview and using Inbred Lines

QTL Mapping I: Overview and using Inbred Lines QTL Mapping I: Overview and using Inbred Lines Key idea: Looking for marker-trait associations in collections of relatives If (say) the mean trait value for marker genotype MM is statisically different

More information

Mapping multiple QTL in experimental crosses

Mapping multiple QTL in experimental crosses Human vs mouse Mapping multiple QTL in experimental crosses Karl W Broman Department of Biostatistics & Medical Informatics University of Wisconsin Madison www.biostat.wisc.edu/~kbroman www.daviddeen.com

More information

Mapping QTL for Seedling Root Traits in Common Wheat

Mapping QTL for Seedling Root Traits in Common Wheat 2005,38(10):1951-1957 Scientia Agricultura Sinica 1,2,3 1 1 1 2 1 / / 100081 2 050021 3 100039 DH 10 14 11 15 5A 4B 2D 6D 7D 3 2 3 3 2 2 2 3 2 1 3 1 3 DH Mapping for Seedling Root Traits in Common Wheat

More information

Introduction to QTL mapping in model organisms

Introduction to QTL mapping in model organisms Introduction to QTL mapping in model organisms Karl W Broman Department of Biostatistics Johns Hopkins University kbroman@jhsph.edu www.biostat.jhsph.edu/ kbroman Outline Experiments and data Models ANOVA

More information

Lecture 8. QTL Mapping 1: Overview and Using Inbred Lines

Lecture 8. QTL Mapping 1: Overview and Using Inbred Lines Lecture 8 QTL Mapping 1: Overview and Using Inbred Lines Bruce Walsh. jbwalsh@u.arizona.edu. University of Arizona. Notes from a short course taught Jan-Feb 2012 at University of Uppsala While the machinery

More information

Evolution of phenotypic traits

Evolution of phenotypic traits Quantitative genetics Evolution of phenotypic traits Very few phenotypic traits are controlled by one locus, as in our previous discussion of genetics and evolution Quantitative genetics considers characters

More information

1 Springer. Nan M. Laird Christoph Lange. The Fundamentals of Modern Statistical Genetics

1 Springer. Nan M. Laird Christoph Lange. The Fundamentals of Modern Statistical Genetics 1 Springer Nan M. Laird Christoph Lange The Fundamentals of Modern Statistical Genetics 1 Introduction to Statistical Genetics and Background in Molecular Genetics 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

More information

Family-wise Error Rate Control in QTL Mapping and Gene Ontology Graphs

Family-wise Error Rate Control in QTL Mapping and Gene Ontology Graphs Family-wise Error Rate Control in QTL Mapping and Gene Ontology Graphs with Remarks on Family Selection Dissertation Defense April 5, 204 Contents Dissertation Defense Introduction 2 FWER Control within

More information

(Genome-wide) association analysis

(Genome-wide) association analysis (Genome-wide) association analysis 1 Key concepts Mapping QTL by association relies on linkage disequilibrium in the population; LD can be caused by close linkage between a QTL and marker (= good) or by

More information

Overview. Background

Overview. Background Overview Implementation of robust methods for locating quantitative trait loci in R Introduction to QTL mapping Andreas Baierl and Andreas Futschik Institute of Statistics and Decision Support Systems

More information

Looking at the Other Side of Bonferroni

Looking at the Other Side of Bonferroni Department of Biostatistics University of Washington 24 May 2012 Multiple Testing: Control the Type I Error Rate When analyzing genetic data, one will commonly perform over 1 million (and growing) hypothesis

More information

Case-Control Association Testing. Case-Control Association Testing

Case-Control Association Testing. Case-Control Association Testing Introduction Association mapping is now routinely being used to identify loci that are involved with complex traits. Technological advances have made it feasible to perform case-control association studies

More information

Table of Outcomes. Table of Outcomes. Table of Outcomes. Table of Outcomes. Table of Outcomes. Table of Outcomes. T=number of type 2 errors

