UNIT 102-6: ELECTROMAGNETIC WAVES AND POLARIZATION Approximate Time Three 100-minute Sessions

Size: px
Start display at page:

Download "UNIT 102-6: ELECTROMAGNETIC WAVES AND POLARIZATION Approximate Time Three 100-minute Sessions"

Transcription

1 Name St.No. - Date(YY/MM/DD) / / Section UNIT 102-6: ELECTROMAGNETIC WAVES AND POLARIZATION Approximate Time Three 100-minute Sessions Hey diddle diddle, what kind of riddle Is this nature of light? Sometimes it s a wave, Other times particle... But which answer will be marked right? Jon Scieszka OBJECTIVES 1. To understand electromagnetic waves and how they propagate. 2. To understand how to determine the energy density and the intensity of EM waves. 3. To investigate linear polarization of light. 4. To explore polarization by reflection.

2 Page 2 Physics for Life Sciences II Activity Guide SFU OVERVIEW Electricity and Magnetism Maxwell's Equations James Clerk Maxwell, a Scottish physicist, was in his prime when Faraday retired from active teaching and research. He had more of a mathematical bent than Faraday and pulled many of the basic equations describing electric and magnetic effects into a set of four very famous equations. These equations are shown below in simplified integral form for situations in which no dielectric or magnetic materials are present. I ~E d ~A = Q 0 Gauss Law in Electricity\oint I\vec{E}\cdot d\vec{a} = \frac{q}{\epsilon_0} ~B d ~A = 0 Gauss Law in Magnetism I I ~E d~s = d m dt! d B d s = µ 0 I + 0 µ 0 dt \oint \vec{b}\cdot d\vec{s} = \mu_0 I + \epsilon_0 \mu_0\frac{d \Phi_e}{dt} Faraday s Law If we add the Lorentz force F = q E + q v B e! Ampère-Maxwell Law to Maxwell's equations, then we can derive a complete description of all classical electromagnetic interactions from this set of equations. Perhaps the most exciting intellectual outcome of Maxwell's equations is their prediction of electromagnetic waves and our eventual understanding of the self-propagating nature of these waves. This picture of electromagnetic wave propagation was not fully appreciated until scientists abandoned the idea that all waves had to propagate through an elastic medium and accepted Einstein's theory of special relativity; these changes occurred in the early part of the twentieth century. To the vast majority of the world's population the practical consequences of Maxwell's formulation assume much more importance than its purely intellectual joys. The famous physicist Richard Feynmann wrote the following: Now we realize that the phenomena of chemical interaction and ultimately of life itself are to be understood in terms of electromagnetism.... The electrical forces, enormous as they are, can also be very tiny, and we can control them and use them in many ways... From a long view of the history of mankind seen from, say, ten thousand years from now there can be little doubt that the most significant event of the nineteenth century will be judged as Maxwell's discovery of the laws of electrodynamics. The American civil

3 Unit Electromagnetic Waves and Polarization Page 3 Author: Sarah Johnson war will pale into provincial insignificance in comparison with this important scientific event of the same decade. In this unit you will learn about the behaviour of electromagnetic waves. Maxwell predicted the existence of electromagnetic waves in 1864, a long time before anyone was able to create or detect them. It was Maxwell s four famous equations that led him to this prediction which was finally confirmed experimentally by Hertz in Maxwell argued that if a changing magnetic field could create a changing electric field then the changing electric field would in turn create another changing magnetic field. He predicted that these changing fields would continuously generate each other and so propagate and carry energy with them. The mathematics involved further indicated that these fields would propagate as waves. When one solves for the wave speed one gets: wave speed: c = 1 ε 0 µ 0 (6.1) Where ε 0 and µ 0 are the electrical constants we have already been introduced to. The magnitude of this speed led Maxwell to further hypothesize that light is an electromagnetic wave. Once you have learned a few things about the nature of electromagnetic waves, you will go on to investigate the phenomenon of polarization.

4 Page 4 Physics for Life Sciences II Activity Guide SFU SESSION ONE: ELECTROMAGNETIC WAVES Figure 6.1: An electromagnetic wave. An electromagnetic wave that is travelling in the positive z-direction with its electric field oscillating parallel to the x-axis and its magnetic field oscillating parallel to the y-axis (as shown in Figure 6.1) can be represented mathematically using two sinusoidal functions of position (z) and time (t): E(x, t) = E 0 sin(kz t) (6.2a) B(x, t) = B 0 sin(kz t) (6.2b) where ~ E 0 and ~ B 0 are the amplitudes of the fields, ω is the angular frequency which is equal to 2πf, where f is the frequency of the wave, and k is the wave number, which is equal to 2π/λ, where λ is the wavelength. It is important to note that Figure 6.1 is an abstract representation of an electromagnetic wave that represents the magnitude and direction of the electric and magnetic fields at points along the z-axis. In a real electromagnetic wave travelling through space, for each line parallel to the z-axis there is a similar picture. These arrows, which represent field vectors, do not indicate a sideways displacement of anything. Also, as we ll soon see, there can be many axes along which the fields oscillate in one electromagnetic wave.

5 Unit Electromagnetic Waves and Polarization Page 5 Author: Sarah Johnson Activity 6-1: Wave Speed (a) Plug in the values for ε 0, the permittivity of free space and µ 0, the permeability of free space, into the following equation and verify that the wave speed of electromagnetic waves that you get is consistent with the speed of light in a vacuum, c = 299,792,458 m/s: wave speed: c = 1 ε 0 µ 0 (6.1) The speed of a wave is equal to a product of its wavelength λ and its frequency f. So. for an electromagnetic wave we get: c = λf (6.3) This means there is an inverse relationship between wavelength and frequency for electromagnetic waves, i.e. the longer the wavelength of a wave, the lower the frequency. Electromagnetic (EM) waves are often sorted into what s know as the Electromagnetic Spectrum, where the types of electromagnetic waves are sorted in order of their wavelength or frequency. One example of an electromagnetic spectrum where the waves are sorted by wavelength is shown below in Figure 6.2. As you know, modern technology takes advantage of the existence of many of these electromagnetic waves, which all travel in a vacuum at the speed of light, c.

6 Page 6 Physics for Life Sciences II Activity Guide SFU Figure 6.2: The Electromagnetic Spectrum. Activity 6-2: The Electromagnetic Spectrum (a) Using Figure 6.2 estimate the average wavelength and frequency of the following EM waves: 1) Gamma rays 2) Ultraviolet waves 3) Microwaves 4) Radio waves

7 Unit Electromagnetic Waves and Polarization Page 7 Author: Sarah Johnson (b) On the grid below, graph log(frequency) vs. log(wavelength) for these 4 EM waves. (c) Does your graph show the relationship between frequency and wavelength that you expect? What is this relationship? Why do you think it was necessary to take logarithms of both quantities?

