Relativistic Electron-Positron Plasma Screening In Astrophysical Environments

Size: px
Start display at page:

Download "Relativistic Electron-Positron Plasma Screening In Astrophysical Environments"

Transcription

1 in Weak and the In Astrophysical Environments Enhancements to Weak and Intermediate 1,, A. Baha Balantekin, T. Kajino,4 1 Western Michigan University, National Astronomical Observatory of Japan, University of Wisconsin 4 University of Tokyo 15 September 16

2 in Weak and the 1 in Weak Outline and 4 the 5

3 Review: in Weak and the V (r) = Z 1Z e + r Ũ(r) Γ 1 σ(e U )de E 1/ e E/kT Assume constant electron background. Salpeter approximation assumes constant energy shift. [Clayton (196)]

4 Review: in Weak and the V (r) = Z 1Z e + Ũ(r) r Γ 1 E 1/ e E/kT σ(e U )de Assume constant electron background. Salpeter approximation assumes constant energy shift. Approximate turning-point (fm) vs particle energy in screened and unscreened case.(c+c) Energy shift changes classical turning point in a Coulomb potential.

5 in Weak and the Weak Salpeter Approximation Shift in energy changes classical turning point. E C kt V (r) scr V (r)e r/λ D Γ scr e U /kt Γ ( ) 1/ T λ D = 4πe n i (Z i + Z i )Y i Debye-Huckel : Poisson Equation to first order. NOTE: Corrections to the ion-sphere model may result in potential shifts a few percent. σv scr = f σv = e U /T σv [ Z1 Z e ] f = exp λ D T Review: Weak Regimes Strong Ion-Sphere E C kt [ U (Z 1 + Z ) 5/ Z 5/ 1 Z 5/ ] ρ T M 1 Ions approach a lattice-like configuration. log(t) [K] Weak Strong log(ρ) [g/cm ]

6 in Weak and the π λ D of reaction rates using e e + plasmas. Schwinger-Dyson equation for photon propagator. = e [ ] dpp 1 µ e (E µ)/t e (E+µ)/T + 1 potential at close range VC scr (r λ D ) VC bare Z 1Z e λ D = V bare C E High Temperature Limit E (T m e ) = Z 1Z e ] 1/ [µ + π π T σ(e) σ(e + E )

7 in Weak and the (kev) E e + e plasma T.5-1 MeV Electron number density modified by pair production T (MeV) T (MeV) Energy shift could be important for low-lying resonances. Z 1 =, Z = 4 (kev) E (fm) λ D <σv> scr /<σv> unsc Z µ = MeV µ =.1 MeV µ =. MeV µ =. MeV µ =.4 MeV T (MeV) T=1 MeV, µ= Z [Famiano, Balantekin, & Kajino (16)] 5

8 in Weak and the λ D (fm) 4 1 log(ρ)=6 1 1 log(ρ)=7 log(ρ)= log(ρ)=9 log(ρ)= T 9 classical and relativistic Debye lengths. Assume C+C plasma. Debye Length: ) 1/ ( T λ D = 4πe nξ ξ = ( ) i Z i + Z i Yi Effects Example: Neutral 1 C log(t) [K] Weak Strong log(ρ) [g/cm ] Approximate Regimes Strong screening: ions locked into a lattice. Wigner-Seitz spheres. Ion-sphere approximation.

9 in Weak and the λ D (fm) 4 1 log(ρ)=6 1 1 log(ρ)=7 log(ρ)= log(ρ)=9 log(ρ)= T 9 classical and relativistic Debye lengths. Assume C+C plasma. Debye Length: ) 1/ ( T λ D = 4πe nξ ξ = ( ) i Z i + Z i Yi Effects Example: Neutral 1 C log(t) [K] r-process Weak SNIa Strong log(ρ) [g/cm ] Where might relativistic screening be appropriate? How the intermediate screening region is handled can be quite important.

10 in Weak and the λ D (fm) 4 1 log(ρ)=6 1 1 log(ρ)=7 log(ρ)= log(ρ)=9 log(ρ)= T 9 classical and relativistic Debye lengths. Assume C+C plasma. Debye Length: ) 1/ ( T λ D = 4πe nξ ξ = ( ) i Z i + Z i Yi Effects Example: Neutral 1 C log(t) [K] r-process 15 M Weak core SNIa Strong WD Ignition< log(ρ) [g/cm ] For WD ignition we will need quantum plasma physics.

11 in Weak and the (fm) λ D 4 1 log(ρ)=6 1 1 log(ρ)=7 log(ρ)= log(ρ)=9 log(ρ)= T 9 classical and relativistic Debye lengths. Assume C+C plasma. Debye Length: ) 1/ ( T λ D = 4πe nξ ξ = ( ) i Z i + Z i Yi Effects Example: Neutral 1 C log(t) [K] r-process 15 M Weak core SNIa Strong WD Ignition< log(ρ) [g/cm ] For WD ignition we will need quantum plasma physics.

