Large sample covariance matrices and the T 2 statistic

Size: px
Start display at page:

Download "Large sample covariance matrices and the T 2 statistic"

Transcription

1 Large sample covariance matrices and the T 2 statistic EURANDOM, the Netherlands Joint work with W. Zhou

2 Outline 1 2

3 Basic setting Let {X ij }, i, j =, be i.i.d. r.v. Write n s j = (X 1j,, X pj ) T and s = 1 n s j. The sample j=1 covariance matrix is defined by S = 1 n (s j s)(s j s). n j=1 Note in RMT, the matrix is S 1 = 1 n n s j s j. j=1 p Large dimension, that is, lim n n = c > 0. Here p is the dimension and n the sample size

4 Difference between fixed and large : I An example: An important statistic in multivariate analysis W n = ln(dets 1 ) = p ln λ j j=1 When p is fixed, by a Taylor expansion, n p W n D N(0, EX11 4 1) When p increases with cn with c (0, 1), what happens? However, it is not the case for large dimension. Indeed, n p W n.

5 Fig.1 Density of n p W n under different sample sizes with c = N=500 N=200 N=100 N=

6 Difference between fixed and large : II The spectral decomposition Σ = n λ i u i u T i. In classical multivariate analysis: and n(ˆλi λ i ) n(ûni u i ) i=1 D N(0, 2λ 2 i ) D N(0, Γ i ) But, what happens in the large dimensional RMT? Bai (1999), Johnstone and Lu(2007).

7 RMT in other subjects Finance (Potters, Bouchaud and Laloux 2005), Wireless communications (Turlino and Verdu 2004) Large linear systems (linear equations) and sparse problems. (Donoho 2004).

8 Tools (1): Stieltjes transform The Stieltjes transform for any distribution function G(x) 1 m G (z) = λ z dg(λ), z C+ {z C, Iz > 0}. Indeed, for any random matrix A n having real eigenvalues λ 1,, λ n m F An (z) = 1 n i 1 λ i z = 1 n tr(a n zi) 1 G n D G mgn (z) m G (z), for all z C +, which is due to G{[x 1, x 2 ]} = 1 π lim ε 0+ x2 x 1 Im(m G (x + iε))dx.

9 Tools (2): Moment method A simple fact is that the kth moment of F An (x) is β k = x k df An (x) = 1 n trak n. Thus, to show that F An (x) converges to F c (x), a limiting distribution, one need to verify that 1 n trak a.s. n x k df c (x). and that Carleman s condition k=1 β 1/2k 2k =.

10 Empirical spectral distribution the classical empirical spectral distribution F S (x) F S (x) = 1 n n I(λ i x), i=1 where λ 1,, λ n are eigenvalues of S Importance: for any function f(x), n f(λ j ) = j=1 o f(x)df S (x)

11 The M-P law Marcenko and Pastur (1967), Jonsson (1982) and Silverstein (1995) F S (x) a.s. F c (x). The M-P law: F c (x) has a density, f c (x) = { (x a(c))(b(c) x) 2πx, if a(c) < x < b(c) 0, otherwise and with an additional mass point at x = 0 for c > 1 f c (0) = 1 c, where a(c) = (1 c) 2 and b(c) = (1 + c) 2.

12 Extreme eigenvalues When 0 < c 1, Bai and Yin (1993) used a unified approach to prove that λ max a.s. (1 + c) 2, λ min a.s. (1 c) 2. (1.1) Further, Bai and Silverstein (1998, 1999) characterized the separation of eigenvalues of general sample covariance matrices.

13 Asymptotic distribution of λ max For the asymptotic distribution of λ max, if S 1 is the Wishart matrix, Johnstone (2001) showed that where λ max µ np σ np D W1 F 1 (1.2) µ np = ( p 1+ n) 2, σ np = ( p 1+ n)( 1 p + 1 n ) 1/3 and F 1, the Tracy-Widom law of order 1, is given by F 1 (s) = exp{ 1 2 s q(x) + (x s)q 2 (x)dx} with q(x) being the solution of Painleve II differential equation.

14 CLT of eigenvalues / and eigenvectors Bai and Silverstein (2004) and Pan and Zhou (2007a): n j=1 f(λ j ) f(x)df cn (x) N(µ, σ 2 ). Eigenvectors: Silverstein (1989, 1990), Johnstone and Lu (2007), Bai, Miao and Pan (2007) and Pan and Zhou (2007a).

15 Motivation 1 Noth that the sample mean s and the sample covariance matrix S are independent when X ij are i.i.d N(0, 1). Conjecture: s and S might be in some sense asymptotically independent under general distributions instead of Gaussian.

16 Motivation 2 Hotelling s T 2 statistic (1931) defined by T 2 = n( s µ 0 ) T S 1 ( s µ 0 ). (1.3) When X ij are i.i.d. N(0, 1), s is independent of S 1. So, in this case it is easy to obtain the limiting distribution of T 2. But, what happens in general cases?

17 Ideas How to formulate it if s and S have some asymptotic independence? Instead, investigate the statistics s T f(s) s, (2.4) where f(s) = U T diag(f(λ 1 ),, f(λ n ))U and f(x) is a smooth function. For example, when f(x) = 1/x or x m, m 1, then, (2.4) becomes s T S m s or s T S 1 s. We hope s T f(s) s s 2 is asymptotically independent of s.

