Long range interaction --- between ions/electrons and ions/electrons; Coulomb 1/r Intermediate range interaction --- between

Size: px
Start display at page:

Download "Long range interaction --- between ions/electrons and ions/electrons; Coulomb 1/r Intermediate range interaction --- between"

Transcription

1 Collisional Processes Long range interaction --- between ions/electrons and ions/electrons; Coulomb 1/r Intermediate range interaction --- between ions/electrons and neutral atoms/molecules; Induced dipole 1/r 4 Short range interaction --- between neutrals, 1/r 6

2 In general, for a two-body collision, A + B Products, the reaction rate per unit volume = n A n B <σ v> AB, where the rate coefficient is < σv > AB = Z 0 σ AB vf(v) dv [cm 3 s -1 ] v = relative velocity between A and B σ AB (v) = reaction cross section; velocity depedent f(v) = velocity distribution function

3 In thermal equilibrium μ f v dv =4π( 2πkT )3/2 e μv2 /2kT v 2 dv In terms of energy Z < σv > AB =( 8kT )1/2 σ AB(E) E de e E/kT πμ 0 kt kt If the density is high, e.g., in the Earth s atmosphere, three-body collision may become important, A+B+C + Products, the reaction rate per unit volume = k ABC n A n B n C where k ABC is the three-body collisional rate coefficient [cm 6 s -1 ]

4 Elastic scattering by an inverse- square force, e.g., Rutherford scattering Exact solutions complicated; use the impact tapproximation, i.e., motion in a straight line Assumption: constant velocity during the encounter between the target and the projectile Question: How much momentum is transferred ( Question: How much momentum is transferred ( direction)? Figure from Draine s book b: impact parameter; closest distance v 1 : relative velocity

5 Impact Approximation Coulomb force Z 1eZ 2 e Z 1Z 2 e 2 F 3 = (b/ cos θ) 2 cos θ = b 2 cos θ Interaction time scale dt = d(b tan θ) v 1 = v b dθ 1 cos 2 θ Total momentum transfer is Z p = F dt = Z 1Z 2 e 2 bv 1 = 2Z 1Z 2 e 2 Z 1Z 2 e 2 b bv 1 b 2 Force at closest distance Z π/2 v 1 Time scale π/2 cos θ dθ

6 In a collisional ionization, there must be enough momentum transfer. (E=p 2 /2m) Fast moving (1/2) m e v 2 >> E I e So, E 2Z 1Z 2 e 2 ( P ) 2 > 2mE I ( ) 2 > 2mEE I bv 1 b 2 <b 2 max (v) =(2Z 1Z 2 e 2 ) 2 v 2 1 2mE I 2 2 Z 2 4 = 2Z2 p e 4 m e v 2 E I and the ionization cross section becomes 2 4 σ(v) πb 2 max = 2πZ2 p e4 m e v 2 E I This is ok if v.

7 For v 1 2 min = 2 m e v min = E I < σv > = = Z σ(v)vf(v) ( ) ) dv Z 2πZp 2 e 4 v 4π ( m e )3/2 v 2 e m ev 2 /2kT dv v min m e v 2 E I 2πkT = Z 2 ( 8π p me kt E I )1/2 e4 E e E I/kT For an H atom at level n, E I = 13.6 [ev]/n 2, so for a large n, e.g., n~100, and T~10 4 K, E I (<< kt) in radio frequencies. < σv > 1 E I n 2, so is very large. I

8 Deflection Timescale Net momentum transfer < d ( P 2 ) > dt Z 1 e - Z 2 e, n [cm -3 ] There must be a range of distance, for which 2 b min = Z 1 Z 2 e 2 /Energy, and b max L D (Debye length) In plasma, the distributions of ions and electrons are correlated because of charge neutrality. Near a proton more electrons than protons the proton is shielded Average charge within a region <Q(L D )> = -e L D e - p + e - kt L D =( 4πn e e 2)1/2 =690T 1/2 n e 4 [ cm 3 ] 1/2 [cm] e - e - e -

9 < d dt ( P ) 2 > n 2 v 1 ln Λ So Λ is large, b max /b min in ISM conditions. For elastic scattering of electrons by ions, weak distant encounters (>> atomic scales) weak distant encounters (>> atomic scales) more important than close encounters.

10 If an electron comes in in atomic dimensions, the atom is suddenly perturbed transision deexcitation line radiation < σv > 10 = Ω 10 [cm 3 s 1 ] T4 g 1 where Ω 10 is collision strength. (i) almost independent of T for T < T 4 = 10 4 K (ii) 1 < Ω 10 < 10

11 Ion-Neutral Collisions Interaction potential U(r) = 1 2 α N Z 2 e 2 r 4 r 4 Neutral is polarized. - + Dipole moment ~ P = α N ~ E where α N is polarizability a few a 0. a 0 =Bohrradius h2 m e e 2 = [cm]

12 For such a potential, if b < b 0, the deflection cross section is large. σ = π b /v, and the rate coefficient <σ v> T Usually if T, σ The ion-neutral reactions are important in cool ISM.