12 in Weak and the Note the 7 Be 1 C branch. Could a resonance here be significant? [Broggini et al. (1), Hammache et al. (1)] for 1 - X/X p d t n He 4 He 6 Li 7 Li Be Time (s) X X X scr X bare X bare Very small effects Low Z More massive nuclei not produced until T.5 MeV

13 Resonances in 7 Be+ He in Weak and the ) o E σ(e+e -E/T exp 5 1 E R =.75 MeV E R =.5 MeV E R =.1 MeV =1. MeV E R E R =-.5 MeV E R =.5 MeV E (MeV) 6 1 T=1 MeV Resonances 5 kev ruled out [Hammache et al. (1)]. TRRs including resonances are small in this regime. <σv>] [N 1 A Shifts in resonances indicated above. Possible effect for sub-threshold resonances. log E R = MeV E R =. MeV E R =.4 MeV E R =.6 MeV E R =. MeV E R = 1. MeV Non-Resonant TRR T (MeV)

14 in Weak and the Y e PRELIMINARY Astrophysical Sites Where Could Be Important Ye:t Unscreened/Default Effects t (s) r-process screening effects x-ray burst frequency changes x-ray burst light curve changes More work to follow L/L L/L exp(log_l):t*.15e7 Unscreened time (s) 6 4 Unscreened time (s) x-ray bursts light curves [PRELIMINARY].

15 in Weak and the Explored relativistic plasma effects in. Continuing to work on dynamics in: r-process WD x-ray bursts Massive stellar cores One really has to be careful in the intermediate screening region. Work supported by NSF PHY-1446 and PHY-164 and NAOJ Visiting Professorship

16 in Weak and Clayton, D.D., Principles of Stellar Evolution and Nucleosynthesis, The University of Chicago Press 196 Broggini et al., JCAP 6, (1) Famiano, M.A., Balantekin, B., & Kajino, T., Phys. Rev. C 9, 454 (16) Hammache, F. et al., Phys. Rev. D, 6 (1) the

Resonant Reactions direct reactions:

Resonant Reactions direct reactions: Resonant Reactions The energy range that could be populated in the compound nucleus by capture of the incoming projectile by the target nucleus is for direct reactions: for neutron induced reactions: roughly

More information

References and Figures from: - Basdevant, Fundamentals in Nuclear Physics

References and Figures from: - Basdevant, Fundamentals in Nuclear Physics Lecture 22 Fusion Experimental Nuclear Physics PHYS 741 heeger@wisc.edu References and Figures from: - Basdevant, Fundamentals in Nuclear Physics 1 Reading for Next Week Phys. Rev. D 57, 3873-3889 (1998)

More information

Topics in Nuclear Astrophysics II. Stellar Reaction Rates

Topics in Nuclear Astrophysics II. Stellar Reaction Rates Topics in Nuclear strophysics II Stellar Reaction Rates definition of a reaction rate Gamow window lifetimes of isotopes at stellar conditions nuclear energy production rate introduction to network simulations

More information

17 Stars notes 2017/10/4 - Wed - Nuclear cross sections,

17 Stars notes 2017/10/4 - Wed - Nuclear cross sections, 17 STARS NOTES 2017/10/4 - WED - NUCLEAR CROSS SECTIONS, S-FACTOR 1 17 Stars notes 2017/10/4 - Wed - Nuclear cross sections, S-factor 17.1 Coulomb Tunneling continued Last time we obtained the probability

More information

The Microphysics. EOS, opacity, energy generation

The Microphysics. EOS, opacity, energy generation The Microphysics Equation of State EOS, opacity, energy generation Ideal gas: (see tutorial handout) P = nk B T = R µ ρt with ρ = nµm u ; µ: molecular weight, mass of particle per m u. Several components

More information

Nuclear Astrophysics

Nuclear Astrophysics Nuclear Astrophysics I. Stellar burning Karlheinz Langanke GSI & TU Darmstadt Aarhus, October 6-10, 2008 Karlheinz Langanke ( GSI & TU Darmstadt) Nuclear Astrophysics Aarhus, October 6-10, 2008 1 / 32

More information

He-Burning in massive Stars

He-Burning in massive Stars He-Burning in massive Stars He-burning is ignited on the He and ashes of the preceding hydrogen burning phase! Most important reaction -triple alpha process 3 + 7.6 MeV Red Giant Evolution in HR diagram

More information

Nuclear structure input for rp-process rate calculations in the sd shell

Nuclear structure input for rp-process rate calculations in the sd shell Nuclear structure input for rp-process rate calculations in the sd shell W A RICHTER ITHEMBA LABS UNIVERSITY OF THE WESTERN CAPE B A BROWN NSCL, MICHIGAN STATE UNIVERSITY This work is supported by the

More information

Nuclear Astrophysics

Nuclear Astrophysics Nuclear Astrophysics I. Hydrostatic stellar burning Karlheinz Langanke GSI & TU Darmstadt Tokyo, November 17, 2008 Karlheinz Langanke ( GSI & TU Darmstadt) Nuclear Astrophysics Tokyo, November 17, 2008

More information

13 Synthesis of heavier elements. introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1

13 Synthesis of heavier elements. introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1 13 Synthesis of heavier elements introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1 The triple α Reaction When hydrogen fusion ends, the core of a star collapses and the temperature can reach

More information

arxiv: v1 [astro-ph.he] 28 Dec 2010

arxiv: v1 [astro-ph.he] 28 Dec 2010 Published in Phys. Rev. C 82, 058801(R)(2010) Re-analysis of the (J = 5) state at 592keV in 180 Ta and its role in the ν-process nucleosynthesis of 180 Ta in supernovae T. Hayakawa Quantum Beam Science

More information

Neutrinos and Big-Bang Nucleosynthesis

Neutrinos and Big-Bang Nucleosynthesis 1 Neutrinos and Big-Bang Nucleosynthesis T. KAJINO a b c and M. ORITO a a National Astronomical Observatory, Division of Theoretical Astrophysics b The Graduate University for Advanced Studies, Department

