Lecture 12: EM Algorithm

Size: px
Start display at page:

Download "Lecture 12: EM Algorithm"

Transcription

1 Lecture 12: EM Algorithm Kai-Wei hang University of Virginia kw@kwchang.net ouse webpage: S6501 Natural Language Processing 1

2 Three basic problems for MMs v Likelihood of the input: v Forward algorithm v Decoding (tagging) the input: v Viterbi algorithm v Estimation (learning): ow likely the sentence I love cat occurs POS tags of I love cat occurs ow to learn the model? v Find the best model parameters v ase 1: supervised tags are annotated vmaximum likelihood estimation (MLE) v ase 2: unsupervised -- only unannotated text vforward-backward algorithm S6501 Natural Language Processing 2

3 EM algorithm v POS induction can we tag POS without annotated data? v An old idea v Good mathematical intuition v Tutorial paper: ftp://ftp.icsi.berkeley.edu/pub/techreports/1997/t r pdf v s_mike.pdf S6501 Natural Language Processing 3

4 ard EM (Intuition) v We don t know the hidden states (i.e., POS tags) v If we know the model S6501 Natural Language Processing 4

5 Recap: Learning from Labeled Data v If we know the hidden states (labels) v we count how often we see t "#$ t " and w & t " then normalize S6501 Natural Language Processing 5

6 Recap: Tagging the input v If we know the model, we can find the best tag sequence S6501 Natural Language Processing 6

7 ard EM (Intuition) v We don t know the hidden states (i.e., POS tags) 1. Let s guess! 2. Then, we have labels; we can estimate the model 3. heck if the model is consistent with the labels we guessed; if no Step 1. S6501 Natural Language Processing 7

8 Let s make a guess P( ) P( ) P( Start) ( 1 )? 0 - ( 2 )?? - ( 3 ) 0? - ( ) ( ) ?????? 2 3 2?????? S6501 Natural Language Processing 8

9 These are obvious P( ) P( ) P( Start) ( 1 )? 0 - ( 2 )?? - ( 3 ) 0? - ( ) ( ) ???? 2 3 2??? S6501 Natural Language Processing 9

10 Guess more P( ) P( ) P( Start) ( 1 )? 0 - ( 2 )?? - ( 3 ) 0? - ( ) ( ) ? 2 3 2? S6501 Natural Language Processing 10

11 Guess all of them Now we can estimate ML P( ) P( ) P( Start) ( 1 )? 0 - ( 2 )?? - ( 3 ) 0? - ( ) ( ) S6501 Natural Language Processing 11

12 Does our guess consistent with the model? P( ) P( ) P( Start) ( 1 ) ( 2 ) ( 3 ) ( ) ( ) S6501 Natural Language Processing 12

13 ow to find latent states based on our model? Viterbi! P( ) P( ) P( Start) ( 1 ) ( 2 ) ( 3 ) ( ) ( ) ?????? 2 3 2?????? S6501 Natural Language Processing 13

14 Something wrong P( ) P( ) P( Start) ( 1 ) ( 2 ) ( 3 ) ( ) ( ) From Viterbi From Viterbi S6501 Natural Language Processing 14

15 It s fine. Let s do again P( ) P( ) P( Start) ( 1 ) ( 2 ) ( 3 ) ( ) ( ) S6501 Natural Language Processing 15

16 This time it is consistent P( ) P( ) P( Start) ( 1 ) ( 2 ) ( 3 ) ( ) ( ) From Viterbi From Viterbi S6501 Natural Language Processing 16

17 No! Only one solution? EM is sensitive to initialization P( ) P( ) P( Start) ( 1 ) ( 2 ) ( 3 ) ( ) ( ) S6501 Natural Language Processing 17

18 ow about this? P( ) P( ) P( Start) ( 1 )? 0 - ( 2 )?? - ( 3 ) 0? - ( )?? 0.5 ( )?? 0.5?????? 2 3 2?????? S6501 Natural Language Processing 18

19 ard EM v We don t know the hidden states (i.e., POS tags) 1. Let s guess based on our model! v Find the best sequence using Viterbi algorithm 2. Then, we have labels; we can estimate the model v Maximum Likelihood Estimation 3. heck if the model is consistent with the labels we guessed; if no Step 1. S6501 Natural Language Processing 19

20 Soft EM v We don t know the hidden states (i.e., POS tags) 1. Let s guess based on our model! v Find the best sequence using Viterbi algorithm 2. Then, Let s use we expected have labels; counts we instead! can estimate the model v Maximum Likelihood Estimation 3. heck if the model is consistent with the labels we guessed; if no Step 1. S6501 Natural Language Processing 20

21 Expected ounts P( ) P( ) P( Start) ( 1 ) ( 2 ) ( 3 ) ( ) ( ) ??? S6501 Natural Language Processing 21

22 Expected ounts Some sequences are more likely to occur than the others P( ) P( ) P( Start) ( 1 ) ( 2 ) ( 3 ) ( ) ( ) S6501 Natural Language Processing 22

23 Expected ounts P( ) P( ) P( Start) ( 1 ) ( 2 ) ( 3 ) ( ) ( ) S6501 Natural Language Processing 23

24 Expected ounts Assume we draw 100,000 random samples P( ) P( ) P( Start) ( 1 ) ( 2 ) ( 3 ) ( ) ( ) S6501 Natural Language Processing 24

25 Expected ounts Let s update model P( ) P( ) P( Start) ( 1 ) ( 2 ) ( 3 ) ( ) ( ) S6501 Natural Language Processing 25

26 Expected ounts Let s update model ow many -? 1024*2+256=2302 P( ) P( ) P( Start) ( 1 ) ( 2 ) ( 3 ) ( ) ( ) S6501 Natural Language Processing 26

27 Expected ounts ow many -? 1024*2+256=2302 ow many? P( ) P( ) P( Start) ( 1 ) ( 2 ) ( 3 ) *3+256*2+64*2+256=3968 ( ) ( ) /3968 = P( )? S6501 Natural Language Processing 27

28 Expected ounts P( )? 2302/3968 = P( ) P( ) P( Start) ( 1 ) ( 2 ) ( 3 ) ( ) ( ) Do this for all the other entries! S6501 Natural Language Processing 28

