Lecture 7: Word Embeddings

Size: px
Start display at page:

Download "Lecture 7: Word Embeddings"

Transcription

1 Lecture 7: Word Embeddings Kai-Wei Chang University of Virginia kw@kwchang.net Couse webpage: Natural Language Processing 1

2 This lecture v Learning word vectors (Cont.) v Representation learning in NLP 6501 Natural Language Processing 2

3 Recap: Latent Semantic Analysis v Data representation v Encode single-relational data in a matrix v Co-occurrence (e.g., from a general corpus) v Synonyms (e.g., from a thesaurus) v Factorization v Apply SVD to the matrix to find latent components v Measuring degree of relation v Cosine of latent vectors

4 Recap: Mapping to Latent Space via SVD C U Σ k k V ' k n d n d k v SVD generalizes the original data v Uncovers relationships not explicit in the thesaurus v Term vectors projected to k-dim latent space v Word similarity: cosine of two column vectors in ΣV $

5 Low rank approximation v Frobenius norm. C is a m n matrix v Rank of a matrix. 9 6 C / = 1 1 c v How many vectors in the matrix are independent to each other 6501 Natural Language Processing 5

6 Low rank approximation v Low rank approximation problem: min = C X / s. t. rank X = k v If I can only use k independent vectors to describe the points in the space, what are the best choices? Essentially, we minimize the reconstruction loss under a low rank constraint 6501 Natural Language Processing 6

7 Low rank approximation v Low rank approximation problem: min = C X / s. t. rank X = k v If I can only use k independent vectors to describe the points in the space, what are the best choices? Essentially, we minimize the reconstruction loss under a low rank constraint 6501 Natural Language Processing 7

8 Low rank approximation v Assume rank of C is r v SVD: C = UΣV ', Σ = diag(σ 8, σ 5 σ P, 0,0,0, 0) Σ = σ r non-zeros v Zero-out the r k trailing values Σ = diag(σ 8, σ 5 σ U, 0,0,0, 0) v C V = UΣ V V ' is the best k-rank approximation: C V = arg min = C X / s. t. rank X = k 6501 Natural Language Processing 8

9 Word2Vec v LSA: a compact representation of cooccurrence matrix v Word2Vec:Predict surrounding words (skip-gram) v Similar to using co-occurrence counts Levy&Goldberg (2014), Pennington et al. (2014) v Easy to incorporate new words or sentences 6501 Natural Language Processing 9

10 Word2Vec v Similar to language model, but predicting next word is not the goal. v Idea: words that are semantically similar often occur near each other in text v Embeddings that are good at predicting neighboring words are also good at representing similarity 6501 Natural Language Processing 10

11 Skip-gram v.s Continuous bag-of-words v What differences? 6501 Natural Language Processing 11

12 Skip-gram v.s Continuous bag-of-words 6501 Natural Language Processing 12

13 Objective of Word2Vec (Skip-gram) v Maximize the log likelihood of context word w \]9, w \]9^8,, w \]8, w \^8, w \^5,, w \^9 given word w \ v m is usually 5~ Natural Language Processing 13

14 Objective of Word2Vec (Skip-gram) v How to model log P(w \^4 w \ )? p w \^4 w \ = cde (f g hij l g h ) cde (f g n l g h ) gn v softmax function Again! v Every word has 2 vectors v v p : when w is the center word v u p : when w is the outside word (context word) 6501 Natural Language Processing 14

15 How to update? p w \^4 w \ = cde (f g hij l g h ) cde (f g n l g h ) gn v How to minimize J(θ) v Gradient descent! v How to compute the gradient? 6501 Natural Language Processing 15

16 Recap: Calculus v Gradient: x ' = x 8 x 5 x z, φ(x) φ x = x 8 φ(x) x 5 φ(x) x z v φ x = a x (or represented as a ' x) φ x = a 6501 Natural Language Processing 16

17 Recap: Calculus v If y = f u and u = g x (i.e,. y = f(g x ) ƒ = ƒ (f) ƒ ƒf ƒ ( ) ƒ ( ƒ ƒf ƒf ƒ ) 1. y = xˆ + 6 z 2. y = ln (x 5 + 5) 3. y = exp(x + 3x + 2) 6501 Natural Language Processing 17

18 Other useful formulation v y = exp x v y = log x dy dx = exp x dy dx = 1 x When I say log (in this course), usually I mean ln 6501 Natural Language Processing 18

19 6501 Natural Language Processing 19

20 Example v Assume vocabulary set is W. We have one center word c, and one context word o. v What is the conditional probability p o c p o c = exp (u v ) exp (u p n v ) pv v What is the gradient of the log likelihood w.r.t v? log p o c v = u E p w c [u p ] 6501 Natural Language Processing 20

21 Gradient Descent min J(w) p Update w: w w η J(w) 6501 Natural Language Processing 21

22 Local minimum v.s. global minimum 6501 Natural Language Processing 22

23 Stochastic gradient descent v Let J w = 8 6 J (w) v Gradient descent update rule: w w ž v Stochastic gradient descent: 6 J 4 w v Approximate 8 J w by the gradient at a single example J 3 w (why?) v At each step: Randomly pick an example i w w η J 3 w 6501 Natural Language Processing 23

