Electromagne,c Waves. All electromagne-c waves travel in a vacuum with the same speed, a speed that we now call the speed of light.

Size: px
Start display at page:

Download "Electromagne,c Waves. All electromagne-c waves travel in a vacuum with the same speed, a speed that we now call the speed of light."

Transcription

1 Electromagne,c Waves All electromagne-c waves travel in a vacuum with the same speed, a speed that we now call the speed of light.

2

3 Proper,es of Electromagne,c Waves Any electromagne-c wave must sa-sfy four basic condi-ons: 1. The fields E and B and are perpendicular to the direction of propagation v em.thus an electromagnetic wave is a transverse wave. 2. E and B are perpendicular to each other in a manner such that E B is in the direction of v em. 3. The wave travels in vacuum at speed v em = c 4. E = cb at any point on the wave.

4 Proper,es of Electromagne,c Waves The energy flow of an electromagne-c wave is described by the Poyn,ng vector defined as The magnitude of the Poyn-ng vector is The intensity of an electromagne-c wave whose electric field amplitude is E 0 is

5 Radia,on Pressure It s interes-ng to consider the force of an electromagne-c wave exerted on an object per unit area, which is called the radia,on pressure p rad. The radia-on pressure on an object that absorbs all the light is energy absorbed Δp = c F = Δp energy absorbed = Δt c ( E = pc) ( ) / Δt = P c where P is the power (joules per second) of the light. where I is the intensity of the light wave. The subscript on p rad is important in this context to dis-nguish the radia-on pressure from the momentum p.

6 Example Solar sailing

7 Intermediate/Advanced Concepts

8 Wave equa-ons in a medium The induced polariza-on in Maxwell s Equa-ons yields another term in the wave equa-on: E z E t 2 2 µε = E 1 E = z v t This is the Inhomogeneous Wave Equa,on. The polariza-on is the driving term for a new solu-on to this equa-on. E z E t 2 2 µε = E 1 E = z c t Homogeneous (Vacuum) Wave Equa,on 0 E ( zt) ikz ( ωt), = Re{ E e } = + 0 ikz ( ωt) * ikz ( ωt) { E e E e } ( kz ωt) = E cos n 2 2 c = = 2 v µε µε 0 0 c v = n

9 Propaga-on of EM Waves

10 Polariza-on and Propaga-on

11 Energy and Intensity S=E H Poyn,ng vector describes flows of E- M power Power flow is directed along this vector (usually parallel to k) Intensity is average energy transfer (i.e. the -me averaged Poyning vector: I=<S>=P/A, where P is the power (energy transferred per second) of a wave that impinges on area A. sin 2 ( kx ωt) = cos 2 ( kx ωt) = 1 2 cε cε S = I E t H t = E = E + E x cε A/ V 0 example E = 1 V / m ( ) ( ) ( 2 2) I =? W / m y hω[ ev ] = λ[ nm] h = Js

12 Polariza-on & Plane of Polariza-on

13 Linear versus Circular Polariza-on

14 Linear polariza-on (frozen -me)

15 Linear polariza-on (fixed space)

16 Circular polariza-on (linear components)

17 Circular polariza-on (frozen -me)

18 Circular polariza-on (fixed space)

19 ŷ E = E x e iδ x ˆx + E y e iδ y ŷ Polariza-on: Summary ŷ E! xˆ xˆ linear polariza-on y- direc-on Phase difference δ = δ x δ y Phase difference = 0 0 Ex r ẑ or t right circular polariza-on Ex r Phase difference è 90 0 (π/2, λ/4) leu circular polariza-on (+: posi-ve helicity ) ẑ Ex r leu ellip-cal polariza-on Phase difference è (π, λ/2) ẑ E! y ẑ E! y ẑ E! y ẑ

20 Polariza-on Applets Polariza-on Explora-on h_p://webphysics.davidson.edu/physlet_resources/dav_op-cs/examples/polariza-on.html 3D View of Polarized Light h_p://fipsgold.physik.uni- kl.de/souware/java/polarisa-on/index.html

21 Quarter wave plate

22 Half wave plate

23 Quiz for the Lab Bonus Credit 0.2 pts

24 Methods for genera-ng polarized light h_p://hyperphysics.phy- astr.gsu.edu/hbase/phyopt/polar.html

25 Polariza-on by Reflec-on h_p://hyperphysics.phy- astr.gsu.edu/hbase/phyopt/polar.html

26 A Polarizing Filter

27 Malus s Law Suppose a polarized light wave of intensity I 0 approaches a polarizing filter. θ is the angle between the incident plane of polariza-on and the polarizer axis. The transmi_ed intensity is given by Malus s Law: If the light incident on a polarizing filter is unpolarized, the transmi_ed intensity is In other words, a polarizing filter passes 50% of unpolarized light and blocks 50%.