18 Theorem 2 (Pan and Zhou (2008)) Suppose that: (1) X ij, i, j = 1, 2,, are i.i.d. real r.v. with EX 11 = 0, E X 11 2 = 1 and E X 11 4 <. (2) p n = c n c (0, ) as n. (3) g(x) is a continuous function with first derivative and f(x) an analytic function. Then, ( n[ s T f(s) s s 2 f(x)df cn (x)], ) n(g( s T D s) g(c n )) (X, Y ), where Y N(0, σ 2 ), X N(0, σ1 2 ), Y independent of X.

19 Remark Indeed, Theorem indicates that ( n[ s T lim P f(s) s n s 2 f(x)df cn (x)] t ) n(g( s T s) g(c n ) is equal to lim P n ( n[x T n f(s)x n ) f(x)df cn (x)] t, x n = 1

20 The asymptotic distribution of the T 2 statistic Corollary 1. In addition to the assumptions of Theorem 1, suppose that EX 11 = µ, µ = µ 0, 0 < c < 1 then T 2 1 n( n c n x df c n (x)) D 1 N(0, 2c x 2 df c(x)). 0 < c < 1 follows directly from Theorem 1.

21 CLT for linear spectral statistics of S Corollary 2. Under the assumptions of Theorem 1, n j=1 f(λ j ) f(x)df cn (x) N(µ 2, σ 2 ). Note: The mean µ 2 for S is different from the mean µ for S 1.

22 Thank you

Non white sample covariance matrices.

Non white sample covariance matrices. Non white sample covariance matrices. S. Péché, Université Grenoble 1, joint work with O. Ledoit, Uni. Zurich 17-21/05/2010, Université Marne la Vallée Workshop Probability and Geometry in High Dimensions

More information

Random Matrices and Multivariate Statistical Analysis

Random Matrices and Multivariate Statistical Analysis Random Matrices and Multivariate Statistical Analysis Iain Johnstone, Statistics, Stanford imj@stanford.edu SEA 06@MIT p.1 Agenda Classical multivariate techniques Principal Component Analysis Canonical

More information

Assessing the dependence of high-dimensional time series via sample autocovariances and correlations

Assessing the dependence of high-dimensional time series via sample autocovariances and correlations Assessing the dependence of high-dimensional time series via sample autocovariances and correlations Johannes Heiny University of Aarhus Joint work with Thomas Mikosch (Copenhagen), Richard Davis (Columbia),

More information

Estimation of the Global Minimum Variance Portfolio in High Dimensions

Estimation of the Global Minimum Variance Portfolio in High Dimensions Estimation of the Global Minimum Variance Portfolio in High Dimensions Taras Bodnar, Nestor Parolya and Wolfgang Schmid 07.FEBRUARY 2014 1 / 25 Outline Introduction Random Matrix Theory: Preliminary Results

More information

arxiv: v1 [math.pr] 13 Aug 2007

arxiv: v1 [math.pr] 13 Aug 2007 The Annals of Probability 2007, Vol. 35, No. 4, 532 572 DOI: 0.24/009790600000079 c Institute of Mathematical Statistics, 2007 arxiv:0708.720v [math.pr] 3 Aug 2007 ON ASYMPTOTICS OF EIGENVECTORS OF LARGE

More information

On corrections of classical multivariate tests for high-dimensional data

On corrections of classical multivariate tests for high-dimensional data On corrections of classical multivariate tests for high-dimensional data Jian-feng Yao with Zhidong Bai, Dandan Jiang, Shurong Zheng Overview Introduction High-dimensional data and new challenge in statistics

More information

On corrections of classical multivariate tests for high-dimensional data. Jian-feng. Yao Université de Rennes 1, IRMAR

On corrections of classical multivariate tests for high-dimensional data. Jian-feng. Yao Université de Rennes 1, IRMAR Introduction a two sample problem Marčenko-Pastur distributions and one-sample problems Random Fisher matrices and two-sample problems Testing cova On corrections of classical multivariate tests for high-dimensional

More information

Eigenvalues and Singular Values of Random Matrices: A Tutorial Introduction

Eigenvalues and Singular Values of Random Matrices: A Tutorial Introduction Random Matrix Theory and its applications to Statistics and Wireless Communications Eigenvalues and Singular Values of Random Matrices: A Tutorial Introduction Sergio Verdú Princeton University National

More information

Preface to the Second Edition...vii Preface to the First Edition... ix

Preface to the Second Edition...vii Preface to the First Edition... ix Contents Preface to the Second Edition...vii Preface to the First Edition........... ix 1 Introduction.............................................. 1 1.1 Large Dimensional Data Analysis.........................