29 Are we done yet? v What if we have 45 tags? v What if our sentences has 20 tokens...? v We need an efficent algorithm again! S6501 Natural Language Processing 29

30 Expected ounts P( )? 2302/3968 = P( ) P( ) P( Start) ( 1 ) ( 2 ) ( 3 ) ( ) ( ) /3968 = P(1 )? ( ) S6501 Natural Language Processing 30

31 Expected ounts P( )? 2302/3968 = P( ) P( ) P( Start) ( 1 ) ( 2 ) ( 3 ) ( ) ( ) /3968 = P(1 )? ( ) S6501 Natural Language Processing 31

32 In general P( ) P( ) P( Start) ( 1 ) ( 2 ) ( 3 ) ( ) ( ) S6501 Natural Language Processing 32

33 In general P( ) P( ) P( Start) ( 1 ) ( 2 ) ( 3 ) ( ) ( ) S6501 Natural Language Processing 33

34 In general Let s say #words = n P w 1..n, t / = P( ) P( ) P( Start) ( 1 ) ( 2 ) ( 3 ) ( ) ( ) i=k S6501 Natural Language Processing 34

35 In general probability of w $ w 7 and tag k is P w 1..n, t / = = P w 1..k, t / = P w k31..n t / = probability of w 73$ w 8 and tag k is i=k S6501 Natural Language Processing 35

36 In general an be computed by forward algorithm an be computed by backward algorithm P w 1..n, t / = = P w 1..k, t / = P w k31..n t / = P w 1..k, t / = = 9 P w 1..k, t 1..k#1,t / = P w k31..n t / = = 9 P w k..n, t k31..n t / = t 1..k;1 t k<1..n i=k S6501 Natural Language Processing 36

37 Forward algorithm i i Induction: α 7 q =P w 7 q) B α 7#$ q A P(q q ) S6501 Natural Language Processing 37

38 Backward algorithm vp w k31..n t / = = P w k32..n t 73$ = q P q P(w 73$ q) q v β 7 = β 73$ q P q P(w 73$ q) B S6501 Natural Language Processing 38

39 In general an be computed by forward algorithm an be computed by backward algorithm P w 1..n, t / = = P w 1..k, t / = P w k31..n t / = P w 1..k, t / = = 9 P w 1..k, t 1..k#1,t / = t 1..k;1 P w k..n, t / = = 9 P w k..n, t k31..n, t / = i=k t k<1..n S6501 Natural Language Processing 39

40 Emission ounts Expected counts of (2,) P 2 = " P(w " = 2, t " =, w 1..n ) " P(t " =, w 1..n ) i=k Expected counts of S6501 Natural Language Processing 40

41 ow about the transition counts? P w 1..n, t / =, t 73$ = = P w 1..k, t / = P w k31..n t /3$ = P P(w k31 ) = α k β 73$ P P(w k31 ). i=k i=k+1 S6501 Natural Language Processing 41

42 Three basic problems for MMs v Likelihood of the input: v Forward algorithm v Decoding (tagging) the input: v Viterbi algorithm v Estimation (learning): ow likely the sentence I love cat occurs POS tags of I love cat occurs ow to learn the model? v Find the best model parameters v ase 1: supervised tags are annotated vmaximum likelihood estimation (MLE) v ase 2: unsupervised -- only unannotated text vforward-backward algorithm S6501 Natural Language Processing 42

43 Trick: computing everything in log space v omework: v Write forward, backward and Viterbi algorithm in log-space v int: you need a function to compute log(a+b) S6501 Natural Language Processing 43

44 Behind the scenes v What is EM optimized? v Log Likelihood of the input! v log P(w λ) v log P w λ = log t P(w, t λ) = log X Π 8 "V$ P t " t "#$, t "#W P(w " t " ) In contrast, in the supervised situation, We are optimizing log P(w, t λ) This is hard; In contrast log P w, t λ = logπ 8 "V$ P t " t "#$, t "#W P w " t " = "(log P t " t "#$, t "#W + log P w " t " ) Log Π is hard; log Π = log is easy S6501 Natural Language Processing 44

45 Intuition of EM (from the optimization perspective) λ (b3w) λ (b3$) λ (b) f λ g b3$ = logp w λ = log P(w, t λ) Key idea: 1. Define g c λ such that f λ g b λ λ and f λ (b) = g b λ b 2. Optimize g c λ g b S6501 Natural Language Processing 45

46 Intuition of EM (from optimization perspective) λ (b3w) λ (b3$) λ (b) > f λ g b3$ = logp w λ = log P(w, t λ) Key idea: 1. Define g c λ such that f λ g b λ λ and f λ (b) = g b λ b 2. Optimize g c λ g b ard EM, Soft EM define different g c λ S6501 Natural Language Processing 46

47 g c λ for soft EM v log P w, t X f w, t λ = log X f t w, λ b P t w, λ b λ Jensen inequality: Let p(x) = 1 log k f x p(x) k p(x)log f x P t X w, λ b log f w, t λ f t w, λ b S6501 Natural Language Processing 47

48 g c λ (b) = f λ b? v log P w, t X P t X w, λ b λ log f w, t λ f t w, λ b f λ b = log P w, t λ (b) = log P(w λ b ) X g b λ (b) = P t w, λ b X = X P t w, λ b log P w λ (b) = (logp w λ (b) ) X P t w, λ b = log w λ b f w, t λ(b) log f t w, λ b S6501 Natural Language Processing 48

49 Intuition of EM (from optimization perspective) λ (b3w) λ (b3$) λ (b) > f λ g b3$ = logp w λ = log P(w, t λ) Key idea: 1. Define g c λ such that f λ g b λ λ and f λ (b) = g b λ b 2. Optimize g c λ g b Soft EM define g c λ = P t w, λ b log f w, t λ X S6501 Natural Language Processing f t w, λ b 49