8 Page 8 Physics for Life Sciences II Activity Guide SFU The Wave Equation Using the definitions of ω and k, ω = 2πf and k = 2π/ λ, we can rewrite 6.3 as: c = λf = 2π k ω 2π = ω k (6.4) Using this result we can rewrite our two wave equations as: apple z E(z, t) = E 0 sin t (6.5a) c \vec{e}(x,t)= \vec{e}_0 \sin\left[\omega\left(\frac{z}{c}- t\right)\right apple z B(z, t) = B 0 sin t c (6.5b)) One can use Faraday s Law to determine the ratio of the electric and magnetic fields in an EM wave. This ratio is: E 0 B 0 = E B = c (6.6) Thus if you know the magnitude of one of the two fields you can always easily determine the magnitude of the other in an electromagnetic wave. Activity 6-3: The Wave Equation Suppose you are given the following wave equation for an EM wave: apple E x = (4.0 V/m) sin t, E y = 0, E z = 0 z s 1 c E_x = (4.0 {\rm~v/m})\sin \left[ \left(\frac{\pi}{5} \times 10^{15}{\rm~s}^{-1}\right)\left(\frac{z}{c} -t\right)\right], ~E_y=0, ~E_z=0 Determine the following quantities for this electromagnetic wave. (a) ω =? (b) f =?

9 Unit Electromagnetic Waves and Polarization Page 9 Author: Sarah Johnson (c) λ =? (d) k =? (e) Write expressions for the three components (x,y,z) of the magnetic field of this wave below. (f) What type of electromagnetic wave do these equations describe? (radio wave?, x-ray? etc...) Energy Transport by Electromagnetic Waves We know that the energy per unit volume or energy density stored in an electric field of magnitude E is: u elec = 1 2 ε 0E 2 (6.7)

10 Page 10 Physics for Life Sciences II Activity Guide SFU We also know that the energy per unit volume stored in a magnetic field of magnitude B is: u mag = B2 2µ 0 (6.8) Using the fact that E = cb for an electromagnetic wave, it is easy to show that these two energy densities are equal for EM waves: u elec = 1 2 ε 0E 2 = 1 2 ε 0(cB) 2 = 1 2 ε 0c 2 B 2 = 1 2 ε 0c 2 2µ 0 u mag = c 2 1 u mag = u mag c 2 where we have used Equation 6.1 to replace ε 0 µ 0 with 1/c2. This equality of the two energy densities is true everywhere along an electromagnetic wave. The total energy density for an electromagnetic wave is the sum of the two energy densities: u total = u elec + u mag = 1 2 ε 0 E 2 + B2 2µ 0 (6.9) Because the two densities are equal, one can also write: u total = 2u elec = ε 0 E 2 (6.10) u total = 2u mag = B2 µ 0 (6.11) These two equations are useful if you only know one of the two field strengths. One can use these expressions to determine the rate of energy transport per unit area for an EM wave. This instantaneous power per area also known as the instantaneous intensity I is given as: I = 1 cµ 0 E 2 = " 0 ce 2 (6.12)

11 Unit Electromagnetic Waves and Polarization Page 11 Author: Sarah Johnson or in terms of the magnetic field strength as: I = c µ 0 B 2 = " 0 c 3 B 2 (6.13) Activity 6-4: Electromagnetic Wave Average Intensity (a) Using equation 6.12, show that for an EM wave travelling in the positive z-direction the average intensity Ī is: Ī = 1 cµ 0 E 2 0sin 2 (kz!t) (b), Use the fact that the time-average of sin 2 (kz-ωt) in this case equals 1/2 to remove the sine function from your expression for average intensity. (c) Now rewrite the average intensity in terms of the root-mean square value of the magnitude of the electric field Erms = E 0 / 2.

12 Page 12 Physics for Life Sciences II Activity Guide SFU (d) Instead write the average intensity in terms of the root-mean square of the magnetic field: Brms = B 0 / 2. (e) Finally write the average intensity in terms of both Erms and Brms. In the last activity you developed some expressions for the average intensity, or average power per area for an EM wave. In the next activity you can use one of these expressions to determine the rms field strengths of a laser beam. It might be worth checking your results for Activity 6-4 with those in your textbook before proceeding. Problem Activity 6-5: Intensity of a Laser (a) A 13.5-mW laser puts out a narrow beam with a circular crosssection of radius 0.85 mm. What is the average intensity of this laser beam? (Hint: Remember that intensity is power per area.)

13 Unit Electromagnetic Waves and Polarization Page 13 Author: Sarah Johnson (b) Find Erms and Brms for this laser beam.

14 Page 14 Physics for Life Sciences II Activity Guide SFU SESSION TWO: POLARIZATION Theory of Polarization To completely describe light as an electromagnetic wave one must specify its frequency, its direction of propagation and its state of polarization. Our interest in this session is with polarization, so let us assume that we have monochromatic light propagating along the +z direction of a right-handed co-ordinate system. Light is a transverse electromagnetic wave the electric field is always perpendicular to the direction of propagation. Because the direction of propagation is along the +z axis, the electric field vector E must lie in the plane formed by the x and y axes. This can be expressed mathematically as follows: ~E(x, y, z, t) =E x (z,t)î + E y (z,t)ĵ (6.14) The components of the electric field Ex and Ey do not depend on x and y, only z, because we the wave is a plane wave propagating along the +z direction. Light is linearly polarized if the electric field vector E is always parallel to the same line which is perpendicular to the direction of propagation. In general, mathematically you could write the following expression for the EM wave: ~E(x, y, z, t) =E 0x sin(kz!t)î + E 0y sin(kz!t)ĵ (6.15) The amplitudes E0x and E0y are constants. As we saw in the last session, the intensity of the light is proportional to the square of the amplitude. Figure 6.3 shows the electric field vectors at a fixed time along a line in the direction of propagation. Figure 6.3a illustrates light polarized along the x direction (E0x 0, E0y = 0) and 6.3b shows polarization along the y direction (E0x = 0, E0y 0). As time goes on the entire pattern moves in the +z direction. Light polarized in an arbitrary plane is a superposition of these two independent possibilities (E0x 0, E0y 0). The plane of polarization is determined by the relative magnitudes of E0x and E0y.