More information

Random Matrix Theory Lecture 1 Introduction, Ensembles and Basic Laws. Symeon Chatzinotas February 11, 2013 Luxembourg

Random Matrix Theory Lecture 1 Introduction, Ensembles and Basic Laws. Symeon Chatzinotas February 11, 2013 Luxembourg Random Matrix Theory Lecture 1 Introduction, Ensembles and Basic Laws Symeon Chatzinotas February 11, 2013 Luxembourg Outline 1. Random Matrix Theory 1. Definition 2. Applications 3. Asymptotics 2. Ensembles

More information

Numerical Solutions to the General Marcenko Pastur Equation

Numerical Solutions to the General Marcenko Pastur Equation Numerical Solutions to the General Marcenko Pastur Equation Miriam Huntley May 2, 23 Motivation: Data Analysis A frequent goal in real world data analysis is estimation of the covariance matrix of some

More information

Covariance estimation using random matrix theory

Covariance estimation using random matrix theory Covariance estimation using random matrix theory Randolf Altmeyer joint work with Mathias Trabs Mathematical Statistics, Humboldt-Universität zu Berlin Statistics Mathematics and Applications, Fréjus 03

More information

Random Matrices: Beyond Wigner and Marchenko-Pastur Laws

Random Matrices: Beyond Wigner and Marchenko-Pastur Laws Random Matrices: Beyond Wigner and Marchenko-Pastur Laws Nathan Noiry Modal X, Université Paris Nanterre May 3, 2018 Wigner s Matrices Wishart s Matrices Generalizations Wigner s Matrices ij, (n, i, j

More information

Invertibility of random matrices

Invertibility of random matrices University of Michigan February 2011, Princeton University Origins of Random Matrix Theory Statistics (Wishart matrices) PCA of a multivariate Gaussian distribution. [Gaël Varoquaux s blog gael-varoquaux.info]

More information

Strong Convergence of the Empirical Distribution of Eigenvalues of Large Dimensional Random Matrices

Strong Convergence of the Empirical Distribution of Eigenvalues of Large Dimensional Random Matrices Strong Convergence of the Empirical Distribution of Eigenvalues of Large Dimensional Random Matrices by Jack W. Silverstein* Department of Mathematics Box 8205 North Carolina State University Raleigh,

More information

Concentration Inequalities for Random Matrices

Concentration Inequalities for Random Matrices Concentration Inequalities for Random Matrices M. Ledoux Institut de Mathématiques de Toulouse, France exponential tail inequalities classical theme in probability and statistics quantify the asymptotic

More information

Comparison Method in Random Matrix Theory

Comparison Method in Random Matrix Theory Comparison Method in Random Matrix Theory Jun Yin UW-Madison Valparaíso, Chile, July - 2015 Joint work with A. Knowles. 1 Some random matrices Wigner Matrix: H is N N square matrix, H : H ij = H ji, EH

More information

1 Intro to RMT (Gene)

1 Intro to RMT (Gene) M705 Spring 2013 Summary for Week 2 1 Intro to RMT (Gene) (Also see the Anderson - Guionnet - Zeitouni book, pp.6-11(?) ) We start with two independent families of R.V.s, {Z i,j } 1 i

More information

Spectral analysis of the Moore-Penrose inverse of a large dimensional sample covariance matrix

Spectral analysis of the Moore-Penrose inverse of a large dimensional sample covariance matrix Spectral analysis of the Moore-Penrose inverse of a large dimensional sample covariance matrix Taras Bodnar a, Holger Dette b and Nestor Parolya c a Department of Mathematics, Stockholm University, SE-069

More information

An Introduction to Large Sample covariance matrices and Their Applications

An Introduction to Large Sample covariance matrices and Their Applications An Introduction to Large Sample covariance matrices and Their Applications (June 208) Jianfeng Yao Department of Statistics and Actuarial Science The University of Hong Kong. These notes are designed for

More information

Random Correlation Matrices, Top Eigenvalue with Heavy Tails and Financial Applications

Random Correlation Matrices, Top Eigenvalue with Heavy Tails and Financial Applications Random Correlation Matrices, Top Eigenvalue with Heavy Tails and Financial Applications J.P Bouchaud with: M. Potters, G. Biroli, L. Laloux, M. A. Miceli http://www.cfm.fr Portfolio theory: Basics Portfolio

More information

A note on a Marčenko-Pastur type theorem for time series. Jianfeng. Yao

A note on a Marčenko-Pastur type theorem for time series. Jianfeng. Yao A note on a Marčenko-Pastur type theorem for time series Jianfeng Yao Workshop on High-dimensional statistics The University of Hong Kong, October 2011 Overview 1 High-dimensional data and the sample covariance

More information

Random Matrices: Invertibility, Structure, and Applications

Random Matrices: Invertibility, Structure, and Applications Random Matrices: Invertibility, Structure, and Applications Roman Vershynin University of Michigan Colloquium, October 11, 2011 Roman Vershynin (University of Michigan) Random Matrices Colloquium 1 / 37

More information

Painlevé Representations for Distribution Functions for Next-Largest, Next-Next-Largest, etc., Eigenvalues of GOE, GUE and GSE

Painlevé Representations for Distribution Functions for Next-Largest, Next-Next-Largest, etc., Eigenvalues of GOE, GUE and GSE Painlevé Representations for Distribution Functions for Next-Largest, Next-Next-Largest, etc., Eigenvalues of GOE, GUE and GSE Craig A. Tracy UC Davis RHPIA 2005 SISSA, Trieste 1 Figure 1: Paul Painlevé,

More information

Random Matrix Theory and its Applications to Econometrics

Random Matrix Theory and its Applications to Econometrics Random Matrix Theory and its Applications to Econometrics Hyungsik Roger Moon University of Southern California Conference to Celebrate Peter Phillips 40 Years at Yale, October 2018 Spectral Analysis of

More information

Random Matrix: From Wigner to Quantum Chaos

Random Matrix: From Wigner to Quantum Chaos Random Matrix: From Wigner to Quantum Chaos Horng-Tzer Yau Harvard University Joint work with P. Bourgade, L. Erdős, B. Schlein and J. Yin 1 Perhaps I am now too courageous when I try to guess the distribution