13 Electron-Neutral Collisions In low-ionization ISM (e.g., protoplanetary disks) ions are rare. e -neutral (H 2, He) scattering is important. e -H 2 scattering (1) If E < ev pure elastic scattering (2) If E > ev rotational excitation possible (3) If E > 0.5 ev vibrational excitation possible (4) If E > 11 ev electronic excitation By experiment σ ' E ( 01 ) [cm2 ] 0.01eV 9 T and < σv >' ( 10 2 K ) [cm s ]

14 Neutral-Neutral Collisions Repulsive if distance Weakly attractive if distance van der Waals interactions (mutual induced electric dipole) U(r) r 6 Hard sphere OK; radii R ~ 1Ǻ b < R 1 + R 2 σ = π (R 1 + R 2 ) [cm 2 ] 1/2 1/2 < σv >= T ( K )1/2 ( m H μ )1/2 ( R 1 + R 2 2Å )2 [cm 3 s 1 ]

15 Collision Gas (hydrogen atoms) root-mean-squared speed For H I regions, Cross sections σ Hard sphere OK for neutral atoms, i.e., physical cross section

16 Cross sections σ For free e -, p + Conventional unit for cross section

17 Collision σ v t n v # of collisions = # of particles in the (moving) volume # of collisions per unit time = Time (mean-free time) between 2 consecutive collisions (N=1) = Mean-free path ` = vt ` = 1 collision, i.e.,` n σ

18 Ex 1 Collisions are indeed very rare. Ex 2 Ex 3

Plasma collisions and conductivity

Plasma collisions and conductivity e ion conductivity Plasma collisions and conductivity Collisions in weakly and fully ionized plasmas Electric conductivity in non-magnetized and magnetized plasmas Collision frequencies In weakly ionized

More information

Chapter 3. Coulomb collisions

Chapter 3. Coulomb collisions Chapter 3 Coulomb collisions Coulomb collisions are long-range scattering events between charged particles due to the mutual exchange of the Coulomb force. Where do they occur, and why they are of interest?

More information

Thermal Equilibrium in Nebulae 1. For an ionized nebula under steady conditions, heating and cooling processes that in

Thermal Equilibrium in Nebulae 1. For an ionized nebula under steady conditions, heating and cooling processes that in Thermal Equilibrium in Nebulae 1 For an ionized nebula under steady conditions, heating and cooling processes that in isolation would change the thermal energy content of the gas are in balance, such that

More information

ATOMS. Central field model (4 quantum numbers + Pauli exclusion) n = 1, 2, 3,... 0 l n 1 (0, 1, 2, 3 s, p, d, f) m l l, m s = ±1/2

ATOMS. Central field model (4 quantum numbers + Pauli exclusion) n = 1, 2, 3,... 0 l n 1 (0, 1, 2, 3 s, p, d, f) m l l, m s = ±1/2 ATOMS Central field model (4 quantum numbers + Pauli exclusion) n = 1, 2, 3,... 0 l n 1 (0, 1, 2, 3 s, p, d, f) m l l, m s = ±1/2 Spectroscopic notation: 2S+1 L J (Z 40) L is total orbital angular momentum

More information

Collision Processes. n n The solution is 0 exp x/ mfp

Collision Processes. n n The solution is 0 exp x/ mfp Collision Processes Collisions mediate the transfer of energy and momentum between various species in a plasma, and as we shall see later, allow a treatment of highly ionized plasma as a single conducting

More information

Resonant Reactions direct reactions:

Resonant Reactions direct reactions: Resonant Reactions The energy range that could be populated in the compound nucleus by capture of the incoming projectile by the target nucleus is for direct reactions: for neutron induced reactions: roughly

More information

The change in free energy on transferring an ion from a medium of low dielectric constantε1 to one of high dielectric constant ε2:

The change in free energy on transferring an ion from a medium of low dielectric constantε1 to one of high dielectric constant ε2: The Born Energy of an Ion The free energy density of an electric field E arising from a charge is ½(ε 0 ε E 2 ) per unit volume Integrating the energy density of an ion over all of space = Born energy:

More information

CHAPTER 22. Astrophysical Gases

CHAPTER 22. Astrophysical Gases CHAPTER 22 Astrophysical Gases Most of the baryonic matter in the Universe is in a gaseous state, made up of 75% Hydrogen (H), 25% Helium (He) and only small amounts of other elements (called metals ).

More information

PHYS 5012 Radiation Physics and Dosimetry

PHYS 5012 Radiation Physics and Dosimetry Radiative PHYS 5012 Radiation Physics and Dosimetry Mean Tuesday 24 March 2009 Radiative Mean Radiative Mean Collisions between two particles involve a projectile and a target. Types of targets: whole

More information

Spectral Line Intensities - Boltzmann, Saha Eqs.