Table of Outcomes. Table of Outcomes. Table of Outcomes. Table of Outcomes. Table of Outcomes. Table of Outcomes. T=number of type 2 errors The Multiple Testing Problem Multiple Testing Methods for the Analysis of Microarray Data 3/9/2009 Copyright 2009 Dan Nettleton Suppose one test of interest has been conducted for each of m genes in a

More information

Non-specific filtering and control of false positives

Non-specific filtering and control of false positives Non-specific filtering and control of false positives Richard Bourgon 16 June 2009 bourgon@ebi.ac.uk EBI is an outstation of the European Molecular Biology Laboratory Outline Multiple testing I: overview

More information

Mapping QTL to a phylogenetic tree

Mapping QTL to a phylogenetic tree Mapping QTL to a phylogenetic tree Karl W Broman Department of Biostatistics & Medical Informatics University of Wisconsin Madison www.biostat.wisc.edu/~kbroman Human vs mouse www.daviddeen.com 3 Intercross

More information

Sample Size Estimation for Studies of High-Dimensional Data

Sample Size Estimation for Studies of High-Dimensional Data Sample Size Estimation for Studies of High-Dimensional Data James J. Chen, Ph.D. National Center for Toxicological Research Food and Drug Administration June 3, 2009 China Medical University Taichung,

More information

Quantile-based permutation thresholds for QTL hotspot analysis: a tutorial

Quantile-based permutation thresholds for QTL hotspot analysis: a tutorial Quantile-based permutation thresholds for QTL hotspot analysis: a tutorial Elias Chaibub Neto and Brian S Yandell September 18, 2013 1 Motivation QTL hotspots, groups of traits co-mapping to the same genomic

More information

GENOMIC SELECTION WORKSHOP: Hands on Practical Sessions (BL)

GENOMIC SELECTION WORKSHOP: Hands on Practical Sessions (BL) GENOMIC SELECTION WORKSHOP: Hands on Practical Sessions (BL) Paulino Pérez 1 José Crossa 2 1 ColPos-México 2 CIMMyT-México September, 2014. SLU,Sweden GENOMIC SELECTION WORKSHOP:Hands on Practical Sessions

More information

Lecture 9. QTL Mapping 2: Outbred Populations

Lecture 9. QTL Mapping 2: Outbred Populations Lecture 9 QTL Mapping 2: Outbred Populations Bruce Walsh. Aug 2004. Royal Veterinary and Agricultural University, Denmark The major difference between QTL analysis using inbred-line crosses vs. outbred

More information

Prediction of the Confidence Interval of Quantitative Trait Loci Location

Prediction of the Confidence Interval of Quantitative Trait Loci Location Behavior Genetics, Vol. 34, No. 4, July 2004 ( 2004) Prediction of the Confidence Interval of Quantitative Trait Loci Location Peter M. Visscher 1,3 and Mike E. Goddard 2 Received 4 Sept. 2003 Final 28

More information

Multiple Testing. Gary W. Oehlert. January 28, School of Statistics University of Minnesota

Multiple Testing. Gary W. Oehlert. January 28, School of Statistics University of Minnesota Multiple Testing Gary W. Oehlert School of Statistics University of Minnesota January 28, 2016 Background Suppose that you had a 20-sided die. Nineteen of the sides are labeled 0 and one of the sides is

More information

Introductory Econometrics

Introductory Econometrics Session 4 - Testing hypotheses Roland Sciences Po July 2011 Motivation After estimation, delivering information involves testing hypotheses Did this drug had any effect on the survival rate? Is this drug

More information

Average weight of Eisenhower dollar: 23 grams

Average weight of Eisenhower dollar: 23 grams Average weight of Eisenhower dollar: 23 grams Average cost of dinner in Decatur: 23 dollars Would it be more surprising to see A dinner that costs more than 27 dollars, or An Eisenhower dollar that weighs

More information

Gene mapping in model organisms

Gene mapping in model organisms Gene mapping in model organisms Karl W Broman Department of Biostatistics Johns Hopkins University http://www.biostat.jhsph.edu/~kbroman Goal Identify genes that contribute to common human diseases. 2

More information

Applied Statistics for the Behavioral Sciences

Applied Statistics for the Behavioral Sciences Applied Statistics for the Behavioral Sciences Chapter 8 One-sample designs Hypothesis testing/effect size Chapter Outline Hypothesis testing null & alternative hypotheses alpha ( ), significance level,

More information

Statistics Handbook. All statistical tables were computed by the author.