More information

Exponential tail inequalities for eigenvalues of random matrices

Exponential tail inequalities for eigenvalues of random matrices Exponential tail inequalities for eigenvalues of random matrices M. Ledoux Institut de Mathématiques de Toulouse, France exponential tail inequalities classical theme in probability and statistics quantify

More information

Principal Component Analysis for a Spiked Covariance Model with Largest Eigenvalues of the Same Asymptotic Order of Magnitude

Principal Component Analysis for a Spiked Covariance Model with Largest Eigenvalues of the Same Asymptotic Order of Magnitude Principal Component Analysis for a Spiked Covariance Model with Largest Eigenvalues of the Same Asymptotic Order of Magnitude Addy M. Boĺıvar Cimé Centro de Investigación en Matemáticas A.C. May 1, 2010

More information

STAT C206A / MATH C223A : Stein s method and applications 1. Lecture 31

STAT C206A / MATH C223A : Stein s method and applications 1. Lecture 31 STAT C26A / MATH C223A : Stein s method and applications Lecture 3 Lecture date: Nov. 7, 27 Scribe: Anand Sarwate Gaussian concentration recap If W, T ) is a pair of random variables such that for all

More information

Random regular digraphs: singularity and spectrum

Random regular digraphs: singularity and spectrum Random regular digraphs: singularity and spectrum Nick Cook, UCLA Probability Seminar, Stanford University November 2, 2015 Universality Circular law Singularity probability Talk outline 1 Universality

More information

Fluctuations from the Semicircle Law Lecture 4

Fluctuations from the Semicircle Law Lecture 4 Fluctuations from the Semicircle Law Lecture 4 Ioana Dumitriu University of Washington Women and Math, IAS 2014 May 23, 2014 Ioana Dumitriu (UW) Fluctuations from the Semicircle Law Lecture 4 May 23, 2014

More information

Random Matrices for Big Data Signal Processing and Machine Learning

Random Matrices for Big Data Signal Processing and Machine Learning Random Matrices for Big Data Signal Processing and Machine Learning (ICASSP 2017, New Orleans) Romain COUILLET and Hafiz TIOMOKO ALI CentraleSupélec, France March, 2017 1 / 153 Outline Basics of Random

More information

The circular law. Lewis Memorial Lecture / DIMACS minicourse March 19, Terence Tao (UCLA)

The circular law. Lewis Memorial Lecture / DIMACS minicourse March 19, Terence Tao (UCLA) The circular law Lewis Memorial Lecture / DIMACS minicourse March 19, 2008 Terence Tao (UCLA) 1 Eigenvalue distributions Let M = (a ij ) 1 i n;1 j n be a square matrix. Then one has n (generalised) eigenvalues

More information

Free Probability, Sample Covariance Matrices and Stochastic Eigen-Inference

Free Probability, Sample Covariance Matrices and Stochastic Eigen-Inference Free Probability, Sample Covariance Matrices and Stochastic Eigen-Inference Alan Edelman Department of Mathematics, Computer Science and AI Laboratories. E-mail: edelman@math.mit.edu N. Raj Rao Deparment

More information

INVERSE EIGENVALUE STATISTICS FOR RAYLEIGH AND RICIAN MIMO CHANNELS

INVERSE EIGENVALUE STATISTICS FOR RAYLEIGH AND RICIAN MIMO CHANNELS INVERSE EIGENVALUE STATISTICS FOR RAYLEIGH AND RICIAN MIMO CHANNELS E. Jorswieck, G. Wunder, V. Jungnickel, T. Haustein Abstract Recently reclaimed importance of the empirical distribution function of

More information

Random Eigenvalue Problems Revisited

Random Eigenvalue Problems Revisited Random Eigenvalue Problems Revisited S Adhikari Department of Aerospace Engineering, University of Bristol, Bristol, U.K. Email: S.Adhikari@bristol.ac.uk URL: http://www.aer.bris.ac.uk/contact/academic/adhikari/home.html

More information

Random Toeplitz Matrices

Random Toeplitz Matrices Arnab Sen University of Minnesota Conference on Limits Theorems in Probability, IISc January 11, 2013 Joint work with Bálint Virág What are Toeplitz matrices? a0 a 1 a 2... a1 a0 a 1... a2 a1 a0... a (n

More information

Semicircle law on short scales and delocalization for Wigner random matrices

Semicircle law on short scales and delocalization for Wigner random matrices Semicircle law on short scales and delocalization for Wigner random matrices László Erdős University of Munich Weizmann Institute, December 2007 Joint work with H.T. Yau (Harvard), B. Schlein (Munich)

More information

Eigenvectors of some large sample covariance matrix ensembles

Eigenvectors of some large sample covariance matrix ensembles Probab. Theory Relat. Fields DOI 0.007/s00440-00-0298-3 Eigenvectors of some large sample covariance matrix ensembles Olivier Ledoit Sandrine Péché Received: 24 March 2009 / Revised: 0 March 200 Springer-Verlag

More information

A new method to bound rate of convergence

A new method to bound rate of convergence A new method to bound rate of convergence Arup Bose Indian Statistical Institute, Kolkata, abose@isical.ac.in Sourav Chatterjee University of California, Berkeley Empirical Spectral Distribution Distribution

More information

5.1 Consistency of least squares estimates. We begin with a few consistency results that stand on their own and do not depend on normality.