More information

Lecture 4: Nuclear Energy Generation

Lecture 4: Nuclear Energy Generation Lecture 4: Nuclear Energy Generation Literature: Prialnik chapter 4.1 & 4.2!" 1 a) Some properties of atomic nuclei Let: Z = atomic number = # of protons in nucleus A = atomic mass number = # of nucleons

More information

Solar Neutrinos. Solar Neutrinos. Standard Solar Model

Solar Neutrinos. Solar Neutrinos. Standard Solar Model Titelseite Standard Solar Model 08.12.2005 1 Abstract Cross section, S factor and lifetime ppi chain ppii and ppiii chains CNO circle Expected solar neutrino spectrum 2 Solar Model Establish a model for

More information

Nuclear Astrophysics - I

Nuclear Astrophysics - I Nuclear Astrophysics - I Carl Brune Ohio University, Athens Ohio Exotic Beam Summer School 2016 July 20, 2016 Astrophysics and Cosmology Observations Underlying Physics Electromagnetic Spectrum: radio,

More information

Last Time... We discussed energy sources to a shell of stellar material:

Last Time... We discussed energy sources to a shell of stellar material: Energy Sources We are straying a bit from HKT Ch 6 initially, but it is still a good read, and we'll use it for the summary of rates at the end. Clayton is a great source Last Time... We discussed energy

More information

Indirect Methods in Nuclear Astrophysics

Indirect Methods in Nuclear Astrophysics Indirect Methods in Nuclear Astrophysics 1. Introduction 2. Reaction rates and energy scales 3. Motivation for indirect methods 4. Brief description of some of the methods 5. Nuclear Reaction preliminaries

More information

Dipole Response of Exotic Nuclei and Symmetry Energy Experiments at the LAND R 3 B Setup

Dipole Response of Exotic Nuclei and Symmetry Energy Experiments at the LAND R 3 B Setup Dipole Response of Exotic Nuclei and Symmetry Energy Experiments at the LAND R 3 B Setup Dominic Rossi for the LAND collaboration GSI Helmholtzzentrum für Schwerionenforschung GmbH D 64291 Darmstadt, Germany

More information

Electron screening effect in nuclear reactions and radioactive decays

Electron screening effect in nuclear reactions and radioactive decays lectron screening effect in nuclear reactions and radioactive decays a, K. Czerski ab, P. Heide b, A. Huke b, A.i. Kılıç a, I. Kulesza a, L. Martin c, G. Ruprecht c a Institute of Physics, University of

More information

14 Lecture 14: Early Universe

14 Lecture 14: Early Universe PHYS 652: Astrophysics 70 14 Lecture 14: Early Universe True science teaches us to doubt and, in ignorance, to refrain. Claude Bernard The Big Picture: Today we introduce the Boltzmann equation for annihilation

More information

New experimental constraints on the electron screening effect in astrophysical plasma

New experimental constraints on the electron screening effect in astrophysical plasma New experimental constraints on the electron screening effect in astrophysical plasma -mail: natalia.targosz@wmf.univ.szczecin.pl K. Czerski Institut für Optik und Atomare Physik, Technische Universität

More information

Investigation of Pygmy Dipole Resonance in neutron rich exotic nuclei

Investigation of Pygmy Dipole Resonance in neutron rich exotic nuclei Investigation of Pygmy Dipole Resonance in neutron rich exotic nuclei R.Avigo 1,2, O.Wieland 1, A.Bracco 1,2, F.Camera 1,2 on behalf of the AGATA and DALI2 collaborations 1 INFN, sezione di Milano 2 Università

More information

Nuclear astrophysics studies with charged particles in hot plasma environments

Nuclear astrophysics studies with charged particles in hot plasma environments Nuclear astrophysics studies with charged particles in hot plasma environments Manoel Couder University of Notre Dame Summary I NSTITUTE FOR S TRUCTURE AND N UCLEAR A STROPHYSICS Accelerator based nuclear

More information

User s Guide for Neutron Star Matter EOS

User s Guide for Neutron Star Matter EOS User s Guide for Neutron Star Matter EOS CQMC model within RHF approximation and Thomas-Fermi model Tsuyoshi Miyatsu (Tokyo Univ. of Sci.) Ken ichiro Nakazato (Kyushu University) May 1 2016 Abstract This

More information

arxiv: v2 [astro-ph.co] 25 Jun 2009

arxiv: v2 [astro-ph.co] 25 Jun 2009 Big Bang Nucleosynthesis: The Strong Nuclear Force meets the Weak Anthropic Principle J. MacDonald and D.J. Mullan Department of Physics and Astronomy, University of Delaware, DE 19716 (Dated: June 25,

More information

12 Big Bang Nucleosynthesis. introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1

12 Big Bang Nucleosynthesis. introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1 12 Big Bang Nucleosynthesis introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1 12.1 The Early Universe According to the accepted cosmological theories: The Universe has cooled during its expansion

More information

Nucleosynthesis in Jets from A Collapsar before The Formation of A Black Hole

Nucleosynthesis in Jets from A Collapsar before The Formation of A Black Hole before The Formation of A Black Hole Kumamoto National College of Technology, Kumamoto 861-1102, Japan E-mail: fujimoto@ec.knct.ac.jp Nobuya Nishimura, Masa-aki Hashimoto, Department of Physics, School

More information

The effects of Double Folding Cluster Model Potential on some astrophysical reactions