Spectral Line Intensities - Boltzmann, Saha Eqs. Spectral Line Intensities - Boltzmann, Saha Eqs. Absorption in a line depends on: - number of absorbers along the line-of-sight, and -their cross section(s). Absorp. n a σl, where n a is the number of

More information

Elastic Collisions. Chapter Center of Mass Frame

Elastic Collisions. Chapter Center of Mass Frame Chapter 11 Elastic Collisions 11.1 Center of Mass Frame A collision or scattering event is said to be elastic if it results in no change in the internal state of any of the particles involved. Thus, no

More information

Plasma Astrophysics Chapter 1: Basic Concepts of Plasma. Yosuke Mizuno Institute of Astronomy National Tsing-Hua University

Plasma Astrophysics Chapter 1: Basic Concepts of Plasma. Yosuke Mizuno Institute of Astronomy National Tsing-Hua University Plasma Astrophysics Chapter 1: Basic Concepts of Plasma Yosuke Mizuno Institute of Astronomy National Tsing-Hua University What is a Plasma? A plasma is a quasi-neutral gas consisting of positive and negative

More information

Collisional radiative model

Collisional radiative model Lenka Dosoudilová Lenka Dosoudilová 1 / 14 Motivation Equations Approximative models Emission coefficient Particles J ij = 1 4π n j A ij hν ij, atoms in ground state atoms in excited states resonance metastable

More information

Transport coefficients in plasmas spanning weak to strong correlation

Transport coefficients in plasmas spanning weak to strong correlation Transport coefficients in plasmas spanning weak to strong correlation Scott D. Baalrud 1,2 and Jerome Daligault 1 1 Theoretical Division, Los Alamos National Laboratory 2 Department of Physics and Astronomy,

More information

xkcd.com It IS about physics. It ALL is.

xkcd.com It IS about physics. It ALL is. xkcd.com It IS about physics. It ALL is. Introduction to Space Plasmas! The Plasma State What is a plasma? Basic plasma properties: Qualitative & Quantitative Examples of plasmas! Single particle motion

More information

Physics Dec The Maxwell Velocity Distribution

Physics Dec The Maxwell Velocity Distribution Physics 301 7-Dec-2005 29-1 The Maxwell Velocity Distribution The beginning of chapter 14 covers some things we ve already discussed. Way back in lecture 6, we calculated the pressure for an ideal gas

More information

Set 3: Galaxy Evolution

Set 3: Galaxy Evolution Set 3: Galaxy Evolution Environment. Galaxies are clustered, found in groups like the local group up to large clusters of galaxies like the Coma cluster Small satellite galaxies like the LMC and SMC are

More information

Fokker-Planck collision operator

Fokker-Planck collision operator DRAFT 1 Fokker-Planck collision operator Felix I. Parra Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3NP, UK (This version is of 16 April 18) 1. Introduction In these

More information

Set 3: Galaxy Evolution

Set 3: Galaxy Evolution Set 3: Galaxy Evolution Environment. Galaxies are clustered, found in groups like the local group up to large clusters of galaxies like the Coma cluster Small satellite galaxies like the LMC and SMC are

More information

Atoms, Molecules and Solids (selected topics)

Atoms, Molecules and Solids (selected topics) Atoms, Molecules and Solids (selected topics) Part I: Electronic configurations and transitions Transitions between atomic states (Hydrogen atom) Transition probabilities are different depending on the

More information

3/29/2010. Structure of the Atom. Knowledge of atoms in 1900 CHAPTER 6. Evidence in 1900 indicated that the atom was not a fundamental unit:

3/29/2010. Structure of the Atom. Knowledge of atoms in 1900 CHAPTER 6. Evidence in 1900 indicated that the atom was not a fundamental unit: 3/9/010 CHAPTER 6 Rutherford Scattering 6.1 The Atomic Models of Thomson and Rutherford 6. Definition of Cross Section 6. Rutherford Scattering 6.3 Structure of the Nucleus The opposite of a correct statement

More information

Bremsstrahlung. Rybicki & Lightman Chapter 5. Free-free Emission Braking Radiation

Bremsstrahlung. Rybicki & Lightman Chapter 5. Free-free Emission Braking Radiation Bremsstrahlung Rybicki & Lightman Chapter 5 Bremsstrahlung Free-free Emission Braking Radiation Radiation due to acceleration of charged particle by the Coulomb field of another charge. Relevant for (i)

More information

Atom Model & Periodic Properties

Atom Model & Periodic Properties One Change Physics (OCP) MENU Atom Model & Periodic Properties 5.1 Atomic Mode In the nineteenth century it was clear to the scientists that the chemical elements consist of atoms. Although, no one gas

More information

Atoms, electrons and Solids

Atoms, electrons and Solids Atoms, electrons and Solids Shell model of an atom negative electron orbiting a positive nucleus QM tells that to minimize total energy the electrons fill up shells. Each orbit in a shell has a specific

More information

Plasmas as fluids. S.M.Lea. January 2007

Plasmas as fluids. S.M.Lea. January 2007 Plasmas as fluids S.M.Lea January 2007 So far we have considered a plasma as a set of non intereacting particles, each following its own path in the electric and magnetic fields. Now we want to consider

More information

Emphasis on what happens to emitted particle (if no nuclear reaction and MEDIUM (i.e., atomic effects)

Emphasis on what happens to emitted particle (if no nuclear reaction and MEDIUM (i.e., atomic effects) LECTURE 5: INTERACTION OF RADIATION WITH MATTER All radiation is detected through its interaction with matter! INTRODUCTION: What happens when radiation passes through matter? Emphasis on what happens

More information

Interaction of Particles and Matter

Interaction of Particles and Matter MORE CHAPTER 11, #7 Interaction of Particles and Matter In this More section we will discuss briefly the main interactions of charged particles, neutrons, and photons with matter. Understanding these interactions

More information

The broad topic of physical metallurgy provides a basis that links the structure of materials with their properties, focusing primarily on metals.