50 Optimizing g c λ g c λ = P t X w, λ (b) log f w, t λ f t w, λ (b) = P t w, λ b X (log P w, t λ log P t w, λ (b) ) max g s λ = P t w, λ (b) (log P w, t λ ) r X This term doesn t have λ = X P t w, λ (b) "(log P t " t "#$,t "#W + log P w " t " ) In contrast, in supervised learning case: We know how to solve this!! log P w, t λ = logπ 8 "V$ P t " t "#$, t "#W P w " t " = "(log P t " t "#$, t "#W + log P w " t " ) Log Π is hard; log Π = log is easy S6501 Natural Language Processing 50

Lecture 11: Viterbi and Forward Algorithms

Lecture 11: Viterbi and Forward Algorithms Lecture 11: iterbi and Forward lgorithms Kai-Wei Chang CS @ University of irginia kw@kwchang.net Couse webpage: http://kwchang.net/teaching/lp16 CS6501 atural Language Processing 1 Quiz 1 Quiz 1 30 25

More information

Lecture 13: Structured Prediction

Lecture 13: Structured Prediction Lecture 13: Structured Prediction Kai-Wei Chang CS @ University of Virginia kw@kwchang.net Couse webpage: http://kwchang.net/teaching/nlp16 CS6501: NLP 1 Quiz 2 v Lectures 9-13 v Lecture 12: before page

More information

Lecture 12: Algorithms for HMMs

Lecture 12: Algorithms for HMMs Lecture 12: Algorithms for HMMs Nathan Schneider (some slides from Sharon Goldwater; thanks to Jonathan May for bug fixes) ENLP 26 February 2018 Recap: tagging POS tagging is a sequence labelling task.

More information

Lecture 9: Hidden Markov Model

Lecture 9: Hidden Markov Model Lecture 9: Hidden Markov Model Kai-Wei Chang CS @ University of Virginia kw@kwchang.net Couse webpage: http://kwchang.net/teaching/nlp16 CS6501 Natural Language Processing 1 This lecture v Hidden Markov

More information

Lecture 12: Algorithms for HMMs

Lecture 12: Algorithms for HMMs Lecture 12: Algorithms for HMMs Nathan Schneider (some slides from Sharon Goldwater; thanks to Jonathan May for bug fixes) ENLP 17 October 2016 updated 9 September 2017 Recap: tagging POS tagging is a

More information

Recap: HMM. ANLP Lecture 9: Algorithms for HMMs. More general notation. Recap: HMM. Elements of HMM: Sharon Goldwater 4 Oct 2018.

Recap: HMM. ANLP Lecture 9: Algorithms for HMMs. More general notation. Recap: HMM. Elements of HMM: Sharon Goldwater 4 Oct 2018. Recap: HMM ANLP Lecture 9: Algorithms for HMMs Sharon Goldwater 4 Oct 2018 Elements of HMM: Set of states (tags) Output alphabet (word types) Start state (beginning of sentence) State transition probabilities

More information

Part of Speech Tagging: Viterbi, Forward, Backward, Forward- Backward, Baum-Welch. COMP-599 Oct 1, 2015

Part of Speech Tagging: Viterbi, Forward, Backward, Forward- Backward, Baum-Welch. COMP-599 Oct 1, 2015 Part of Speech Tagging: Viterbi, Forward, Backward, Forward- Backward, Baum-Welch COMP-599 Oct 1, 2015 Announcements Research skills workshop today 3pm-4:30pm Schulich Library room 313 Start thinking about

More information

Basic Text Analysis. Hidden Markov Models. Joakim Nivre. Uppsala University Department of Linguistics and Philology

Basic Text Analysis. Hidden Markov Models. Joakim Nivre. Uppsala University Department of Linguistics and Philology Basic Text Analysis Hidden Markov Models Joakim Nivre Uppsala University Department of Linguistics and Philology joakimnivre@lingfiluuse Basic Text Analysis 1(33) Hidden Markov Models Markov models are

More information

Sequence Labeling: HMMs & Structured Perceptron

Sequence Labeling: HMMs & Structured Perceptron Sequence Labeling: HMMs & Structured Perceptron CMSC 723 / LING 723 / INST 725 MARINE CARPUAT marine@cs.umd.edu HMM: Formal Specification Q: a finite set of N states Q = {q 0, q 1, q 2, q 3, } N N Transition

More information

Machine Learning & Data Mining Caltech CS/CNS/EE 155 Hidden Markov Models Last Updated: Feb 7th, 2017

Machine Learning & Data Mining Caltech CS/CNS/EE 155 Hidden Markov Models Last Updated: Feb 7th, 2017 1 Introduction Let x = (x 1,..., x M ) denote a sequence (e.g. a sequence of words), and let y = (y 1,..., y M ) denote a corresponding hidden sequence that we believe explains or influences x somehow

More information

Hidden Markov Models

Hidden Markov Models Hidden Markov Models Slides mostly from Mitch Marcus and Eric Fosler (with lots of modifications). Have you seen HMMs? Have you seen Kalman filters? Have you seen dynamic programming? HMMs are dynamic

More information

Hidden Markov Models in Language Processing

Hidden Markov Models in Language Processing Hidden Markov Models in Language Processing Dustin Hillard Lecture notes courtesy of Prof. Mari Ostendorf Outline Review of Markov models What is an HMM? Examples General idea of hidden variables: implications

More information

Parametric Unsupervised Learning Expectation Maximization (EM) Lecture 20.a

Parametric Unsupervised Learning Expectation Maximization (EM) Lecture 20.a Parametric Unsupervised Learning Expectation Maximization (EM) Lecture 20.a Some slides are due to Christopher Bishop Limitations of K-means Hard assignments of data points to clusters small shift of a

More information

Data-Intensive Computing with MapReduce

Data-Intensive Computing with MapReduce Data-Intensive Computing with MapReduce Session 8: Sequence Labeling Jimmy Lin University of Maryland Thursday, March 14, 2013 This work is licensed under a Creative Commons Attribution-Noncommercial-Share

More information

More on HMMs and other sequence models. Intro to NLP - ETHZ - 18/03/2013

More on HMMs and other sequence models. Intro to NLP - ETHZ - 18/03/2013 More on HMMs and other sequence models Intro to NLP - ETHZ - 18/03/2013 Summary Parts of speech tagging HMMs: Unsupervised parameter estimation Forward Backward algorithm Bayesian variants Discriminative