5.1 Consistency of least squares estimates. We begin with a few consistency results that stand on their own and do not depend on normality. 88 Chapter 5 Distribution Theory In this chapter, we summarize the distributions related to the normal distribution that occur in linear models. Before turning to this general problem that assumes normal

More information

Random Vectors 1. STA442/2101 Fall See last slide for copyright information. 1 / 30

Random Vectors 1. STA442/2101 Fall See last slide for copyright information. 1 / 30 Random Vectors 1 STA442/2101 Fall 2017 1 See last slide for copyright information. 1 / 30 Background Reading: Renscher and Schaalje s Linear models in statistics Chapter 3 on Random Vectors and Matrices

More information

Testing High-Dimensional Covariance Matrices under the Elliptical Distribution and Beyond

Testing High-Dimensional Covariance Matrices under the Elliptical Distribution and Beyond Testing High-Dimensional Covariance Matrices under the Elliptical Distribution and Beyond arxiv:1707.04010v2 [math.st] 17 Apr 2018 Xinxin Yang Department of ISOM, Hong Kong University of Science and Technology

More information

Convergence of empirical spectral distributions of large dimensional quaternion sample covariance matrices

Convergence of empirical spectral distributions of large dimensional quaternion sample covariance matrices Ann Inst Stat Math 206 68:765 785 DOI 0007/s0463-05-054-0 Convergence of empirical spectral distributions of large dimensional quaternion sample covariance matrices Huiqin Li Zhi Dong Bai Jiang Hu Received:

More information

National Sun Yat-Sen University CSE Course: Information Theory. Maximum Entropy and Spectral Estimation

National Sun Yat-Sen University CSE Course: Information Theory. Maximum Entropy and Spectral Estimation Maximum Entropy and Spectral Estimation 1 Introduction What is the distribution of velocities in the gas at a given temperature? It is the Maxwell-Boltzmann distribution. The maximum entropy distribution

More information

Estimation of large dimensional sparse covariance matrices

Estimation of large dimensional sparse covariance matrices Estimation of large dimensional sparse covariance matrices Department of Statistics UC, Berkeley May 5, 2009 Sample covariance matrix and its eigenvalues Data: n p matrix X n (independent identically distributed)

More information

Universality of distribution functions in random matrix theory Arno Kuijlaars Katholieke Universiteit Leuven, Belgium

Universality of distribution functions in random matrix theory Arno Kuijlaars Katholieke Universiteit Leuven, Belgium Universality of distribution functions in random matrix theory Arno Kuijlaars Katholieke Universiteit Leuven, Belgium SEA 06@MIT, Workshop on Stochastic Eigen-Analysis and its Applications, MIT, Cambridge,

More information

Asymptotic Statistics-III. Changliang Zou

Asymptotic Statistics-III. Changliang Zou Asymptotic Statistics-III Changliang Zou The multivariate central limit theorem Theorem (Multivariate CLT for iid case) Let X i be iid random p-vectors with mean µ and and covariance matrix Σ. Then n (

More information

Random matrices: Distribution of the least singular value (via Property Testing)

Random matrices: Distribution of the least singular value (via Property Testing) Random matrices: Distribution of the least singular value (via Property Testing) Van H. Vu Department of Mathematics Rutgers vanvu@math.rutgers.edu (joint work with T. Tao, UCLA) 1 Let ξ be a real or complex-valued

More information

Determinantal point processes and random matrix theory in a nutshell

Determinantal point processes and random matrix theory in a nutshell Determinantal point processes and random matrix theory in a nutshell part II Manuela Girotti based on M. Girotti s PhD thesis, A. Kuijlaars notes from Les Houches Winter School 202 and B. Eynard s notes

More information

Local semicircle law, Wegner estimate and level repulsion for Wigner random matrices

Local semicircle law, Wegner estimate and level repulsion for Wigner random matrices Local semicircle law, Wegner estimate and level repulsion for Wigner random matrices László Erdős University of Munich Oberwolfach, 2008 Dec Joint work with H.T. Yau (Harvard), B. Schlein (Cambrigde) Goal:

More information

The largest eigenvalues of the sample covariance matrix. in the heavy-tail case

The largest eigenvalues of the sample covariance matrix. in the heavy-tail case The largest eigenvalues of the sample covariance matrix 1 in the heavy-tail case Thomas Mikosch University of Copenhagen Joint work with Richard A. Davis (Columbia NY), Johannes Heiny (Aarhus University)

More information

Eigenvalue variance bounds for Wigner and covariance random matrices

Eigenvalue variance bounds for Wigner and covariance random matrices Eigenvalue variance bounds for Wigner and covariance random matrices S. Dallaporta University of Toulouse, France Abstract. This work is concerned with finite range bounds on the variance of individual

More information

Asymptotic results for empirical measures of weighted sums of independent random variables

Asymptotic results for empirical measures of weighted sums of independent random variables Asymptotic results for empirical measures of weighted sums of independent random variables B. Bercu and W. Bryc University Bordeaux 1, France Workshop on Limit Theorems, University Paris 1 Paris, January

More information

Supelec Randomness in Wireless Networks: how to deal with it?