The broad topic of physical metallurgy provides a basis that links the structure of materials with their properties, focusing primarily on metals. Physical Metallurgy The broad topic of physical metallurgy provides a basis that links the structure of materials with their properties, focusing primarily on metals. Crystal Binding In our discussions

More information

Introduction to Elementary Particle Physics I

Introduction to Elementary Particle Physics I Physics 56400 Introduction to Elementary Particle Physics I Lecture 2 Fall 2018 Semester Prof. Matthew Jones Cross Sections Reaction rate: R = L σ The cross section is proportional to the probability of

More information

Single Particle Motion

Single Particle Motion Single Particle Motion C ontents Uniform E and B E = - guiding centers Definition of guiding center E gravitation Non Uniform B 'grad B' drift, B B Curvature drift Grad -B drift, B B invariance of µ. Magnetic

More information

Fundamentals of Plasma Physics

Fundamentals of Plasma Physics Fundamentals of Plasma Physics Definition of Plasma: A gas with an ionized fraction (n i + + e ). Depending on density, E and B fields, there can be many regimes. Collisions and the Mean Free Path (mfp)

More information

Photoionized Gas Ionization Equilibrium

Photoionized Gas Ionization Equilibrium Photoionized Gas Ionization Equilibrium Ionization Recombination H nebulae - case A and B Strömgren spheres H + He nebulae Heavy elements, dielectronic recombination Ionization structure 1 Ionization Equilibrium

More information

PHYS 3313 Section 001 Lecture #13

PHYS 3313 Section 001 Lecture #13 PHYS 3313 Section 001 Lecture #13 Wednesday, March 1, 2017 Rutherford Scattering Experiment and Rutherford Atomic Model The Classic Atomic Model Bohr Radius Bohr s Hydrogen Model and Its Limitations Characteristic

More information

(c) (a) 3kT/2. Cascade

(c) (a) 3kT/2. Cascade 1 AY30-HIITemp IV. Temperature of HII Regions A. Motivations B. History In star-forming galaxies, most of the heating + cooling occurs within HII regions Heating occurs via the UV photons from O and B

More information

Atomic Models the Nucleus

Atomic Models the Nucleus Atomic Models the Nucleus Rutherford (read his bio on pp 134-5), who had already won a Nobel for his work on radioactivity had also named alpha, beta, gamma radiation, developed a scattering technique

More information

Figure 1.1: Ionization and Recombination

Figure 1.1: Ionization and Recombination Chapter 1 Introduction 1.1 What is a Plasma? 1.1.1 An ionized gas A plasma is a gas in which an important fraction of the atoms is ionized, so that the electrons and ions are separately free. When does

More information

Astrochemistry and Molecular Astrophysics Paola Caselli

Astrochemistry and Molecular Astrophysics Paola Caselli School of Physics and Astronomy FACULTY OF MATHEMATICS & PHYSICAL SCIENCES Astrochemistry and Molecular Astrophysics Paola Caselli Outline 1. The formation of H 2 2. The formation of H 3 + 3. The chemistry

More information

Lecture 14 (11/1/06) Charged-Particle Interactions: Stopping Power, Collisions and Ionization

Lecture 14 (11/1/06) Charged-Particle Interactions: Stopping Power, Collisions and Ionization 22.101 Applied Nuclear Physics (Fall 2006) Lecture 14 (11/1/06) Charged-Particle Interactions: Stopping Power, Collisions and Ionization References: R. D. Evans, The Atomic Nucleus (McGraw-Hill, New York,

More information

Chapter V: Interactions of neutrons with matter

Chapter V: Interactions of neutrons with matter Chapter V: Interactions of neutrons with matter 1 Content of the chapter Introduction Interaction processes Interaction cross sections Moderation and neutrons path For more details see «Physique des Réacteurs

More information

Neutron Interactions Part I. Rebecca M. Howell, Ph.D. Radiation Physics Y2.5321

Neutron Interactions Part I. Rebecca M. Howell, Ph.D. Radiation Physics Y2.5321 Neutron Interactions Part I Rebecca M. Howell, Ph.D. Radiation Physics rhowell@mdanderson.org Y2.5321 Why do we as Medical Physicists care about neutrons? Neutrons in Radiation Therapy Neutron Therapy

More information

Physics 4230 Final Examination 10 May 2007

Physics 4230 Final Examination 10 May 2007 Physics 43 Final Examination May 7 In each problem, be sure to give the reasoning for your answer and define any variables you create. If you use a general formula, state that formula clearly before manipulating

More information

Lectures on basic plasma physics: Introduction

Lectures on basic plasma physics: Introduction Lectures on basic plasma physics: Introduction Department of applied physics, Aalto University Compiled: January 13, 2016 Definition of a plasma Layout 1 Definition of a plasma 2 Basic plasma parameters

More information

Collisions and transport phenomena

Collisions and transport phenomena Collisions and transport phenomena Collisions in partly and fully ionized plasmas Typical collision parameters Conductivity and transport coefficients Conductivity tensor Formation of the ionosphere and

More information

Stability of star clusters and galaxies `Passive evolution ASTR 3830: Spring 2004

Stability of star clusters and galaxies `Passive evolution ASTR 3830: Spring 2004 Stability of star clusters and galaxies Already mentioned different ways in which a galaxy evolves: Constituent stars evolve, with higher mass stars leaving the main sequence and producing stellar remnants.