More information

CMSC 723: Computational Linguistics I Session #5 Hidden Markov Models. The ischool University of Maryland. Wednesday, September 30, 2009

CMSC 723: Computational Linguistics I Session #5 Hidden Markov Models. The ischool University of Maryland. Wednesday, September 30, 2009 CMSC 723: Computational Linguistics I Session #5 Hidden Markov Models Jimmy Lin The ischool University of Maryland Wednesday, September 30, 2009 Today s Agenda The great leap forward in NLP Hidden Markov

More information

Statistical Pattern Recognition

Statistical Pattern Recognition Statistical Pattern Recognition Expectation Maximization (EM) and Mixture Models Hamid R. Rabiee Jafar Muhammadi, Mohammad J. Hosseini Spring 2014 http://ce.sharif.edu/courses/92-93/2/ce725-2 Agenda Expectation-maximization

More information

ACS Introduction to NLP Lecture 2: Part of Speech (POS) Tagging

ACS Introduction to NLP Lecture 2: Part of Speech (POS) Tagging ACS Introduction to NLP Lecture 2: Part of Speech (POS) Tagging Stephen Clark Natural Language and Information Processing (NLIP) Group sc609@cam.ac.uk The POS Tagging Problem 2 England NNP s POS fencers

More information

STA 414/2104: Machine Learning

STA 414/2104: Machine Learning STA 414/2104: Machine Learning Russ Salakhutdinov Department of Computer Science! Department of Statistics! rsalakhu@cs.toronto.edu! http://www.cs.toronto.edu/~rsalakhu/ Lecture 9 Sequential Data So far

More information

Machine Learning for natural language processing

Machine Learning for natural language processing Machine Learning for natural language processing Hidden Markov Models Laura Kallmeyer Heinrich-Heine-Universität Düsseldorf Summer 2016 1 / 33 Introduction So far, we have classified texts/observations

More information

Generative Clustering, Topic Modeling, & Bayesian Inference

Generative Clustering, Topic Modeling, & Bayesian Inference Generative Clustering, Topic Modeling, & Bayesian Inference INFO-4604, Applied Machine Learning University of Colorado Boulder December 12-14, 2017 Prof. Michael Paul Unsupervised Naïve Bayes Last week

More information

A.I. in health informatics lecture 8 structured learning. kevin small & byron wallace

A.I. in health informatics lecture 8 structured learning. kevin small & byron wallace A.I. in health informatics lecture 8 structured learning kevin small & byron wallace today models for structured learning: HMMs and CRFs structured learning is particularly useful in biomedical applications:

More information

AN INTRODUCTION TO TOPIC MODELS

AN INTRODUCTION TO TOPIC MODELS AN INTRODUCTION TO TOPIC MODELS Michael Paul December 4, 2013 600.465 Natural Language Processing Johns Hopkins University Prof. Jason Eisner Making sense of text Suppose you want to learn something about

More information

Lecture 2: N-gram. Kai-Wei Chang University of Virginia Couse webpage:

Lecture 2: N-gram. Kai-Wei Chang University of Virginia Couse webpage: Lecture 2: N-gram Kai-Wei Chang CS @ University of Virginia kw@kwchang.net Couse webpage: http://kwchang.net/teaching/nlp16 CS 6501: Natural Language Processing 1 This lecture Language Models What are

More information

Probabilistic Graphical Models: MRFs and CRFs. CSE628: Natural Language Processing Guest Lecturer: Veselin Stoyanov

Probabilistic Graphical Models: MRFs and CRFs. CSE628: Natural Language Processing Guest Lecturer: Veselin Stoyanov Probabilistic Graphical Models: MRFs and CRFs CSE628: Natural Language Processing Guest Lecturer: Veselin Stoyanov Why PGMs? PGMs can model joint probabilities of many events. many techniques commonly

More information

Hidden Markov Models The three basic HMM problems (note: change in notation) Mitch Marcus CSE 391

Hidden Markov Models The three basic HMM problems (note: change in notation) Mitch Marcus CSE 391 Hidden Markov Models The three basic HMM problems (note: change in notation) Mitch Marcus CSE 391 Parameters of an HMM States: A set of states S=s 1, s n Transition probabilities: A= a 1,1, a 1,2,, a n,n

More information

Natural Language Processing CS Lecture 06. Razvan C. Bunescu School of Electrical Engineering and Computer Science

Natural Language Processing CS Lecture 06. Razvan C. Bunescu School of Electrical Engineering and Computer Science Natural Language Processing CS 6840 Lecture 06 Razvan C. Bunescu School of Electrical Engineering and Computer Science bunescu@ohio.edu Statistical Parsing Define a probabilistic model of syntax P(T S):

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 11 Project

More information

Statistical Methods for NLP

Statistical Methods for NLP Statistical Methods for NLP Information Extraction, Hidden Markov Models Sameer Maskey Week 5, Oct 3, 2012 *many slides provided by Bhuvana Ramabhadran, Stanley Chen, Michael Picheny Speech Recognition

More information

Hidden Markov Models

Hidden Markov Models CS769 Spring 2010 Advanced Natural Language Processing Hidden Markov Models Lecturer: Xiaojin Zhu jerryzhu@cs.wisc.edu 1 Part-of-Speech Tagging The goal of Part-of-Speech (POS) tagging is to label each

More information

Statistical NLP: Hidden Markov Models. Updated 12/15

Statistical NLP: Hidden Markov Models. Updated 12/15 Statistical NLP: Hidden Markov Models Updated 12/15 Markov Models Markov models are statistical tools that are useful for NLP because they can be used for part-of-speech-tagging applications Their first

More information

P(t w) = arg maxp(t, w) (5.1) P(t,w) = P(t)P(w t). (5.2) The first term, P(t), can be described using a language model, for example, a bigram model:

P(t w) = arg maxp(t, w) (5.1) P(t,w) = P(t)P(w t). (5.2) The first term, P(t), can be described using a language model, for example, a bigram model: Chapter 5 Text Input 5.1 Problem In the last two chapters we looked at language models, and in your first homework you are building language models for English and Chinese to enable the computer to guess

