Isotropic local laws for random matrices

Size: px
Start display at page:

Download "Isotropic local laws for random matrices"

Transcription

1 Isotropic local laws for random matrices Antti Knowles University of Geneva With Y. He and R. Rosenthal

2 Random matrices Let H C N N be a large Hermitian random matrix, normalized so that H. Some motivations: Quantum mechanics: Hamilton operator of a disordered quantum system (heavy nuclei, itinerant electrons in metals, quantum dots,...). Multivariate statistics: sample covariance matrix. Goal: Analysis of eigenvalues λ λ 2... λ N and eigenvectors of H. u, u 2,..., u N S N

3 The key questions () Global eigenvalue distribution. Asymptotic behaviour of the empirical distribution N N i= δ λ i. λ i+ λ i (2) Local eigenvalue distribution. Asymptotic behaviour of individual eigenvalues. λ Examples: distribution of the gaps λ i λ i+ or the largest eigenvalue λ. (3) Distribution of eigenvectors. Localization / delocalization of the eigenvectors. Distribution of the components v, u i.

4 Global and local laws The Green function G(z).= (H zi) is the right tool to address the questions () (3). Writing z = E + iη C +, we have Im Tr G(z) = N N N i= η (λ i E) 2 + η 2 Observation: η = Im z is the spectral resolution. Global law: control of G(z) for η. Local law: control of G(z) for η N. λ i η E To answer the questions (2) and (3), one needs a local law.

5 Deterministic equivalent of Green function One usually needs control of G(z) as a matrix, and not just of N Tr G(z). Goal: There is a deterministic matrix M(z), the deterministic equivalent of G(z), such that G(z) M(z) is small for η N with high probability. What does G M small mean? Canonical notions of smallness (operator topologies): control of (i) v, (G M)w, (ii) (G M)v, (iii) G M for all deterministic v, w S N. In fact, already for H = GUE it is easy to see that (ii) and (iii) blow up. Control of (i) is the strongest one can hope for (isotropic control of G).

6 Example: Wigner matrices The entries (H ij. i j N) are independent and satisfy The deterministic equivalent is where EH ij = 0, E H ij 2 = N. m(z).= M(z) = m(z)i 2 2 dx 4 x 2 2π is the Stieltjes transform of the semicircle law. x z

7 Some history Local law η N for Wigner matrices: (a) Tr(G M) [Erdős, Schlein, Yau; 2009] (b) (G M) ij [Erdős, Yau, Yin; 200] (c) v, (G M)w [Knowles, Yin; 20] More general models (sparse random matrices, covariance matrices, deformed matrices,...): [Ajanki, Erdős, Knowles, Krüger, Lee, Schnelli, Yau, Yin,... ] Two key steps in all proofs: Deterministic step: stability of self-consistent equation. Identify M as the solution of a self-consistent equation Π(M) = 0. Prove that Π(Q) 0 = Q M. Stochastic step: derivation of the self-consistent equation. Prove that Π(G) 0 with high probability.

8 Derivation of the self-consistent equation: folklore Use Schur s complement formula to write G ii = z H ii k,l i H ikg (i) kl H li and large deviation estimates to show, with high probability, H ii 0 and k,l i Average over i. H ik G (i) kl H li H ik G (i) kl H ki N k i k i, G (i) kk N G kk. Works very well for Wigner matrices and some generalizations theoreof. Problems: (i) Matrix entries have to be independent. (ii) Expectation of H has to be diagonal. (iii) Does not give control of v, (G M)w. This requires an additional, difficult, step. k

9 Alternative approach [He, K, Rosenthal; 206] New way to derive self-consistent equations, overcoming all of the above problems: (i) Admits a very general relationship between matrix entries and the independent random variables. (Can also handle models with short-range correlations, [Erdős, Krüger, Schröder; 207].) (ii) Completely insensitive to the expectation of H. (iii) Yields control of v, (G M)w from the outset. Key idea: instead of working on entire rows and columns (Schur s formula), work on individual entries (resolvent/cumulant expansion).

10 Resolvent / cumulant expansion Resolvent expansion in individual entries: (H (ij) ) kl.= {i,j} ={k,l} H kl, G (ij) (z).= (H (ij) zi). Starting point: trivial identity I + zg = HG. Then write E(HG) ii = E j = E j H ij G ji H ij ( G (ij) ji G (ij) jj H jig (ij) ii ) G (ij) ji H ij G (ij) ji + = E j = E j N G(ij) jj G(ij) ii + N G jjg ii +. Note: resolvent expansion is used twice: G G (ij) G.

11 The resulting algebra is beautifully summarized by the cumulant expansion E[h f(h)] = l k=0 k! C k+(h) E[f (k) (h)] + R l, C k (h).= k t t=0 log E[e th ]. [Khorunzhy, Khoruzhenko, Pastur; 996] Performs essentially the same as the resolvent expansion but more tidily. In applications, h = H ij and f(h) is a polynomial of resolvents. For example, the previous resolvent calculation is replaced by E(HG) ii = j = j l E[H ij G ji ] = j k=0 [ ] N E G ji + = H ij j [ ( ) k k! C k+(h ij )E G ji] + H ij N E[ G jjg ii G ji G ij ] + Second term small by Cauchy-Schwarz and Ward identity j G ij 2 = η Im G ii.