More information

ψ s a ˆn a s b ˆn b ψ Hint: Because the state is spherically symmetric the answer can depend only on the angle between the two directions.

ψ s a ˆn a s b ˆn b ψ Hint: Because the state is spherically symmetric the answer can depend only on the angle between the two directions. 1. Quantum Mechanics (Fall 2004) Two spin-half particles are in a state with total spin zero. Let ˆn a and ˆn b be unit vectors in two arbitrary directions. Calculate the expectation value of the product

More information

Solution We start from the usual relation between the molar polarization, P m, the polarizability, α, and the dipole moment, µ: N A.

Solution We start from the usual relation between the molar polarization, P m, the polarizability, α, and the dipole moment, µ: N A. Problem 1 P m at a dierent T and dipole moment from P m at a given T and pol. vol. The polarizability volume of bromoacetylene is 7.39 10 24 cm 3 and its molar polarization, P m, in vapour phase, at 10

More information

Solid State Physics FREE ELECTRON MODEL. Lecture 17. A.H. Harker. Physics and Astronomy UCL

Solid State Physics FREE ELECTRON MODEL. Lecture 17. A.H. Harker. Physics and Astronomy UCL Solid State Physics FREE ELECTRON MODEL Lecture 17 A.H. Harker Physics and Astronomy UCL Magnetic Effects 6.7 Plasma Oscillations The picture of a free electron gas and a positive charge background offers

More information

1. What is the minimum energy required to excite a mercury atom initially in the ground state? ev ev ev

1. What is the minimum energy required to excite a mercury atom initially in the ground state? ev ev ev Page 1 of 10 modern bank Name 25-MAY-05 1. What is the minimum energy required to excite a mercury atom initially in the ground state? 1. 4.64 ev 3. 10.20 ev 2. 5.74 ev 4. 10.38 ev 2. The diagram represents

More information

The ideal Maxwellian plasma

The ideal Maxwellian plasma The ideal Maxwellian plasma Dr. L. Conde Departamento de Física Aplicada. E.T.S. Ingenieros Aeronáuticos Universidad Politécnica de Madrid Plasmas are,... The plasma state of matter may be defined as a

More information

Dust emission. D.Maino. Radio Astronomy II. Physics Dept., University of Milano. D.Maino Dust emission 1/24

Dust emission. D.Maino. Radio Astronomy II. Physics Dept., University of Milano. D.Maino Dust emission 1/24 Dust emission D.Maino Physics Dept., University of Milano Radio Astronomy II D.Maino Dust emission 1/24 New insight on Dust Emission Before WMAP and Planck with only COBE-DMR, dust is well described by

More information

4 Modeling of a capacitive RF discharge

4 Modeling of a capacitive RF discharge 4 Modeling of a capacitive discharge 4.1 PIC MCC model for capacitive discharge Capacitive radio frequency () discharges are very popular, both in laboratory research for the production of low-temperature

More information

Collisionally Excited Spectral Lines (Cont d) Diffuse Universe -- C. L. Martin

Collisionally Excited Spectral Lines (Cont d) Diffuse Universe -- C. L. Martin Collisionally Excited Spectral Lines (Cont d) Please Note: Contrast the collisionally excited lines with the H and He lines in the Orion Nebula spectrum. Preview: Pure Recombination Lines Recombination

More information

Elastic Scattering. R = m 1r 1 + m 2 r 2 m 1 + m 2. is the center of mass which is known to move with a constant velocity (see previous lectures):

Elastic Scattering. R = m 1r 1 + m 2 r 2 m 1 + m 2. is the center of mass which is known to move with a constant velocity (see previous lectures): Elastic Scattering In this section we will consider a problem of scattering of two particles obeying Newtonian mechanics. The problem of scattering can be viewed as a truncated version of dynamic problem

More information

Astro 201 Radiative Processes Problem Set 6. Due in class.