15 Unit Electromagnetic Waves and Polarization Page 15 Author: Sarah Johnson Linearly Polarized Light x E (a) x-direction x (b) y-direction y z y E Figure 6.3: The electric field vectors of linearly polarized light. Most light sources do not produce polarized light. Individual atoms in the source radiate independently. Although at any instant in time light received from a radiating atom in the source has a definite state of polarization the state of polarization changes rapidly with time. You may think of unpolarized light as having two polarization components (x/y) which are radiated independently and randomly. Between polarized light which has a fixed relation in time between the amplitude and phase of the two polarization components and unpolarized light which has a random relation in time between the two polarization components, is partially polarized light. Partially polarized light is a mixture of polarized and unpolarized light. Polarization Filters A linear polarizer produces polarized light by selectively absorbing light polarized perpendicular to the polarization axis and transmitting light parallel to the transmission axis. Our HN22 linear polarizers absorb more than 99.99% of the perpendicular component and transmit 44% of the parallel component. Thus the linear polarizer transmits 22% of incident unpolarized light. A perfect polarizer would transmit 50% of incident unpolarized light. Consider unpolarized light falling on a polarizer which only transmits the components parallel to the y-axis. The filtered light has amplitude E 0 and intensity I = (E 0 ) 2. Let this filtered light fall on a second polarizer whose polarization axis y is at an angle θ with respect to the y-axis. (See Figure 6.4 below where the y axis is depicted as vertical.) The incident light has component E 0 cos θ along the y axis. If both polarizers are perfect, the intensity after the second polarizer would be (E 0 cos θ) 2 but for the non-ideal polarizers the transmitted intensity is 0.44 (E 0 cos θ) 2.

16 Page 16 Physics for Life Sciences II Activity Guide SFU Figure 6.4: A vertical polaroid transmits only the vertical component of an EM wave incident upon it. For the following experiments, mount the light source and filters on the optical bench as shown in Figure 6.4. Now you will do some experiments to examine linear polarization. For the next few activities you will need the following equipment: From the Optics Kit: Optical Bench Light Source All component holders 3 Linear Polarization Filters Viewing Screen For the following experiments, mount the light source and filters on the optical bench as shown in Figure 6.5. Polarizing Filters or Retardation Plates Light Source Figure 6.5: Experimental set-up for exploring polarization.

17 Unit Electromagnetic Waves and Polarization Page 17 Author: Sarah Johnson Activity 6-6: Linear Polarization (a) Look at the light source through a linear polarizer while rotating the polarizer through 360. Try to determine if the light source is polarized. Describe your findings below. (b) Now produce linearly polarized light by placing a linear polarizer in front of your light source. Look at this light through a second linear polarizer, called the analyzer. For the angle θ between the two polarizers axes given in the table below describe how the intensity of the output light compares to the intensity at θ = 0. (i.e. brighter, a lot brighter, dimmer, a lot dimmer, about the same) θ (degrees) Intensity comparison

18 Page 18 Physics for Life Sciences II Activity Guide SFU (c) Try to explain in words in the results you see in (b). Were any of the results surprising to you? Malus Law As mentioned in the last activity, when we deal with linear polarizers we call the first filter the unpolarized light falls upon the polarizer and the second polarizer the light encounters the analyzer. Malus Law states that the intensity of the light exiting the analyzer I depends on θ, the angle between the polarization axes of the polarizer and the analyzer, according to the following formula: I = I 0 cos 2 θ (6.16) where I 0 is the intensity of the linearly polarized light entering the analyser. As shown in the introduction to this session, the cosine indicates that only the component of the field parallel to the polarization axis is allowed to pass through. The cosine-squared dependence arises because the intensity is proportional to the electric field strength squared. See Figure 6.6 below.

19 Unit Electromagnetic Waves and Polarization Page 19 Author: Sarah Johnson Figure 6.6: Unpolarized light travelling through two linear polarizers. Activity 6-7: Malus Law (a) Fill in the table below with the calculated value of the ratio of the outgoing intensity to the incident intensity: I/I 0 for the given angles. θ (degrees) I/I

20 Page 20 Physics for Life Sciences II Activity Guide SFU (b) Compare the numerical values for the intensity ratios in the table above with the qualitative intensity comparisons you did in the previous activity. Do the two generally agree with each other for all of the angles? (Note: Remember that our polarizers are not ideal.) Activity 6-8: Linear Polarization Puzzler (a) Orient the first polarizer and the analyzer so that a minimum amount of intensity exits the analyzer. (This should mean that the polarization axes are oriented at a 90 degree angle with respect to each other.) Take a third linear polarizer and place it in between the first polarizer and the analyzer. Start this middle polarizer oriented with its axis aligned parallel to the first polarizer. Now rotate it through 360 degrees and record the relative intensity of the light emitted by the analyzer (as compared to the intensity seen at 0 degrees) in the table below. θ (degrees) Intensity comparison

21 Unit Electromagnetic Waves and Polarization Page 21 Author: Sarah Johnson (b) Can you think of an explanation for what you see. Why does adding a third linear polarizer between the other two allow more light to pass when very little light is emitted when there are only two? (Hint: Think about Malus Law and what happens to the angles of orientation when you add the third polarizer. Look at Figure 6.6 again.) (c) If we call the intensity leaving the first polarizer I 0, the intensity leaving the second I and the intensity leaving the third I, show that: I ʹ = I 0 cos 2 θ cos 2 ( θ ʹ θ) where θ is the angle between the axes of the first and second polarizers and θ is the angle between the axes of the first and third polarizers.

22 Page 22 Physics for Life Sciences II Activity Guide SFU (d) If θ = 90 degrees, calculate the ratio of I to I 0 for θ = 45, 90, 135 and 180 degrees. (e) Are your results in (d) consistent with your observations in (a)? Explain. Polarization by Reflection When unpolarized light reflects from a nonmetallic surface, it is at least partially polarized after reflection. The reflected beam of light will be polarized preferentially in the plane parallel to the surface. The amount of polarization depends on the angle of incidence, varying from no polarization at normal incidence to 100% at an angle known as Brewster s Angle. In the following activity you will do an experiment to determine Brewster s Angle for the Cylindrical Lens in the Optics Kit. For the next activity you will need the following equipment:

23 Unit Electromagnetic Waves and Polarization Page 23 Author: Sarah Johnson From the Optics Kit: Optical Bench Light Source 1 Linear Polarization Filter 1 Slit Plate and Holder Viewing Screen and holder for Ray Table Ray Table Cylindrical Lens Polarizing Filter Light source Screen Figure 6.7: Set-up to measure Brewster s Angle. Activity 6-9: Brewster s Angle (a) Reflect a ray off the flat surface of the Cylindrical Lens and observe the reflected ray through a linear polarizer. (You may look directly at the reflected light or project it onto a screen.) Do you observe any polarization dependence of the reflected ray? Do the same observation on the refracted ray emerging from the curved surface of the Cylindrical Lens.

24 Page 24 Physics for Life Sciences II Activity Guide SFU (b) Now polarize the incident ray by setting the linear polarizer at 90 and placing it between the light source and the Cylindrical Lens. Project the reflected ray onto a screen. Rotate the Ray Table and Cylindrical Lens and observe the intensity of the reflected ray as a function of angle. You should see a minimum in the reflected intensity of the polarized ray, note the angle at which this occurs. Also record the angles of the reflected and refracted rays at this position. (c) The incident angle at which you see minimum reflection in the experiment in (b) is Brewster s angle for our set-up. According to the theory the sum of Brewster s angle and the angle of refraction of the light ray should equal Is this the case for the angles you measured in (b)? How far off were you?