12 Sketch of results Illustrative model: general mean-field model with independent entries. The entries (H ij. i j N) are independent and satisfy Var(H ij ) = O( N ). Split H = W + A where A.= EH, and define the map Π z (M).= I + zm + S(M)M AM, S(M).= E[W MW ]. Then for z C + the equation Π z ( ) = 0 has a unique solution M(z) with positive imaginary part the deterministic equivalent of G for this model. We prove that for all η N v, Π(G)w (Optimal in bulk and at edges.) Im M + Nη Nη. This deals with the stochastic step derivation of self-consistent equation. Conclude proof of local law by the deterministic step stability analysis of self-consistent equation [Lee, Schnelli; 203], [Ajanki, Erdős, Krüger; 206].

13 How to start the proof Let P vw.= v, Π(G)w, where Π(G) = I + zm + S(M)M AM = W G + S(G)G. By Markov s inequality, it suffices to estimate E P vw 2p = E [ (W G) vw Pvw p P p ] [ vw + E (S(G)G)vw Pvw p P p vw]. Apply the cumulant expansion to the first term by writing (W G) vw = i,j v i W ij G jw. The leading term from k =, [( ) ] E v i G jj G iw Pvw p P p vw, i,j cancels the term E [ (S(G)G) vw P p vw P p vw]. Everything else has to be estimated main work!

Local law of addition of random matrices

Local law of addition of random matrices Local law of addition of random matrices Kevin Schnelli IST Austria Joint work with Zhigang Bao and László Erdős Supported by ERC Advanced Grant RANMAT No. 338804 Spectrum of sum of random matrices Question:

More information

The Matrix Dyson Equation in random matrix theory

The Matrix Dyson Equation in random matrix theory The Matrix Dyson Equation in random matrix theory László Erdős IST, Austria Mathematical Physics seminar University of Bristol, Feb 3, 207 Joint work with O. Ajanki, T. Krüger Partially supported by ERC

More information

Spectral Universality of Random Matrices

Spectral Universality of Random Matrices Spectral Universality of Random Matrices László Erdős IST Austria (supported by ERC Advanced Grant) Szilárd Leó Colloquium Technical University of Budapest February 27, 2018 László Erdős Spectral Universality

More information

arxiv: v4 [math.pr] 10 Sep 2018

arxiv: v4 [math.pr] 10 Sep 2018 Lectures on the local semicircle law for Wigner matrices arxiv:60.04055v4 [math.pr] 0 Sep 208 Florent Benaych-Georges Antti Knowles September, 208 These notes provide an introduction to the local semicircle

More information

Local Kesten McKay law for random regular graphs

Local Kesten McKay law for random regular graphs Local Kesten McKay law for random regular graphs Roland Bauerschmidt (with Jiaoyang Huang and Horng-Tzer Yau) University of Cambridge Weizmann Institute, January 2017 Random regular graph G N,d is the

More information

Semicircle law on short scales and delocalization for Wigner random matrices

Semicircle law on short scales and delocalization for Wigner random matrices Semicircle law on short scales and delocalization for Wigner random matrices László Erdős University of Munich Weizmann Institute, December 2007 Joint work with H.T. Yau (Harvard), B. Schlein (Munich)

More information

Random Matrices: Invertibility, Structure, and Applications

Random Matrices: Invertibility, Structure, and Applications Random Matrices: Invertibility, Structure, and Applications Roman Vershynin University of Michigan Colloquium, October 11, 2011 Roman Vershynin (University of Michigan) Random Matrices Colloquium 1 / 37

More information

Universality of local spectral statistics of random matrices

Universality of local spectral statistics of random matrices Universality of local spectral statistics of random matrices László Erdős Ludwig-Maximilians-Universität, Munich, Germany CRM, Montreal, Mar 19, 2012 Joint with P. Bourgade, B. Schlein, H.T. Yau, and J.

More information

Comparison Method in Random Matrix Theory

Comparison Method in Random Matrix Theory Comparison Method in Random Matrix Theory Jun Yin UW-Madison Valparaíso, Chile, July - 2015 Joint work with A. Knowles. 1 Some random matrices Wigner Matrix: H is N N square matrix, H : H ij = H ji, EH

More information

Local semicircle law, Wegner estimate and level repulsion for Wigner random matrices

Local semicircle law, Wegner estimate and level repulsion for Wigner random matrices Local semicircle law, Wegner estimate and level repulsion for Wigner random matrices László Erdős University of Munich Oberwolfach, 2008 Dec Joint work with H.T. Yau (Harvard), B. Schlein (Cambrigde) Goal:

More information

Extreme eigenvalues of Erdős-Rényi random graphs

Extreme eigenvalues of Erdős-Rényi random graphs Extreme eigenvalues of Erdős-Rényi random graphs Florent Benaych-Georges j.w.w. Charles Bordenave and Antti Knowles MAP5, Université Paris Descartes May 18, 2018 IPAM UCLA Inhomogeneous Erdős-Rényi random

More information

The Isotropic Semicircle Law and Deformation of Wigner Matrices

The Isotropic Semicircle Law and Deformation of Wigner Matrices The Isotropic Semicircle Law and Deformation of Wigner Matrices Antti Knowles 1 and Jun Yin 2 Department of Mathematics, Harvard University Cambridge MA 02138, USA knowles@math.harvard.edu 1 Department