Statistics Handbook. All statistical tables were computed by the author. Statistics Handbook Contents Page Wilcoxon rank-sum test (Mann-Whitney equivalent) Wilcoxon matched-pairs test 3 Normal Distribution 4 Z-test Related samples t-test 5 Unrelated samples t-test 6 Variance

More information

Lecture 11: Multiple trait models for QTL analysis

Lecture 11: Multiple trait models for QTL analysis Lecture 11: Multiple trait models for QTL analysis Julius van der Werf Multiple trait mapping of QTL...99 Increased power of QTL detection...99 Testing for linked QTL vs pleiotropic QTL...100 Multiple

More information

Quantitative Methods for Economics, Finance and Management (A86050 F86050)

Quantitative Methods for Economics, Finance and Management (A86050 F86050) Quantitative Methods for Economics, Finance and Management (A86050 F86050) Matteo Manera matteo.manera@unimib.it Marzio Galeotti marzio.galeotti@unimi.it 1 This material is taken and adapted from Guy Judge

More information

False Discovery Rate

False Discovery Rate False Discovery Rate Peng Zhao Department of Statistics Florida State University December 3, 2018 Peng Zhao False Discovery Rate 1/30 Outline 1 Multiple Comparison and FWER 2 False Discovery Rate 3 FDR

More information

Linkage analysis and QTL mapping in autotetraploid species. Christine Hackett Biomathematics and Statistics Scotland Dundee DD2 5DA

Linkage analysis and QTL mapping in autotetraploid species. Christine Hackett Biomathematics and Statistics Scotland Dundee DD2 5DA Linkage analysis and QTL mapping in autotetraploid species Christine Hackett Biomathematics and Statistics Scotland Dundee DD2 5DA Collaborators John Bradshaw Zewei Luo Iain Milne Jim McNicol Data and

More information

Principles of QTL Mapping. M.Imtiaz

Principles of QTL Mapping. M.Imtiaz Principles of QTL Mapping M.Imtiaz Introduction Definitions of terminology Reasons for QTL mapping Principles of QTL mapping Requirements For QTL Mapping Demonstration with experimental data Merit of QTL

More information

2 Hand-out 2. Dr. M. P. M. M. M c Loughlin Revised 2018

2 Hand-out 2. Dr. M. P. M. M. M c Loughlin Revised 2018 Math 403 - P. & S. III - Dr. McLoughlin - 1 2018 2 Hand-out 2 Dr. M. P. M. M. M c Loughlin Revised 2018 3. Fundamentals 3.1. Preliminaries. Suppose we can produce a random sample of weights of 10 year-olds

More information

Multiple-Interval Mapping for Quantitative Trait Loci Controlling Endosperm Traits. Chen-Hung Kao 1

Multiple-Interval Mapping for Quantitative Trait Loci Controlling Endosperm Traits. Chen-Hung Kao 1 Copyright 2004 by the Genetics Society of America DOI: 10.1534/genetics.103.021642 Multiple-Interval Mapping for Quantitative Trait Loci Controlling Endosperm Traits Chen-Hung Kao 1 Institute of Statistical

More information

Lecture 1: Case-Control Association Testing. Summer Institute in Statistical Genetics 2015

Lecture 1: Case-Control Association Testing. Summer Institute in Statistical Genetics 2015 Timothy Thornton and Michael Wu Summer Institute in Statistical Genetics 2015 1 / 1 Introduction Association mapping is now routinely being used to identify loci that are involved with complex traits.