24 Negative sampling v With a large vocabulary set, stochastic gradient descent is still not enough (why?) log p o c v = u E p w c [u p ] v Let s approximate it again! vonly sample a few words that do not appear in the context vessentially, put more weights on positive samples 6501 Natural Language Processing 24

25 More about Word2Vec relation to LSA v LSA factorizes a matrix of co-occurrence counts v (Levy and Goldberg 2014) proves that skip-gram model implicitly factorizes a (shifted) PMI matrix! v PMI(w,c) =log ( ) ( ) = log = log (, ) ( ) ( ) # w, c D #(w)#(c) 6501 Natural Language Processing 25

26 All problem solved? 6501 Natural Language Processing 26

27 Continuous Semantic Representations sunny rainy cab car wheel cloudy windy emotion joy sad feeling 6501 Natural Language Processing 27

28 Semantics Needs More Than Similarity Tomorrow will be rainy. Tomorrow will be sunny. similar(rainy, sunny)? antonym(rainy, sunny)? 6501 Natural Language Processing 28

29 Polarity Inducing LSA [Yih, Zweig, Platt 2012] v Data representation v Encode two opposite relations in a matrix using polarity v Synonyms & antonyms (e.g., from a thesaurus) v Factorization v Apply SVD to the matrix to find latent components v Measuring degree of relation v Cosine of latent vectors

30 Encode Synonyms & Antonyms in Matrix v Joyfulness: joy, gladden; sorrow, sadden v Sad: sorrow, sadden; joy, gladden Target word: rowvector Inducing polarity joy gladden sorrow sadden goodwill Group 1: joyfulness Group 2: sad Group 3: affection Cosine Score: + Synonyms

31 Encode Synonyms & Antonyms in Matrix v Joyfulness: joy, gladden; sorrow, sadden v Sad: sorrow, sadden; joy, gladden Target word: rowvector Inducing polarity joy gladden sorrow sadden goodwill Group 1: joyfulness Group 2: sad Group 3: affection Cosine Score: Antonyms

32 Continuous representations for entities Republic Party Democratic Party? George W Bush Laura Bush Michelle Obama 6501 Natural Language Processing 32

33 Continuous representations for entities Useful resources for NLP applications Semantic Parsing & Question Answering Information Extraction 6501 Natural Language Processing 33

Web-Mining Agents. Multi-Relational Latent Semantic Analysis. Prof. Dr. Ralf Möller Universität zu Lübeck Institut für Informationssysteme

Web-Mining Agents. Multi-Relational Latent Semantic Analysis. Prof. Dr. Ralf Möller Universität zu Lübeck Institut für Informationssysteme Web-Mining Agents Multi-Relational Latent Semantic Analysis Prof. Dr. Ralf Möller Universität zu Lübeck Institut für Informationssysteme Tanya Braun (Übungen) Acknowledgements Slides by: Scott Wen-tau

More information

Semantics with Dense Vectors. Reference: D. Jurafsky and J. Martin, Speech and Language Processing

Semantics with Dense Vectors. Reference: D. Jurafsky and J. Martin, Speech and Language Processing Semantics with Dense Vectors Reference: D. Jurafsky and J. Martin, Speech and Language Processing 1 Semantics with Dense Vectors We saw how to represent a word as a sparse vector with dimensions corresponding

More information

Sparse vectors recap. ANLP Lecture 22 Lexical Semantics with Dense Vectors. Before density, another approach to normalisation.

Sparse vectors recap. ANLP Lecture 22 Lexical Semantics with Dense Vectors. Before density, another approach to normalisation. ANLP Lecture 22 Lexical Semantics with Dense Vectors Henry S. Thompson Based on slides by Jurafsky & Martin, some via Dorota Glowacka 5 November 2018 Previous lectures: Sparse vectors recap How to represent

More information

ANLP Lecture 22 Lexical Semantics with Dense Vectors

ANLP Lecture 22 Lexical Semantics with Dense Vectors ANLP Lecture 22 Lexical Semantics with Dense Vectors Henry S. Thompson Based on slides by Jurafsky & Martin, some via Dorota Glowacka 5 November 2018 Henry S. Thompson ANLP Lecture 22 5 November 2018 Previous

More information

Natural Language Processing

Natural Language Processing Natural Language Processing Word vectors Many slides borrowed from Richard Socher and Chris Manning Lecture plan Word representations Word vectors (embeddings) skip-gram algorithm Relation to matrix factorization

More information

STA141C: Big Data & High Performance Statistical Computing

STA141C: Big Data & High Performance Statistical Computing STA141C: Big Data & High Performance Statistical Computing Lecture 9: Dimension Reduction/Word2vec Cho-Jui Hsieh UC Davis May 15, 2018 Principal Component Analysis Principal Component Analysis (PCA) Data

More information

Neural Word Embeddings from Scratch

Neural Word Embeddings from Scratch Neural Word Embeddings from Scratch Xin Li 12 1 NLP Center Tencent AI Lab 2 Dept. of System Engineering & Engineering Management The Chinese University of Hong Kong 2018-04-09 Xin Li Neural Word Embeddings

More information

Deep Learning. Ali Ghodsi. University of Waterloo

Deep Learning. Ali Ghodsi. University of Waterloo University of Waterloo Language Models A language model computes a probability for a sequence of words: P(w 1,..., w T ) Useful for machine translation Word ordering: p (the cat is small) > p (small the

More information

word2vec Parameter Learning Explained

word2vec Parameter Learning Explained word2vec Parameter Learning Explained Xin Rong ronxin@umich.edu Abstract The word2vec model and application by Mikolov et al. have attracted a great amount of attention in recent two years. The vector

More information

DISTRIBUTIONAL SEMANTICS

DISTRIBUTIONAL SEMANTICS COMP90042 LECTURE 4 DISTRIBUTIONAL SEMANTICS LEXICAL DATABASES - PROBLEMS Manually constructed Expensive Human annotation can be biased and noisy Language is dynamic New words: slangs, terminology, etc.