28 Malus s Law

29 Polarized sunglasses

30 Brewster Angle

31 Polariza-on by sca_ering (Rayleigh sca_ering/blue Sky)

32 Circularly polarized light in nature

33 Morphology and microstructure of cellular pa_ern of C. gloriosa

34 Reflec-on and dielectric interface

35 Beyond Snell s Law: Polariza-on?

36 Reflec-on and Transmission (Fresnel s equa-ons) Can be deduced from the applica,on of boundary condi,ons of EM waves. An online calculator is available at hjp://hyperphysics.phy- astr.gsu.edu/hbase/phyopt/freseq.html

37 Reflec-on and Transmission of dielectric interfaces

38 Reflec-on and Transmission (Fresnel s equa-ons) Can be deduced from the applica,on of boundary condi,ons of EM waves.

39 Reflec-on and Transmission of dielectric interfaces

40 Energy Conserva-on

41 Normal Incidence

42 Reflectance and dielectric interfaces

Review: Basic Concepts

Review: Basic Concepts Review: Basic Concepts Simula5ons 1. Radio Waves h;p://phet.colorado.edu/en/simula5on/radio- waves 2. Propaga5on of EM Waves h;p://www.phys.hawaii.edu/~teb/java/ntnujava/emwave/emwave.html 3. 2D EM Waves

More information

: Imaging Systems Laboratory II. Laboratory 6: The Polarization of Light April 16 & 18, 2002

: Imaging Systems Laboratory II. Laboratory 6: The Polarization of Light April 16 & 18, 2002 151-232: Imaging Systems Laboratory II Laboratory 6: The Polarization of Light April 16 & 18, 22 Abstract. In this lab, we will investigate linear and circular polarization of light. Linearly polarized

More information

Light Waves and Polarization

Light Waves and Polarization Light Waves and Polarization Xavier Fernando Ryerson Communications Lab http://www.ee.ryerson.ca/~fernando The Nature of Light There are three theories explain the nature of light: Quantum Theory Light

More information

Chapter 34. Electromagnetic Waves

Chapter 34. Electromagnetic Waves Chapter 34 Electromagnetic Waves The Goal of the Entire Course Maxwell s Equations: Maxwell s Equations James Clerk Maxwell 1831 1879 Scottish theoretical physicist Developed the electromagnetic theory

More information

Electromagnetic Waves. Chapter 33 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition)

Electromagnetic Waves. Chapter 33 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition) PH 222-3A Spring 2007 Electromagnetic Waves Lecture 22 Chapter 33 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition) 1 Chapter 33 Electromagnetic Waves Today s information age is based almost

More information

EM Waves. From previous Lecture. This Lecture More on EM waves EM spectrum Polarization. Displacement currents Maxwell s equations EM Waves

EM Waves. From previous Lecture. This Lecture More on EM waves EM spectrum Polarization. Displacement currents Maxwell s equations EM Waves EM Waves This Lecture More on EM waves EM spectrum Polarization From previous Lecture Displacement currents Maxwell s equations EM Waves 1 Reminders on waves Traveling waves on a string along x obey the

More information

Chapter 29: Maxwell s Equation and EM Waves. Slide 29-1

Chapter 29: Maxwell s Equation and EM Waves. Slide 29-1 Chapter 29: Maxwell s Equation and EM Waves Slide 29-1 Equations of electromagnetism: a review We ve now seen the four fundamental equations of electromagnetism, here listed together for the first time.

More information

16. More About Polarization

16. More About Polarization 16. More About Polarization Polarization control Wave plates Circular polarizers Reflection & polarization Scattering & polarization Birefringent materials have more than one refractive index A special

More information

Chapter 1 - The Nature of Light

Chapter 1 - The Nature of Light David J. Starling Penn State Hazleton PHYS 214 Electromagnetic radiation comes in many forms, differing only in wavelength, frequency or energy. Electromagnetic radiation comes in many forms, differing

More information

Chapter 33. Electromagnetic Waves

Chapter 33. Electromagnetic Waves Chapter 33 Electromagnetic Waves Today s information age is based almost entirely on the physics of electromagnetic waves. The connection between electric and magnetic fields to produce light is own of

More information

Dispersion. f (increasing frequency)

Dispersion. f (increasing frequency) Dispersion The index of refraction n is usually a property of the medium but equally important, it also varies with the frequency f of light dispersion. n typically increases with increasing f. f (increasing

More information

Waves in Linear Optical Media

Waves in Linear Optical Media 1/53 Waves in Linear Optical Media Sergey A. Ponomarenko Dalhousie University c 2009 S. A. Ponomarenko Outline Plane waves in free space. Polarization. Plane waves in linear lossy media. Dispersion relations

More information

Lab #13: Polarization

Lab #13: Polarization Lab #13: Polarization Introduction In this experiment we will investigate various properties associated with polarized light. We will study both its generation and application. Real world applications

More information

Problem set 3. Electromagnetic waves

Problem set 3. Electromagnetic waves Second Year Electromagnetism Michaelmas Term 2017 Caroline Terquem Problem set 3 Electromagnetic waves Problem 1: Poynting vector and resistance heating This problem is not about waves but is useful to