Astro 201 Radiative Processes Problem Set 6. Due in class. Astro 201 Radiative Processes Problem Set 6 Due in class. Readings: Hand-outs from Osterbrock; Rybicki & Lightman 9.5; however much you like of Mihalas 108 114, 119 127, 128 137 (even skimming Mihalas

More information

Structure of the Atom. Thomson s Atomic Model. Knowledge of atoms in Experiments of Geiger and Marsden 2. Experiments of Geiger and Marsden

Structure of the Atom. Thomson s Atomic Model. Knowledge of atoms in Experiments of Geiger and Marsden 2. Experiments of Geiger and Marsden CHAPTER 4 Structure of the Atom 4.1 The Atomic Models of Thomson and Rutherford 4. Rutherford Scattering 4.3 The Classic Atomic Model 4.4 The Bohr Model of the Hydrogen Atom 4.5 Successes & Failures of

More information

The Stellar Opacity. F ν = D U = 1 3 vl n = 1 3. and that, when integrated over all energies,

The Stellar Opacity. F ν = D U = 1 3 vl n = 1 3. and that, when integrated over all energies, The Stellar Opacity The mean absorption coefficient, κ, is not a constant; it is dependent on frequency, and is therefore frequently written as κ ν. Inside a star, several different sources of opacity

More information

Chapter II: Interactions of ions with matter

Chapter II: Interactions of ions with matter Chapter II: Interactions of ions with matter 1 Trajectories of α particles of 5.5 MeV Source: SRIM www.srim.org 2 Incident proton on Al: Bohr model v=v 0 E p =0.025 MeV relativistic effect E p =938 MeV

More information

Question 12.1: Choose the correct alternative from the clues given at the end of the each statement: (a) The size of the atom in Thomson s model is... the atomic size in Rutherford s model. (much greater

More information

Atomic and molecular interaction forces in biology

Atomic and molecular interaction forces in biology Atomic and molecular interaction forces in biology 1 Outline Types of interactions relevant to biology Van der Waals interactions H-bond interactions Some properties of water Hydrophobic effect 2 Types

More information

Sensors Plasma Diagnostics

Sensors Plasma Diagnostics Sensors Plasma Diagnostics Ken Gentle Physics Department Kenneth Gentle RLM 12.330 k.gentle@mail.utexas.edu NRL Formulary MIT Formulary www.psfc.mit.edu/library1/catalog/ reports/2010/11rr/11rr013/11rr013_full.pdf

More information

Aim: Understand equilibrium of galaxies

Aim: Understand equilibrium of galaxies 8. Galactic Dynamics Aim: Understand equilibrium of galaxies 1. What are the dominant forces? 2. Can we define some kind of equilibrium? 3. What are the relevant timescales? 4. Do galaxies evolve along

More information

Earth Solid Earth Rocks Minerals Atoms. How to make a mineral from the start of atoms?

Earth Solid Earth Rocks Minerals Atoms. How to make a mineral from the start of atoms? Earth Solid Earth Rocks Minerals Atoms How to make a mineral from the start of atoms? Formation of ions Ions excess or deficit of electrons relative to protons Anions net negative charge Cations net

More information

Radiative Processes in Flares I: Bremsstrahlung

Radiative Processes in Flares I: Bremsstrahlung Hale COLLAGE 2017 Lecture 20 Radiative Processes in Flares I: Bremsstrahlung Bin Chen (New Jersey Institute of Technology) The standard flare model e - magnetic reconnection 1) Magnetic reconnection and

More information

xkcd.com It IS about physics. It ALL is.

xkcd.com It IS about physics. It ALL is. xkcd.com It IS about physics. It ALL is. Introduction to Space Plasmas The Plasma State What is a plasma? Basic plasma properties: Qualitative & Quantitative Examples of plasmas Single particle motion

More information

From Last Time: We can more generally write the number densities of H, He and metals.

From Last Time: We can more generally write the number densities of H, He and metals. From Last Time: We can more generally write the number densities of H, He and metals. n H = Xρ m H,n He = Y ρ 4m H, n A = Z Aρ Am H, How many particles results from the complete ionization of hydrogen?

More information

1 Molecular collisions

1 Molecular collisions Advanced Kinetics Solution 9 April 29, 216 1 Molecular collisions 1.1 The bimolecular rate constant for the reaction is defined as: dc A dt = k(t )C A C B. (1) The attenuation of the intensity of the beam

More information

MOLECULES. ENERGY LEVELS electronic vibrational rotational

MOLECULES. ENERGY LEVELS electronic vibrational rotational MOLECULES BONDS Ionic: closed shell (+) or open shell (-) Covalent: both open shells neutral ( share e) Other (skip): van der Waals (He-He) Hydrogen bonds (in DNA, proteins, etc) ENERGY LEVELS electronic

More information

General Physical Chemistry II

General Physical Chemistry II General Physical Chemistry II Lecture 13 Aleksey Kocherzhenko October 16, 2014" Last time " The Hückel method" Ø Used to study π systems of conjugated molecules" Ø π orbitals are treated separately from

More information

A Quantum-Classical Approach for the Study of Cascade Processes in Exotic Hydrogen Atoms

A Quantum-Classical Approach for the Study of Cascade Processes in Exotic Hydrogen Atoms PSAS 28 International Conference on Precision Physics of Simple Atomic Systems Windsor, July 21-26, 28 A Quantum-Classical Approach for the Study of Cascade Processes in Exotic Hydrogen Atoms M.P. Faifman

More information

Gas Dynamics: Basic Equations, Waves and Shocks

Gas Dynamics: Basic Equations, Waves and Shocks Astrophysical Dynamics, VT 010 Gas Dynamics: Basic Equations, Waves and Shocks Susanne Höfner Susanne.Hoefner@fysast.uu.se Astrophysical Dynamics, VT 010 Gas Dynamics: Basic Equations, Waves and Shocks

More information

Colloid Chemistry. La chimica moderna e la sua comunicazione Silvia Gross.