Chapter 33. Electromagnetic Waves

Chapter 33. Electromagnetic Waves Chapter 33 Electromagnetic Waves Today s information age is based almost entirely on the physics of electromagnetic waves. The connection between electric and magnetic fields to produce light is own of

More information

Electromagnetic Waves. Chapter 33 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition)

Electromagnetic Waves. Chapter 33 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition) PH 222-3A Spring 2007 Electromagnetic Waves Lecture 22 Chapter 33 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition) 1 Chapter 33 Electromagnetic Waves Today s information age is based almost

More information

PH 222-2C Fall Electromagnetic Waves Lectures Chapter 33 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition)

PH 222-2C Fall Electromagnetic Waves Lectures Chapter 33 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition) PH 222-2C Fall 2012 Electromagnetic Waves Lectures 21-22 Chapter 33 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition) 1 Chapter 33 Electromagnetic Waves Today s information age is based almost

More information

Chapter 34. Electromagnetic Waves

Chapter 34. Electromagnetic Waves Chapter 34 Electromagnetic Waves The Goal of the Entire Course Maxwell s Equations: Maxwell s Equations James Clerk Maxwell 1831 1879 Scottish theoretical physicist Developed the electromagnetic theory

More information

Lab #13: Polarization

Lab #13: Polarization Lab #13: Polarization Introduction In this experiment we will investigate various properties associated with polarized light. We will study both its generation and application. Real world applications

More information

EM Waves. From previous Lecture. This Lecture More on EM waves EM spectrum Polarization. Displacement currents Maxwell s equations EM Waves

EM Waves. From previous Lecture. This Lecture More on EM waves EM spectrum Polarization. Displacement currents Maxwell s equations EM Waves EM Waves This Lecture More on EM waves EM spectrum Polarization From previous Lecture Displacement currents Maxwell s equations EM Waves 1 Reminders on waves Traveling waves on a string along x obey the

More information

Maxwell s equations and EM waves. From previous Lecture Time dependent fields and Faraday s Law

Maxwell s equations and EM waves. From previous Lecture Time dependent fields and Faraday s Law Maxwell s equations and EM waves This Lecture More on Motional EMF and Faraday s law Displacement currents Maxwell s equations EM Waves From previous Lecture Time dependent fields and Faraday s Law 1 Radar

More information

Chapter 1 - The Nature of Light

Chapter 1 - The Nature of Light David J. Starling Penn State Hazleton PHYS 214 Electromagnetic radiation comes in many forms, differing only in wavelength, frequency or energy. Electromagnetic radiation comes in many forms, differing

More information

Electromagnetic Waves

Electromagnetic Waves Electromagnetic Waves As the chart shows, the electromagnetic spectrum covers an extremely wide range of wavelengths and frequencies. Though the names indicate that these waves have a number of sources,

More information

Chapter 33: ELECTROMAGNETIC WAVES 559

Chapter 33: ELECTROMAGNETIC WAVES 559 Chapter 33: ELECTROMAGNETIC WAVES 1 Select the correct statement: A ultraviolet light has a longer wavelength than infrared B blue light has a higher frequency than x rays C radio waves have higher frequency

More information

Waves & Oscillations

Waves & Oscillations Physics 42200 Waves & Oscillations Lecture 32 Electromagnetic Waves Spring 2016 Semester Matthew Jones Electromagnetism Geometric optics overlooks the wave nature of light. Light inconsistent with longitudinal

More information

POLARISATION. We have not really discussed the direction of the Electric field other that that it is perpendicular to the direction of motion.

POLARISATION. We have not really discussed the direction of the Electric field other that that it is perpendicular to the direction of motion. POLARISATION Light is a transverse electromagnetic wave. We have not really discussed the direction of the Electric field other that that it is perpendicular to the direction of motion. If the E field

More information

Class 30: Outline. Hour 1: Traveling & Standing Waves. Hour 2: Electromagnetic (EM) Waves P30-

Class 30: Outline. Hour 1: Traveling & Standing Waves. Hour 2: Electromagnetic (EM) Waves P30- Class 30: Outline Hour 1: Traveling & Standing Waves Hour : Electromagnetic (EM) Waves P30-1 Last Time: Traveling Waves P30- Amplitude (y 0 ) Traveling Sine Wave Now consider f(x) = y = y 0 sin(kx): π

More information

Chapter 34. Electromagnetic Waves

Chapter 34. Electromagnetic Waves Chapter 34 Electromagnetic Waves Waves If we wish to talk about electromagnetism or light we must first understand wave motion. If you drop a rock into the water small ripples are seen on the surface of

More information

Light as a Transverse Wave.

Light as a Transverse Wave. Waves and Superposition (Keating Chapter 21) The ray model for light (i.e. light travels in straight lines) can be used to explain a lot of phenomena (like basic object and image formation and even aberrations)

More information

POLARIZATION OF LIGHT

POLARIZATION OF LIGHT POLARIZATION OF LIGHT OVERALL GOALS The Polarization of Light lab strongly emphasizes connecting mathematical formalism with measurable results. It is not your job to understand every aspect of the theory,

More information

LECTURE 11 ELECTROMAGNETIC WAVES & POLARIZATION. Instructor: Kazumi Tolich

LECTURE 11 ELECTROMAGNETIC WAVES & POLARIZATION. Instructor: Kazumi Tolich LECTURE 11 ELECTROMAGNETIC WAVES & POLARIZATION Instructor: Kazumi Tolich Lecture 11 2 25.5 Electromagnetic waves Induced fields Properties of electromagnetic waves Polarization Energy of electromagnetic

More information

MCQs E M WAVES. Physics Without Fear.

MCQs E M WAVES. Physics Without Fear. MCQs E M WAVES Physics Without Fear Electromagnetic Waves At A Glance Ampere s law B. dl = μ 0 I relates magnetic fields due to current sources. Maxwell argued that this law is incomplete as it does not

More information

Topic 4: Waves 4.3 Wave characteristics

Topic 4: Waves 4.3 Wave characteristics Guidance: Students will be expected to calculate the resultant of two waves or pulses both graphically and algebraically Methods of polarization will be restricted to the use of polarizing filters and

More information

Physics 214 Course Overview

Physics 214 Course Overview Physics 214 Course Overview Lecturer: Mike Kagan Course topics Electromagnetic waves Optics Thin lenses Interference Diffraction Relativity Photons Matter waves Black Holes EM waves Intensity Polarization

More information

: Imaging Systems Laboratory II. Laboratory 6: The Polarization of Light April 16 & 18, 2002

: Imaging Systems Laboratory II. Laboratory 6: The Polarization of Light April 16 & 18, 2002 151-232: Imaging Systems Laboratory II Laboratory 6: The Polarization of Light April 16 & 18, 22 Abstract. In this lab, we will investigate linear and circular polarization of light. Linearly polarized