Supelec Randomness in Wireless Networks: how to deal with it? Supelec Randomness in Wireless Networks: how to deal with it? Mérouane Debbah Alcatel-Lucent Chair on Flexible Radio merouane.debbah@supelec.fr The performance dilemma... La théorie, c est quand on sait

More information

Asymptotic Statistics-VI. Changliang Zou

Asymptotic Statistics-VI. Changliang Zou Asymptotic Statistics-VI Changliang Zou Kolmogorov-Smirnov distance Example (Kolmogorov-Smirnov confidence intervals) We know given α (0, 1), there is a well-defined d = d α,n such that, for any continuous

More information

arxiv: v2 [math.st] 22 Nov 2013

arxiv: v2 [math.st] 22 Nov 2013 The Annals of Statistics 203, Vol 4, No 5, 2572 2607 DOI: 024/3-AOS54 c Institute of Mathematical Statistics, 203 arxiv:35000v2 [mathst] 22 Nov 203 CONVERGENCE RATES OF EIGENVECTOR EMPIRICAL SPECTRAL DISTRIBUTION

More information

Random Matrix Eigenvalue Problems in Probabilistic Structural Mechanics

Random Matrix Eigenvalue Problems in Probabilistic Structural Mechanics Random Matrix Eigenvalue Problems in Probabilistic Structural Mechanics S Adhikari Department of Aerospace Engineering, University of Bristol, Bristol, U.K. URL: http://www.aer.bris.ac.uk/contact/academic/adhikari/home.html

More information

LARGE DIMENSIONAL RANDOM MATRIX THEORY FOR SIGNAL DETECTION AND ESTIMATION IN ARRAY PROCESSING

LARGE DIMENSIONAL RANDOM MATRIX THEORY FOR SIGNAL DETECTION AND ESTIMATION IN ARRAY PROCESSING LARGE DIMENSIONAL RANDOM MATRIX THEORY FOR SIGNAL DETECTION AND ESTIMATION IN ARRAY PROCESSING J. W. Silverstein and P. L. Combettes Department of Mathematics, North Carolina State University, Raleigh,

More information

Asymptotic results for empirical measures of weighted sums of independent random variables

Asymptotic results for empirical measures of weighted sums of independent random variables Asymptotic results for empirical measures of weighted sums of independent random variables B. Bercu and W. Bryc University Bordeaux 1, France Seminario di Probabilità e Statistica Matematica Sapienza Università

More information

Random Matrices in Machine Learning

Random Matrices in Machine Learning Random Matrices in Machine Learning Romain COUILLET CentraleSupélec, University of ParisSaclay, France GSTATS IDEX DataScience Chair, GIPSA-lab, University Grenoble Alpes, France. June 21, 2018 1 / 113

More information

Uses of Asymptotic Distributions: In order to get distribution theory, we need to norm the random variable; we usually look at n 1=2 ( X n ).

Uses of Asymptotic Distributions: In order to get distribution theory, we need to norm the random variable; we usually look at n 1=2 ( X n ). 1 Economics 620, Lecture 8a: Asymptotics II Uses of Asymptotic Distributions: Suppose X n! 0 in probability. (What can be said about the distribution of X n?) In order to get distribution theory, we need

More information

Continuous Random Variables

Continuous Random Variables 1 / 24 Continuous Random Variables Saravanan Vijayakumaran sarva@ee.iitb.ac.in Department of Electrical Engineering Indian Institute of Technology Bombay February 27, 2013 2 / 24 Continuous Random Variables

More information

Principal component analysis and the asymptotic distribution of high-dimensional sample eigenvectors

Principal component analysis and the asymptotic distribution of high-dimensional sample eigenvectors Principal component analysis and the asymptotic distribution of high-dimensional sample eigenvectors Kristoffer Hellton Department of Mathematics, University of Oslo May 12, 2015 K. Hellton (UiO) Distribution

More information

1 Tridiagonal matrices

1 Tridiagonal matrices Lecture Notes: β-ensembles Bálint Virág Notes with Diane Holcomb 1 Tridiagonal matrices Definition 1. Suppose you have a symmetric matrix A, we can define its spectral measure (at the first coordinate

More information

Eigenvectors of some large sample covariance matrix ensembles.

Eigenvectors of some large sample covariance matrix ensembles. oname manuscript o. (will be inserted by the editor) Eigenvectors of some large sample covariance matrix ensembles. Olivier Ledoit Sandrine Péché Received: date / Accepted: date AbstractWe consider sample

More information

A Brief Analysis of Central Limit Theorem. SIAM Chapter Florida State University

A Brief Analysis of Central Limit Theorem. SIAM Chapter Florida State University 1 / 36 A Brief Analysis of Central Limit Theorem Omid Khanmohamadi (okhanmoh@math.fsu.edu) Diego Hernán Díaz Martínez (ddiazmar@math.fsu.edu) Tony Wills (twills@math.fsu.edu) Kouadio David Yao (kyao@math.fsu.edu)

More information

arxiv:cond-mat/ v2 [cond-mat.stat-mech] 3 Feb 2004

arxiv:cond-mat/ v2 [cond-mat.stat-mech] 3 Feb 2004 arxiv:cond-mat/0312496v2 [cond-mat.stat-mech] 3 Feb 2004 Signal and Noise in Financial Correlation Matrices Zdzis law Burda, Jerzy Jurkiewicz 1 M. Smoluchowski Institute of Physics, Jagiellonian University,

More information

Bootstrapping high dimensional vector: interplay between dependence and dimensionality

Bootstrapping high dimensional vector: interplay between dependence and dimensionality Bootstrapping high dimensional vector: interplay between dependence and dimensionality Xianyang Zhang Joint work with Guang Cheng University of Missouri-Columbia LDHD: Transition Workshop, 2014 Xianyang

More information

Random Matrices and Wireless Communications

Random Matrices and Wireless Communications Random Matrices and Wireless Communications Jamie Evans Centre for Ultra-Broadband Information Networks (CUBIN) Department of Electrical and Electronic Engineering University of Melbourne 3.5 1 3 0.8 2.5

More information

11 a 12 a 21 a 11 a 22 a 12 a 21. (C.11) A = The determinant of a product of two matrices is given by AB = A B 1 1 = (C.13) and similarly.