More information

F79SM STATISTICAL METHODS

F79SM STATISTICAL METHODS F79SM STATISTICAL METHODS SUMMARY NOTES 9 Hypothesis testing 9.1 Introduction As before we have a random sample x of size n of a population r.v. X with pdf/pf f(x;θ). The distribution we assign to X is

More information

Mathematical Notation Math Introduction to Applied Statistics

Mathematical Notation Math Introduction to Applied Statistics Mathematical Notation Math 113 - Introduction to Applied Statistics Name : Use Word or WordPerfect to recreate the following documents. Each article is worth 10 points and should be emailed to the instructor

More information

False discovery rate control for non-positively regression dependent test statistics

False discovery rate control for non-positively regression dependent test statistics Journal of Statistical Planning and Inference ( ) www.elsevier.com/locate/jspi False discovery rate control for non-positively regression dependent test statistics Daniel Yekutieli Department of Statistics

More information

I Have the Power in QTL linkage: single and multilocus analysis

I Have the Power in QTL linkage: single and multilocus analysis I Have the Power in QTL linkage: single and multilocus analysis Benjamin Neale 1, Sir Shaun Purcell 2 & Pak Sham 13 1 SGDP, IoP, London, UK 2 Harvard School of Public Health, Cambridge, MA, USA 3 Department

More information

Lecture 7: Interaction Analysis. Summer Institute in Statistical Genetics 2017

Lecture 7: Interaction Analysis. Summer Institute in Statistical Genetics 2017 Lecture 7: Interaction Analysis Timothy Thornton and Michael Wu Summer Institute in Statistical Genetics 2017 1 / 39 Lecture Outline Beyond main SNP effects Introduction to Concept of Statistical Interaction

More information

MULTIPLE-TRAIT MULTIPLE-INTERVAL MAPPING OF QUANTITATIVE-TRAIT LOCI ROBY JOEHANES

MULTIPLE-TRAIT MULTIPLE-INTERVAL MAPPING OF QUANTITATIVE-TRAIT LOCI ROBY JOEHANES MULTIPLE-TRAIT MULTIPLE-INTERVAL MAPPING OF QUANTITATIVE-TRAIT LOCI by ROBY JOEHANES B.S., Universitas Pelita Harapan, Indonesia, 1999 M.S., Kansas State University, 2002 A REPORT submitted in partial

More information

Expression QTLs and Mapping of Complex Trait Loci. Paul Schliekelman Statistics Department University of Georgia

Expression QTLs and Mapping of Complex Trait Loci. Paul Schliekelman Statistics Department University of Georgia Expression QTLs and Mapping of Complex Trait Loci Paul Schliekelman Statistics Department University of Georgia Definitions: Genes, Loci and Alleles A gene codes for a protein. Proteins due everything.

More information

Chapter 5: HYPOTHESIS TESTING

Chapter 5: HYPOTHESIS TESTING MATH411: Applied Statistics Dr. YU, Chi Wai Chapter 5: HYPOTHESIS TESTING 1 WHAT IS HYPOTHESIS TESTING? As its name indicates, it is about a test of hypothesis. To be more precise, we would first translate

More information

Ch. 11 Inference for Distributions of Categorical Data

Ch. 11 Inference for Distributions of Categorical Data Ch. 11 Inference for Distributions of Categorical Data CH. 11 2 INFERENCES FOR RELATIONSHIPS The two sample z procedures from Ch. 10 allowed us to compare proportions of successes in two populations or

More information

Statistical testing. Samantha Kleinberg. October 20, 2009

Statistical testing. Samantha Kleinberg. October 20, 2009 October 20, 2009 Intro to significance testing Significance testing and bioinformatics Gene expression: Frequently have microarray data for some group of subjects with/without the disease. Want to find