More information

Massachusetts Institute of Technology Physics 8.03 Practice Final Exam 3

Massachusetts Institute of Technology Physics 8.03 Practice Final Exam 3 Massachusetts Institute of Technology Physics 8.03 Practice Final Exam 3 Instructions Please write your solutions in the white booklets. We will not grade anything written on the exam copy. This exam is

More information

Physics 3323, Fall 2014 Problem Set 13 due Friday, Dec 5, 2014

Physics 3323, Fall 2014 Problem Set 13 due Friday, Dec 5, 2014 Physics 333, Fall 014 Problem Set 13 due Friday, Dec 5, 014 Reading: Finish Griffiths Ch. 9, and 10..1, 10.3, and 11.1.1-1. Reflecting on polarizations Griffiths 9.15 (3rd ed.: 9.14). In writing (9.76)

More information

Plane Waves Part II. 1. For an electromagnetic wave incident from one medium to a second medium, total reflection takes place when

Plane Waves Part II. 1. For an electromagnetic wave incident from one medium to a second medium, total reflection takes place when Plane Waves Part II. For an electromagnetic wave incident from one medium to a second medium, total reflection takes place when (a) The angle of incidence is equal to the Brewster angle with E field perpendicular

More information

Wave Phenomena Physics 15c. Lecture 15 Reflection and Refraction

Wave Phenomena Physics 15c. Lecture 15 Reflection and Refraction Wave Phenomena Physics 15c Lecture 15 Reflection and Refraction What We (OK, Brian) Did Last Time Discussed EM waves in vacuum and in matter Maxwell s equations Wave equation Plane waves E t = c E B t

More information

Physics 214 Course Overview

Physics 214 Course Overview Physics 214 Course Overview Lecturer: Mike Kagan Course topics Electromagnetic waves Optics Thin lenses Interference Diffraction Relativity Photons Matter waves Black Holes EM waves Intensity Polarization

More information

Course Updates. 2) This week: Electromagnetic Waves +

Course Updates.  2) This week: Electromagnetic Waves + Course Updates http://www.phys.hawaii.edu/~varner/phys272-spr1/physics272.html Reminders: 1) Assignment #11 due Wednesday 2) This week: Electromagnetic Waves + 3) In the home stretch [review schedule]

More information

E The oscillating E-field defines the polarization of the wave. B

E The oscillating E-field defines the polarization of the wave. B This sheet is the lab document your TA will use to score your lab. It is to be turned in at the end of lab. To receive full credit you must use complete sentences and explain your reasoning. A. Describing

More information

Today in Physics 218: Fresnel s equations

Today in Physics 218: Fresnel s equations Today in Physics 8: Fresnel s equations Transmission and reflection with E parallel to the incidence plane The Fresnel equations Total internal reflection Polarization on reflection nterference R 08 06

More information

Electromagnetic Waves Retarded potentials 2. Energy and the Poynting vector 3. Wave equations for E and B 4. Plane EM waves in free space

Electromagnetic Waves Retarded potentials 2. Energy and the Poynting vector 3. Wave equations for E and B 4. Plane EM waves in free space Electromagnetic Waves 1 1. Retarded potentials 2. Energy and the Poynting vector 3. Wave equations for E and B 4. Plane EM waves in free space 1 Retarded Potentials For volume charge & current = 1 4πε

More information

Electromagnetic Waves

Electromagnetic Waves Physics 102: Lecture 15 Electromagnetic Waves Energy & Polarization Physics 102: Lecture 15, Slide 1 Checkpoint 1.1, 1.2 y E x loop in xy plane loop in xz plane A B C Physics 102: Lecture 15, Slide 2 Propagation

More information

Lab 8: L-6, Polarization Lab Worksheet

Lab 8: L-6, Polarization Lab Worksheet Lab 8: L-6, Polarization Lab Worksheet Name This sheet is the lab document your TA will use to score your lab. It is to be turned in at the end of lab. To receive full credit you must use complete sentences

More information

Wavepackets. Outline. - Review: Reflection & Refraction - Superposition of Plane Waves - Wavepackets - ΔΔk Δx Relations

Wavepackets. Outline. - Review: Reflection & Refraction - Superposition of Plane Waves - Wavepackets - ΔΔk Δx Relations Wavepackets Outline - Review: Reflection & Refraction - Superposition of Plane Waves - Wavepackets - ΔΔk Δx Relations 1 Sample Midterm (one of these would be Student X s Problem) Q1: Midterm 1 re-mix (Ex:

More information

EM waves: energy, resonators. Scalar wave equation Maxwell equations to the EM wave equation A simple linear resonator Energy in EM waves 3D waves

EM waves: energy, resonators. Scalar wave equation Maxwell equations to the EM wave equation A simple linear resonator Energy in EM waves 3D waves EM waves: energy, resonators Scalar wave equation Maxwell equations to the EM wave equation A simple linear resonator Energy in EM waves 3D waves Simple scalar wave equation 2 nd order PDE 2 z 2 ψ (z,t)