More information

Latent Semantic Analysis. Hongning Wang

Latent Semantic Analysis. Hongning Wang Latent Semantic Analysis Hongning Wang CS@UVa Recap: vector space model Represent both doc and query by concept vectors Each concept defines one dimension K concepts define a high-dimensional space Element

More information

GloVe: Global Vectors for Word Representation 1

GloVe: Global Vectors for Word Representation 1 GloVe: Global Vectors for Word Representation 1 J. Pennington, R. Socher, C.D. Manning M. Korniyenko, S. Samson Deep Learning for NLP, 13 Jun 2017 1 https://nlp.stanford.edu/projects/glove/ Outline Background

More information

Natural Language Processing and Recurrent Neural Networks

Natural Language Processing and Recurrent Neural Networks Natural Language Processing and Recurrent Neural Networks Pranay Tarafdar October 19 th, 2018 Outline Introduction to NLP Word2vec RNN GRU LSTM Demo What is NLP? Natural Language? : Huge amount of information

More information

Deep Learning for Natural Language Processing. Sidharth Mudgal April 4, 2017

Deep Learning for Natural Language Processing. Sidharth Mudgal April 4, 2017 Deep Learning for Natural Language Processing Sidharth Mudgal April 4, 2017 Table of contents 1. Intro 2. Word Vectors 3. Word2Vec 4. Char Level Word Embeddings 5. Application: Entity Matching 6. Conclusion

More information

STA141C: Big Data & High Performance Statistical Computing

STA141C: Big Data & High Performance Statistical Computing STA141C: Big Data & High Performance Statistical Computing Lecture 6: Numerical Linear Algebra: Applications in Machine Learning Cho-Jui Hsieh UC Davis April 27, 2017 Principal Component Analysis Principal

More information

arxiv: v3 [cs.cl] 30 Jan 2016

arxiv: v3 [cs.cl] 30 Jan 2016 word2vec Parameter Learning Explained Xin Rong ronxin@umich.edu arxiv:1411.2738v3 [cs.cl] 30 Jan 2016 Abstract The word2vec model and application by Mikolov et al. have attracted a great amount of attention

More information

Lecture 13: Structured Prediction

Lecture 13: Structured Prediction Lecture 13: Structured Prediction Kai-Wei Chang CS @ University of Virginia kw@kwchang.net Couse webpage: http://kwchang.net/teaching/nlp16 CS6501: NLP 1 Quiz 2 v Lectures 9-13 v Lecture 12: before page

More information

Embeddings Learned By Matrix Factorization

Embeddings Learned By Matrix Factorization Embeddings Learned By Matrix Factorization Benjamin Roth; Folien von Hinrich Schütze Center for Information and Language Processing, LMU Munich Overview WordSpace limitations LinAlgebra review Input matrix

More information

CME323 Distributed Algorithms and Optimization. GloVe on Spark. Alex Adamson SUNet ID: aadamson. June 6, 2016

CME323 Distributed Algorithms and Optimization. GloVe on Spark. Alex Adamson SUNet ID: aadamson. June 6, 2016 GloVe on Spark Alex Adamson SUNet ID: aadamson June 6, 2016 Introduction Pennington et al. proposes a novel word representation algorithm called GloVe (Global Vectors for Word Representation) that synthesizes

More information

Deep Learning Basics Lecture 10: Neural Language Models. Princeton University COS 495 Instructor: Yingyu Liang

Deep Learning Basics Lecture 10: Neural Language Models. Princeton University COS 495 Instructor: Yingyu Liang Deep Learning Basics Lecture 10: Neural Language Models Princeton University COS 495 Instructor: Yingyu Liang Natural language Processing (NLP) The processing of the human languages by computers One of

More information

Lecture 6: Neural Networks for Representing Word Meaning

Lecture 6: Neural Networks for Representing Word Meaning Lecture 6: Neural Networks for Representing Word Meaning Mirella Lapata School of Informatics University of Edinburgh mlap@inf.ed.ac.uk February 7, 2017 1 / 28 Logistic Regression Input is a feature vector,

More information

Latent Semantic Analysis. Hongning Wang

Latent Semantic Analysis. Hongning Wang Latent Semantic Analysis Hongning Wang CS@UVa VS model in practice Document and query are represented by term vectors Terms are not necessarily orthogonal to each other Synonymy: car v.s. automobile Polysemy:

More information

Part-of-Speech Tagging + Neural Networks 3: Word Embeddings CS 287

Part-of-Speech Tagging + Neural Networks 3: Word Embeddings CS 287 Part-of-Speech Tagging + Neural Networks 3: Word Embeddings CS 287 Review: Neural Networks One-layer multi-layer perceptron architecture, NN MLP1 (x) = g(xw 1 + b 1 )W 2 + b 2 xw + b; perceptron x is the