11 a 12 a 21 a 11 a 22 a 12 a 21. (C.11) A = The determinant of a product of two matrices is given by AB = A B 1 1 = (C.13) and similarly. C PROPERTIES OF MATRICES 697 to whether the permutation i 1 i 2 i N is even or odd, respectively Note that I =1 Thus, for a 2 2 matrix, the determinant takes the form A = a 11 a 12 = a a 21 a 11 a 22 a

More information

Universality of local spectral statistics of random matrices

Universality of local spectral statistics of random matrices Universality of local spectral statistics of random matrices László Erdős Ludwig-Maximilians-Universität, Munich, Germany CRM, Montreal, Mar 19, 2012 Joint with P. Bourgade, B. Schlein, H.T. Yau, and J.

More information

An introduction to G-estimation with sample covariance matrices

An introduction to G-estimation with sample covariance matrices An introduction to G-estimation with sample covariance matrices Xavier estre xavier.mestre@cttc.cat Centre Tecnològic de Telecomunicacions de Catalunya (CTTC) "atrices aleatoires: applications aux communications

More information

Applications of Random Matrix Theory in Wireless Underwater Communication

Applications of Random Matrix Theory in Wireless Underwater Communication Applications of Random Matrix Theory in Wireless Underwater Communication Why Signal Processing and Wireless Communication Need Random Matrix Theory Atulya Yellepeddi May 13, 2013 18.338- Eigenvalues of

More information

Statistica Sinica Preprint No: SS

Statistica Sinica Preprint No: SS Statistica Sinica Preprint No: SS-2017-0275 Title Testing homogeneity of high-dimensional covariance matrices Manuscript ID SS-2017-0275 URL http://www.stat.sinica.edu.tw/statistica/ DOI 10.5705/ss.202017.0275

More information

DETECTING RARE AND WEAK SPIKES IN LARGE COVARIANCE MATRICES

DETECTING RARE AND WEAK SPIKES IN LARGE COVARIANCE MATRICES Submitted to the Annals of Statistics DETECTING RARE AND WEAK SPIKES IN LARGE COVARIANCE MATRICES By Zheng Tracy Ke University of Chicago arxiv:1609.00883v1 [math.st] 4 Sep 2016 Given p-dimensional Gaussian

More information

Probability on a Riemannian Manifold

Probability on a Riemannian Manifold Probability on a Riemannian Manifold Jennifer Pajda-De La O December 2, 2015 1 Introduction We discuss how we can construct probability theory on a Riemannian manifold. We make comparisons to this and

More information

Markov operators, classical orthogonal polynomial ensembles, and random matrices

Markov operators, classical orthogonal polynomial ensembles, and random matrices Markov operators, classical orthogonal polynomial ensembles, and random matrices M. Ledoux, Institut de Mathématiques de Toulouse, France 5ecm Amsterdam, July 2008 recent study of random matrix and random

More information

Applications of Random Matrix Theory to Economics, Finance and Political Science

Applications of Random Matrix Theory to Economics, Finance and Political Science Outline Applications of Random Matrix Theory to Economics, Finance and Political Science Matthew C. 1 1 Department of Economics, MIT Institute for Quantitative Social Science, Harvard University SEA 06

More information

Multiuser Receivers, Random Matrices and Free Probability

Multiuser Receivers, Random Matrices and Free Probability Multiuser Receivers, Random Matrices and Free Probability David N.C. Tse Department of Electrical Engineering and Computer Sciences University of California Berkeley, CA 94720, USA dtse@eecs.berkeley.edu

More information

Exam 2. Jeremy Morris. March 23, 2006

Exam 2. Jeremy Morris. March 23, 2006 Exam Jeremy Morris March 3, 006 4. Consider a bivariate normal population with µ 0, µ, σ, σ and ρ.5. a Write out the bivariate normal density. The multivariate normal density is defined by the following

More information

Gaussian random variables inr n

Gaussian random variables inr n Gaussian vectors Lecture 5 Gaussian random variables inr n One-dimensional case One-dimensional Gaussian density with mean and standard deviation (called N, ): fx x exp. Proposition If X N,, then ax b

More information

Bayesian decision theory Introduction to Pattern Recognition. Lectures 4 and 5: Bayesian decision theory

Bayesian decision theory Introduction to Pattern Recognition. Lectures 4 and 5: Bayesian decision theory Bayesian decision theory 8001652 Introduction to Pattern Recognition. Lectures 4 and 5: Bayesian decision theory Jussi Tohka jussi.tohka@tut.fi Institute of Signal Processing Tampere University of Technology

More information

Applications and fundamental results on random Vandermon

Applications and fundamental results on random Vandermon Applications and fundamental results on random Vandermonde matrices May 2008 Some important concepts from classical probability Random variables are functions (i.e. they commute w.r.t. multiplication)