More information

(a) Show that the amplitudes of the reflected and transmitted waves, corrrect to first order

(a) Show that the amplitudes of the reflected and transmitted waves, corrrect to first order Problem 1. A conducting slab A plane polarized electromagnetic wave E = E I e ikz ωt is incident normally on a flat uniform sheet of an excellent conductor (σ ω) having thickness D. Assume that in space

More information

Reflection/Refraction

Reflection/Refraction Reflection/Refraction Page Reflection/Refraction Boundary Conditions Interfaces between different media imposed special boundary conditions on Maxwell s equations. It is important to understand what restrictions

More information

Propagation of EM Waves in material media

Propagation of EM Waves in material media Propagation of EM Waves in material media S.M.Lea 09 Wave propagation As usual, we start with Maxwell s equations with no free charges: D =0 B =0 E = B t H = D t + j If we now assume that each field has

More information

PH 222-2C Fall Electromagnetic Waves Lectures Chapter 33 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition)

PH 222-2C Fall Electromagnetic Waves Lectures Chapter 33 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition) PH 222-2C Fall 2012 Electromagnetic Waves Lectures 21-22 Chapter 33 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition) 1 Chapter 33 Electromagnetic Waves Today s information age is based almost

More information

Oscillations and Electromagnetic Waves. March 30, 2014 Chapter 31 1

Oscillations and Electromagnetic Waves. March 30, 2014 Chapter 31 1 Oscillations and Electromagnetic Waves March 30, 2014 Chapter 31 1 Three Polarizers! Consider the case of unpolarized light with intensity I 0 incident on three polarizers! The first polarizer has a polarizing

More information

Electricity & Magnetism Lecture 23. Electricity & Magne/sm Lecture 23, Slide 1

Electricity & Magnetism Lecture 23. Electricity & Magne/sm Lecture 23, Slide 1 Electricity & Magnetism Lecture 23 Electricity & Magne/sm Lecture 23, Slide 1 Today you will play around with the polariza2on filters. Con2nue on Friday. Friday s lecture will be on circular polariza2on

More information

Electrodynamics HW Problems 06 EM Waves

Electrodynamics HW Problems 06 EM Waves Electrodynamics HW Problems 06 EM Waves 1. Energy in a wave on a string 2. Traveling wave on a string 3. Standing wave 4. Spherical traveling wave 5. Traveling EM wave 6. 3- D electromagnetic plane wave

More information

POLARIZATION OF LIGHT

POLARIZATION OF LIGHT POLARIZATION OF LIGHT OVERALL GOALS The Polarization of Light lab strongly emphasizes connecting mathematical formalism with measurable results. It is not your job to understand every aspect of the theory,

More information

Radio Propagation Channels Exercise 2 with solutions. Polarization / Wave Vector

Radio Propagation Channels Exercise 2 with solutions. Polarization / Wave Vector /8 Polarization / Wave Vector Assume the following three magnetic fields of homogeneous, plane waves H (t) H A cos (ωt kz) e x H A sin (ωt kz) e y () H 2 (t) H A cos (ωt kz) e x + H A sin (ωt kz) e y (2)

More information

Waves & Oscillations

Waves & Oscillations Physics 42200 Waves & Oscillations Lecture 32 Electromagnetic Waves Spring 2016 Semester Matthew Jones Electromagnetism Geometric optics overlooks the wave nature of light. Light inconsistent with longitudinal

More information

Energy Carried by Electromagnetic Waves. Momentum and Radiation Pressure of an Electromagnetic Wave.

Energy Carried by Electromagnetic Waves. Momentum and Radiation Pressure of an Electromagnetic Wave. Today s agenda: Electromagnetic Waves. Energy Carried by Electromagnetic Waves. Momentum and Radiation Pressure of an Electromagnetic Wave. Maxwell s Equations Recall: EdA Eds q enclosed o d dt B Bds=μ

More information

POLARISATION. We have not really discussed the direction of the Electric field other that that it is perpendicular to the direction of motion.

POLARISATION. We have not really discussed the direction of the Electric field other that that it is perpendicular to the direction of motion. POLARISATION Light is a transverse electromagnetic wave. We have not really discussed the direction of the Electric field other that that it is perpendicular to the direction of motion. If the E field

More information

Part III. Interaction with Single Electrons - Plane Wave Orbits

Part III. Interaction with Single Electrons - Plane Wave Orbits Part III - Orbits 52 / 115 3 Motion of an Electron in an Electromagnetic 53 / 115 Single electron motion in EM plane wave Electron momentum in electromagnetic wave with fields E and B given by Lorentz

More information

Chapter 33: ELECTROMAGNETIC WAVES 559

Chapter 33: ELECTROMAGNETIC WAVES 559 Chapter 33: ELECTROMAGNETIC WAVES 1 Select the correct statement: A ultraviolet light has a longer wavelength than infrared B blue light has a higher frequency than x rays C radio waves have higher frequency