More information

Model Selection for Multiple QTL

Model Selection for Multiple QTL Model Selection for Multiple TL 1. reality of multiple TL 3-8. selecting a class of TL models 9-15 3. comparing TL models 16-4 TL model selection criteria issues of detecting epistasis 4. simulations and

More information

Methods for QTL analysis

Methods for QTL analysis Methods for QTL analysis Julius van der Werf METHODS FOR QTL ANALYSIS... 44 SINGLE VERSUS MULTIPLE MARKERS... 45 DETERMINING ASSOCIATIONS BETWEEN GENETIC MARKERS AND QTL WITH TWO MARKERS... 45 INTERVAL

More information

The Chi-Square Distributions

The Chi-Square Distributions MATH 183 The Chi-Square Distributions Dr. Neal, WKU The chi-square distributions can be used in statistics to analyze the standard deviation σ of a normally distributed measurement and to test the goodness

More information

CENTRAL LIMIT THEOREM (CLT)

CENTRAL LIMIT THEOREM (CLT) CENTRAL LIMIT THEOREM (CLT) A sampling distribution is the probability distribution of the sample statistic that is formed when samples of size n are repeatedly taken from a population. If the sample statistic

More information

Introductory Econometrics. Review of statistics (Part II: Inference)

Introductory Econometrics. Review of statistics (Part II: Inference) Introductory Econometrics Review of statistics (Part II: Inference) Jun Ma School of Economics Renmin University of China October 1, 2018 1/16 Null and alternative hypotheses Usually, we have two competing

More information

Sociology 6Z03 Review II

Sociology 6Z03 Review II Sociology 6Z03 Review II John Fox McMaster University Fall 2016 John Fox (McMaster University) Sociology 6Z03 Review II Fall 2016 1 / 35 Outline: Review II Probability Part I Sampling Distributions Probability

More information

Difference in two or more average scores in different groups

Difference in two or more average scores in different groups ANOVAs Analysis of Variance (ANOVA) Difference in two or more average scores in different groups Each participant tested once Same outcome tested in each group Simplest is one-way ANOVA (one variable as

More information

PHP2510: Principles of Biostatistics & Data Analysis. Lecture X: Hypothesis testing. PHP 2510 Lec 10: Hypothesis testing 1

PHP2510: Principles of Biostatistics & Data Analysis. Lecture X: Hypothesis testing. PHP 2510 Lec 10: Hypothesis testing 1 PHP2510: Principles of Biostatistics & Data Analysis Lecture X: Hypothesis testing PHP 2510 Lec 10: Hypothesis testing 1 In previous lectures we have encountered problems of estimating an unknown population

More information

High-Throughput Sequencing Course. Introduction. Introduction. Multiple Testing. Biostatistics and Bioinformatics. Summer 2018

High-Throughput Sequencing Course. Introduction. Introduction. Multiple Testing. Biostatistics and Bioinformatics. Summer 2018 High-Throughput Sequencing Course Multiple Testing Biostatistics and Bioinformatics Summer 2018 Introduction You have previously considered the significance of a single gene Introduction You have previously

More information

Statistics: CI, Tolerance Intervals, Exceedance, and Hypothesis Testing. Confidence intervals on mean. CL = x ± t * CL1- = exp

Statistics: CI, Tolerance Intervals, Exceedance, and Hypothesis Testing. Confidence intervals on mean. CL = x ± t * CL1- = exp Statistics: CI, Tolerance Intervals, Exceedance, and Hypothesis Lecture Notes 1 Confidence intervals on mean Normal Distribution CL = x ± t * 1-α 1- α,n-1 s n Log-Normal Distribution CL = exp 1-α CL1-

More information

Causal Model Selection Hypothesis Tests in Systems Genetics

Causal Model Selection Hypothesis Tests in Systems Genetics 1 Causal Model Selection Hypothesis Tests in Systems Genetics Elias Chaibub Neto and Brian S Yandell SISG 2012 July 13, 2012 2 Correlation and Causation The old view of cause and effect... could only fail;