The effects of Double Folding Cluster Model Potential on some astrophysical reactions Journal of Physics: Conference Series PAPER OPEN ACCESS The effects of Double Folding Cluster Model Potential on some astrophysical reactions To cite this article: Azni Abdul Aziz et al 2015 J. Phys.:

More information

E. Fermi: Notes on Thermodynamics and Statistics (1953))

E. Fermi: Notes on Thermodynamics and Statistics (1953)) E. Fermi: Notes on Thermodynamics and Statistics (1953)) Neutron stars below the surface Surface is liquid. Expect primarily 56 Fe with some 4 He T» 10 7 K ' 1 KeV >> T melting ( 56 Fe) Ionization: r Thomas-Fermi

More information

the astrophysical formation of the elements

the astrophysical formation of the elements the astrophysical formation of the elements Rebecca Surman Union College Second Uio-MSU-ORNL-UT School on Topics in Nuclear Physics 3-7 January 2011 the astrophysical formation of the elements Chart of

More information

J. Astrophys. Astr., Vol. 36, No. 4, December 2015, pp

J. Astrophys. Astr., Vol. 36, No. 4, December 2015, pp Review J. Astrophys. Astr., Vol. 36, No. 4, December 2015, pp. 635 642 Inverse Bremsstrahlung in Astrophysical Plasmas: The Absorption Coefficients and Gaunt Factors A. A. Mihajlov, V. A. Srećković & N.

More information

Nuclear equation of state with realistic nuclear forces

Nuclear equation of state with realistic nuclear forces Nuclear equation of state with realistic nuclear forces Hajime Togashi (RIKEN) Collaborators: M. Takano, K. Nakazato, Y. Takehara, S. Yamamuro, K. Sumiyoshi, H. Suzuki, E. Hiyama 1:Introduction Outline

More information

Low-lying gamma-strength within microscopic models

Low-lying gamma-strength within microscopic models Low-lying gamma-strength within microscopic models Elena Litvinova 1,2 1 GSI Helmholtzzentrum für Schwerionenforschung mbh, Darmstadt, Germany 2 Institut für Theoretische Physik, Goethe Universität, Frankfurt

More information

Chapter 1 Nature of Plasma

Chapter 1 Nature of Plasma Chapter 1 Nature of Plasma Abstract Charge neutrality is one of fundamental property of plasma. Section 1.2 explains Debye length λ D in (1.2), a measure of shielding distance of electrostatic potential,

More information

FUSION REACTIONS IN MULTICOMPONENT DENSE MATTER

FUSION REACTIONS IN MULTICOMPONENT DENSE MATTER FUSION REACTIONS IN MULTICOMPONENT DENSE MATTER D. G. Yakovlev Ioffe Physico-Technical Institute, Poliekhnicheskaya 26, 194021 Saint-Petersburg, Russia Department of Physics & The Joint Institute for Nuclear

More information

ASTR3007/4007/6007, Class 6: Nuclear Reactions

ASTR3007/4007/6007, Class 6: Nuclear Reactions ASTR37/47/67, Class 6: Nuclear Reactions 1 March In this class we continue the process of filling in the missing microphysical details that we need to make a stellar model. To recap, in the last two classes

More information

Self-Consistent Equation of State for Hot Dense Matter: A Work in Progress

Self-Consistent Equation of State for Hot Dense Matter: A Work in Progress Self-Consistent Equation of State for Hot Dense Matter: A Work in Progress W.G.Newton 1, J.R.Stone 1,2 1 University of Oxford, UK 2 Physics Division, ORNL, Oak Ridge, TN Outline Aim Self-consistent EOS

More information

Lecture 5. Basic Nuclear Physics 3. Nuclear Cross Sections and Reaction Rates

Lecture 5. Basic Nuclear Physics 3. Nuclear Cross Sections and Reaction Rates Lecture 5 Basic Nuclear Physics 3 Nuclear Cross Sections and Reaction Rates = 1 cm 2 j Flux per cm 2 = n j v Total area of target nuclei I per cm 3 = n I σ I Reaction rate per cm 3 assuming no blocking

More information

H/He burning reactions on unstable nuclei for Nuclear Astrophysics

H/He burning reactions on unstable nuclei for Nuclear Astrophysics H/He burning reactions on unstable nuclei for Nuclear Astrophysics PJ Woods University of Edinburgh H T O F E E U D N I I N V E B R U S I R T Y H G Explosive H/He burning in Binary Stars Isaac Newton,

More information

Nuclear fusion in dense matter: Reaction rate and carbon burning

Nuclear fusion in dense matter: Reaction rate and carbon burning PHYSICAL REVIEW C 72, 025806 (2005) Nuclear fusion in dense matter: Reaction rate and carbon burning L. R. Gasques, 1 A. V. Afanasjev, 1 E. F. Aguilera, 2 M. Beard, 1 L. C. Chamon, 3 P. Ring, 4 M. Wiescher,

More information

An Alternative Method for the Measurement of Stellar Nuclear-Reaction Rates

An Alternative Method for the Measurement of Stellar Nuclear-Reaction Rates 218 Brazilian Journal of Physics, vol. 33, no. 2, June, 23 An Alternative Method for the Measurement of Stellar Nuclear-Reaction Rates J. O. Fernández Niello 1, A. Arazi 1,2, T. Faestermann 2, K. Knie

More information

Interactions. Laws. Evolution

Interactions. Laws. Evolution Lecture Origin of the Elements MODEL: Origin of the Elements or Nucleosynthesis Fundamental Particles quarks, gluons, leptons, photons, neutrinos + Basic Forces gravity, electromagnetic, nuclear Interactions