More information

Random Matrix: From Wigner to Quantum Chaos

Random Matrix: From Wigner to Quantum Chaos Random Matrix: From Wigner to Quantum Chaos Horng-Tzer Yau Harvard University Joint work with P. Bourgade, L. Erdős, B. Schlein and J. Yin 1 Perhaps I am now too courageous when I try to guess the distribution

More information

Applications of random matrix theory to principal component analysis(pca)

Applications of random matrix theory to principal component analysis(pca) Applications of random matrix theory to principal component analysis(pca) Jun Yin IAS, UW-Madison IAS, April-2014 Joint work with A. Knowles and H. T Yau. 1 Basic picture: Let H be a Wigner (symmetric)

More information

On the principal components of sample covariance matrices

On the principal components of sample covariance matrices On the principal components of sample covariance matrices Alex Bloemendal Antti Knowles Horng-Tzer Yau Jun Yin February 4, 205 We introduce a class of M M sample covariance matrices Q which subsumes and

More information

arxiv: v2 [math.pr] 16 Aug 2014

arxiv: v2 [math.pr] 16 Aug 2014 RANDOM WEIGHTED PROJECTIONS, RANDOM QUADRATIC FORMS AND RANDOM EIGENVECTORS VAN VU DEPARTMENT OF MATHEMATICS, YALE UNIVERSITY arxiv:306.3099v2 [math.pr] 6 Aug 204 KE WANG INSTITUTE FOR MATHEMATICS AND

More information

Diffusion Profile and Delocalization for Random Band Matrices

Diffusion Profile and Delocalization for Random Band Matrices Diffusion Profile and Delocalization for Random Band Matrices Antti Knowles Courant Institute, New York University Newton Institute 19 September 2012 Joint work with László Erdős, Horng-Tzer Yau, and Jun

More information

arxiv: v3 [math-ph] 21 Jun 2012

arxiv: v3 [math-ph] 21 Jun 2012 LOCAL MARCHKO-PASTUR LAW AT TH HARD DG OF SAMPL COVARIAC MATRICS CLAUDIO CACCIAPUOTI, AA MALTSV, AD BJAMI SCHLI arxiv:206.730v3 [math-ph] 2 Jun 202 Abstract. Let X be a matrix whose entries are i.i.d.

More information

Universality for random matrices and log-gases

Universality for random matrices and log-gases Universality for random matrices and log-gases László Erdős IST, Austria Ludwig-Maximilians-Universität, Munich, Germany Encounters Between Discrete and Continuous Mathematics Eötvös Loránd University,

More information

Eigenvalues and Singular Values of Random Matrices: A Tutorial Introduction

Eigenvalues and Singular Values of Random Matrices: A Tutorial Introduction Random Matrix Theory and its applications to Statistics and Wireless Communications Eigenvalues and Singular Values of Random Matrices: A Tutorial Introduction Sergio Verdú Princeton University National

More information

III. Quantum ergodicity on graphs, perspectives

III. Quantum ergodicity on graphs, perspectives III. Quantum ergodicity on graphs, perspectives Nalini Anantharaman Université de Strasbourg 24 août 2016 Yesterday we focussed on the case of large regular (discrete) graphs. Let G = (V, E) be a (q +

More information

Mesoscopic eigenvalue statistics of Wigner matrices

Mesoscopic eigenvalue statistics of Wigner matrices Mesoscopic eigenvalue statistics of Wigner matrices Yukun He Antti Knowles May 26, 207 We prove that the linear statistics of the eigenvalues of a Wigner matrix converge to a universal Gaussian process

More information

Linear Algebra review Powers of a diagonalizable matrix Spectral decomposition

Linear Algebra review Powers of a diagonalizable matrix Spectral decomposition Linear Algebra review Powers of a diagonalizable matrix Spectral decomposition Prof. Tesler Math 283 Fall 2016 Also see the separate version of this with Matlab and R commands. Prof. Tesler Diagonalizing

More information

Local Semicircle Law and Complete Delocalization for Wigner Random Matrices

Local Semicircle Law and Complete Delocalization for Wigner Random Matrices Local Semicircle Law and Complete Delocalization for Wigner Random Matrices The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters.

More information

Selfadjoint Polynomials in Independent Random Matrices. Roland Speicher Universität des Saarlandes Saarbrücken

Selfadjoint Polynomials in Independent Random Matrices. Roland Speicher Universität des Saarlandes Saarbrücken Selfadjoint Polynomials in Independent Random Matrices Roland Speicher Universität des Saarlandes Saarbrücken We are interested in the limiting eigenvalue distribution of an N N random matrix for N. Typical

More information

Operator-Valued Free Probability Theory and Block Random Matrices. Roland Speicher Queen s University Kingston

Operator-Valued Free Probability Theory and Block Random Matrices. Roland Speicher Queen s University Kingston Operator-Valued Free Probability Theory and Block Random Matrices Roland Speicher Queen s University Kingston I. Operator-valued semicircular elements and block random matrices II. General operator-valued

More information

Quantum Computing Lecture 2. Review of Linear Algebra

Quantum Computing Lecture 2. Review of Linear Algebra Quantum Computing Lecture 2 Review of Linear Algebra Maris Ozols Linear algebra States of a quantum system form a vector space and their transformations are described by linear operators Vector spaces