More information

CS224n: Natural Language Processing with Deep Learning 1

CS224n: Natural Language Processing with Deep Learning 1 CS224n: Natural Language Processing with Deep Learning Lecture Notes: Part I 2 Winter 27 Course Instructors: Christopher Manning, Richard Socher 2 Authors: Francois Chaubard, Michael Fang, Guillaume Genthial,

More information

From perceptrons to word embeddings. Simon Šuster University of Groningen

From perceptrons to word embeddings. Simon Šuster University of Groningen From perceptrons to word embeddings Simon Šuster University of Groningen Outline A basic computational unit Weighting some input to produce an output: classification Perceptron Classify tweets Written

More information

Collaborative Filtering: A Machine Learning Perspective

Collaborative Filtering: A Machine Learning Perspective Collaborative Filtering: A Machine Learning Perspective Chapter 6: Dimensionality Reduction Benjamin Marlin Presenter: Chaitanya Desai Collaborative Filtering: A Machine Learning Perspective p.1/18 Topics

More information

Probabilistic Latent Semantic Analysis

Probabilistic Latent Semantic Analysis Probabilistic Latent Semantic Analysis Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr

More information

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Language Models. Tobias Scheffer

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Language Models. Tobias Scheffer Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Language Models Tobias Scheffer Stochastic Language Models A stochastic language model is a probability distribution over words.

More information

Lecture 12: EM Algorithm

Lecture 12: EM Algorithm Lecture 12: EM Algorithm Kai-Wei hang S @ University of Virginia kw@kwchang.net ouse webpage: http://kwchang.net/teaching/nlp16 S6501 Natural Language Processing 1 Three basic problems for MMs v Likelihood

More information

Lecture 2: N-gram. Kai-Wei Chang University of Virginia Couse webpage:

Lecture 2: N-gram. Kai-Wei Chang University of Virginia Couse webpage: Lecture 2: N-gram Kai-Wei Chang CS @ University of Virginia kw@kwchang.net Couse webpage: http://kwchang.net/teaching/nlp16 CS 6501: Natural Language Processing 1 This lecture Language Models What are

More information

Word Embeddings 2 - Class Discussions

Word Embeddings 2 - Class Discussions Word Embeddings 2 - Class Discussions Jalaj February 18, 2016 Opening Remarks - Word embeddings as a concept are intriguing. The approaches are mostly adhoc but show good empirical performance. Paper 1

More information

ATASS: Word Embeddings

ATASS: Word Embeddings ATASS: Word Embeddings Lee Gao April 22th, 2016 Guideline Bag-of-words (bag-of-n-grams) Today High dimensional, sparse representation dimension reductions LSA, LDA, MNIR Neural networks Backpropagation

More information

Lecture 3: Multiclass Classification

Lecture 3: Multiclass Classification Lecture 3: Multiclass Classification Kai-Wei Chang CS @ University of Virginia kw@kwchang.net Some slides are adapted from Vivek Skirmar and Dan Roth CS6501 Lecture 3 1 Announcement v Please enroll in

More information

Natural Language Processing with Deep Learning CS224N/Ling284. Richard Socher Lecture 2: Word Vectors

Natural Language Processing with Deep Learning CS224N/Ling284. Richard Socher Lecture 2: Word Vectors Natural Language Processing with Deep Learning CS224N/Ling284 Richard Socher Lecture 2: Word Vectors Organization PSet 1 is released. Coding Session 1/22: (Monday, PA1 due Thursday) Some of the questions

More information

Homework 3 COMS 4705 Fall 2017 Prof. Kathleen McKeown

Homework 3 COMS 4705 Fall 2017 Prof. Kathleen McKeown Homework 3 COMS 4705 Fall 017 Prof. Kathleen McKeown The assignment consists of a programming part and a written part. For the programming part, make sure you have set up the development environment as

More information

Language as a Stochastic Process

Language as a Stochastic Process CS769 Spring 2010 Advanced Natural Language Processing Language as a Stochastic Process Lecturer: Xiaojin Zhu jerryzhu@cs.wisc.edu 1 Basic Statistics for NLP Pick an arbitrary letter x at random from any

More information

An overview of word2vec

An overview of word2vec An overview of word2vec Benjamin Wilson Berlin ML Meetup, July 8 2014 Benjamin Wilson word2vec Berlin ML Meetup 1 / 25 Outline 1 Introduction 2 Background & Significance 3 Architecture 4 CBOW word representations

More information

Latent semantic indexing

Latent semantic indexing Latent semantic indexing Relationship between concepts and words is many-to-many. Solve problems of synonymy and ambiguity by representing documents as vectors of ideas or concepts, not terms. For retrieval,

More information

Modeling Environment

Modeling Environment Topic Model Modeling Environment What does it mean to understand/ your environment? Ability to predict Two approaches to ing environment of words and text Latent Semantic Analysis (LSA) Topic Model LSA

More information

Lecture 5: Linear models for classification. Logistic regression. Gradient Descent. Second-order methods.