More information

Nuclear Reactions with light ion and photon beams; Contributions to Neutrino Astrophysics

Nuclear Reactions with light ion and photon beams; Contributions to Neutrino Astrophysics Nuclear Reactions with light ion and photon beams; Contributions to Neutrino Astrophysics 1. Incompressibility and Giant Resonances (ISGMR, ISGDR) 2. Charge exchange reactions 3. Photon Beams for (g,g

More information

Chiral Model in Nuclear Medium and Hypernuclear Production

Chiral Model in Nuclear Medium and Hypernuclear Production WDS'10 Proceedings of ontributed Papers, Part III, 2 6, 2010. ISBN 978-80-7378-141-5 MATFYZPRESS hiral Model in Nuclear Medium and Hypernuclear Production V. Krejčiřík harles University, Faculty of Mathematics

More information

Nuclear physics input for the r-process

Nuclear physics input for the r-process Nuclear physics input for the r-process Gabriel Martínez Pinedo INT Workshop The r-process: status and challenges July 28 - August 1, 2014 Nuclear Astrophysics Virtual Institute Outline 1 Introduction

More information

Instability and different burning regimes

Instability and different burning regimes 1 X-ray bursts Last time we talked about one of the major differences between NS and BH: NS have strong magnetic fields. That means that hot spots can be produced near the magnetic poles, leading to pulsations

More information

Neutrinos and DM (Galactic)

Neutrinos and DM (Galactic) Neutrinos and DM (Galactic) ArXiv:0905.4764 ArXiv:0907.238 ArXiv: 0911.5188 ArXiv:0912.0512 Matt Buckley, Katherine Freese, Dan Hooper, Sourav K. Mandal, Hitoshi Murayama, and Pearl Sandick Basic Result

More information

Electron-electron interactions and Dirac liquid behavior in graphene bilayers

Electron-electron interactions and Dirac liquid behavior in graphene bilayers Electron-electron interactions and Dirac liquid behavior in graphene bilayers arxiv:85.35 S. Viola Kusminskiy, D. K. Campbell, A. H. Castro Neto Boston University Workshop on Correlations and Coherence

More information

Nuclear Astrophysics in Rare Isotope Facilities

Nuclear Astrophysics in Rare Isotope Facilities Proc. 19th Winter Workshop on Nuclear Dynamics (2003) 000 000 19th Winter Workshop on Nuclear Dynamics Breckenridge, Colorado, USA February 8 15, 2003 Nuclear Astrophysics in Rare Isotope Facilities C.A.

More information

Nuclear Alpha-Particle Condensation

Nuclear Alpha-Particle Condensation Nuclear Alpha-Particle Condensation 40 Ca+ 12 C, 25 AMeV with CHIMERA First experimental evidence of alpha-particle condensation for the Hoyle state Ad. R. Raduta, B.Borderie, N. Le Neindre, E. Geraci,

More information

Steffen Hauf

Steffen Hauf Charmonium in the QGP Debye screening a' la Matsui & Satz Steffen Hauf 17.01.2008 22. Januar 2008 Fachbereich nn Institut nn Prof. nn 1 Overview (1)Charmonium: an Introduction (2)Rehersion: Debye Screening

More information

Measurement of the 62,63. Ni(n,γ) cross section at n_tof/cern

Measurement of the 62,63. Ni(n,γ) cross section at n_tof/cern Measurement of the 62,63 Ni(n,γ) cross section at n_tof/cern University of Vienna 01. September 2011 ERAWAST II, Zürich Nucleosynthesis of heavy elements BB fusion neutrons Abundance (Si=10 6 ) Fe Mass

More information

Presentation at the 10th RIBLL Collaboration Symposium, Beijing, 2017/1/7

Presentation at the 10th RIBLL Collaboration Symposium, Beijing, 2017/1/7 Presentation at the 10th RIBLL Collaboration Symposium, Beijing, 2017/1/7 Outline 1. Background 1.1 Decay for proton-rich nuclei 1.2 Astrophysical implications 2. Experiments 2.1 Introduction 2.2 Experimental

More information

Giant resonances in exotic nuclei & astrophysics

Giant resonances in exotic nuclei & astrophysics Giant resonances in exotic nuclei & astrophysics 1) Giant resonances: properties & modelisation 2) Giant resonances in exotic nuclei 3) Giant resonances and astrophysics E. Khan 1) Properties and modelisation

More information

Bremsstrahlung. Rybicki & Lightman Chapter 5. Free-free Emission Braking Radiation

Bremsstrahlung. Rybicki & Lightman Chapter 5. Free-free Emission Braking Radiation Bremsstrahlung Rybicki & Lightman Chapter 5 Bremsstrahlung Free-free Emission Braking Radiation Radiation due to acceleration of charged particle by the Coulomb field of another charge. Relevant for (i)

More information

Yang-Mills Propagators in Landau Gauge at Non-Vanishing Temperature

Yang-Mills Propagators in Landau Gauge at Non-Vanishing Temperature Yang-Mills Propagators in Landau Gauge at Non-Vanishing Temperature Leonard Fister, Jan M. Pawlowski, Universität Heidelberg... work in progress ERG Corfu - September 2 Motivation ultimate goal: computation

More information

Thermonuclear Reactions

Thermonuclear Reactions Thermonuclear Reactions Eddington in 1920s hypothesized that fusion reactions between light elements were the energy source of the stars. Stellar evolution = (con) sequence of nuclear reactions E kinetic