More information

Assessing the dependence of high-dimensional time series via sample autocovariances and correlations

Assessing the dependence of high-dimensional time series via sample autocovariances and correlations Assessing the dependence of high-dimensional time series via sample autocovariances and correlations Johannes Heiny University of Aarhus Joint work with Thomas Mikosch (Copenhagen), Richard Davis (Columbia),

More information

Linear Algebra review Powers of a diagonalizable matrix Spectral decomposition

Linear Algebra review Powers of a diagonalizable matrix Spectral decomposition Linear Algebra review Powers of a diagonalizable matrix Spectral decomposition Prof. Tesler Math 283 Fall 2018 Also see the separate version of this with Matlab and R commands. Prof. Tesler Diagonalizing

More information

Universality of Random Matrices and Dyson Brownian Motion

Universality of Random Matrices and Dyson Brownian Motion Universality of Random Matrices and Dyson Brownian Motion Horng-Tzer Yau Harvard University Joint work with L. Erdős, and B. Schlein, J. Yin 1 Lecture 1: History of Universality and Main Results Basic

More information

Lecture Notes on the Matrix Dyson Equation and its Applications for Random Matrices

Lecture Notes on the Matrix Dyson Equation and its Applications for Random Matrices Lecture otes on the Matrix Dyson Equation and its Applications for Random Matrices László Erdős Institute of Science and Technology, Austria June 9, 207 Abstract These lecture notes are a concise introduction

More information

Invertibility of random matrices

Invertibility of random matrices University of Michigan February 2011, Princeton University Origins of Random Matrix Theory Statistics (Wishart matrices) PCA of a multivariate Gaussian distribution. [Gaël Varoquaux s blog gael-varoquaux.info]

More information

CS 246 Review of Linear Algebra 01/17/19

CS 246 Review of Linear Algebra 01/17/19 1 Linear algebra In this section we will discuss vectors and matrices. We denote the (i, j)th entry of a matrix A as A ij, and the ith entry of a vector as v i. 1.1 Vectors and vector operations A vector

More information

Spectral Statistics of Erdős-Rényi Graphs II: Eigenvalue Spacing and the Extreme Eigenvalues

Spectral Statistics of Erdős-Rényi Graphs II: Eigenvalue Spacing and the Extreme Eigenvalues Spectral Statistics of Erdős-Rényi Graphs II: Eigenvalue Spacing and the Extreme Eigenvalues László Erdős Antti Knowles 2 Horng-Tzer Yau 2 Jun Yin 2 Institute of Mathematics, University of Munich, Theresienstrasse

More information

Inhomogeneous circular laws for random matrices with non-identically distributed entries

Inhomogeneous circular laws for random matrices with non-identically distributed entries Inhomogeneous circular laws for random matrices with non-identically distributed entries Nick Cook with Walid Hachem (Telecom ParisTech), Jamal Najim (Paris-Est) and David Renfrew (SUNY Binghamton/IST

More information

AN ELEMENTARY PROOF OF THE SPECTRAL RADIUS FORMULA FOR MATRICES

AN ELEMENTARY PROOF OF THE SPECTRAL RADIUS FORMULA FOR MATRICES AN ELEMENTARY PROOF OF THE SPECTRAL RADIUS FORMULA FOR MATRICES JOEL A. TROPP Abstract. We present an elementary proof that the spectral radius of a matrix A may be obtained using the formula ρ(a) lim

More information

From the mesoscopic to microscopic scale in random matrix theory

From the mesoscopic to microscopic scale in random matrix theory From the mesoscopic to microscopic scale in random matrix theory (fixed energy universality for random spectra) With L. Erdős, H.-T. Yau, J. Yin Introduction A spacially confined quantum mechanical system

More information

Exponential tail inequalities for eigenvalues of random matrices

Exponential tail inequalities for eigenvalues of random matrices Exponential tail inequalities for eigenvalues of random matrices M. Ledoux Institut de Mathématiques de Toulouse, France exponential tail inequalities classical theme in probability and statistics quantify

More information

Random band matrices

Random band matrices Random band matrices P. Bourgade Courant Institute, ew York University bourgade@cims.nyu.edu We survey recent mathematical results about the spectrum of random band matrices. We start by exposing the Erdős-Schlein-Yau

More information

Lecture I: Asymptotics for large GUE random matrices

Lecture I: Asymptotics for large GUE random matrices Lecture I: Asymptotics for large GUE random matrices Steen Thorbjørnsen, University of Aarhus andom Matrices Definition. Let (Ω, F, P) be a probability space and let n be a positive integer. Then a random

More information

From random matrices to free groups, through non-crossing partitions. Michael Anshelevich

From random matrices to free groups, through non-crossing partitions. Michael Anshelevich From random matrices to free groups, through non-crossing partitions Michael Anshelevich March 4, 22 RANDOM MATRICES For each N, A (N), B (N) = independent N N symmetric Gaussian random matrices, i.e.