More information

Sequence labeling. Taking collective a set of interrelated instances x 1,, x T and jointly labeling them

Sequence labeling. Taking collective a set of interrelated instances x 1,, x T and jointly labeling them HMM, MEMM and CRF 40-957 Special opics in Artificial Intelligence: Probabilistic Graphical Models Sharif University of echnology Soleymani Spring 2014 Sequence labeling aking collective a set of interrelated

More information

Hidden Markov Models. By Parisa Abedi. Slides courtesy: Eric Xing

Hidden Markov Models. By Parisa Abedi. Slides courtesy: Eric Xing Hidden Markov Models By Parisa Abedi Slides courtesy: Eric Xing i.i.d to sequential data So far we assumed independent, identically distributed data Sequential (non i.i.d.) data Time-series data E.g. Speech

More information

Statistical methods in NLP, lecture 7 Tagging and parsing

Statistical methods in NLP, lecture 7 Tagging and parsing Statistical methods in NLP, lecture 7 Tagging and parsing Richard Johansson February 25, 2014 overview of today's lecture HMM tagging recap assignment 3 PCFG recap dependency parsing VG assignment 1 overview

More information

Midterm sample questions

Midterm sample questions Midterm sample questions CS 585, Brendan O Connor and David Belanger October 12, 2014 1 Topics on the midterm Language concepts Translation issues: word order, multiword translations Human evaluation Parts

More information

Sequence Modelling with Features: Linear-Chain Conditional Random Fields. COMP-599 Oct 6, 2015

Sequence Modelling with Features: Linear-Chain Conditional Random Fields. COMP-599 Oct 6, 2015 Sequence Modelling with Features: Linear-Chain Conditional Random Fields COMP-599 Oct 6, 2015 Announcement A2 is out. Due Oct 20 at 1pm. 2 Outline Hidden Markov models: shortcomings Generative vs. discriminative

More information

CSC401/2511 Spring CSC401/2511 Natural Language Computing Spring 2019 Lecture 5 Frank Rudzicz and Chloé Pou-Prom University of Toronto

CSC401/2511 Spring CSC401/2511 Natural Language Computing Spring 2019 Lecture 5 Frank Rudzicz and Chloé Pou-Prom University of Toronto CSC401/2511 Natural Language Computing Spring 2019 Lecture 5 Frank Rudzicz and Chloé Pou-Prom University of Toronto Revisiting PoS tagging Will/MD the/dt chair/nn chair/?? the/dt meeting/nn from/in that/dt

More information

Basic math for biology

Basic math for biology Basic math for biology Lei Li Florida State University, Feb 6, 2002 The EM algorithm: setup Parametric models: {P θ }. Data: full data (Y, X); partial data Y. Missing data: X. Likelihood and maximum likelihood

More information

Language and Statistics II

Language and Statistics II Language and Statistics II Lecture 19: EM for Models of Structure Noah Smith Epectation-Maimization E step: i,, q i # p r $ t = p r i % ' $ t i, p r $ t i,' soft assignment or voting M step: r t +1 # argma

More information

Mixture of Gaussians Models

Mixture of Gaussians Models Mixture of Gaussians Models Outline Inference, Learning, and Maximum Likelihood Why Mixtures? Why Gaussians? Building up to the Mixture of Gaussians Single Gaussians Fully-Observed Mixtures Hidden Mixtures

More information

Statistical Processing of Natural Language

Statistical Processing of Natural Language Statistical Processing of Natural Language and DMKM - Universitat Politècnica de Catalunya and 1 2 and 3 1. Observation Probability 2. Best State Sequence 3. Parameter Estimation 4 Graphical and Generative

More information

Hidden Markov Models. Aarti Singh Slides courtesy: Eric Xing. Machine Learning / Nov 8, 2010

Hidden Markov Models. Aarti Singh Slides courtesy: Eric Xing. Machine Learning / Nov 8, 2010 Hidden Markov Models Aarti Singh Slides courtesy: Eric Xing Machine Learning 10-701/15-781 Nov 8, 2010 i.i.d to sequential data So far we assumed independent, identically distributed data Sequential data

More information

CS 136a Lecture 7 Speech Recognition Architecture: Training models with the Forward backward algorithm

CS 136a Lecture 7 Speech Recognition Architecture: Training models with the Forward backward algorithm + September13, 2016 Professor Meteer CS 136a Lecture 7 Speech Recognition Architecture: Training models with the Forward backward algorithm Thanks to Dan Jurafsky for these slides + ASR components n Feature

More information

Empirical Methods in Natural Language Processing Lecture 11 Part-of-speech tagging and HMMs

Empirical Methods in Natural Language Processing Lecture 11 Part-of-speech tagging and HMMs Empirical Methods in Natural Language Processing Lecture 11 Part-of-speech tagging and HMMs (based on slides by Sharon Goldwater and Philipp Koehn) 21 February 2018 Nathan Schneider ENLP Lecture 11 21

More information

Hidden Markov Models. Representing sequence data. Markov Models. A dice-y example 4/5/2017. CISC 5800 Professor Daniel Leeds Π A = 0.3, Π B = 0.

Hidden Markov Models. Representing sequence data. Markov Models. A dice-y example 4/5/2017. CISC 5800 Professor Daniel Leeds Π A = 0.3, Π B = 0. Representing sequence data Hidden Markov Models CISC 5800 Professor Daniel Leeds Spoken language DNA sequences Daily stock values Example: spoken language F?r plu? fi?e is nine Between F and r expect a

More information

Introduction to Machine Learning CMU-10701

Introduction to Machine Learning CMU-10701 Introduction to Machine Learning CMU-10701 Hidden Markov Models Barnabás Póczos & Aarti Singh Slides courtesy: Eric Xing i.i.d to sequential data So far we assumed independent, identically distributed

More information

Lecture 11: Hidden Markov Models

Lecture 11: Hidden Markov Models Lecture 11: Hidden Markov Models Cognitive Systems - Machine Learning Cognitive Systems, Applied Computer Science, Bamberg University slides by Dr. Philip Jackson Centre for Vision, Speech & Signal Processing