More information

Electromagnetic wave energy & polarization

Electromagnetic wave energy & polarization Phys 0 Lecture 6 Electromagnetic wave energy & polarization Today we will... Learn about properties p of electromagnetic waves Energy density & intensity Polarization linear, circular, unpolarized Apply

More information

Electromagnetic Waves

Electromagnetic Waves May 7, 2008 1 1 J.D.Jackson, Classical Electrodynamics, 2nd Edition, Section 7 Maxwell Equations In a region of space where there are no free sources (ρ = 0, J = 0), Maxwell s equations reduce to a simple

More information

8.03 Lecture 12. Systems we have learned: Wave equation: (1) String with constant tension and mass per unit length ρ L T v p = ρ L

8.03 Lecture 12. Systems we have learned: Wave equation: (1) String with constant tension and mass per unit length ρ L T v p = ρ L 8.03 Lecture 1 Systems we have learned: Wave equation: ψ = ψ v p x There are three different kinds of systems discussed in the lecture: (1) String with constant tension and mass per unit length ρ L T v

More information

Brewster Angle and Total Internal Reflection

Brewster Angle and Total Internal Reflection Lecture 4: Polarization Outline 1 Polarized Light in the Universe 2 Brewster Angle and Total Internal Reflection 3 Descriptions of Polarized Light 4 Polarizers 5 Retarders Christoph U. Keller, Utrecht

More information

Jones vector & matrices

Jones vector & matrices Jones vector & matrices Department of Physics 1 Matrix treatment of polarization Consider a light ray with an instantaneous E-vector as shown y E k, t = xe x (k, t) + ye y k, t E y E x x E x = E 0x e i

More information

CHAPTER 32: ELECTROMAGNETIC WAVES

CHAPTER 32: ELECTROMAGNETIC WAVES CHAPTER 32: ELECTROMAGNETIC WAVES For those of you who are interested, below are the differential, or point, form of the four Maxwell s equations we studied this semester. The version of Maxwell s equations

More information

1. Consider the biconvex thick lens shown in the figure below, made from transparent material with index n and thickness L.

1. Consider the biconvex thick lens shown in the figure below, made from transparent material with index n and thickness L. Optical Science and Engineering 2013 Advanced Optics Exam Answer all questions. Begin each question on a new blank page. Put your banner ID at the top of each page. Please staple all pages for each individual

More information

Chap. 2. Polarization of Optical Waves

Chap. 2. Polarization of Optical Waves Chap. 2. Polarization of Optical Waves 2.1 Polarization States - Direction of the Electric Field Vector : r E = E xˆ + E yˆ E x x y ( ω t kz + ϕ ), E = E ( ωt kz + ϕ ) = E cos 0 x cos x y 0 y - Role :

More information

Electrodynamics I Final Exam - Part A - Closed Book KSU 2005/12/12 Electro Dynamic

Electrodynamics I Final Exam - Part A - Closed Book KSU 2005/12/12 Electro Dynamic Electrodynamics I Final Exam - Part A - Closed Book KSU 2005/12/12 Name Electro Dynamic Instructions: Use SI units. Short answers! No derivations here, just state your responses clearly. 1. (2) Write an

More information

UNIT 102-6: ELECTROMAGNETIC WAVES AND POLARIZATION Approximate Time Three 100-minute Sessions

UNIT 102-6: ELECTROMAGNETIC WAVES AND POLARIZATION Approximate Time Three 100-minute Sessions Name St.No. - Date(YY/MM/DD) / / Section UNIT 102-6: ELECTROMAGNETIC WAVES AND POLARIZATION Approximate Time Three 100-minute Sessions Hey diddle diddle, what kind of riddle Is this nature of light? Sometimes

More information

Waves. Daniel S. Weile. ELEG 648 Waves. Department of Electrical and Computer Engineering University of Delaware. Plane Waves Reflection of Waves

Waves. Daniel S. Weile. ELEG 648 Waves. Department of Electrical and Computer Engineering University of Delaware. Plane Waves Reflection of Waves Waves Daniel S. Weile Department of Electrical and Computer Engineering University of Delaware ELEG 648 Waves Outline Outline Introduction Let s start by introducing simple solutions to Maxwell s equations

More information

Electromagnetic fields and waves

Electromagnetic fields and waves Electromagnetic fields and waves Maxwell s rainbow Outline Maxwell s equations Plane waves Pulses and group velocity Polarization of light Transmission and reflection at an interface Macroscopic Maxwell

More information

Physics 9 Fall 2011 Homework 9 Fall October 28, 2011

Physics 9 Fall 2011 Homework 9 Fall October 28, 2011 Physics 9 Fall 2011 Homework 9 Fall October 28, 2011 Make sure your name is on your homework, and please box your final answer. Because we will be giving partial credit, be sure to attempt all the problems,

More information

第 1 頁, 共 8 頁 Chap32&Chap33 1. Test Bank, Question 2 Gauss' law for magnetism tells us: the net charge in any given volume that the line integral of a magnetic around any closed loop must vanish the magnetic