Lecture 5: Linear models for classification. Logistic regression. Gradient Descent. Second-order methods. Lecture 5: Linear models for classification. Logistic regression. Gradient Descent. Second-order methods. Linear models for classification Logistic regression Gradient descent and second-order methods

More information

Natural Language Processing with Deep Learning CS224N/Ling284. Christopher Manning Lecture 1: Introduction and Word Vectors

Natural Language Processing with Deep Learning CS224N/Ling284. Christopher Manning Lecture 1: Introduction and Word Vectors Natural Language Processing with Deep Learning CS224N/Ling284 Christopher Manning Lecture 1: Introduction and Word Vectors Lecture Plan Lecture 1: Introduction and Word Vectors 1. The course (10 mins)

More information

text classification 3: neural networks

text classification 3: neural networks text classification 3: neural networks CS 585, Fall 2018 Introduction to Natural Language Processing http://people.cs.umass.edu/~miyyer/cs585/ Mohit Iyyer College of Information and Computer Sciences University

More information

Distributional Semantics and Word Embeddings. Chase Geigle

Distributional Semantics and Word Embeddings. Chase Geigle Distributional Semantics and Word Embeddings Chase Geigle 2016-10-14 1 What is a word? dog 2 What is a word? dog canine 2 What is a word? dog canine 3 2 What is a word? dog 3 canine 399,999 2 What is a

More information

Semantic Similarity from Corpora - Latent Semantic Analysis

Semantic Similarity from Corpora - Latent Semantic Analysis Semantic Similarity from Corpora - Latent Semantic Analysis Carlo Strapparava FBK-Irst Istituto per la ricerca scientifica e tecnologica I-385 Povo, Trento, ITALY strappa@fbk.eu Overview Latent Semantic

More information

Lecture 11: Viterbi and Forward Algorithms

Lecture 11: Viterbi and Forward Algorithms Lecture 11: iterbi and Forward lgorithms Kai-Wei Chang CS @ University of irginia kw@kwchang.net Couse webpage: http://kwchang.net/teaching/lp16 CS6501 atural Language Processing 1 Quiz 1 Quiz 1 30 25

More information

A fast and simple algorithm for training neural probabilistic language models

A fast and simple algorithm for training neural probabilistic language models A fast and simple algorithm for training neural probabilistic language models Andriy Mnih Joint work with Yee Whye Teh Gatsby Computational Neuroscience Unit University College London 25 January 2013 1

More information

Lecture 5 Neural models for NLP

Lecture 5 Neural models for NLP CS546: Machine Learning in NLP (Spring 2018) http://courses.engr.illinois.edu/cs546/ Lecture 5 Neural models for NLP Julia Hockenmaier juliahmr@illinois.edu 3324 Siebel Center Office hours: Tue/Thu 2pm-3pm

More information

Deep Learning for Natural Language Processing

Deep Learning for Natural Language Processing Deep Learning for Natural Language Processing Dylan Drover, Borui Ye, Jie Peng University of Waterloo djdrover@uwaterloo.ca borui.ye@uwaterloo.ca July 8, 2015 Dylan Drover, Borui Ye, Jie Peng (University

More information

CPSC 340 Assignment 4 (due November 17 ATE)

CPSC 340 Assignment 4 (due November 17 ATE) CPSC 340 Assignment 4 due November 7 ATE) Multi-Class Logistic The function example multiclass loads a multi-class classification datasetwith y i {,, 3, 4, 5} and fits a one-vs-all classification model

More information

CSC321 Lecture 7 Neural language models

CSC321 Lecture 7 Neural language models CSC321 Lecture 7 Neural language models Roger Grosse and Nitish Srivastava February 1, 2015 Roger Grosse and Nitish Srivastava CSC321 Lecture 7 Neural language models February 1, 2015 1 / 19 Overview We

More information

Factorization of Latent Variables in Distributional Semantic Models

Factorization of Latent Variables in Distributional Semantic Models Factorization of Latent Variables in Distributional Semantic Models Arvid Österlund and David Ödling KTH Royal Institute of Technology, Sweden arvidos dodling@kth.se Magnus Sahlgren Gavagai, Sweden mange@gavagai.se

More information

COMP 551 Applied Machine Learning Lecture 13: Dimension reduction and feature selection

COMP 551 Applied Machine Learning Lecture 13: Dimension reduction and feature selection COMP 551 Applied Machine Learning Lecture 13: Dimension reduction and feature selection Instructor: Herke van Hoof (herke.vanhoof@cs.mcgill.ca) Based on slides by:, Jackie Chi Kit Cheung Class web page:

More information

Naïve Bayes, Maxent and Neural Models

Naïve Bayes, Maxent and Neural Models Naïve Bayes, Maxent and Neural Models CMSC 473/673 UMBC Some slides adapted from 3SLP Outline Recap: classification (MAP vs. noisy channel) & evaluation Naïve Bayes (NB) classification Terminology: bag-of-words

More information

Lecture 9: Hidden Markov Model

Lecture 9: Hidden Markov Model Lecture 9: Hidden Markov Model Kai-Wei Chang CS @ University of Virginia kw@kwchang.net Couse webpage: http://kwchang.net/teaching/nlp16 CS6501 Natural Language Processing 1 This lecture v Hidden Markov