More information

Advanced Natural Language Processing Syntactic Parsing

Advanced Natural Language Processing Syntactic Parsing Advanced Natural Language Processing Syntactic Parsing Alicia Ageno ageno@cs.upc.edu Universitat Politècnica de Catalunya NLP statistical parsing 1 Parsing Review Statistical Parsing SCFG Inside Algorithm

More information

Latent Dirichlet Allocation Introduction/Overview

Latent Dirichlet Allocation Introduction/Overview Latent Dirichlet Allocation Introduction/Overview David Meyer 03.10.2016 David Meyer http://www.1-4-5.net/~dmm/ml/lda_intro.pdf 03.10.2016 Agenda What is Topic Modeling? Parametric vs. Non-Parametric Models

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning Expectation Maximization Mark Schmidt University of British Columbia Winter 2018 Last Time: Learning with MAR Values We discussed learning with missing at random values in data:

More information

Hidden Markov Models. Representing sequence data. Markov Models. A dice-y example 4/26/2018. CISC 5800 Professor Daniel Leeds Π A = 0.3, Π B = 0.

Hidden Markov Models. Representing sequence data. Markov Models. A dice-y example 4/26/2018. CISC 5800 Professor Daniel Leeds Π A = 0.3, Π B = 0. Representing sequence data Hidden Markov Models CISC 5800 Professor Daniel Leeds Spoken language DNA sequences Daily stock values Example: spoken language F?r plu? fi?e is nine Between F and r expect a

More information

EECS E6870: Lecture 4: Hidden Markov Models

EECS E6870: Lecture 4: Hidden Markov Models EECS E6870: Lecture 4: Hidden Markov Models Stanley F. Chen, Michael A. Picheny and Bhuvana Ramabhadran IBM T. J. Watson Research Center Yorktown Heights, NY 10549 stanchen@us.ibm.com, picheny@us.ibm.com,

More information

Lecture 13: Discriminative Sequence Models (MEMM and Struct. Perceptron)

Lecture 13: Discriminative Sequence Models (MEMM and Struct. Perceptron) Lecture 13: Discriminative Sequence Models (MEMM and Struct. Perceptron) Intro to NLP, CS585, Fall 2014 http://people.cs.umass.edu/~brenocon/inlp2014/ Brendan O Connor (http://brenocon.com) 1 Models for

More information

INF4820: Algorithms for Artificial Intelligence and Natural Language Processing. Hidden Markov Models

INF4820: Algorithms for Artificial Intelligence and Natural Language Processing. Hidden Markov Models INF4820: Algorithms for Artificial Intelligence and Natural Language Processing Hidden Markov Models Murhaf Fares & Stephan Oepen Language Technology Group (LTG) October 27, 2016 Recap: Probabilistic Language

More information

CSCI 5832 Natural Language Processing. Today 2/19. Statistical Sequence Classification. Lecture 9

CSCI 5832 Natural Language Processing. Today 2/19. Statistical Sequence Classification. Lecture 9 CSCI 5832 Natural Language Processing Jim Martin Lecture 9 1 Today 2/19 Review HMMs for POS tagging Entropy intuition Statistical Sequence classifiers HMMs MaxEnt MEMMs 2 Statistical Sequence Classification

More information

COMS 4771 Probabilistic Reasoning via Graphical Models. Nakul Verma

COMS 4771 Probabilistic Reasoning via Graphical Models. Nakul Verma COMS 4771 Probabilistic Reasoning via Graphical Models Nakul Verma Last time Dimensionality Reduction Linear vs non-linear Dimensionality Reduction Principal Component Analysis (PCA) Non-linear methods

More information

Dept. of Linguistics, Indiana University Fall 2009

Dept. of Linguistics, Indiana University Fall 2009 1 / 14 Markov L645 Dept. of Linguistics, Indiana University Fall 2009 2 / 14 Markov (1) (review) Markov A Markov Model consists of: a finite set of statesω={s 1,...,s n }; an signal alphabetσ={σ 1,...,σ

More information

Statistical Methods for NLP

Statistical Methods for NLP Statistical Methods for NLP Sequence Models Joakim Nivre Uppsala University Department of Linguistics and Philology joakim.nivre@lingfil.uu.se Statistical Methods for NLP 1(21) Introduction Structured

More information

CS 7180: Behavioral Modeling and Decision- making in AI

CS 7180: Behavioral Modeling and Decision- making in AI CS 7180: Behavioral Modeling and Decision- making in AI Learning Probabilistic Graphical Models Prof. Amy Sliva October 31, 2012 Hidden Markov model Stochastic system represented by three matrices N =

More information

INF4820: Algorithms for Artificial Intelligence and Natural Language Processing. Hidden Markov Models

INF4820: Algorithms for Artificial Intelligence and Natural Language Processing. Hidden Markov Models INF4820: Algorithms for Artificial Intelligence and Natural Language Processing Hidden Markov Models Murhaf Fares & Stephan Oepen Language Technology Group (LTG) October 18, 2017 Recap: Probabilistic Language

More information

Soft Inference and Posterior Marginals. September 19, 2013

Soft Inference and Posterior Marginals. September 19, 2013 Soft Inference and Posterior Marginals September 19, 2013 Soft vs. Hard Inference Hard inference Give me a single solution Viterbi algorithm Maximum spanning tree (Chu-Liu-Edmonds alg.) Soft inference

More information

Statistical Pattern Recognition

Statistical Pattern Recognition Statistical Pattern Recognition Expectation Maximization (EM) and Mixture Models Hamid R. Rabiee Jafar Muhammadi, Mohammad J. Hosseini Spring 203 http://ce.sharif.edu/courses/9-92/2/ce725-/ Agenda Expectation-maximization

More information

Hidden Markov Models: Maxing and Summing

Hidden Markov Models: Maxing and Summing Hidden Markov Models: Maxing and Summing Introduction to Natural Language Processing Computer Science 585 Fall 2009 University of Massachusetts Amherst David Smith 1 Markov vs. Hidden Markov Models Fed

More information

lecture 6: modeling sequences (final part)

lecture 6: modeling sequences (final part) Natural Language Processing 1 lecture 6: modeling sequences (final part) Ivan Titov Institute for Logic, Language and Computation Outline After a recap: } Few more words about unsupervised estimation of