More information

Physics 442. Electro-Magneto-Dynamics. M. Berrondo. Physics BYU

Physics 442. Electro-Magneto-Dynamics. M. Berrondo. Physics BYU Physics 44 Electro-Magneto-Dynamics M. Berrondo Physics BYU 1 Paravectors Φ= V + cα Φ= V cα 1 = t c 1 = + t c J = c + ρ J J ρ = c J S = cu + em S S = cu em S Physics BYU EM Wave Equation Apply to Maxwell

More information

Introduction to Polarization

Introduction to Polarization Phone: Ext 659, E-mail: hcchui@mail.ncku.edu.tw Fall/007 Introduction to Polarization Text Book: A Yariv and P Yeh, Photonics, Oxford (007) 1.6 Polarization States and Representations (Stokes Parameters

More information

Today in Physics 218: back to electromagnetic waves

Today in Physics 218: back to electromagnetic waves Today in Physics 18: back to electromagnetic waves Impedance Plane electromagnetic waves Energy and momentum in plane electromagnetic waves Radiation pressure Artist s conception of a solar sail: a spacecraft

More information

Polarization of light

Polarization of light Laboratory#8 Phys4480/5480 Dr. Cristian Bahrim Polarization of light Light is a transverse electromagnetic wave (EM) which travels due to an electric field and a magnetic field oscillating in phase and

More information

Brewster Angle and Total Internal Reflection

Brewster Angle and Total Internal Reflection Lecture 5: Polarization Outline 1 Polarized Light in the Universe 2 Brewster Angle and Total Internal Reflection 3 Descriptions of Polarized Light 4 Polarizers 5 Retarders Christoph U. Keller, Leiden University,

More information

LECTURE 11 ELECTROMAGNETIC WAVES & POLARIZATION. Instructor: Kazumi Tolich

LECTURE 11 ELECTROMAGNETIC WAVES & POLARIZATION. Instructor: Kazumi Tolich LECTURE 11 ELECTROMAGNETIC WAVES & POLARIZATION Instructor: Kazumi Tolich Lecture 11 2 25.5 Electromagnetic waves Induced fields Properties of electromagnetic waves Polarization Energy of electromagnetic

More information

Topic 4: Waves 4.3 Wave characteristics

Topic 4: Waves 4.3 Wave characteristics Guidance: Students will be expected to calculate the resultant of two waves or pulses both graphically and algebraically Methods of polarization will be restricted to the use of polarizing filters and

More information

I. Rayleigh Scattering. EE Lecture 4. II. Dipole interpretation

I. Rayleigh Scattering. EE Lecture 4. II. Dipole interpretation I. Rayleigh Scattering 1. Rayleigh scattering 2. Dipole interpretation 3. Cross sections 4. Other approximations EE 816 - Lecture 4 Rayleigh scattering is an approximation used to predict scattering from

More information

Summary of Beam Optics

Summary of Beam Optics Summary of Beam Optics Gaussian beams, waves with limited spatial extension perpendicular to propagation direction, Gaussian beam is solution of paraxial Helmholtz equation, Gaussian beam has parabolic

More information

Polarized sunglasses. Polarization

Polarized sunglasses. Polarization Polarized sunglasses 3 4 : is a propert of the wave of light that can oscillate with certain orientation; the wave ehibits polarization which has onl one possible polarization, namel the direction in which

More information

Lecture 9. Transmission and Reflection. Reflection at a Boundary. Specific Boundary. Reflection at a Boundary

Lecture 9. Transmission and Reflection. Reflection at a Boundary. Specific Boundary. Reflection at a Boundary Lecture 9 Reflection at a Boundary Transmission and Reflection A boundary is defined as a place where something is discontinuous Half the work is sorting out what is continuous and what is discontinuous

More information

free- electron lasers I (FEL)

free- electron lasers I (FEL) free- electron lasers I (FEL) produc'on of copious radia'on using charged par'cle beam relies on coherence coherence is achieved by insuring the electron bunch length is that desired radia'on wavelength

More information

Wave Phenomena Physics 15c

Wave Phenomena Physics 15c Wave Phenomena Physics 15c Lecture 15 lectromagnetic Waves (H&L Sections 9.5 7) What We Did Last Time! Studied spherical waves! Wave equation of isotropic waves! Solution e! Intensity decreases with! Doppler

More information

4: birefringence and phase matching

4: birefringence and phase matching /3/7 4: birefringence and phase matching Polarization states in EM Linear anisotropic response χ () tensor and its symmetry properties Working with the index ellipsoid: angle tuning Phase matching in crystals

More information

Goal: The theory behind the electromagnetic radiation in remote sensing. 2.1 Maxwell Equations and Electromagnetic Waves

Goal: The theory behind the electromagnetic radiation in remote sensing. 2.1 Maxwell Equations and Electromagnetic Waves Chapter 2 Electromagnetic Radiation Goal: The theory behind the electromagnetic radiation in remote sensing. 2.1 Maxwell Equations and Electromagnetic Waves Electromagnetic waves do not need a medium to

More information

Lecture 20 Optical Characterization 2

Lecture 20 Optical Characterization 2 Lecture 20 Optical Characterization 2 Schroder: Chapters 2, 7, 10 1/68 Announcements Homework 5/6: Is online now. Due Wednesday May 30th at 10:00am. I will return it the following Wednesday (6 th June).