More information

Stopping, blooming, and straggling of directed energetic electrons in hydrogenic and arbitrary-z plasmas

Stopping, blooming, and straggling of directed energetic electrons in hydrogenic and arbitrary-z plasmas Stopping, blooming, and straggling of directed energetic electrons in hydrogenic and arbitrary-z plasmas This model Monte Carlo 1 MeV e 1 MeV e C. K. Li and R. D. Petrasso MIT 47th Annual Meeting of the

More information

Primer: Nuclear reactions in Stellar Burning

Primer: Nuclear reactions in Stellar Burning Primer: Nuclear reactions in Stellar Burning Michael Wiescher University of Notre Dame The difficulty with low temperature reaction rates CNO reactions in massive main sequence stars He burning reactions

More information

1 Stellar Energy Generation Physics background

1 Stellar Energy Generation Physics background 1 Stellar Energy Generation Physics background 1.1 Relevant relativity synopsis We start with a review of some basic relations from special relativity. The mechanical energy E of a particle of rest mass

More information

Downward Terrestrial Gamma Flashes Observed at the Telescope Array Surface Detector

Downward Terrestrial Gamma Flashes Observed at the Telescope Array Surface Detector Downward Terrestrial Gamma Flashes Observed at the Telescope Array Surface Detector John Belz University of Utah PACIFIC 2018 Akaigawa, Hokkaido, Japan 20180215 Unknowns In Lightning Production When we

More information

«Ettore Majorana» International School of Subnuclear Physics Erice, 14th-23rd June 2016

«Ettore Majorana» International School of Subnuclear Physics Erice, 14th-23rd June 2016 The 22Ne(p,γ)23Na reaction studies at LUNA Denise Piatti for LUNA collaboration University of Padua and INFN of Padua «Ettore Majorana» International School of Subnuclear Physics Erice, 14th-23rd June

More information

High-energy collision processes involving intense laser fields

High-energy collision processes involving intense laser fields High-energy collision processes involving intense laser fields Carsten Müller Max Planck Institute for Nuclear Physics, Theory Division (Christoph H. Keitel), Heidelberg, Germany EMMI Workshop: Particle

More information

Nucleosynthesis. at MAGIX/MESA. Stefan Lunkenheimer MAGIX Collaboration Meeting 2017

Nucleosynthesis. at MAGIX/MESA. Stefan Lunkenheimer MAGIX Collaboration Meeting 2017 Nucleosynthesis 12 C(α, γ) 16 O at MAGIX/MESA Stefan Lunkenheimer MAGIX Collaboration Meeting 2017 Topics S-Factor Simulation Outlook 2 S-Factor 3 Stages of stellar nucleosynthesis Hydrogen Burning (PPI-III

More information

Clusters in Dense Matter and the Equation of State

Clusters in Dense Matter and the Equation of State Clusters in Dense Matter and the Equation of State Excellence Cluster Universe, Technische Universität München GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt in collaboration with Gerd Röpke

More information

Neda Sadooghi Sharif University of Technology (SUT) and Institute for Theoretical Physics and Mathematics (IPM) Tehran-Iran

Neda Sadooghi Sharif University of Technology (SUT) and Institute for Theoretical Physics and Mathematics (IPM) Tehran-Iran Modified Coulomb potential of QED in a strong magnetic field Neda Sadooghi Sharif University of Technology (SUT) and Institute for Theoretical Physics and Mathematics (IPM) Tehran-Iran Modified Coulomb

More information

Thermodynamics in Cosmology Nucleosynthesis

Thermodynamics in Cosmology Nucleosynthesis Thermodynamics in Cosmology Nucleosynthesis Thermodynamics Expansion Evolution of temperature Freeze out Nucleosynthesis Production of the light elements Potential barrier Primordial synthesis calculations

More information

The CNO Bi-Cycle. Note that the net sum of these reactions is

The CNO Bi-Cycle. Note that the net sum of these reactions is The CNO Bi-Cycle A second way of processing 1 H into 4 He is through a series of nuclear reactions involving the different species of Carbon, Nitrogen, and Oxygen. The principle reactions are as follows:

More information

From Last Time: We can more generally write the number densities of H, He and metals.

From Last Time: We can more generally write the number densities of H, He and metals. From Last Time: We can more generally write the number densities of H, He and metals. n H = Xρ m H,n He = Y ρ 4m H, n A = Z Aρ Am H, How many particles results from the complete ionization of hydrogen?

More information

Experimental and theoretical screening energies for the

Experimental and theoretical screening energies for the Eur. Phys. J. A 27, s1, 83 88 (26) DOI: 1.114/epja/i26-8-12-y EPJ A direct electronic only Experimental and theoretical screening energies for the 2 H(d, p) 3 H reaction in metallic environments K. Czerski

More information

Bose Einstein Condensation Nuclear Fusion: Role of Monopole Transition

Bose Einstein Condensation Nuclear Fusion: Role of Monopole Transition J. Condensed Matter Nucl. Sci. 6 (2012) 101 107 Research Article Bose Einstein Condensation Nuclear Fusion: Role of Monopole Transition Yeong E. Kim Department of Physics, Purdue University, West Lafayette,

More information

Enhancement of Antimatter Signals from Dark Matter Annihilation

Enhancement of Antimatter Signals from Dark Matter Annihilation Enhancement of Antimatter Signals from Dark Matter Annihilation around Intermediate Mass Black Holes Pierre Brun Laboratoire d Annecy-le-vieux de Physique des Particules CNRS/IN2P3/Université de Savoie