More information

LECTURER: BURCU CAN Spring

LECTURER: BURCU CAN Spring LECTURER: BURCU CAN 2017-2018 Spring Regular Language Hidden Markov Model (HMM) Context Free Language Context Sensitive Language Probabilistic Context Free Grammar (PCFG) Unrestricted Language PCFGs can

More information

10 : HMM and CRF. 1 Case Study: Supervised Part-of-Speech Tagging

10 : HMM and CRF. 1 Case Study: Supervised Part-of-Speech Tagging 10-708: Probabilistic Graphical Models 10-708, Spring 2018 10 : HMM and CRF Lecturer: Kayhan Batmanghelich Scribes: Ben Lengerich, Michael Kleyman 1 Case Study: Supervised Part-of-Speech Tagging We will

More information

Hidden Markov Models and Gaussian Mixture Models

Hidden Markov Models and Gaussian Mixture Models Hidden Markov Models and Gaussian Mixture Models Hiroshi Shimodaira and Steve Renals Automatic Speech Recognition ASR Lectures 4&5 23&27 January 2014 ASR Lectures 4&5 Hidden Markov Models and Gaussian

More information

Hidden Markov Models. x 1 x 2 x 3 x K

Hidden Markov Models. x 1 x 2 x 3 x K Hidden Markov Models 1 1 1 1 2 2 2 2 K K K K x 1 x 2 x 3 x K Viterbi, Forward, Backward VITERBI FORWARD BACKWARD Initialization: V 0 (0) = 1 V k (0) = 0, for all k > 0 Initialization: f 0 (0) = 1 f k (0)

More information

Clustering K-means. Clustering images. Machine Learning CSE546 Carlos Guestrin University of Washington. November 4, 2014.

Clustering K-means. Clustering images. Machine Learning CSE546 Carlos Guestrin University of Washington. November 4, 2014. Clustering K-means Machine Learning CSE546 Carlos Guestrin University of Washington November 4, 2014 1 Clustering images Set of Images [Goldberger et al.] 2 1 K-means Randomly initialize k centers µ (0)

More information

COMP90051 Statistical Machine Learning

COMP90051 Statistical Machine Learning COMP90051 Statistical Machine Learning Semester 2, 2017 Lecturer: Trevor Cohn 24. Hidden Markov Models & message passing Looking back Representation of joint distributions Conditional/marginal independence

More information

Maschinelle Sprachverarbeitung

Maschinelle Sprachverarbeitung Maschinelle Sprachverarbeitung Parsing with Probabilistic Context-Free Grammar Ulf Leser Content of this Lecture Phrase-Structure Parse Trees Probabilistic Context-Free Grammars Parsing with PCFG Other

More information

HIDDEN MARKOV MODELS IN SPEECH RECOGNITION

HIDDEN MARKOV MODELS IN SPEECH RECOGNITION HIDDEN MARKOV MODELS IN SPEECH RECOGNITION Wayne Ward Carnegie Mellon University Pittsburgh, PA 1 Acknowledgements Much of this talk is derived from the paper "An Introduction to Hidden Markov Models",

More information

Pair Hidden Markov Models

Pair Hidden Markov Models Pair Hidden Markov Models Scribe: Rishi Bedi Lecturer: Serafim Batzoglou January 29, 2015 1 Recap of HMMs alphabet: Σ = {b 1,...b M } set of states: Q = {1,..., K} transition probabilities: A = [a ij ]

More information

Neural Architectures for Image, Language, and Speech Processing

Neural Architectures for Image, Language, and Speech Processing Neural Architectures for Image, Language, and Speech Processing Karl Stratos June 26, 2018 1 / 31 Overview Feedforward Networks Need for Specialized Architectures Convolutional Neural Networks (CNNs) Recurrent

More information

Expectation Maximization

Expectation Maximization Expectation Maximization Bishop PRML Ch. 9 Alireza Ghane c Ghane/Mori 4 6 8 4 6 8 4 6 8 4 6 8 5 5 5 5 5 5 4 6 8 4 4 6 8 4 5 5 5 5 5 5 µ, Σ) α f Learningscale is slightly Parameters is slightly larger larger

More information

Semi-supervised Learning

Semi-supervised Learning Semi-supervised Learning Introduction Supervised learning: x r, y r R r=1 E.g.x r : image, y r : class labels Semi-supervised learning: x r, y r r=1 R, x u R+U u=r A set of unlabeled data, usually U >>

More information

CISC 889 Bioinformatics (Spring 2004) Hidden Markov Models (II)

CISC 889 Bioinformatics (Spring 2004) Hidden Markov Models (II) CISC 889 Bioinformatics (Spring 24) Hidden Markov Models (II) a. Likelihood: forward algorithm b. Decoding: Viterbi algorithm c. Model building: Baum-Welch algorithm Viterbi training Hidden Markov models

More information

Data Preprocessing. Cluster Similarity

Data Preprocessing. Cluster Similarity 1 Cluster Similarity Similarity is most often measured with the help of a distance function. The smaller the distance, the more similar the data objects (points). A function d: M M R is a distance on M

More information

Topics in Natural Language Processing

Topics in Natural Language Processing Topics in Natural Language Processing Shay Cohen Institute for Language, Cognition and Computation University of Edinburgh Lecture 9 Administrativia Next class will be a summary Please email me questions

More information

Hidden Markov Models

Hidden Markov Models Hidden Markov Models CI/CI(CS) UE, SS 2015 Christian Knoll Signal Processing and Speech Communication Laboratory Graz University of Technology June 23, 2015 CI/CI(CS) SS 2015 June 23, 2015 Slide 1/26 Content

More information

Log-Linear Models, MEMMs, and CRFs

Log-Linear Models, MEMMs, and CRFs Log-Linear Models, MEMMs, and CRFs Michael Collins 1 Notation Throughout this note I ll use underline to denote vectors. For example, w R d will be a vector with components w 1, w 2,... w d. We use expx

More information

Today s Agenda. Need to cover lots of background material. Now on to the Map Reduce stuff. Rough conceptual sketch of unsupervised training using EM