More information

Electromagnetic Waves Across Interfaces

Electromagnetic Waves Across Interfaces Lecture 1: Foundations of Optics Outline 1 Electromagnetic Waves 2 Material Properties 3 Electromagnetic Waves Across Interfaces 4 Fresnel Equations 5 Brewster Angle 6 Total Internal Reflection Christoph

More information

CHAPTER 9 ELECTROMAGNETIC WAVES

CHAPTER 9 ELECTROMAGNETIC WAVES CHAPTER 9 ELECTROMAGNETIC WAVES Outlines 1. Waves in one dimension 2. Electromagnetic Waves in Vacuum 3. Electromagnetic waves in Matter 4. Absorption and Dispersion 5. Guided Waves 2 Skip 9.1.1 and 9.1.2

More information

Class 15 : Electromagnetic Waves

Class 15 : Electromagnetic Waves Class 15 : Electromagnetic Waves Wave equations Why do electromagnetic waves arise? What are their properties? How do they transport energy from place to place? Recap (1) In a region of space containing

More information

Lecture 5: Polarization. Polarized Light in the Universe. Descriptions of Polarized Light. Polarizers. Retarders. Outline

Lecture 5: Polarization. Polarized Light in the Universe. Descriptions of Polarized Light. Polarizers. Retarders. Outline Lecture 5: Polarization Outline 1 Polarized Light in the Universe 2 Descriptions of Polarized Light 3 Polarizers 4 Retarders Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl ATI 2016,

More information

Electromagnetic Theory: PHAS3201, Winter Maxwell s Equations and EM Waves

Electromagnetic Theory: PHAS3201, Winter Maxwell s Equations and EM Waves Electromagnetic Theory: PHA3201, Winter 2008 5. Maxwell s Equations and EM Waves 1 Displacement Current We already have most of the pieces that we require for a full statement of Maxwell s Equations; however,

More information

Exam 3: Tuesday, April 18, 5:00-6:00 PM

Exam 3: Tuesday, April 18, 5:00-6:00 PM Exam 3: Tuesday, April 18, 5:-6: PM Test rooms: Instructor Sections Room Dr. Hale F, H 14 Physics Dr. Kurter, N 15 CH Dr. Madison K, M 199 Toomey Dr. Parris J, L -1 ertelsmeyer Mr. Upshaw A, C, E, G G-3

More information

Waves & Oscillations

Waves & Oscillations Physics 42200 Waves & Oscillations Lecture 32 Polarization of Light Spring 2015 Semester Matthew Jones Types of Polarization Light propagating through different materials: One polarization component can

More information

Class 30: Outline. Hour 1: Traveling & Standing Waves. Hour 2: Electromagnetic (EM) Waves P30-

Class 30: Outline. Hour 1: Traveling & Standing Waves. Hour 2: Electromagnetic (EM) Waves P30- Class 30: Outline Hour 1: Traveling & Standing Waves Hour : Electromagnetic (EM) Waves P30-1 Last Time: Traveling Waves P30- Amplitude (y 0 ) Traveling Sine Wave Now consider f(x) = y = y 0 sin(kx): π

More information

PHYS 110B - HW #5 Fall 2005, Solutions by David Pace Equations referenced equations are from Griffiths Problem statements are paraphrased

PHYS 110B - HW #5 Fall 2005, Solutions by David Pace Equations referenced equations are from Griffiths Problem statements are paraphrased PHYS 0B - HW #5 Fall 005, Solutions by David Pace Equations referenced equations are from Griffiths Problem statements are paraphrased [.] Imagine a prism made of lucite (n.5) whose cross-section is a

More information

MCQs E M WAVES. Physics Without Fear.

MCQs E M WAVES. Physics Without Fear. MCQs E M WAVES Physics Without Fear Electromagnetic Waves At A Glance Ampere s law B. dl = μ 0 I relates magnetic fields due to current sources. Maxwell argued that this law is incomplete as it does not

More information

Experiment 8. Fresnel Coefficients. 8.1 Introduction. References

Experiment 8. Fresnel Coefficients. 8.1 Introduction. References Experiment 8 Fresnel Coefficients References Optics by Eugene Hecht, Chapter 4 Introduction to Modern Optics by Grant Fowles, Chapter 2 Principles of Optics by Max Born and Emil Wolf, Chapter 1 Optical

More information

Polarizers and Retarders

Polarizers and Retarders Phys 531 Lecture 20 11 November 2004 Polarizers and Retarders Last time, discussed basics of polarization Linear, circular, elliptical states Describe by polarization vector ĵ Today: Describe elements

More information

Experiment 5 Polarization and Modulation of Light

Experiment 5 Polarization and Modulation of Light 1. Objective Experiment 5 Polarization and Modulation of Light Understanding the definition of polarized and un-polarized light. Understanding polarizer and analzer definition, Maluse s law. Retarding