More information

On the distinguishability of random quantum states

On the distinguishability of random quantum states 1 1 Department of Computer Science University of Bristol Bristol, UK quant-ph/0607011 Distinguishing quantum states Distinguishing quantum states This talk Question Consider a known ensemble E of n quantum

More information

The Altshuler-Shklovskii Formulas for Random Band Matrices I: the Unimodular Case

The Altshuler-Shklovskii Formulas for Random Band Matrices I: the Unimodular Case The Altshuler-Shklovskii Formulas for Random Band Matrices I: the Unimodular Case László Erdős Antti Knowles March 21, 2014 We consider the spectral statistics of large random band matrices on mesoscopic

More information

Random Fermionic Systems

Random Fermionic Systems Random Fermionic Systems Fabio Cunden Anna Maltsev Francesco Mezzadri University of Bristol December 9, 2016 Maltsev (University of Bristol) Random Fermionic Systems December 9, 2016 1 / 27 Background

More information

Linear Algebra. Session 12

Linear Algebra. Session 12 Linear Algebra. Session 12 Dr. Marco A Roque Sol 08/01/2017 Example 12.1 Find the constant function that is the least squares fit to the following data x 0 1 2 3 f(x) 1 0 1 2 Solution c = 1 c = 0 f (x)

More information

Limit Laws for Random Matrices from Traffic Probability

Limit Laws for Random Matrices from Traffic Probability Limit Laws for Random Matrices from Traffic Probability arxiv:1601.02188 Slides available at math.berkeley.edu/ bensonau Benson Au UC Berkeley May 9th, 2016 Benson Au (UC Berkeley) Random Matrices from

More information

STAT C206A / MATH C223A : Stein s method and applications 1. Lecture 31

STAT C206A / MATH C223A : Stein s method and applications 1. Lecture 31 STAT C26A / MATH C223A : Stein s method and applications Lecture 3 Lecture date: Nov. 7, 27 Scribe: Anand Sarwate Gaussian concentration recap If W, T ) is a pair of random variables such that for all

More information

I = i 0,

I = i 0, Special Types of Matrices Certain matrices, such as the identity matrix 0 0 0 0 0 0 I = 0 0 0, 0 0 0 have a special shape, which endows the matrix with helpful properties The identity matrix is an example

More information

The Eigenvector Moment Flow and local Quantum Unique Ergodicity

The Eigenvector Moment Flow and local Quantum Unique Ergodicity The Eigenvector Moment Flow and local Quantum Unique Ergodicity P. Bourgade Cambridge University and Institute for Advanced Study E-mail: bourgade@math.ias.edu H.-T. Yau Harvard University and Institute

More information

Density of States for Random Band Matrices in d = 2

Density of States for Random Band Matrices in d = 2 Density of States for Random Band Matrices in d = 2 via the supersymmetric approach Mareike Lager Institute for applied mathematics University of Bonn Joint work with Margherita Disertori ZiF Summer School

More information

Random Matrix Theory Lecture 3 Free Probability Theory. Symeon Chatzinotas March 4, 2013 Luxembourg

Random Matrix Theory Lecture 3 Free Probability Theory. Symeon Chatzinotas March 4, 2013 Luxembourg Random Matrix Theory Lecture 3 Free Probability Theory Symeon Chatzinotas March 4, 2013 Luxembourg Outline 1. Free Probability Theory 1. Definitions 2. Asymptotically free matrices 3. R-transform 4. Additive

More information

Quadratic vector equations on complex upper half-plane

Quadratic vector equations on complex upper half-plane arxiv:1506.05095v5 [math.pr] 8 Aug 2017 Quadratic vector equations on complex upper half-plane Oskari H. Ajanki IST Austria oskari.ajanki@iki.fi László Erdős IST Austria lerdos@ist.ac.at Abstract Torben

More information

Free Probability Theory and Random Matrices. Roland Speicher Queen s University Kingston, Canada

Free Probability Theory and Random Matrices. Roland Speicher Queen s University Kingston, Canada Free Probability Theory and Random Matrices Roland Speicher Queen s University Kingston, Canada What is Operator-Valued Free Probability and Why Should Engineers Care About it? Roland Speicher Queen s

More information

Eigenvalue Statistics for Toeplitz and Circulant Ensembles

Eigenvalue Statistics for Toeplitz and Circulant Ensembles Eigenvalue Statistics for Toeplitz and Circulant Ensembles Murat Koloğlu 1, Gene Kopp 2, Steven J. Miller 1, and Karen Shen 3 1 Williams College 2 University of Michigan 3 Stanford University http://www.williams.edu/mathematics/sjmiller/

More information

Concentration Inequalities for Random Matrices

Concentration Inequalities for Random Matrices Concentration Inequalities for Random Matrices M. Ledoux Institut de Mathématiques de Toulouse, France exponential tail inequalities classical theme in probability and statistics quantify the asymptotic

More information

Homogenization of the Dyson Brownian Motion

Homogenization of the Dyson Brownian Motion Homogenization of the Dyson Brownian Motion P. Bourgade, joint work with L. Erdős, J. Yin, H.-T. Yau Cincinnati symposium on probability theory and applications, September 2014 Introduction...........