Today s Agenda. Need to cover lots of background material. Now on to the Map Reduce stuff. Rough conceptual sketch of unsupervised training using EM Today s Agenda Need to cover lots of background material l Introduction to Statistical Models l Hidden Markov Models l Part of Speech Tagging l Applying HMMs to POS tagging l Expectation-Maximization (EM)

More information

Brief Introduction of Machine Learning Techniques for Content Analysis

Brief Introduction of Machine Learning Techniques for Content Analysis 1 Brief Introduction of Machine Learning Techniques for Content Analysis Wei-Ta Chu 2008/11/20 Outline 2 Overview Gaussian Mixture Model (GMM) Hidden Markov Model (HMM) Support Vector Machine (SVM) Overview

More information

HMM: Parameter Estimation

HMM: Parameter Estimation I529: Machine Learning in Bioinformatics (Spring 2017) HMM: Parameter Estimation Yuzhen Ye School of Informatics and Computing Indiana University, Bloomington Spring 2017 Content Review HMM: three problems

More information

Machine Learning: Assignment 3

Machine Learning: Assignment 3 10-701 Machine Learning: Assignment 3 Due on April 1st, 2014 at 11:59am Barnabas Poczos, Aarti Singh Instructions: Failure to follow these directions may result in loss of points. Your solutions for this

More information

EM (cont.) November 26 th, Carlos Guestrin 1

EM (cont.) November 26 th, Carlos Guestrin 1 EM (cont.) Machine Learning 10701/15781 Carlos Guestrin Carnegie Mellon University November 26 th, 2007 1 Silly Example Let events be grades in a class w 1 = Gets an A P(A) = ½ w 2 = Gets a B P(B) = µ

More information

Directed Probabilistic Graphical Models CMSC 678 UMBC

Directed Probabilistic Graphical Models CMSC 678 UMBC Directed Probabilistic Graphical Models CMSC 678 UMBC Announcement 1: Assignment 3 Due Wednesday April 11 th, 11:59 AM Any questions? Announcement 2: Progress Report on Project Due Monday April 16 th,

More information

Hidden Markov Models Hamid R. Rabiee

Hidden Markov Models Hamid R. Rabiee Hidden Markov Models Hamid R. Rabiee 1 Hidden Markov Models (HMMs) In the previous slides, we have seen that in many cases the underlying behavior of nature could be modeled as a Markov process. However

More information

Machine Learning. Gaussian Mixture Models. Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall

Machine Learning. Gaussian Mixture Models. Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall Machine Learning Gaussian Mixture Models Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall 2012 1 The Generative Model POV We think of the data as being generated from some process. We assume

More information

What s an HMM? Extraction with Finite State Machines e.g. Hidden Markov Models (HMMs) Hidden Markov Models (HMMs) for Information Extraction

What s an HMM? Extraction with Finite State Machines e.g. Hidden Markov Models (HMMs) Hidden Markov Models (HMMs) for Information Extraction Hidden Markov Models (HMMs) for Information Extraction Daniel S. Weld CSE 454 Extraction with Finite State Machines e.g. Hidden Markov Models (HMMs) standard sequence model in genomics, speech, NLP, What

More information

Midterm sample questions

Midterm sample questions Midterm sample questions UMass CS 585, Fall 2015 October 18, 2015 1 Midterm policies The midterm will take place during lecture next Tuesday, 1 hour and 15 minutes. It is closed book, EXCEPT you can create

More information

Expectation Maximization Algorithm

Expectation Maximization Algorithm Expectation Maximization Algorithm Vibhav Gogate The University of Texas at Dallas Slides adapted from Carlos Guestrin, Dan Klein, Luke Zettlemoyer and Dan Weld The Evils of Hard Assignments? Clusters

More information

Natural Language Processing : Probabilistic Context Free Grammars. Updated 5/09

Natural Language Processing : Probabilistic Context Free Grammars. Updated 5/09 Natural Language Processing : Probabilistic Context Free Grammars Updated 5/09 Motivation N-gram models and HMM Tagging only allowed us to process sentences linearly. However, even simple sentences require

More information

Fun with weighted FSTs

Fun with weighted FSTs Fun with weighted FSTs Informatics 2A: Lecture 18 Shay Cohen School of Informatics University of Edinburgh 29 October 2018 1 / 35 Kedzie et al. (2018) - Content Selection in Deep Learning Models of Summarization

More information

Introduction to Machine Learning. Maximum Likelihood and Bayesian Inference. Lecturers: Eran Halperin, Lior Wolf

Introduction to Machine Learning. Maximum Likelihood and Bayesian Inference. Lecturers: Eran Halperin, Lior Wolf 1 Introduction to Machine Learning Maximum Likelihood and Bayesian Inference Lecturers: Eran Halperin, Lior Wolf 2014-15 We know that X ~ B(n,p), but we do not know p. We get a random sample from X, a

More information

Machine Learning & Data Mining CS/CNS/EE 155. Lecture 8: Hidden Markov Models

Machine Learning & Data Mining CS/CNS/EE 155. Lecture 8: Hidden Markov Models Machine Learning & Data Mining CS/CNS/EE 155 Lecture 8: Hidden Markov Models 1 x = Fish Sleep y = (N, V) Sequence Predic=on (POS Tagging) x = The Dog Ate My Homework y = (D, N, V, D, N) x = The Fox Jumped

More information

Probabilistic Context-free Grammars

Probabilistic Context-free Grammars Probabilistic Context-free Grammars Computational Linguistics Alexander Koller 24 November 2017 The CKY Recognizer S NP VP NP Det N VP V NP V ate NP John Det a N sandwich i = 1 2 3 4 k = 2 3 4 5 S NP John

More information

Conditional Random Fields

Conditional Random Fields Conditional Random Fields Micha Elsner February 14, 2013 2 Sums of logs Issue: computing α forward probabilities can undeflow Normally we d fix this using logs But α requires a sum of probabilities Not

More information

K-Means and Gaussian Mixture Models

K-Means and Gaussian Mixture Models K-Means and Gaussian Mixture Models David Rosenberg New York University October 29, 2016 David Rosenberg (New York University) DS-GA 1003 October 29, 2016 1 / 42 K-Means Clustering K-Means Clustering David

More information