More information

Stochastic gradient descent; Classification

Stochastic gradient descent; Classification Stochastic gradient descent; Classification Steve Renals Machine Learning Practical MLP Lecture 2 28 September 2016 MLP Lecture 2 Stochastic gradient descent; Classification 1 Single Layer Networks MLP

More information

Deep Learning. Language Models and Word Embeddings. Christof Monz

Deep Learning. Language Models and Word Embeddings. Christof Monz Deep Learning Today s Class N-gram language modeling Feed-forward neural language model Architecture Final layer computations Word embeddings Continuous bag-of-words model Skip-gram Negative sampling 1

More information

Generative Clustering, Topic Modeling, & Bayesian Inference

Generative Clustering, Topic Modeling, & Bayesian Inference Generative Clustering, Topic Modeling, & Bayesian Inference INFO-4604, Applied Machine Learning University of Colorado Boulder December 12-14, 2017 Prof. Michael Paul Unsupervised Naïve Bayes Last week

More information

CS 572: Information Retrieval

CS 572: Information Retrieval CS 572: Information Retrieval Lecture 11: Topic Models Acknowledgments: Some slides were adapted from Chris Manning, and from Thomas Hoffman 1 Plan for next few weeks Project 1: done (submit by Friday).

More information

Deep Learning: A Statistical Perspective

Deep Learning: A Statistical Perspective Introduction Deep Learning: A Statistical Perspective Myunghee Cho Paik Guest lectures by Gisoo Kim, Yongchan Kwon, Young-geun Kim, Wonyoung Kim and Youngwon Choi Seoul National University March-June,

More information

Prepositional Phrase Attachment over Word Embedding Products

Prepositional Phrase Attachment over Word Embedding Products Prepositional Phrase Attachment over Word Embedding Products Pranava Madhyastha (1), Xavier Carreras (2), Ariadna Quattoni (2) (1) University of Sheffield (2) Naver Labs Europe Prepositional Phrases I

More information

An Empirical Study on Dimensionality Optimization in Text Mining for Linguistic Knowledge Acquisition

An Empirical Study on Dimensionality Optimization in Text Mining for Linguistic Knowledge Acquisition An Empirical Study on Dimensionality Optimization in Text Mining for Linguistic Knowledge Acquisition Yu-Seop Kim 1, Jeong-Ho Chang 2, and Byoung-Tak Zhang 2 1 Division of Information and Telecommunication

More information

Probabilistic Latent Semantic Analysis

Probabilistic Latent Semantic Analysis Probabilistic Latent Semantic Analysis Yuriy Sverchkov Intelligent Systems Program University of Pittsburgh October 6, 2011 Outline Latent Semantic Analysis (LSA) A quick review Probabilistic LSA (plsa)

More information

CS224N: Natural Language Processing with Deep Learning Winter 2018 Midterm Exam

CS224N: Natural Language Processing with Deep Learning Winter 2018 Midterm Exam CS224N: Natural Language Processing with Deep Learning Winter 2018 Midterm Exam This examination consists of 17 printed sides, 5 questions, and 100 points. The exam accounts for 20% of your total grade.

More information

Information Retrieval

Information Retrieval Introduction to Information CS276: Information and Web Search Christopher Manning and Pandu Nayak Lecture 13: Latent Semantic Indexing Ch. 18 Today s topic Latent Semantic Indexing Term-document matrices

More information

Principal components analysis COMS 4771

Principal components analysis COMS 4771 Principal components analysis COMS 4771 1. Representation learning Useful representations of data Representation learning: Given: raw feature vectors x 1, x 2,..., x n R d. Goal: learn a useful feature

More information

PROBABILISTIC LATENT SEMANTIC ANALYSIS

PROBABILISTIC LATENT SEMANTIC ANALYSIS PROBABILISTIC LATENT SEMANTIC ANALYSIS Lingjia Deng Revised from slides of Shuguang Wang Outline Review of previous notes PCA/SVD HITS Latent Semantic Analysis Probabilistic Latent Semantic Analysis Applications

More information

Linear Classification. CSE 6363 Machine Learning Vassilis Athitsos Computer Science and Engineering Department University of Texas at Arlington

Linear Classification. CSE 6363 Machine Learning Vassilis Athitsos Computer Science and Engineering Department University of Texas at Arlington Linear Classification CSE 6363 Machine Learning Vassilis Athitsos Computer Science and Engineering Department University of Texas at Arlington 1 Example of Linear Classification Red points: patterns belonging

More information

arxiv: v2 [cs.cl] 1 Jan 2019

arxiv: v2 [cs.cl] 1 Jan 2019 Variational Self-attention Model for Sentence Representation arxiv:1812.11559v2 [cs.cl] 1 Jan 2019 Qiang Zhang 1, Shangsong Liang 2, Emine Yilmaz 1 1 University College London, London, United Kingdom 2

More information

Bayesian Paragraph Vectors

Bayesian Paragraph Vectors Bayesian Paragraph Vectors Geng Ji 1, Robert Bamler 2, Erik B. Sudderth 1, and Stephan Mandt 2 1 Department of Computer Science, UC Irvine, {gji1, sudderth}@uci.edu 2 Disney Research, firstname.lastname@disneyresearch.com

More information

Using SVD to Recommend Movies

Using SVD to Recommend Movies Michael Percy University of California, Santa Cruz Last update: December 12, 2009 Last update: December 12, 2009 1 / Outline 1 Introduction 2 Singular Value Decomposition 3 Experiments 4 Conclusion Last