More information

Electromagnetic wave energy & polarization

Electromagnetic wave energy & polarization Phys 0 Lecture 6 Electromagnetic wave energy & polarization Today we will... Learn about properties p of electromagnetic waves Energy density & intensity Polarization linear, circular, unpolarized Apply

More information

Electromagnetic Waves

Electromagnetic Waves Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 23 Electromagnetic Waves Marilyn Akins, PhD Broome Community College Electromagnetic Theory Theoretical understanding of electricity and magnetism

More information

Lecture 38: FRI 24 APR Ch.33 Electromagnetic Waves

Lecture 38: FRI 24 APR Ch.33 Electromagnetic Waves Physics 2113 Jonathan Dowling Heinrich Hertz (1857 1894) Lecture 38: FRI 24 APR Ch.33 Electromagnetic Waves Maxwell Equations in Empty Space: E da = 0 S B da = 0 S C C B ds = µ ε 0 0 E ds = d dt d dt S

More information

Physics 201. Professor P. Q. Hung. 311B, Physics Building. Physics 201 p. 1/3

Physics 201. Professor P. Q. Hung. 311B, Physics Building. Physics 201 p. 1/3 Physics 201 p. 1/3 Physics 201 Professor P. Q. Hung 311B, Physics Building Physics 201 p. 2/3 What are electromagnetic waves? Electromagnetic waves consist of electric fields and magnetic fields which

More information

3.3 The Wave Nature of Light

3.3 The Wave Nature of Light 3.3 The Wave Nature of Light Much of the history of physics is concerned with the evolution of our ideas about the nature of light. The speed of light was first measured with some accuracy in 1675, by

More information

PHYS 1444 Section 003 Lecture #23

PHYS 1444 Section 003 Lecture #23 PHYS 1444 Section 3 Lecture #3 Monday, Nov. 8, 5 EM Waves from Maxwell s Equations Speed of EM Waves Light as EM Wave Electromagnetic Spectrum Energy in EM Waves Energy Transport The epilogue Today s homework

More information

Electromagnetic fields and waves

Electromagnetic fields and waves Electromagnetic fields and waves Maxwell s rainbow Outline Maxwell s equations Plane waves Pulses and group velocity Polarization of light Transmission and reflection at an interface Macroscopic Maxwell

More information

Phys102 Lecture Diffraction of Light

Phys102 Lecture Diffraction of Light Phys102 Lecture 31-33 Diffraction of Light Key Points Diffraction by a Single Slit Diffraction in the Double-Slit Experiment Limits of Resolution Diffraction Grating and Spectroscopy Polarization References

More information

LC circuit: Energy stored. This lecture reviews some but not all of the material that will be on the final exam that covers in Chapters

LC circuit: Energy stored. This lecture reviews some but not all of the material that will be on the final exam that covers in Chapters Disclaimer: Chapter 29 Alternating-Current Circuits (1) This lecture reviews some but not all of the material that will be on the final exam that covers in Chapters 29-33. LC circuit: Energy stored LC

More information

CHAPTER 32: ELECTROMAGNETIC WAVES

CHAPTER 32: ELECTROMAGNETIC WAVES CHAPTER 32: ELECTROMAGNETIC WAVES For those of you who are interested, below are the differential, or point, form of the four Maxwell s equations we studied this semester. The version of Maxwell s equations

More information

Polarized Light. Nikki Truss. Abstract:

Polarized Light. Nikki Truss. Abstract: Polarized Light Nikki Truss 9369481 Abstract: In this experiment, the properties of linearly polarised light were examined. Malus Law was verified using the apparatus shown in Fig. 1. Reflectance of s-polarised

More information

CHAPTER 9 ELECTROMAGNETIC WAVES

CHAPTER 9 ELECTROMAGNETIC WAVES CHAPTER 9 ELECTROMAGNETIC WAVES Outlines 1. Waves in one dimension 2. Electromagnetic Waves in Vacuum 3. Electromagnetic waves in Matter 4. Absorption and Dispersion 5. Guided Waves 2 Skip 9.1.1 and 9.1.2

More information

E.M.WAVES 1. Taller the antenna longer is the coverage of television broadcast. Justify this statement with the help of a figure. 2.If v g, v x v m represents the speed of gamma rays, X-rays microwaves

More information

Physics for Scientists & Engineers 2

Physics for Scientists & Engineers 2 Review Physics for Scientists & Engineers 2 Spring Semester 2005 Lecture 34! The speed of an electromagnetic wave can be expressed in terms of two fundamental constants related to electric fields and magnetic

More information

Chapter 29: Maxwell s Equation and EM Waves. Slide 29-1

Chapter 29: Maxwell s Equation and EM Waves. Slide 29-1 Chapter 29: Maxwell s Equation and EM Waves Slide 29-1 Equations of electromagnetism: a review We ve now seen the four fundamental equations of electromagnetism, here listed together for the first time.

More information

PHYS 1444 Section 004 Lecture #22

PHYS 1444 Section 004 Lecture #22 PHYS 1444 Section 004 Lecture #22 Monday, April 23, 2012 Dr. Extension of Ampere s Law Gauss Law of Magnetism Maxwell s Equations Production of Electromagnetic Waves Today s homework is #13, due 10pm,

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Spring 2014 Practice Problem Set 11 Solutions

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Spring 2014 Practice Problem Set 11 Solutions MASSACHUSES INSIUE OF ECHNOLOGY Department of Physics 8 Spring 4 Practice Problem Set Solutions Problem : Electromagnetic Waves and the Poynting Vector We have been studying one particular class of electric

More information

Satellite Remote Sensing SIO 135/SIO 236. Electromagnetic Radiation and Polarization

Satellite Remote Sensing SIO 135/SIO 236. Electromagnetic Radiation and Polarization Satellite Remote Sensing SIO 135/SIO 236 Electromagnetic Radiation and Polarization 1 Electromagnetic Radiation The first requirement for remote sensing is to have an energy source to illuminate the target.

More information

1 Maxwell s Equations

1 Maxwell s Equations PHYS 280 Lecture problems outline Spring 2015 Electricity and Magnetism We previously hinted a links between electricity and magnetism, finding that one can induce electric fields by changing the flux

More information

Maxwell Equations: Electromagnetic Waves

Maxwell Equations: Electromagnetic Waves Maxwell Equations: Electromagnetic Waves Maxwell s Equations contain the wave equation The velocity of electromagnetic waves: c = 2.99792458 x 10 8 m/s The relationship between E and B in an EM wave Energy

More information

Along with C1 the magnetic field is also observed at location C 2 though no current is threading through this loop.