More information

Dover- Sherborn High School Mathematics Curriculum Probability and Statistics

Dover- Sherborn High School Mathematics Curriculum Probability and Statistics Mathematics Curriculum A. DESCRIPTION This is a full year courses designed to introduce students to the basic elements of statistics and probability. Emphasis is placed on understanding terminology and

More information

Association Testing with Quantitative Traits: Common and Rare Variants. Summer Institute in Statistical Genetics 2014 Module 10 Lecture 5

Association Testing with Quantitative Traits: Common and Rare Variants. Summer Institute in Statistical Genetics 2014 Module 10 Lecture 5 Association Testing with Quantitative Traits: Common and Rare Variants Timothy Thornton and Katie Kerr Summer Institute in Statistical Genetics 2014 Module 10 Lecture 5 1 / 41 Introduction to Quantitative

More information

Lecture 21: October 19

Lecture 21: October 19 36-705: Intermediate Statistics Fall 2017 Lecturer: Siva Balakrishnan Lecture 21: October 19 21.1 Likelihood Ratio Test (LRT) To test composite versus composite hypotheses the general method is to use

More information

A Statistical Framework for Expression Trait Loci (ETL) Mapping. Meng Chen

A Statistical Framework for Expression Trait Loci (ETL) Mapping. Meng Chen A Statistical Framework for Expression Trait Loci (ETL) Mapping Meng Chen Prelim Paper in partial fulfillment of the requirements for the Ph.D. program in the Department of Statistics University of Wisconsin-Madison

More information

DEGseq: an R package for identifying differentially expressed genes from RNA-seq data

DEGseq: an R package for identifying differentially expressed genes from RNA-seq data DEGseq: an R package for identifying differentially expressed genes from RNA-seq data Likun Wang Zhixing Feng i Wang iaowo Wang * and uegong Zhang * MOE Key Laboratory of Bioinformatics and Bioinformatics

More information

Bayesian Regression (1/31/13)

Bayesian Regression (1/31/13) STA613/CBB540: Statistical methods in computational biology Bayesian Regression (1/31/13) Lecturer: Barbara Engelhardt Scribe: Amanda Lea 1 Bayesian Paradigm Bayesian methods ask: given that I have observed

More information

STAT 263/363: Experimental Design Winter 2016/17. Lecture 1 January 9. Why perform Design of Experiments (DOE)? There are at least two reasons:

STAT 263/363: Experimental Design Winter 2016/17. Lecture 1 January 9. Why perform Design of Experiments (DOE)? There are at least two reasons: STAT 263/363: Experimental Design Winter 206/7 Lecture January 9 Lecturer: Minyong Lee Scribe: Zachary del Rosario. Design of Experiments Why perform Design of Experiments (DOE)? There are at least two

More information

Partitioning the Parameter Space. Topic 18 Composite Hypotheses

Partitioning the Parameter Space. Topic 18 Composite Hypotheses Topic 18 Composite Hypotheses Partitioning the Parameter Space 1 / 10 Outline Partitioning the Parameter Space 2 / 10 Partitioning the Parameter Space Simple hypotheses limit us to a decision between one

More information

Lab I: Three-Point Mapping in Drosophila melanogaster

Lab I: Three-Point Mapping in Drosophila melanogaster Lab I: Three-Point Mapping in Drosophila melanogaster Makuo Aneke Partner: Christina Hwang BIO 365-004: Genetics with Laboratory TA: Dr. Hongmei Ma February 18, 2016 Abstract The purpose of this experiment

More information

Lecture WS Evolutionary Genetics Part I 1

Lecture WS Evolutionary Genetics Part I 1 Quantitative genetics Quantitative genetics is the study of the inheritance of quantitative/continuous phenotypic traits, like human height and body size, grain colour in winter wheat or beak depth in

More information

Econ 325: Introduction to Empirical Economics

Econ 325: Introduction to Empirical Economics Econ 325: Introduction to Empirical Economics Chapter 9 Hypothesis Testing: Single Population Ch. 9-1 9.1 What is a Hypothesis? A hypothesis is a claim (assumption) about a population parameter: population