More information

Seman&cs with Dense Vectors. Dorota Glowacka

Seman&cs with Dense Vectors. Dorota Glowacka Semancs with Dense Vectors Dorota Glowacka dorota.glowacka@ed.ac.uk Previous lectures: - how to represent a word as a sparse vector with dimensions corresponding to the words in the vocabulary - the values

More information

Natural Language Processing. Topics in Information Retrieval. Updated 5/10

Natural Language Processing. Topics in Information Retrieval. Updated 5/10 Natural Language Processing Topics in Information Retrieval Updated 5/10 Outline Introduction to IR Design features of IR systems Evaluation measures The vector space model Latent semantic indexing Background

More information

Information Retrieval and Topic Models. Mausam (Based on slides of W. Arms, Dan Jurafsky, Thomas Hofmann, Ata Kaban, Chris Manning, Melanie Martin)

Information Retrieval and Topic Models. Mausam (Based on slides of W. Arms, Dan Jurafsky, Thomas Hofmann, Ata Kaban, Chris Manning, Melanie Martin) Information Retrieval and Topic Models Mausam (Based on slides of W. Arms, Dan Jurafsky, Thomas Hofmann, Ata Kaban, Chris Manning, Melanie Martin) Sec. 1.1 Unstructured data in 1620 Which plays of Shakespeare

More information

Linear Models for Regression CS534

Linear Models for Regression CS534 Linear Models for Regression CS534 Example Regression Problems Predict housing price based on House size, lot size, Location, # of rooms Predict stock price based on Price history of the past month Predict

More information

Statistical NLP for the Web Log Linear Models, MEMM, Conditional Random Fields

Statistical NLP for the Web Log Linear Models, MEMM, Conditional Random Fields Statistical NLP for the Web Log Linear Models, MEMM, Conditional Random Fields Sameer Maskey Week 13, Nov 28, 2012 1 Announcements Next lecture is the last lecture Wrap up of the semester 2 Final Project

More information

Matrix Factorization using Window Sampling and Negative Sampling for Improved Word Representations

Matrix Factorization using Window Sampling and Negative Sampling for Improved Word Representations Matrix Factorization using Window Sampling and Negative Sampling for Improved Word Representations Alexandre Salle 1 Marco Idiart 2 Aline Villavicencio 1 1 Institute of Informatics 2 Physics Department

More information

Neural Network Language Modeling

Neural Network Language Modeling Neural Network Language Modeling Instructor: Wei Xu Ohio State University CSE 5525 Many slides from Marek Rei, Philipp Koehn and Noah Smith Course Project Sign up your course project In-class presentation

More information

Gaussian and Linear Discriminant Analysis; Multiclass Classification

Gaussian and Linear Discriminant Analysis; Multiclass Classification Gaussian and Linear Discriminant Analysis; Multiclass Classification Professor Ameet Talwalkar Slide Credit: Professor Fei Sha Professor Ameet Talwalkar CS260 Machine Learning Algorithms October 13, 2015

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Linear Regression Varun Chandola Computer Science & Engineering State University of New York at Buffalo Buffalo, NY, USA chandola@buffalo.edu Chandola@UB CSE 474/574 1

More information

.. CSC 566 Advanced Data Mining Alexander Dekhtyar..

.. CSC 566 Advanced Data Mining Alexander Dekhtyar.. .. CSC 566 Advanced Data Mining Alexander Dekhtyar.. Information Retrieval Latent Semantic Indexing Preliminaries Vector Space Representation of Documents: TF-IDF Documents. A single text document is a

More information

Deep Learning Recurrent Networks 2/28/2018

Deep Learning Recurrent Networks 2/28/2018 Deep Learning Recurrent Networks /8/8 Recap: Recurrent networks can be incredibly effective Story so far Y(t+) Stock vector X(t) X(t+) X(t+) X(t+) X(t+) X(t+5) X(t+) X(t+7) Iterated structures are good

More information

Data Mining & Machine Learning

Data Mining & Machine Learning Data Mining & Machine Learning CS57300 Purdue University April 10, 2018 1 Predicting Sequences 2 But first, a detour to Noise Contrastive Estimation 3 } Machine learning methods are much better at classifying

More information

Lecture 13: Discriminative Sequence Models (MEMM and Struct. Perceptron)

Lecture 13: Discriminative Sequence Models (MEMM and Struct. Perceptron) Lecture 13: Discriminative Sequence Models (MEMM and Struct. Perceptron) Intro to NLP, CS585, Fall 2014 http://people.cs.umass.edu/~brenocon/inlp2014/ Brendan O Connor (http://brenocon.com) 1 Models for

More information

Machine Learning for Data Science (CS4786) Lecture 12

Machine Learning for Data Science (CS4786) Lecture 12 Machine Learning for Data Science (CS4786) Lecture 12 Gaussian Mixture Models Course Webpage : http://www.cs.cornell.edu/courses/cs4786/2016fa/ Back to K-means Single link is sensitive to outliners We

More information

Cross-Lingual Language Modeling for Automatic Speech Recogntion

Cross-Lingual Language Modeling for Automatic Speech Recogntion GBO Presentation Cross-Lingual Language Modeling for Automatic Speech Recogntion November 14, 2003 Woosung Kim woosung@cs.jhu.edu Center for Language and Speech Processing Dept. of Computer Science The