More information

Determinantal point processes and random matrix theory in a nutshell

Determinantal point processes and random matrix theory in a nutshell Determinantal point processes and random matrix theory in a nutshell part II Manuela Girotti based on M. Girotti s PhD thesis, A. Kuijlaars notes from Les Houches Winter School 202 and B. Eynard s notes

More information

Duality, Statistical Mechanics and Random Matrices. Bielefeld Lectures

Duality, Statistical Mechanics and Random Matrices. Bielefeld Lectures Duality, Statistical Mechanics and Random Matrices Bielefeld Lectures Tom Spencer Institute for Advanced Study Princeton, NJ August 16, 2016 Overview Statistical mechanics motivated by Random Matrix theory

More information

Spectral Theorem for Self-adjoint Linear Operators

Spectral Theorem for Self-adjoint Linear Operators Notes for the undergraduate lecture by David Adams. (These are the notes I would write if I was teaching a course on this topic. I have included more material than I will cover in the 45 minute lecture;

More information

c Igor Zelenko, Fall

c Igor Zelenko, Fall c Igor Zelenko, Fall 2017 1 18: Repeated Eigenvalues: algebraic and geometric multiplicities of eigenvalues, generalized eigenvectors, and solution for systems of differential equation with repeated eigenvalues

More information

arxiv: v2 [math.pr] 13 Jul 2018

arxiv: v2 [math.pr] 13 Jul 2018 Eigenvectors distribution and quantum unique ergodicity for deformed Wigner matrices L. Benigni LPSM, Université Paris Diderot lbenigni@lpsm.paris arxiv:7.0703v2 [math.pr] 3 Jul 208 Abstract We analyze

More information

Wigner s semicircle law

Wigner s semicircle law CHAPTER 2 Wigner s semicircle law 1. Wigner matrices Definition 12. A Wigner matrix is a random matrix X =(X i, j ) i, j n where (1) X i, j, i < j are i.i.d (real or complex valued). (2) X i,i, i n are

More information

Bulk Universality for Random Matrices via the local relaxation flow

Bulk Universality for Random Matrices via the local relaxation flow Bulk Universality for Random Matrices via the local relaxation flow László Erdős Ludwig-Maximilians-Universität, Munich, Germany Disentis, Jul 26 30, 200 Joint with B. Schlein, H.T. Yau, and J. Yin INTRODUCTION

More information

arxiv: v1 [cs.na] 6 Jan 2017

arxiv: v1 [cs.na] 6 Jan 2017 SPECTRAL STATISTICS OF LATTICE GRAPH STRUCTURED, O-UIFORM PERCOLATIOS Stephen Kruzick and José M. F. Moura 2 Carnegie Mellon University, Department of Electrical Engineering 5000 Forbes Avenue, Pittsburgh,

More information

Spectral radius, symmetric and positive matrices

Spectral radius, symmetric and positive matrices Spectral radius, symmetric and positive matrices Zdeněk Dvořák April 28, 2016 1 Spectral radius Definition 1. The spectral radius of a square matrix A is ρ(a) = max{ λ : λ is an eigenvalue of A}. For an

More information

Large sample covariance matrices and the T 2 statistic

Large sample covariance matrices and the T 2 statistic Large sample covariance matrices and the T 2 statistic EURANDOM, the Netherlands Joint work with W. Zhou Outline 1 2 Basic setting Let {X ij }, i, j =, be i.i.d. r.v. Write n s j = (X 1j,, X pj ) T and

More information

Diagonalizing Matrices

Diagonalizing Matrices Diagonalizing Matrices Massoud Malek A A Let A = A k be an n n non-singular matrix and let B = A = [B, B,, B k,, B n ] Then A n A B = A A 0 0 A k [B, B,, B k,, B n ] = 0 0 = I n 0 A n Notice that A i B

More information

Eigenvalues & Eigenvectors

Eigenvalues & Eigenvectors Eigenvalues & Eigenvectors Page 1 Eigenvalues are a very important concept in linear algebra, and one that comes up in other mathematics courses as well. The word eigen is German for inherent or characteristic,

More information

Ir O D = D = ( ) Section 2.6 Example 1. (Bottom of page 119) dim(v ) = dim(l(v, W )) = dim(v ) dim(f ) = dim(v )

Ir O D = D = ( ) Section 2.6 Example 1. (Bottom of page 119) dim(v ) = dim(l(v, W )) = dim(v ) dim(f ) = dim(v ) Section 3.2 Theorem 3.6. Let A be an m n matrix of rank r. Then r m, r n, and, by means of a finite number of elementary row and column operations, A can be transformed into the matrix ( ) Ir O D = 1 O

More information

HW2 - Due 01/30. Each answer must be mathematically justified. Don t forget your name.

HW2 - Due 01/30. Each answer must be mathematically justified. Don t forget your name. HW2 - Due 0/30 Each answer must be mathematically justified. Don t forget your name. Problem. Use the row reduction algorithm to find the inverse of the matrix 0 0, 2 3 5 if it exists. Double check your

More information

Free Probability Theory and Non-crossing Partitions. Roland Speicher Queen s University Kingston, Canada

Free Probability Theory and Non-crossing Partitions. Roland Speicher Queen s University Kingston, Canada Free Probability Theory and Non-crossing Partitions Roland Speicher Queen s University Kingston, Canada Freeness Definition [Voiculescu 1985]: Let (A, ϕ) be a non-commutative probability space, i.e. A

More information

DEN: Linear algebra numerical view (GEM: Gauss elimination method for reducing a full rank matrix to upper-triangular

DEN: Linear algebra numerical view (GEM: Gauss elimination method for reducing a full rank matrix to upper-triangular form) Given: matrix C = (c i,j ) n,m i,j=1 ODE and num math: Linear algebra (N) [lectures] c phabala 2016 DEN: Linear algebra numerical view (GEM: Gauss elimination method for reducing a full rank matrix