More information

Nucleosynthesis in Supernovae and GRBs and Neutrino Oscillation

Nucleosynthesis in Supernovae and GRBs and Neutrino Oscillation Meeting on Unification of Particle Physics, Nuclear Physics and Astrophysics, Ise-Shima, December 3-5, 2011 Nucleosynthesis in Supernovae and GRBs and Neutrino Oscillation Taka KAJINO National Astronomical

More information

Convergent Close-Coupling approach to atomic and molecular collisions

Convergent Close-Coupling approach to atomic and molecular collisions Convergent Close-Coupling approach to atomic and molecular collisions Igor Bray Dmitry Fursa, Alisher Kadyrov, Andris Stelbovics and many students Head, Physics, Astronomy and Medical Imaging Science,

More information

Hybrid C-O-Ne White Dwarfs as Progenitors of Diverse SNe Ia

Hybrid C-O-Ne White Dwarfs as Progenitors of Diverse SNe Ia Hybrid C-O-Ne White Dwarfs as Progenitors of Diverse SNe Ia Department of Physics & Astronomy, University of Victoria, P.O. Box 1700, STN CSC, Victoria, B.C., V8W 2Y2, Canada; The Joint Institute for Nuclear

More information

arxiv: v3 [astro-ph.co] 13 Sep 2017

arxiv: v3 [astro-ph.co] 13 Sep 2017 Big Bang Nucleosynthesis with Stable 8 Be and the Primordial Lithium Problem Richard T. Scherrer Department of Astronomy, University of Illinois, Urbana, IL 61801 and and Department of Computer Science,

More information

Quantum three-body calculation of the nonresonant triple-α reaction rate at low temperatures

Quantum three-body calculation of the nonresonant triple-α reaction rate at low temperatures Quantum three-body calculation of the nonresonant triple- reaction rate at low temperatures Kazuyuki Ogata (in collaboration with M. Kan and M. Kamimura) Department of Physics, Kyushu University Kyushu

More information

1. Liquid Wall Ablation 2. FLiBe Properties

1. Liquid Wall Ablation 2. FLiBe Properties 1. Liquid Wall Ablation 2. FLiBe Properties A. R. Raffray and M. Zaghloul University of California, San Diego ARIES-IFE Meeting Princeton Plasma Physics Laboratory Princeton, New Jersey October 2-4, 2002

More information

Superfluid Heat Conduction in the Neutron Star Crust

Superfluid Heat Conduction in the Neutron Star Crust Superfluid Heat Conduction in the Neutron Star Crust Sanjay Reddy Los Alamos National Lab Collaborators : Deborah Aguilera Vincenzo Cirigliano Jose Pons Rishi Sharma arxiv:0807.4754 Thermal Conduction

More information

Impact of Terrestrial Facilities on the Structure of the Neutron Star Crust

Impact of Terrestrial Facilities on the Structure of the Neutron Star Crust Impact of Terrestrial Facilities on the Structure of the Neutron Star Crust Jorge Piekarewicz Florida State University The Neutron Star Crust and Surface (INT - June, 2007) My Collaborators: C.J. Horowitz,

More information

Nuclear collective vibrations in hot nuclei and electron capture in stellar evolution

Nuclear collective vibrations in hot nuclei and electron capture in stellar evolution 2012 4 12 16 Nuclear collective vibrations in hot nuclei and electron capture in stellar evolution Yifei Niu Supervisor: Prof. Jie Meng School of Physics, Peking University, China April 12, 2012 Collaborators:

More information

Measurement of the plasma astrophysical S factor for the 3 He(D, p) 4 He reaction in exploding molecular clusters

Measurement of the plasma astrophysical S factor for the 3 He(D, p) 4 He reaction in exploding molecular clusters Measurement of the plasma astrophysical S factor for the 3 He(D, p) 4 He reaction in exploding molecular clusters M. Barbui 1, a), W. Bang 2, b), A. Bonasera 3,1, K. Hagel 1, K. Schmidt 1, J. B. Natowitz

More information

Charmonium(-like) and Bottomonium(-like) States Results from Belle and BaBar

Charmonium(-like) and Bottomonium(-like) States Results from Belle and BaBar Charmonium(-like) and Bottomonium(-like) States Results from Belle and BaBar Mostly X(3872). Jens Sören Lange Justus-Liebig-Universität Gießen MENU10 12 th International Conference on Meson-Nucleon Physics

More information

Disassembly model for the production of astrophysical strangelets

Disassembly model for the production of astrophysical strangelets Disassembly model for the production of astrophysical strangelets arxiv:1405.2532v2 [astro-ph.he] 12 Apr 2015 Sayan Biswas 1,2, J. N. De 3, Partha S. Joarder 1,2, Sibaji Raha 1,2, and Debapriyo Syam 2

More information

Oliver S. Kirsebom. Debrecen, 27 Oct 2012

Oliver S. Kirsebom. Debrecen, 27 Oct 2012 12 C and the triple-α reaction rate Oliver S. Kirsebom Debrecen, 27 Oct 2012 Aarhus University, Denmark & TRIUMF, Canada Introduction Astrophysical helium burning Red giant stars, T = 0.1 2 GK Three reactions:

More information

Neutron capture cross section on Lu isotopes at DANCE

Neutron capture cross section on Lu isotopes at DANCE Neutron capture cross section on Lu isotopes at DANCE Los Alamos National Laboratory Los Alamos, New-Mexico 8755, USA and CEA, DAM, DIF F-9197 Arpajon, France E-mail: olivier.roig@cea.fr A. Couture 1 Los

More information

Schiff Moments. J. Engel. October 23, 2014

Schiff Moments. J. Engel. October 23, 2014 Schiff Moments J. Engel October 23, 2014 One Way Things Get EDMs Starting at fundamental level and working up: Underlying fundamental theory generates three T -violating πnn vertices: N? ḡ π New physics

More information

Non-extensive Statistics Solution to the Cosmological Lithium Problem

Non-extensive Statistics Solution to the Cosmological Lithium Problem Non-extensive Statistics Solution to the Cosmological Lithium Problem S.Q. Hou 1, J.J. He 1,2, A. Parikh 3,4, D. Kahl 5,6 C.A. Bertulani 7, T. Kajino 8,9,10, G.J. Mathews 9,11, G. Zhao 2 1 Key Laboratory

More information

Type Ia Supernova Models and Galactic Chemical Evolution

Type Ia Supernova Models and Galactic Chemical Evolution Type Ia Supernova Models and Galactic Chemical Evolution Spencer Henning Western Michigan University Lee Honors College Thesis Defense Presentation April 28, 2017 1 White Dwarf Formation Source: [1] 2

More information

Discovery of Pions and Kaons in Cosmic Rays in 1947

Discovery of Pions and Kaons in Cosmic Rays in 1947 Discovery of Pions and Kaons in Cosmic Rays in 947 π + µ + e + (cosmic rays) Points to note: de/dx Bragg Peak Low de/dx for fast e + Constant range (~600µm) (i.e. -body decay) small angle scattering Strange

More information

Schiff Moments. J. Engel. November 4, 2016

Schiff Moments. J. Engel. November 4, 2016 Schiff Moments J. Engel November 4, 2016 One Way Things Get EDMs Starting at fundamental level and working up: Underlying fundamental theory generates three T-violating πnn vertices: N? ḡ π New physics

More information

Interactions/Weak Force/Leptons

Interactions/Weak Force/Leptons Interactions/Weak Force/Leptons Quantum Picture of Interactions Yukawa Theory Boson Propagator Feynman Diagrams Electromagnetic Interactions Renormalization and Gauge Invariance Weak and Electroweak Interactions

More information

Let s consider nonrelativistic electrons. A given electron follows Newton s law. m v = ee. (2)

Let s consider nonrelativistic electrons. A given electron follows Newton s law. m v = ee. (2) Plasma Processes Initial questions: We see all objects through a medium, which could be interplanetary, interstellar, or intergalactic. How does this medium affect photons? What information can we obtain?

More information

arxiv:nucl-th/ v1 4 Oct 1993

arxiv:nucl-th/ v1 4 Oct 1993 Experimental nuclear masses and the ground state of cold dense matter arxiv:nucl-th/9310003v1 4 Oct 1993 P. Haensel * and B. Pichon D.A.R.C. - U.P.R. 176 du C.N.R.S., Observatoire de Paris, Section de

More information

Interactions/Weak Force/Leptons

Interactions/Weak Force/Leptons Interactions/Weak Force/Leptons Quantum Picture of Interactions Yukawa Theory Boson Propagator Feynman Diagrams Electromagnetic Interactions Renormalization and Gauge Invariance Weak and Electroweak Interactions

More information

Produced in nuclear processes (e.g. fusion reactions) Solar neutrinos and supernova neutrinos

Produced in nuclear processes (e.g. fusion reactions) Solar neutrinos and supernova neutrinos Sources of Neutrinos Low energy neutrinos (10 th of MeV) Produced in nuclear processes (e.g. fusion reactions) Solar neutrinos and supernova neutrinos High energy neutrinos (10 th of GeV) Produced in high

More information

Recent neutron capture measurements at FZK

Recent neutron capture measurements at FZK René Reifarth Recent neutron capture measurements at FZK Outline: Overview of s-process nucleosynthesis Nuclear data needs for the s-process where do we stand? Recent (n,γ) cross section measurements at

More information

Cosmology. Thermal history of the universe Primordial nucleosynthesis WIMPs as dark matter Recombination Horizon problem Flatness problem Inflation

Cosmology. Thermal history of the universe Primordial nucleosynthesis WIMPs as dark matter Recombination Horizon problem Flatness problem Inflation Cosmology Thermal history of the universe Primordial nucleosynthesis WIMPs as dark matter Recombination Horizon problem Flatness problem Inflation Energy density versus scale factor z=1/a-1 Early times,

More information

Effective Field Theory for Nuclear Physics! Akshay Vaghani! Mississippi State University!

Effective Field Theory for Nuclear Physics! Akshay Vaghani! Mississippi State University! Effective Field Theory for Nuclear Physics! Akshay Vaghani! Mississippi State University! Overview! Introduction! Basic ideas of EFT! Basic Examples of EFT! Algorithm of EFT! Review NN scattering! NN scattering

More information

Long range interaction --- between ions/electrons and ions/electrons; Coulomb 1/r Intermediate range interaction --- between

Long range interaction --- between ions/electrons and ions/electrons; Coulomb 1/r Intermediate range interaction --- between Collisional Processes Long range interaction --- between ions/electrons and ions/electrons; Coulomb 1/r Intermediate range interaction --- between ions/electrons and neutral atoms/molecules; Induced dipole

More information