Along with C1 the magnetic field is also observed at location C 2 though no current is threading through this loop. Displacement current British physicist James C. Maxwell gave final shape to all phenomenon connecting electricity and magnetism. He noticed an inconsistency in Ampere s Law connecting Electric current

More information

PHYS 102 Exams. PHYS 102 Exam 3 PRINT (A)

PHYS 102 Exams. PHYS 102 Exam 3 PRINT (A) PHYS 102 Exams PHYS 102 Exam 3 PRINT (A) The next two questions pertain to the situation described below. A metal ring, in the page, is in a region of uniform magnetic field pointing out of the page as

More information

Maxwell s Equations & Hertz Waves

Maxwell s Equations & Hertz Waves Maxwell s Equations & Hertz Waves XI. Maxwell & Electromagnetic Waves A. Maxwell s Equations Dr. Bill Pezzaglia B. Hertz Waves & Poynting C. Polarization Updated: 3Aug5 A. Maxwell s Equations 3. Hints

More information

OPSE FINAL EXAM Fall 2016 YOU MUST SHOW YOUR WORK. ANSWERS THAT ARE NOT JUSTIFIED WILL BE GIVEN ZERO CREDIT.

OPSE FINAL EXAM Fall 2016 YOU MUST SHOW YOUR WORK. ANSWERS THAT ARE NOT JUSTIFIED WILL BE GIVEN ZERO CREDIT. CLOSED BOOK. Equation Sheet is provided. YOU MUST SHOW YOUR WORK. ANSWERS THAT ARE NOT JUSTIFIED WILL BE GIVEN ZERO CREDIT. ALL NUMERICAL ANSERS MUST HAVE UNITS INDICATED. (Except dimensionless units like

More information

第 1 頁, 共 8 頁 Chap32&Chap33 1. Test Bank, Question 2 Gauss' law for magnetism tells us: the net charge in any given volume that the line integral of a magnetic around any closed loop must vanish the magnetic

More information

Chapter 9. Reflection, Refraction and Polarization

Chapter 9. Reflection, Refraction and Polarization Reflection, Refraction and Polarization Introduction When you solved Problem 5.2 using the standing-wave approach, you found a rather curious behavior as the wave propagates and meets the boundary. A new

More information

ELECTROMAGNETIC WAVES

ELECTROMAGNETIC WAVES UNIT V ELECTROMAGNETIC WAVES Weightage Marks : 03 Displacement current, electromagnetic waves and their characteristics (qualitative ideas only). Transverse nature of electromagnetic waves. Electromagnetic

More information

in Electromagnetics Numerical Method Introduction to Electromagnetics I Lecturer: Charusluk Viphavakit, PhD

in Electromagnetics Numerical Method Introduction to Electromagnetics I Lecturer: Charusluk Viphavakit, PhD 2141418 Numerical Method in Electromagnetics Introduction to Electromagnetics I Lecturer: Charusluk Viphavakit, PhD ISE, Chulalongkorn University, 2 nd /2018 Email: charusluk.v@chula.ac.th Website: Light

More information

4. What is the speed (in cm s - 1 ) of the tip of the minute hand?

4. What is the speed (in cm s - 1 ) of the tip of the minute hand? Topic 4 Waves PROBLEM SET Formative Assessment NAME: TEAM: THIS IS A PRACTICE ASSESSMENT. Show formulas, substitutions, answers, and units! Topic 4.1 Oscillations A mass is attached to a horizontal spring.

More information

Lecture 21 Reminder/Introduction to Wave Optics

Lecture 21 Reminder/Introduction to Wave Optics Lecture 1 Reminder/Introduction to Wave Optics Program: 1. Maxwell s Equations.. Magnetic induction and electric displacement. 3. Origins of the electric permittivity and magnetic permeability. 4. Wave

More information

Electricity & Magnetism Study Questions for the Spring 2018 Department Exam December 4, 2017

Electricity & Magnetism Study Questions for the Spring 2018 Department Exam December 4, 2017 Electricity & Magnetism Study Questions for the Spring 2018 Department Exam December 4, 2017 1. a. Find the capacitance of a spherical capacitor with inner radius l i and outer radius l 0 filled with dielectric

More information

1. Consider the biconvex thick lens shown in the figure below, made from transparent material with index n and thickness L.

1. Consider the biconvex thick lens shown in the figure below, made from transparent material with index n and thickness L. Optical Science and Engineering 2013 Advanced Optics Exam Answer all questions. Begin each question on a new blank page. Put your banner ID at the top of each page. Please staple all pages for each individual

More information

Lecture 34: MON 13 APR Ch ,5

Lecture 34: MON 13 APR Ch ,5 Physics 2102 Jonathan Dowling James Clerk Maxwell (1831-1879) Lecture 34: MON 13 APR Ch.33.1 3,5 3,5 7: E&M Waves MT03 Avg: 65/100 Q1/P3 K. Schafer Office hours: MW 1:30-2:30 pm 222B Nicholson P1/Q2 J.

More information

Maxwell s Equations & Electromagnetic Waves. The Equations So Far...

Maxwell s Equations & Electromagnetic Waves. The Equations So Far... Maxwell s Equations & Electromagnetic Waves Maxwell s equations contain the wave equation Velocity of electromagnetic waves c = 2.99792458 x 1 8 m/s Relationship between E and B in an EM wave Energy in

More information

INTRODUCTION ELECTRODYNAMICS BEFORE MAXWELL MAXWELL S DISPLACEMENT CURRENT. Introduction Z B S. E l = Electrodynamics before Maxwell

INTRODUCTION ELECTRODYNAMICS BEFORE MAXWELL MAXWELL S DISPLACEMENT CURRENT. Introduction Z B S. E l = Electrodynamics before Maxwell Chapter 14 MAXWELL S EQUATONS ntroduction Electrodynamics before Maxwell Maxwell s displacement current Maxwell s equations: General Maxwell s equations in vacuum The mathematics of waves Summary NTRODUCTON

More information

Course Updates. 2) This week: Electromagnetic Waves +

Course Updates.  2) This week: Electromagnetic Waves + Course Updates http://www.phys.hawaii.edu/~varner/phys272-spr1/physics272.html Reminders: 1) Assignment #11 due Wednesday 2) This week: Electromagnetic Waves + 3) In the home stretch [review schedule]

More information

Experiment 8. Fresnel Coefficients. 8.1 Introduction. References

Experiment 8. Fresnel Coefficients. 8.1 Introduction. References Experiment 8 Fresnel Coefficients References Optics by Eugene Hecht, Chapter 4 Introduction to Modern Optics by Grant Fowles, Chapter 2 Principles of Optics by Max Born and Emil Wolf, Chapter 1 Optical

More information

Where k = 1. The electric field produced by a point charge is given by

Where k = 1. The electric field produced by a point charge is given by Ch 21 review: 1. Electric charge: Electric charge is a property of a matter. There are two kinds of charges, positive and negative. Charges of the same sign repel each other. Charges of opposite sign attract.