More information

Notes on Linear Algebra and Matrix Theory

Notes on Linear Algebra and Matrix Theory Massimo Franceschet featuring Enrico Bozzo Scalar product The scalar product (a.k.a. dot product or inner product) of two real vectors x = (x 1,..., x n ) and y = (y 1,..., y n ) is not a vector but a

More information

DISTRIBUTION OF EIGENVALUES OF REAL SYMMETRIC PALINDROMIC TOEPLITZ MATRICES AND CIRCULANT MATRICES

DISTRIBUTION OF EIGENVALUES OF REAL SYMMETRIC PALINDROMIC TOEPLITZ MATRICES AND CIRCULANT MATRICES DISTRIBUTION OF EIGENVALUES OF REAL SYMMETRIC PALINDROMIC TOEPLITZ MATRICES AND CIRCULANT MATRICES ADAM MASSEY, STEVEN J. MILLER, AND JOHN SINSHEIMER Abstract. Consider the ensemble of real symmetric Toeplitz

More information

The circular law. Lewis Memorial Lecture / DIMACS minicourse March 19, Terence Tao (UCLA)

The circular law. Lewis Memorial Lecture / DIMACS minicourse March 19, Terence Tao (UCLA) The circular law Lewis Memorial Lecture / DIMACS minicourse March 19, 2008 Terence Tao (UCLA) 1 Eigenvalue distributions Let M = (a ij ) 1 i n;1 j n be a square matrix. Then one has n (generalised) eigenvalues

More information

Eigenvalue variance bounds for Wigner and covariance random matrices

Eigenvalue variance bounds for Wigner and covariance random matrices Eigenvalue variance bounds for Wigner and covariance random matrices S. Dallaporta University of Toulouse, France Abstract. This work is concerned with finite range bounds on the variance of individual

More information

Introduction to Iterative Solvers of Linear Systems

Introduction to Iterative Solvers of Linear Systems Introduction to Iterative Solvers of Linear Systems SFB Training Event January 2012 Prof. Dr. Andreas Frommer Typeset by Lukas Krämer, Simon-Wolfgang Mages and Rudolf Rödl 1 Classes of Matrices and their

More information

OPTIMAL UPPER BOUND FOR THE INFINITY NORM OF EIGENVECTORS OF RANDOM MATRICES

OPTIMAL UPPER BOUND FOR THE INFINITY NORM OF EIGENVECTORS OF RANDOM MATRICES OPTIMAL UPPER BOUND FOR THE INFINITY NORM OF EIGENVECTORS OF RANDOM MATRICES BY KE WANG A dissertation submitted to the Graduate School New Brunswick Rutgers, The State University of New Jersey in partial

More information

MATH 423 Linear Algebra II Lecture 33: Diagonalization of normal operators.

MATH 423 Linear Algebra II Lecture 33: Diagonalization of normal operators. MATH 423 Linear Algebra II Lecture 33: Diagonalization of normal operators. Adjoint operator and adjoint matrix Given a linear operator L on an inner product space V, the adjoint of L is a transformation

More information

RANDOM MATRICES: OVERCROWDING ESTIMATES FOR THE SPECTRUM. 1. introduction

RANDOM MATRICES: OVERCROWDING ESTIMATES FOR THE SPECTRUM. 1. introduction RANDOM MATRICES: OVERCROWDING ESTIMATES FOR THE SPECTRUM HOI H. NGUYEN Abstract. We address overcrowding estimates for the singular values of random iid matrices, as well as for the eigenvalues of random

More information

Lecture 6: Lies, Inner Product Spaces, and Symmetric Matrices

Lecture 6: Lies, Inner Product Spaces, and Symmetric Matrices Math 108B Professor: Padraic Bartlett Lecture 6: Lies, Inner Product Spaces, and Symmetric Matrices Week 6 UCSB 2014 1 Lies Fun fact: I have deceived 1 you somewhat with these last few lectures! Let me

More information

Linear Algebra Solutions 1

Linear Algebra Solutions 1 Math Camp 1 Do the following: Linear Algebra Solutions 1 1. Let A = and B = 3 8 5 A B = 3 5 9 A + B = 9 11 14 4 AB = 69 3 16 BA = 1 4 ( 1 3. Let v = and u = 5 uv = 13 u v = 13 v u = 13 Math Camp 1 ( 7

More information

Fluctuations from the Semicircle Law Lecture 1

Fluctuations from the Semicircle Law Lecture 1 Fluctuations from the Semicircle Law Lecture 1 Ioana Dumitriu University of Washington Women and Math, IAS 2014 May 20, 2014 Ioana Dumitriu (UW) Fluctuations from the Semicircle Law Lecture 1 May 20, 2014

More information

The norm of polynomials in large random matrices

The norm of polynomials in large random matrices The norm of polynomials in large random matrices Camille Mâle, École Normale Supérieure de Lyon, Ph.D. Student under the direction of Alice Guionnet. with a significant contribution by Dimitri Shlyakhtenko.

More information

Math 350 Fall 2011 Notes about inner product spaces. In this notes we state and prove some important properties of inner product spaces.