Colloid Chemistry. La chimica moderna e la sua comunicazione Silvia Gross. Colloid Chemistry La chimica moderna e la sua comunicazione Silvia Gross Istituto Dipartimento di Scienze di e Scienze Tecnologie Chimiche Molecolari ISTM-CNR, Università Università degli Studi degli Studi

More information

3. Stellar Atmospheres: Opacities

3. Stellar Atmospheres: Opacities 3. Stellar Atmospheres: Opacities 3.1. Continuum opacity The removal of energy from a beam of photons as it passes through matter is governed by o line absorption (bound-bound) o photoelectric absorption

More information

Department of Physics, Princeton University. Graduate Preliminary Examination Part I. Thursday, May 7, :00 am - 12:00 noon

Department of Physics, Princeton University. Graduate Preliminary Examination Part I. Thursday, May 7, :00 am - 12:00 noon Department of Physics, Princeton University Graduate Preliminary Examination Part I Thursday, May 7, 2015 9:00 am - 12:00 noon Answer TWO out of the THREE questions in Section A (Mechanics) and TWO out

More information

Principles of Chemical Kinetics

Principles of Chemical Kinetics Kinetic Theory of Gases Rates of Chemical Reactions Theories of Chemical Reactions Summary Principles of Chemical Kinetics Ramon Xulvi-Brunet Escuela Politécnica Nacional Kinetic Theory of Gases Rates

More information

PHYS 3313 Section 001 Lecture #12

PHYS 3313 Section 001 Lecture #12 PHYS 3313 Section 001 Lecture #12 Monday, Feb. 24, 2014 Rutherford Scattering Experiment and Rutherford Atomic Model The Classic Atomic Model The Bohr Model of the Hydrogen Atom 1 Quiz 2 results Class

More information

Interstellar Astrophysics Summary notes: Part 2

Interstellar Astrophysics Summary notes: Part 2 Interstellar Astrophysics Summary notes: Part 2 Dr. Paul M. Woods The main reference source for this section of the course is Chapter 5 in the Dyson and Williams (The Physics of the Interstellar Medium)

More information

Fundamentals of Spectroscopy for Optical Remote Sensing. Course Outline 2009

Fundamentals of Spectroscopy for Optical Remote Sensing. Course Outline 2009 Fundamentals of Spectroscopy for Optical Remote Sensing Course Outline 2009 Part I. Fundamentals of Quantum Mechanics Chapter 1. Concepts of Quantum and Experimental Facts 1.1. Blackbody Radiation and

More information

The interaction of radiation with matter

The interaction of radiation with matter Basic Detection Techniques 2009-2010 http://www.astro.rug.nl/~peletier/detectiontechniques.html Detection of energetic particles and gamma rays The interaction of radiation with matter Peter Dendooven

More information

Chapter 18 Thermal Properties of Matter

Chapter 18 Thermal Properties of Matter Chapter 18 Thermal Properties of Matter In this section we define the thermodynamic state variables and their relationship to each other, called the equation of state. The system of interest (most of the

More information

Atomic Structure. Chapter 8

Atomic Structure. Chapter 8 Atomic Structure Chapter 8 Overview To understand atomic structure requires understanding a special aspect of the electron - spin and its related magnetism - and properties of a collection of identical

More information

Lecture 6: Molecular Transitions (1) Astrochemistry

Lecture 6: Molecular Transitions (1) Astrochemistry Lecture 6: Molecular Transitions (1) Astrochemistry Ehrenfreund & Charnley 2000, ARA&A, 38, 427 Outline Astrochemical processes: The formation of H2 H3 formation The chemistry initiated by H3 Formation

More information

Some fundamentals. Statistical mechanics. The non-equilibrium ISM. = g u

Some fundamentals. Statistical mechanics. The non-equilibrium ISM. = g u Some fundamentals Statistical mechanics We have seen that the collision timescale for gas in this room is very small relative to radiative timesscales such as spontaneous emission. The frequent collisions

More information

Practical Quantum Mechanics

Practical Quantum Mechanics Siegfried Flügge Practical Quantum Mechanics With 78 Figures Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Hong Kong Barcelona Budapest Contents Volume I I. General Concepts 1. Law of probability

More information

Theory of Gas Discharge

Theory of Gas Discharge Boris M. Smirnov Theory of Gas Discharge Plasma l Springer Contents 1 Introduction 1 Part I Processes in Gas Discharge Plasma 2 Properties of Gas Discharge Plasma 13 2.1 Equilibria and Distributions of

More information

Spectral Line Shapes. Line Contributions

Spectral Line Shapes. Line Contributions Spectral Line Shapes Line Contributions The spectral line is termed optically thin because there is no wavelength at which the radiant flux has been completely blocked. The opacity of the stellar material