More information

Ph304 Final Examination Electrodynamics

Ph304 Final Examination Electrodynamics Princeton University Ph304 Final Examination Electrodynamics Prof: Kirk T. McDonald (1:30-4:30 pm, May, 00) Do all work you wish graded in the exam booklets provided. mcdonald@puphep.princeton.edu http://puhep1.princeton.edu/

More information

p(θ,φ,θ,φ) = we have: Thus:

p(θ,φ,θ,φ) = we have: Thus: 1. Scattering RT Calculations We come spinning out of nothingness, scattering stars like dust. - Jalal ad-din Rumi (Persian Poet, 1207-1273) We ve considered solutions to the radiative transfer equation

More information

Massachusetts Institute of Technology Physics 8.03SC Fall 2016 Homework 9

Massachusetts Institute of Technology Physics 8.03SC Fall 2016 Homework 9 Massachusetts Institute of Technology Physics 8.03SC Fall 016 Homework 9 Problems Problem 9.1 (0 pts) The ionosphere can be viewed as a dielectric medium of refractive index ωp n = 1 ω Where ω is the frequency

More information

Electromagnetic Radiation. Physical Principles of Remote Sensing

Electromagnetic Radiation. Physical Principles of Remote Sensing Electromagnetic Radiation Physical Principles of Remote Sensing Outline for 4/3/2003 Properties of electromagnetic radiation The electromagnetic spectrum Spectral emissivity Radiant temperature vs. kinematic

More information

Impedance/Reactance Problems

Impedance/Reactance Problems Impedance/Reactance Problems. Consider the circuit below. An AC sinusoidal voltage of amplitude V and frequency ω is applied to the three capacitors, each of the same capacitance C. What is the total reactance

More information

polarisation of Light

polarisation of Light Basic concepts to understand polarisation of Light Polarization of Light Nature of light: light waves are transverse in nature i. e. the waves propagates in a direction perpendicular to the direction of

More information

Poynting Theory & Wave Polarization

Poynting Theory & Wave Polarization Poynting Theory & Wave Polarization Prepared By Dr. Eng. Sherif Hekal Assistant Professor Electronics and Communications Engineering 10/31/2017 1 Agenda Poynting Theory o Poynting Vector o Time average

More information

Optics Polarization. Lana Sheridan. June 20, De Anza College

Optics Polarization. Lana Sheridan. June 20, De Anza College Optics Polarization Lana Sheridan De Anza College June 20, 2018 Last time interference from thin films Newton s rings Overview the interferometer and gravitational waves polarization birefringence 7 Michelson

More information

2.57/2.570 Midterm Exam No. 1 April 4, :00 am -12:30 pm

2.57/2.570 Midterm Exam No. 1 April 4, :00 am -12:30 pm Name:.57/.570 Midterm Exam No. April 4, 0 :00 am -:30 pm Instructions: ().57 students: try all problems ().570 students: Problem plus one of two long problems. You can also do both long problems, and one

More information

Chap. 5. Jones Calculus and Its Application to Birefringent Optical Systems

Chap. 5. Jones Calculus and Its Application to Birefringent Optical Systems Chap. 5. Jones Calculus and Its Application to Birefringent Optical Systems - The overall optical transmission through many optical components such as polarizers, EO modulators, filters, retardation plates.

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Spring 2014 Practice Problem Set 11 Solutions

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Spring 2014 Practice Problem Set 11 Solutions MASSACHUSES INSIUE OF ECHNOLOGY Department of Physics 8 Spring 4 Practice Problem Set Solutions Problem : Electromagnetic Waves and the Poynting Vector We have been studying one particular class of electric

More information

CHAPTER 1. Polarisation

CHAPTER 1. Polarisation CHAPTER 1 Polarisation This report was prepared by Abhishek Dasgupta and Arijit Haldar based on notes in Dr. Ananda Dasgupta s Electromagnetism III class Topics covered in this chapter are the Jones calculus,

More information

Electromagnetic waves

Electromagnetic waves 484 484 7 Electromagnetic waves 484 4843 4844 4845 4846 4847 4848 Electromagnetic waves are generated by electric charges in non-uniform motion. In next chapter we shall deal with phenomenon of electromagnetic

More information

Chapter 31 Maxwell s Equations and Electromagnetic Waves. Copyright 2009 Pearson Education, Inc.

Chapter 31 Maxwell s Equations and Electromagnetic Waves. Copyright 2009 Pearson Education, Inc. Chapter 31 Maxwell s Equations and Electromagnetic Waves Units of Chapter 31 Changing Electric Fields Produce Magnetic Fields; Ampère s Law and Displacement Current Gauss s Law for Magnetism Maxwell s

More information

Chapter 2 Basic Optics

Chapter 2 Basic Optics Chapter Basic Optics.1 Introduction In this chapter we will discuss the basic concepts associated with polarization, diffraction, and interference of a light wave. The concepts developed in this chapter

More information