Math 350 Fall 2011 Notes about inner product spaces. In this notes we state and prove some important properties of inner product spaces. Math 350 Fall 2011 Notes about inner product spaces In this notes we state and prove some important properties of inner product spaces. First, recall the dot product on R n : if x, y R n, say x = (x 1,...,

More information

Eigenvalue and Eigenvector Homework

Eigenvalue and Eigenvector Homework Eigenvalue and Eigenvector Homework Olena Bormashenko November 4, 2 For each of the matrices A below, do the following:. Find the characteristic polynomial of A, and use it to find all the eigenvalues

More information

Linear Algebra Massoud Malek

Linear Algebra Massoud Malek CSUEB Linear Algebra Massoud Malek Inner Product and Normed Space In all that follows, the n n identity matrix is denoted by I n, the n n zero matrix by Z n, and the zero vector by θ n An inner product

More information

Freeness and the Transpose

Freeness and the Transpose Freeness and the Transpose Jamie Mingo (Queen s University) (joint work with Mihai Popa and Roland Speicher) ICM Satellite Conference on Operator Algebras and Applications Cheongpung, August 8, 04 / 6

More information

Distribution of Eigenvalues of Weighted, Structured Matrix Ensembles

Distribution of Eigenvalues of Weighted, Structured Matrix Ensembles Distribution of Eigenvalues of Weighted, Structured Matrix Ensembles Olivia Beckwith 1, Steven J. Miller 2, and Karen Shen 3 1 Harvey Mudd College 2 Williams College 3 Stanford University Joint Meetings

More information

Free Probability Theory and Random Matrices. Roland Speicher Queen s University Kingston, Canada

Free Probability Theory and Random Matrices. Roland Speicher Queen s University Kingston, Canada Free Probability Theory and Random Matrices Roland Speicher Queen s University Kingston, Canada We are interested in the limiting eigenvalue distribution of N N random matrices for N. Usually, large N

More information

Linear Algebra (Review) Volker Tresp 2017

Linear Algebra (Review) Volker Tresp 2017 Linear Algebra (Review) Volker Tresp 2017 1 Vectors k is a scalar (a number) c is a column vector. Thus in two dimensions, c = ( c1 c 2 ) (Advanced: More precisely, a vector is defined in a vector space.

More information

NOTES ON BILINEAR FORMS

NOTES ON BILINEAR FORMS NOTES ON BILINEAR FORMS PARAMESWARAN SANKARAN These notes are intended as a supplement to the talk given by the author at the IMSc Outreach Programme Enriching Collegiate Education-2015. Symmetric bilinear

More information

Dot Products. K. Behrend. April 3, Abstract A short review of some basic facts on the dot product. Projections. The spectral theorem.

Dot Products. K. Behrend. April 3, Abstract A short review of some basic facts on the dot product. Projections. The spectral theorem. Dot Products K. Behrend April 3, 008 Abstract A short review of some basic facts on the dot product. Projections. The spectral theorem. Contents The dot product 3. Length of a vector........................

More information

A = 3 B = A 1 1 matrix is the same as a number or scalar, 3 = [3].

A = 3 B = A 1 1 matrix is the same as a number or scalar, 3 = [3]. Appendix : A Very Brief Linear ALgebra Review Introduction Linear Algebra, also known as matrix theory, is an important element of all branches of mathematics Very often in this course we study the shapes

More information

arxiv: v7 [math.pr] 28 Apr 2014

arxiv: v7 [math.pr] 28 Apr 2014 The Annals of Applied Probability 204, Vol. 24, No. 3, 935 00 DOI: 0.24/3-AAP939 c Institute of Mathematical Statistics, 204 UNIVERSALITY OF COVARIANCE MATRICES arxiv:0.250v7 [math.pr] 28 Apr 204 By Natesh

More information

Real symmetric matrices/1. 1 Eigenvalues and eigenvectors

Real symmetric matrices/1. 1 Eigenvalues and eigenvectors Real symmetric matrices 1 Eigenvalues and eigenvectors We use the convention that vectors are row vectors and matrices act on the right. Let A be a square matrix with entries in a field F; suppose that

More information

Spectral Graph Theory and You: Matrix Tree Theorem and Centrality Metrics

Spectral Graph Theory and You: Matrix Tree Theorem and Centrality Metrics Spectral Graph Theory and You: and Centrality Metrics Jonathan Gootenberg March 11, 2013 1 / 19 Outline of Topics 1 Motivation Basics of Spectral Graph Theory Understanding the characteristic polynomial

More information

Applications and fundamental results on random Vandermon

Applications and fundamental results on random Vandermon Applications and fundamental results on random Vandermonde matrices May 2008 Some important concepts from classical probability Random variables are functions (i.e. they commute w.r.t. multiplication)

More information

On the Spectra of General Random Graphs

On the Spectra of General Random Graphs On the Spectra of General Random Graphs Fan Chung Mary Radcliffe University of California, San Diego La Jolla, CA 92093 Abstract We consider random graphs such that each edge is determined by an independent

More information

arxiv: v5 [math.na] 16 Nov 2017

arxiv: v5 [math.na] 16 Nov 2017 RANDOM PERTURBATION OF LOW RANK MATRICES: IMPROVING CLASSICAL BOUNDS arxiv:3.657v5 [math.na] 6 Nov 07 SEAN O ROURKE, VAN VU, AND KE WANG Abstract. Matrix perturbation inequalities, such as Weyl s theorem

More information