More information

Chapter 44. Nuclear Structure

Chapter 44. Nuclear Structure Chapter 44 Nuclear Structure Milestones in the Development of Nuclear Physics 1896: the birth of nuclear physics Becquerel discovered radioactivity in uranium compounds Rutherford showed the radiation

More information

Theory of Interstellar Phases

Theory of Interstellar Phases Theory of Interstellar Phases 1. Relevant Observations 2. Linear Stability Theory 3. FGH Model 4. Update and Summary References Tielens, Secs. 8.1-5 Field ApJ 142 531 1965 (basic stability theory) Field,

More information

ATOMIC STRUCTURE, ELECTRONS, AND PERIODICITY

ATOMIC STRUCTURE, ELECTRONS, AND PERIODICITY ATOMIC STRUCTURE, ELECTRONS, AND PERIODICITY All matter is made of atoms. There are a limited number of types of atoms; these are the elements. (EU 1.A) Development of Atomic Theory Atoms are so small

More information

Today, I will present the first of two lectures on neutron interactions.

Today, I will present the first of two lectures on neutron interactions. Today, I will present the first of two lectures on neutron interactions. I first need to acknowledge that these two lectures were based on lectures presented previously in Med Phys I by Dr Howell. 1 Before

More information

Opacity. requirement (aim): radiative equilibrium: near surface: Opacity

Opacity. requirement (aim): radiative equilibrium: near surface: Opacity (Gray) Diffusion approximation to radiative transport: (assumes isotropy valid only in the deep stellar interior) - opacity is a function of frequency (wave length ). - aim: to reduce the (rather complex)

More information

The answer (except for Z = 19) can be seen in Figure 1. All credit to McGraw- Hill for the image.

The answer (except for Z = 19) can be seen in Figure 1. All credit to McGraw- Hill for the image. Problem 9.3 Which configuration has a greater number of unpaired spins? Which one has a lower energy? [Kr]4d 9 5s or [Kr]4d. What is the element and how does Hund s rule apply?. Solution The element is

More information

6. Cosmology. (same at all points) probably true on a sufficiently large scale. The present. ~ c. ~ h Mpc (6.1)

6. Cosmology. (same at all points) probably true on a sufficiently large scale. The present. ~ c. ~ h Mpc (6.1) 6. 6. Cosmology 6. Cosmological Principle Assume Universe is isotropic (same in all directions) and homogeneous (same at all points) probably true on a sufficiently large scale. The present Universe has

More information

Plasma Spectroscopy Inferences from Line Emission

Plasma Spectroscopy Inferences from Line Emission Plasma Spectroscopy Inferences from Line Emission Ø From line λ, can determine element, ionization state, and energy levels involved Ø From line shape, can determine bulk and thermal velocity and often

More information

8/24/2018. Charge Polarization. Charge Polarization. Charge Polarization

8/24/2018. Charge Polarization. Charge Polarization. Charge Polarization Charge Polarization The figure shows how a charged rod held close to an electroscope causes the leaves to repel each other. How do charged objects of either sign exert an attractive force on a neutral

More information

Chapter 2 Radiation-Matter Interactions

Chapter 2 Radiation-Matter Interactions Chapter 2 Radiation-Matter Interactions The behavior of radiation and matter as a function of energy governs the degradation of astrophysical information along the path and the characteristics of the detectors.

More information

10. Scattering from Central Force Potential

10. Scattering from Central Force Potential University of Rhode Island DigitalCommons@URI Classical Dynamics Physics Course Materials 215 1. Scattering from Central Force Potential Gerhard Müller University of Rhode Island, gmuller@uri.edu Creative

More information

Direct reactions methodologies for use at fragmentation beam energies

Direct reactions methodologies for use at fragmentation beam energies 1 Direct reactions methodologies for use at fragmentation beam energies TU Munich, February 14 th 2008 Jeff Tostevin, Department of Physics Faculty of Engineering and Physical Sciences University of Surrey,

More information

Physical models for plasmas II

Physical models for plasmas II Physical models for plasmas II Dr. L. Conde Dr. José M. Donoso Departamento de Física Aplicada. E.T.S. Ingenieros Aeronáuticos Universidad Politécnica de Madrid Physical models,... Plasma Kinetic Theory

More information

Test particle Field particle m m f v v f e Ze and assume m fi m f and (1=2)mv 2 fl (1=2)m f vf 2 (i.e., v fl v f ). We begin with a single Coulomb col

Test particle Field particle m m f v v f e Ze and assume m fi m f and (1=2)mv 2 fl (1=2)m f vf 2 (i.e., v fl v f ). We begin with a single Coulomb col Ph777, week 2* Part 1. Particle Kinetics of Thermal Plasmas 1.1 Debye Shielding, Collective Behavior of Plasma, Plasma and Cyclotron Oscillations Debye length: Debye number: h kt i T [104 K] D = 690cm

More information

Chapter 3. Crystal Binding

Chapter 3. Crystal Binding Chapter 3. Crystal Binding Energy of a crystal and crystal binding Cohesive energy of Molecular crystals Ionic crystals Metallic crystals Elasticity What causes matter to exist in three different forms?

More information