More information

UNIT : QUANTUM THEORY AND THE ATOM

UNIT : QUANTUM THEORY AND THE ATOM Name St.No. Date(YY/MM/DD) / / Section UNIT 102-10: QUANTUM THEORY AND THE ATOM OBJECTIVES Atomic Spectra for Hydrogen, Mercury and Neon. 1. To observe various atomic spectra with a diffraction grating

More information

PHY2049 Fall11. Final Exam Solutions (1) 700 N (2) 350 N (3) 810 N (4) 405 N (5) 0 N

PHY2049 Fall11. Final Exam Solutions (1) 700 N (2) 350 N (3) 810 N (4) 405 N (5) 0 N Exam Solutions 1. Three charges form an equilateral triangle of side length d = 2 cm. The top charge is q3 = 3 μc, while the bottom two are q1 = q2 = - 6 μc. What is the magnitude of the net force acting

More information

Electromagnetic Waves

Electromagnetic Waves Chapter 32 Electromagnetic Waves PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman Lectures by Wayne Anderson Goals for Chapter 32 To learn why a light

More information

Maxwell s Equations and Electromagnetic Waves W13D2

Maxwell s Equations and Electromagnetic Waves W13D2 Maxwell s Equations and Electromagnetic Waves W13D2 1 Announcements Week 13 Prepset due online Friday 8:30 am Sunday Tutoring 1-5 pm in 26-152 PS 10 due Week 14 Friday at 9 pm in boxes outside 26-152 2

More information

E The oscillating E-field defines the polarization of the wave. B

E The oscillating E-field defines the polarization of the wave. B This sheet is the lab document your TA will use to score your lab. It is to be turned in at the end of lab. To receive full credit you must use complete sentences and explain your reasoning. A. Describing

More information

Massachusetts Institute of Technology Physics 8.03 Practice Final Exam 3

Massachusetts Institute of Technology Physics 8.03 Practice Final Exam 3 Massachusetts Institute of Technology Physics 8.03 Practice Final Exam 3 Instructions Please write your solutions in the white booklets. We will not grade anything written on the exam copy. This exam is

More information

Polarization of light

Polarization of light Laboratory#8 Phys4480/5480 Dr. Cristian Bahrim Polarization of light Light is a transverse electromagnetic wave (EM) which travels due to an electric field and a magnetic field oscillating in phase and

More information

Electromagnetic Waves Properties. The electric and the magnetic field, associated with an electromagnetic wave, propagating along the z=axis. Can be represented by E = E kˆ, = iˆ E = E ˆj, = ˆj b) E =

More information

Foundations, 1. Quantum mechanics is money

Foundations, 1. Quantum mechanics is money Foundations, 1 Quantum mechanics is money Text message and take a picture with your smart phone; watch a movie on your Blu-ray player; get the bar code on your bag of chips scanned; obtain an MRI image

More information

Chapter 31 Maxwell s Equations and Electromagnetic Waves. Copyright 2009 Pearson Education, Inc.

Chapter 31 Maxwell s Equations and Electromagnetic Waves. Copyright 2009 Pearson Education, Inc. Chapter 31 Maxwell s Equations and Electromagnetic Waves Units of Chapter 31 Changing Electric Fields Produce Magnetic Fields; Ampère s Law and Displacement Current Gauss s Law for Magnetism Maxwell s

More information

MITOCW 8. Electromagnetic Waves in a Vacuum

MITOCW 8. Electromagnetic Waves in a Vacuum MITOCW 8. Electromagnetic Waves in a Vacuum The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high-quality educational resources

More information

Yell if you have any questions

Yell if you have any questions Class 36: Outline Hour 1: Concept Review / Overview PRS Questions Possible Exam Questions Hour : Sample Exam Yell if you have any questions P36-1 Before Starting All of your grades should now be posted

More information

Chapter 9: Waves, incl. e & m waves, light

Chapter 9: Waves, incl. e & m waves, light Chapter 9: Waves, incl. e & m waves, light Review of interference Light Electromagnetic waves/radiation in general Solar radiation Global warming as an important application INTERFERENCE: absolutely crucial,

More information

1. In Young s double slit experiment, when the illumination is white light, the higherorder fringes are in color.

1. In Young s double slit experiment, when the illumination is white light, the higherorder fringes are in color. TRUE-FALSE STATEMENTS: ELECTRICITY: 1. Electric field lines originate on negative charges. 2. The flux of the electric field over a closed surface is proportional to the net charge enclosed by the surface.

More information

Uniform Plane Waves. Ranga Rodrigo. University of Moratuwa. November 7, 2008

Uniform Plane Waves. Ranga Rodrigo. University of Moratuwa. November 7, 2008 Uniform Plane Waves Ranga Rodrigo University of Moratuwa November 7, 2008 Ranga Rodrigo (University of Moratuwa) Uniform Plane Waves November 7, 2008 1 / 51 Summary of Last Week s Lecture Basic Relations

More information

Session 8 Maxwell s Equations

Session 8 Maxwell s Equations Session 8 Maxwell s Equations Emma Bunce Physics Innovations Centre for Excellence in Learning and Teaching CETL (Leicester) Department of Physics and Astronomy University of Leicester 1 Contents Welcome...

More information

Semiconductor Physics and Devices

Semiconductor Physics and Devices Introduction to Quantum Mechanics In order to understand the current-voltage characteristics, we need some knowledge of electron behavior in semiconductor when the electron is subjected to various potential

More information

Electromagnetic Waves

Electromagnetic Waves Physics 102: Lecture 15 Electromagnetic Waves Energy & Polarization Physics 102: Lecture 15, Slide 1 Checkpoint 1.1, 1.2 y E x loop in xy plane loop in xz plane A B C Physics 102: Lecture 15, Slide 2 Propagation

More information

Physics 1230: Light and Color

Physics 1230: Light and Color Physics 1230: Light and Color Chuck Rogers Duane F-631 Charles.Rogers@colorado.edu (303) 492-4476 http://www.colorado.edu/physics/phys1230 Lecture 2: Electric and magnetic fields and LIGHT HW2 on CULearn:

More information

ELECTROMAGNETIC WAVES WHAT IS LIGHT?

ELECTROMAGNETIC WAVES WHAT IS LIGHT? VISUAL PHYSICS ONLINE MODULE 7 NATURE OF LIGHT ELECTROMAGNETIC WAVES WHAT IS LIGHT? James Clerk Maxwell (1831-1879), was a Scottish mathematician and theoretical physicist. He had an unquenchable curiosity

More information

Exam 4 (Final) Solutions

Exam 4 (Final) Solutions PHY049 Spring 006 Prof. Darin Acosta Prof. Greg Stewart May 1, 006 Exam 4 (Final) Solutions 1. Four charges are arranged into a square with side length a=1 cm as shown in the figure. The charges (clockwise

More information

ECE 107: Electromagnetism

ECE 107: Electromagnetism ECE 107: Electromagnetism Notes Set 1 Instructor: Prof. Vitaliy Lomakin Department of Electrical and Computer Engineering University of California, San Diego, CA 92093 1 Introduction (1) atom Electromagnetism

More information

Plasma Physics Prof. V. K. Tripathi Department of Physics Indian Institute of Technology, Delhi

Plasma Physics Prof. V. K. Tripathi Department of Physics Indian Institute of Technology, Delhi Plasma Physics Prof. V. K. Tripathi Department of Physics Indian Institute of Technology, Delhi Lecture No. # 09 Electromagnetic Wave Propagation Inhomogeneous Plasma (Refer Slide Time: 00:33) Today, I

More information

Lecture 8 Notes, Electromagnetic Theory II Dr. Christopher S. Baird, faculty.uml.edu/cbaird University of Massachusetts Lowell

Lecture 8 Notes, Electromagnetic Theory II Dr. Christopher S. Baird, faculty.uml.edu/cbaird University of Massachusetts Lowell Lecture 8 Notes, Electromagnetic Theory II Dr. Christopher S. Baird, faculty.uml.edu/cbaird University of Massachusetts Lowell 1. Scattering Introduction - Consider a localized object that contains charges

More information

Chapter 27: Light. What is light?