More information

Concentration for Coulomb gases

Concentration for Coulomb gases 1/32 and Coulomb transport inequalities Djalil Chafaï 1, Adrien Hardy 2, Mylène Maïda 2 1 Université Paris-Dauphine, 2 Université de Lille November 4, 2016 IHP Paris Groupe de travail MEGA 2/32 Motivation

More information

where r n = dn+1 x(t)

where r n = dn+1 x(t) Random Variables Overview Probability Random variables Transforms of pdfs Moments and cumulants Useful distributions Random vectors Linear transformations of random vectors The multivariate normal distribution

More information

Multivariate Gaussian Distribution. Auxiliary notes for Time Series Analysis SF2943. Spring 2013

Multivariate Gaussian Distribution. Auxiliary notes for Time Series Analysis SF2943. Spring 2013 Multivariate Gaussian Distribution Auxiliary notes for Time Series Analysis SF2943 Spring 203 Timo Koski Department of Mathematics KTH Royal Institute of Technology, Stockholm 2 Chapter Gaussian Vectors.

More information

Quick Tour of Basic Probability Theory and Linear Algebra

Quick Tour of Basic Probability Theory and Linear Algebra Quick Tour of and Linear Algebra Quick Tour of and Linear Algebra CS224w: Social and Information Network Analysis Fall 2011 Quick Tour of and Linear Algebra Quick Tour of and Linear Algebra Outline Definitions

More information

Design of MMSE Multiuser Detectors using Random Matrix Techniques

Design of MMSE Multiuser Detectors using Random Matrix Techniques Design of MMSE Multiuser Detectors using Random Matrix Techniques Linbo Li and Antonia M Tulino and Sergio Verdú Department of Electrical Engineering Princeton University Princeton, New Jersey 08544 Email:

More information

Weiming Li and Jianfeng Yao

Weiming Li and Jianfeng Yao LOCAL MOMENT ESTIMATION OF POPULATION SPECTRUM 1 A LOCAL MOMENT ESTIMATOR OF THE SPECTRUM OF A LARGE DIMENSIONAL COVARIANCE MATRIX Weiming Li and Jianfeng Yao arxiv:1302.0356v1 [stat.me] 2 Feb 2013 Abstract:

More information

Delta Method. Example : Method of Moments for Exponential Distribution. f(x; λ) = λe λx I(x > 0)

Delta Method. Example : Method of Moments for Exponential Distribution. f(x; λ) = λe λx I(x > 0) Delta Method Often estimators are functions of other random variables, for example in the method of moments. These functions of random variables can sometimes inherit a normal approximation from the underlying

More information

Isotropic local laws for random matrices

Isotropic local laws for random matrices Isotropic local laws for random matrices Antti Knowles University of Geneva With Y. He and R. Rosenthal Random matrices Let H C N N be a large Hermitian random matrix, normalized so that H. Some motivations:

More information

EE4601 Communication Systems

EE4601 Communication Systems EE4601 Communication Systems Week 2 Review of Probability, Important Distributions 0 c 2011, Georgia Institute of Technology (lect2 1) Conditional Probability Consider a sample space that consists of two

More information

Universal Fluctuation Formulae for one-cut β-ensembles

Universal Fluctuation Formulae for one-cut β-ensembles Universal Fluctuation Formulae for one-cut β-ensembles with a combinatorial touch Pierpaolo Vivo with F. D. Cunden Phys. Rev. Lett. 113, 070202 (2014) with F.D. Cunden and F. Mezzadri J. Phys. A 48, 315204

More information

Notes on Random Vectors and Multivariate Normal

Notes on Random Vectors and Multivariate Normal MATH 590 Spring 06 Notes on Random Vectors and Multivariate Normal Properties of Random Vectors If X,, X n are random variables, then X = X,, X n ) is a random vector, with the cumulative distribution

More information

ECE 4400:693 - Information Theory

ECE 4400:693 - Information Theory ECE 4400:693 - Information Theory Dr. Nghi Tran Lecture 8: Differential Entropy Dr. Nghi Tran (ECE-University of Akron) ECE 4400:693 Lecture 1 / 43 Outline 1 Review: Entropy of discrete RVs 2 Differential

More information

On the principal components of sample covariance matrices

On the principal components of sample covariance matrices On the principal components of sample covariance matrices Alex Bloemendal Antti Knowles Horng-Tzer Yau Jun Yin February 4, 205 We introduce a class of M M sample covariance matrices Q which subsumes and

More information

Multivariate Analysis and Likelihood Inference

Multivariate Analysis and Likelihood Inference Multivariate Analysis and Likelihood Inference Outline 1 Joint Distribution of Random Variables 2 Principal Component Analysis (PCA) 3 Multivariate Normal Distribution 4 Likelihood Inference Joint density

More information

Triangular matrices and biorthogonal ensembles

Triangular matrices and biorthogonal ensembles /26 Triangular matrices and biorthogonal ensembles Dimitris Cheliotis Department of Mathematics University of Athens UK Easter Probability Meeting April 8, 206 2/26 Special densities on R n Example. n

More information

Formulas for probability theory and linear models SF2941

Formulas for probability theory and linear models SF2941 Formulas for probability theory and linear models SF2941 These pages + Appendix 2 of Gut) are permitted as assistance at the exam. 11 maj 2008 Selected formulae of probability Bivariate probability Transforms

More information