More information

Loss Functions and Optimization. Lecture 3-1

Loss Functions and Optimization. Lecture 3-1 Lecture 3: Loss Functions and Optimization Lecture 3-1 Administrative: Live Questions We ll use Zoom to take questions from remote students live-streaming the lecture Check Piazza for instructions and

More information

Variable Latent Semantic Indexing

Variable Latent Semantic Indexing Variable Latent Semantic Indexing Prabhakar Raghavan Yahoo! Research Sunnyvale, CA November 2005 Joint work with A. Dasgupta, R. Kumar, A. Tomkins. Yahoo! Research. Outline 1 Introduction 2 Background

More information

Neural Networks: Backpropagation

Neural Networks: Backpropagation Neural Networks: Backpropagation Seung-Hoon Na 1 1 Department of Computer Science Chonbuk National University 2018.10.25 eung-hoon Na (Chonbuk National University) Neural Networks: Backpropagation 2018.10.25

More information

COMS 4721: Machine Learning for Data Science Lecture 16, 3/28/2017

COMS 4721: Machine Learning for Data Science Lecture 16, 3/28/2017 COMS 4721: Machine Learning for Data Science Lecture 16, 3/28/2017 Prof. John Paisley Department of Electrical Engineering & Data Science Institute Columbia University SOFT CLUSTERING VS HARD CLUSTERING

More information

Discrete Latent Variable Models

Discrete Latent Variable Models Discrete Latent Variable Models Stefano Ermon, Aditya Grover Stanford University Lecture 14 Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 14 1 / 29 Summary Major themes in the course

More information

CS 340 Lec. 16: Logistic Regression

CS 340 Lec. 16: Logistic Regression CS 34 Lec. 6: Logistic Regression AD March AD ) March / 6 Introduction Assume you are given some training data { x i, y i } i= where xi R d and y i can take C different values. Given an input test data

More information

Data Mining and Matrices

Data Mining and Matrices Data Mining and Matrices 6 Non-Negative Matrix Factorization Rainer Gemulla, Pauli Miettinen May 23, 23 Non-Negative Datasets Some datasets are intrinsically non-negative: Counters (e.g., no. occurrences

More information

Word2Vec Embedding. Embedding. Word Embedding 1.1 BEDORE. Word Embedding. 1.2 Embedding. Word Embedding. Embedding.

Word2Vec Embedding. Embedding. Word Embedding 1.1 BEDORE. Word Embedding. 1.2 Embedding. Word Embedding. Embedding. c Word Embedding Embedding Word2Vec Embedding Word EmbeddingWord2Vec 1. Embedding 1.1 BEDORE 0 1 BEDORE 113 0033 2 35 10 4F y katayama@bedore.jp Word Embedding Embedding 1.2 Embedding Embedding Word Embedding

More information

Loss Functions and Optimization. Lecture 3-1

Loss Functions and Optimization. Lecture 3-1 Lecture 3: Loss Functions and Optimization Lecture 3-1 Administrative Assignment 1 is released: http://cs231n.github.io/assignments2017/assignment1/ Due Thursday April 20, 11:59pm on Canvas (Extending

More information

Andriy Mnih and Ruslan Salakhutdinov

Andriy Mnih and Ruslan Salakhutdinov MATRIX FACTORIZATION METHODS FOR COLLABORATIVE FILTERING Andriy Mnih and Ruslan Salakhutdinov University of Toronto, Machine Learning Group 1 What is collaborative filtering? The goal of collaborative

More information

Towards Universal Sentence Embeddings

Towards Universal Sentence Embeddings Towards Universal Sentence Embeddings Towards Universal Paraphrastic Sentence Embeddings J. Wieting, M. Bansal, K. Gimpel and K. Livescu, ICLR 2016 A Simple But Tough-To-Beat Baseline For Sentence Embeddings

More information

Classification CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2012

Classification CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2012 Classification CE-717: Machine Learning Sharif University of Technology M. Soleymani Fall 2012 Topics Discriminant functions Logistic regression Perceptron Generative models Generative vs. discriminative

More information

Linear Models for Regression CS534

Linear Models for Regression CS534 Linear Models for Regression CS534 Example Regression Problems Predict housing price based on House size, lot size, Location, # of rooms Predict stock price based on Price history of the past month Predict

More information

Neural Networks. David Rosenberg. July 26, New York University. David Rosenberg (New York University) DS-GA 1003 July 26, / 35

Neural Networks. David Rosenberg. July 26, New York University. David Rosenberg (New York University) DS-GA 1003 July 26, / 35 Neural Networks David Rosenberg New York University July 26, 2017 David Rosenberg (New York University) DS-GA 1003 July 26, 2017 1 / 35 Neural Networks Overview Objectives What are neural networks? How

More information

CS224n: Natural Language Processing with Deep Learning 1

CS224n: Natural Language Processing with Deep Learning 1 CS224n: Natural Language Processing with Deep Learning 1 Lecture Notes: Part I 2 Winter 2017 1 Course Instructors: Christopher Manning, Richard Socher 2 Authors: Francois Chaubard, Michael Fang, Guillaume

More information