Chapter 27: Light. What is light? Chapter 27: Light What is light? Scientists first theorized light was a wave as it behaved with a wave properties, i.e. diffraction and interference. In 1905, Einstein realized that light was behaving

More information

Problem set 3. Electromagnetic waves

Problem set 3. Electromagnetic waves Second Year Electromagnetism Michaelmas Term 2017 Caroline Terquem Problem set 3 Electromagnetic waves Problem 1: Poynting vector and resistance heating This problem is not about waves but is useful to

More information

Don t Copy This. Michael Faraday 3/1/13. Chapter 25: EM Induction and EM Waves. Key Terms:

Don t Copy This. Michael Faraday 3/1/13. Chapter 25: EM Induction and EM Waves. Key Terms: 3/1/13 Chapter 25: EM Induction and EM Waves Key Terms: Induced Induced emf current Flux Lenz s Law waves Photons EM Don t Copy This Last chapter we learned that a current can create a magnetic field.

More information

Electromagnetic Waves

Electromagnetic Waves Physics 8 Electromagnetic Waves Overview. The most remarkable conclusion of Maxwell s work on electromagnetism in the 860 s was that waves could exist in the fields themselves, traveling with the speed

More information

1. Types of Waves. There are three main types of waves:

1. Types of Waves. There are three main types of waves: Chapter 16 WAVES I 1. Types of Waves There are three main types of waves: https://youtu.be/kvc7obkzq9u?t=3m49s 1. Mechanical waves: These are the most familiar waves. Examples include water waves, sound

More information

Lecture 5: Polarization. Polarized Light in the Universe. Descriptions of Polarized Light. Polarizers. Retarders. Outline

Lecture 5: Polarization. Polarized Light in the Universe. Descriptions of Polarized Light. Polarizers. Retarders. Outline Lecture 5: Polarization Outline 1 Polarized Light in the Universe 2 Descriptions of Polarized Light 3 Polarizers 4 Retarders Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl ATI 2016,

More information

PES 1120 Spring 2014, Spendier Lecture 38/Page 1

PES 1120 Spring 2014, Spendier Lecture 38/Page 1 PES 1120 Spring 2014, Spendier Lecture 38/Page 1 Today: Start last chapter 32 - Maxwell s Equations James Clerk Maxwell (1831-1879) Scottish mathematical physicist. He united all observations, experiments

More information

Name Date Class _. Please turn to the section titled The Nature of Light.

Name Date Class _. Please turn to the section titled The Nature of Light. Please turn to the section titled The Nature of Light. In this section, you will learn that light has both wave and particle characteristics. You will also see that visible light is just part of a wide

More information

Waves & Oscillations

Waves & Oscillations Physics 42200 Waves & Oscillations Lecture 25 Propagation of Light Spring 2013 Semester Matthew Jones Midterm Exam: Date: Wednesday, March 6 th Time: 8:00 10:00 pm Room: PHYS 203 Material: French, chapters

More information

Lab 8: L-6, Polarization Lab Worksheet

Lab 8: L-6, Polarization Lab Worksheet Lab 8: L-6, Polarization Lab Worksheet Name This sheet is the lab document your TA will use to score your lab. It is to be turned in at the end of lab. To receive full credit you must use complete sentences

More information

Principles of Mobile Communications

Principles of Mobile Communications Communication Networks 1 Principles of Mobile Communications University Duisburg-Essen WS 2003/2004 Page 1 N e v e r s t o p t h i n k i n g. Wave Propagation Single- and Multipath Propagation Overview:

More information

Lecture 2 Notes, Electromagnetic Theory II Dr. Christopher S. Baird, faculty.uml.edu/cbaird University of Massachusetts Lowell

Lecture 2 Notes, Electromagnetic Theory II Dr. Christopher S. Baird, faculty.uml.edu/cbaird University of Massachusetts Lowell Lecture Notes, Electromagnetic Theory II Dr. Christopher S. Baird, faculty.uml.edu/cbaird University of Massachusetts Lowell 1. Dispersion Introduction - An electromagnetic wave with an arbitrary wave-shape

More information

Polarization of Light and Birefringence of Materials

Polarization of Light and Birefringence of Materials Polarization of Light and Birefringence of Materials Ajit Balagopal (Team Members Karunanand Ogirala, Hui Shen) ECE 614- PHOTONIC INFORMATION PROCESSING LABORATORY Abstract-- In this project, we study

More information

Brewster Angle and Total Internal Reflection

Brewster Angle and Total Internal Reflection Lecture 4: Polarization Outline 1 Polarized Light in the Universe 2 Brewster Angle and Total Internal Reflection 3 Descriptions of Polarized Light 4 Polarizers 5 Retarders Christoph U. Keller, Utrecht

More information

Deviations from Malus Law

Deviations from Malus Law From: Steve Scott, Jinseok Ko, Howard Yuh To: MSE Enthusiasts Re: MSE Memo #18a: Linear Polarizers and Flat Glass Plates Date: January 16, 2004 This memo discusses three issues: 1. When we measure the

More information

Revision checklist. Step Learning outcome Had a look Nearly there Nailed it! Step Learning outcome Had a look Nearly there Nailed it!

Revision checklist. Step Learning outcome Had a look Nearly there Nailed it! Step Learning outcome Had a look Nearly there Nailed it! SP4 Waves SP4a Describing waves Step Learning outcome Had a look Nearly there Nailed it Recall that waves transfer energy and information but do not transfer matter. Describe waves using the terms frequency,

More information

C. Incorrect! The velocity of electromagnetic waves in a vacuum is the same, 3.14 x 10 8 m/s.

C. Incorrect! The velocity of electromagnetic waves in a vacuum is the same, 3.14 x 10 8 m/s. AP Physics - Problem Drill 21: Physical Optics 1. Which of these statements is incorrect? Question 01 (A) Visible light is a small part of the electromagnetic spectrum. (B) An electromagnetic wave is a

More information