More information

Unit 12: Analysis of Single Factor Experiments

Unit 12: Analysis of Single Factor Experiments Unit 12: Analysis of Single Factor Experiments Statistics 571: Statistical Methods Ramón V. León 7/16/2004 Unit 12 - Stat 571 - Ramón V. León 1 Introduction Chapter 8: How to compare two treatments. Chapter

More information

Optional Stopping Theorem Let X be a martingale and T be a stopping time such

Optional Stopping Theorem Let X be a martingale and T be a stopping time such Plan Counting, Renewal, and Point Processes 0. Finish FDR Example 1. The Basic Renewal Process 2. The Poisson Process Revisited 3. Variants and Extensions 4. Point Processes Reading: G&S: 7.1 7.3, 7.10

More information

Hypothesis Testing. ) the hypothesis that suggests no change from previous experience

Hypothesis Testing. ) the hypothesis that suggests no change from previous experience Hypothesis Testing Definitions Hypothesis a claim about something Null hypothesis ( H 0 ) the hypothesis that suggests no change from previous experience Alternative hypothesis ( H 1 ) the hypothesis that

More information

Exam 2 (KEY) July 20, 2009

Exam 2 (KEY) July 20, 2009 STAT 2300 Business Statistics/Summer 2009, Section 002 Exam 2 (KEY) July 20, 2009 Name: USU A#: Score: /225 Directions: This exam consists of six (6) questions, assessing material learned within Modules

More information

Hypothesis testing I. - In particular, we are talking about statistical hypotheses. [get everyone s finger length!] n =

Hypothesis testing I. - In particular, we are talking about statistical hypotheses. [get everyone s finger length!] n = Hypothesis testing I I. What is hypothesis testing? [Note we re temporarily bouncing around in the book a lot! Things will settle down again in a week or so] - Exactly what it says. We develop a hypothesis,

More information

Tail probability of linear combinations of chi-square variables and its application to influence analysis in QTL detection

Tail probability of linear combinations of chi-square variables and its application to influence analysis in QTL detection Tail probability of linear combinations of chi-square variables and its application to influence analysis in QTL detection Satoshi Kuriki and Xiaoling Dou (Inst. Statist. Math., Tokyo) ISM Cooperative

More information

Quantitative Genomics and Genetics BTRY 4830/6830; PBSB

Quantitative Genomics and Genetics BTRY 4830/6830; PBSB Quantitative Genomics and Genetics BTRY 4830/6830; PBSB.5201.01 Lecture16: Population structure and logistic regression I Jason Mezey jgm45@cornell.edu April 11, 2017 (T) 8:40-9:55 Announcements I April

More information

On the mapping of quantitative trait loci at marker and non-marker locations

On the mapping of quantitative trait loci at marker and non-marker locations Genet. Res., Camb. (2002), 79, pp. 97 106. With 3 figures. 2002 Cambridge University Press DOI: 10.1017 S0016672301005420 Printed in the United Kingdom 97 On the mapping of quantitative trait loci at marker

More information

MODEL-FREE LINKAGE AND ASSOCIATION MAPPING OF COMPLEX TRAITS USING QUANTITATIVE ENDOPHENOTYPES

MODEL-FREE LINKAGE AND ASSOCIATION MAPPING OF COMPLEX TRAITS USING QUANTITATIVE ENDOPHENOTYPES MODEL-FREE LINKAGE AND ASSOCIATION MAPPING OF COMPLEX TRAITS USING QUANTITATIVE ENDOPHENOTYPES Saurabh Ghosh Human Genetics Unit Indian Statistical Institute, Kolkata Most common diseases are caused by

More information

Chapter 7: Hypothesis Testing

Chapter 7: Hypothesis Testing Chapter 7: Hypothesis Testing *Mathematical statistics with applications; Elsevier Academic Press, 2009 The elements of a statistical hypothesis 1. The null hypothesis, denoted by H 0, is usually the nullification

More information

Probability Methods in Civil Engineering Prof. Dr. Rajib Maity Department of Civil Engineering Indian Institution of Technology, Kharagpur

Probability Methods in Civil Engineering Prof. Dr. Rajib Maity Department of Civil Engineering Indian Institution of Technology, Kharagpur Probability Methods in Civil Engineering Prof. Dr. Rajib Maity Department of Civil Engineering Indian Institution of Technology, Kharagpur Lecture No. # 36 Sampling Distribution and Parameter Estimation

More information

Introduction to Statistical Inference

Introduction to Statistical Inference Introduction to Statistical Inference Dr. Fatima Sanchez-Cabo f.sanchezcabo@tugraz.at http://www.genome.tugraz.at Institute for Genomics and Bioinformatics, Graz University of Technology, Austria Introduction

More information

BTRY 4830/6830: Quantitative Genomics and Genetics

BTRY 4830/6830: Quantitative Genomics and Genetics BTRY 4830/6830: Quantitative Genomics and Genetics Lecture 23: Alternative tests in GWAS / (Brief) Introduction to Bayesian Inference Jason Mezey jgm45@cornell.edu Nov. 13, 2014 (Th) 8:40-9:55 Announcements

More information

Interactions. Interactions. Lectures 1 & 2. Linear Relationships. y = a + bx. Slope. Intercept

Interactions. Interactions. Lectures 1 & 2. Linear Relationships. y = a + bx. Slope. Intercept Interactions Lectures 1 & Regression Sometimes two variables appear related: > smoking and lung cancers > height and weight > years of education and income > engine size and gas mileage > GMAT scores and

More information

2.3 Analysis of Categorical Data

2.3 Analysis of Categorical Data 90 CHAPTER 2. ESTIMATION AND HYPOTHESIS TESTING 2.3 Analysis of Categorical Data 2.3.1 The Multinomial Probability Distribution A mulinomial random variable is a generalization of the binomial rv. It results

More information

Quantitative Genetics & Evolutionary Genetics

Quantitative Genetics & Evolutionary Genetics Quantitative Genetics & Evolutionary Genetics (CHAPTER 24 & 26- Brooker Text) May 14, 2007 BIO 184 Dr. Tom Peavy Quantitative genetics (the study of traits that can be described numerically) is important

More information

Single Sample Means. SOCY601 Alan Neustadtl

Single Sample Means. SOCY601 Alan Neustadtl Single Sample Means SOCY601 Alan Neustadtl The Central Limit Theorem If we have a population measured by a variable with a mean µ and a standard deviation σ, and if all possible random samples of size

More information

One-Way Analysis of Variance (ANOVA) Paul K. Strode, Ph.D.

One-Way Analysis of Variance (ANOVA) Paul K. Strode, Ph.D. One-Way Analysis of Variance (ANOVA) Paul K. Strode, Ph.D. Purpose While the T-test is useful to compare the means of two samples, many biology experiments involve the parallel measurement of three or

More information

Lecture 6. QTL Mapping

Lecture 6. QTL Mapping Lecture 6 QTL Mapping Bruce Walsh. Aug 2003. Nordic Summer Course MAPPING USING INBRED LINE CROSSES We start by considering crosses between inbred lines. The analysis of such crosses illustrates many of

More information

1 Hypothesis testing for a single mean

1 Hypothesis testing for a single mean This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License. Your use of this material constitutes acceptance of that license and the conditions of use of materials on this

More information

Multiple testing: Intro & FWER 1

Multiple testing: Intro & FWER 1 Multiple testing: Intro & FWER 1 Mark van de Wiel mark.vdwiel@vumc.nl Dep of Epidemiology & Biostatistics,VUmc, Amsterdam Dep of Mathematics, VU 1 Some slides courtesy of Jelle Goeman 1 Practical notes

More information