Bremsstrahlung. Rybicki & Lightman Chapter 5. Free-free Emission Braking Radiation

Size: px
Start display at page:

Download "Bremsstrahlung. Rybicki & Lightman Chapter 5. Free-free Emission Braking Radiation"

Transcription

1 Bremsstrahlung Rybicki & Lightman Chapter 5 Bremsstrahlung Free-free Emission Braking Radiation Radiation due to acceleration of charged particle by the Coulomb field of another charge. Relevant for (i) Collisions between unlike particles: changing dipole emission e-e-, p-p interactions have no net dipole moment (ii) e- - ions dominate: acc(e-) > acc(ions) because m(e-) << m(ions) recall P~m -2 ion-ion brems is negligible 1

2 Method of Attack: (1) emission from single e- pick rest frame of ion calculate dipole radiation correct for quantum effects (Gaunt factor) (2) Emission from collection of e- thermal bremsstrahlung or non-thermal bremsstrahlung (3) Relativistic bremsstrahlung (Virtual Quanta) A qualitative picture 2

3 Emission from Single-Speed Electrons b Ze ion R e- v Electron moves past ion, assumed to be stationary. b= impact parameter - Suppose the deviation of the e- path is negligible small-angle scattering The dipole moment the encounter. - Recall that for dipole radiation is a function of time during energy frequency = dw dω = 8πω 4 3c 3 d ˆ (ω) 2 where is the Fourier Transform of After some straight-forward algebra, (R&L pp ), one can derive in terms of impact parameter, b. 3

4 Now, suppose you have a bunch of electrons, all with the same speed, v, which interact with a bunch of ions. Let n i = ion density (# ions/vol.) n e = electron density (# electrons / vol) The # of electrons incident on one ion is # e-s /Vol d/t around one ion, in terms of b 4

5 So total emission/time/vol/freq is dw dω dv dt = n e n i 2πv dw (b) dω bdb Again, evaluating the integral is discussed in detail in R&L p We quote the result Energy per volume per frequency per time due to bremsstrahlung for electrons, all with same velocity v. dw dωdvdt = 16πe c 3 m 2 v n n Z 2 e i g ff (v,ω) Gaunt factors are quantum mechanical corrections function of e- energy, frequency Gaunt factors are tabulated (more later) 5

6 Naturally, in most situations, you never have electrons with just one velocity v. Maxwell-Boltzmann Distribution Thermal Bremsstrahlung Average the single speed expression for dw/dwdtdv over the Maxwell-Boltzmann distribution with temperature T: The result, with where In cgs units, we can write the emission coefficient Free-free emission coefficient ergs /s /cm 3 /Hz 6

7 Integrate over frequency: dw dvdt = 25 πe 6 3hmc 3 2πkT 3km 1/ 2 Z 2 n e n i g B where g B = frequency average of the velocity averaged Gaunt factor In cgs: ε ν ff = dw dvdt = Z 2 n e n i T 1/ 2 g B Ergs sec -1 cm -3 The Gaunt factors - Analytical approximations exist to evaluate them - Tables exist you can look up - For most situations, so just take 7

8 Handy table, from Tucker: Radiation Processes in Astrophysics 8

9 Important Characteristics of Thermal Bremsstrahlung Emissivity (1) Usually optically thin. Then (2) is ~ constant with hν at low frequencies (3) falls of exponentially at 9

10 Examples: Important in hot plasmas where the gas is mostly ionized, so that bound-free emission can be neglected. T ( o K) Obs. of Solar flare 10 7 (~ 1keV) radio flat X-ray exponential H II region 10 5 radio flat Orion 10 4 radio-flat Sco X optical-flat X-ray flat/exp. Coma Cluster ICM 10 8 X-ray flat/exp. Bremsstrahlung (free-free) absorption photon Brems emission e- ion Recall the emission coefficient, jν, is related to the absorption coefficient αν for a thermal gas: e- e- photon collateral Inverse Bremss. free-free abs. is isotropic, so ff α ν = 4e6 2π 3mhc 3km 1/ 2 and thus n e n i Z 2 T 1/ 2 ν 3 hν / kt ( 1 e )g ff in cgs: α ν ff = n e n i Z 2 T 1/ 2 ν 3 hν / kt ( 1 e )g ff 10

11 Important Characteristics of (1) (e.g. X-rays) Because of term, is very small unless n e is very large. in X-rays, thermal bremsstrahlung emission can be treated as optically thin (except in stellar interiors) (2) e.g. Radio: Rayleigh Jeans holds Absorption can be important, even for low n e in the radio regime. 11

12 4/11/11 From Bradt s book: BB spectrum is optically thick limit of Thermal Bremss. HII Regions, showing free-free absorption in their radio spectra: 12

13 R&L Problem 5.2 Spherical source of X-rays, radius R distance L=10 kpc flux F= 10-8 erg cm -2 s -1 (a) What is T? Assume optically thin, thermal bremsstrahlung. Turn-over in the spectrum at log h (kev) ~ 2 13

14 (b) Assume the cloud is in hydrostatic equilibrium around a central mass, M. Find M, and the density of the cloud, ρ Vol. emission coeff. 1/r 2 Vol. F = 1 4πR 3 4πL 2 3 ( T 1/ 2 n e n i Z 2 g B ) - Since T=10 9 K, the gas is completely ionized - Assume it is pure hydrogen, so n i = n e, then ρ=mass density, g/cm3 Z=1 since pure hydrogen g B =1.2 (1) 14

15 - Hydrostatic equilibrium another constraint upon ρ, R Virial Theorem: K.E. 2 = grav.energy particle particle For T=10 9 K (2) - Eqn (1) & (2) Substituting L=10 kpc, F=10-8 erg cm -2 s -1 15

Thermal Bremsstrahlung

Thermal Bremsstrahlung Thermal Bremsstrahlung ''Radiation due to the acceleration of a charge in the Coulomb field of another charge is called bremsstrahlung or free-free emission A full understanding of the process requires

More information

Electrodynamics of Radiation Processes

Electrodynamics of Radiation Processes Electrodynamics of Radiation Processes 7. Emission from relativistic particles (contd) & Bremsstrahlung http://www.astro.rug.nl/~etolstoy/radproc/ Chapter 4: Rybicki&Lightman Sections 4.8, 4.9 Chapter

More information

ˆd = 1 2π. d(t)e iωt dt. (1)

ˆd = 1 2π. d(t)e iωt dt. (1) Bremsstrahlung Initial questions: How does the hot gas in galaxy clusters cool? What should we see in their inner portions, where the density is high? As in the last lecture, we re going to take a more

More information

Bremsstrahlung Radiation

Bremsstrahlung Radiation Bremsstrahlung Radiation Wise (IR) An Example in Everyday Life X-Rays used in medicine (radiographics) are generated via Bremsstrahlung process. In a nutshell: Bremsstrahlung radiation is emitted when

More information

Chapter 2 Bremsstrahlung and Black Body

Chapter 2 Bremsstrahlung and Black Body Chapter 2 Bremsstrahlung and Black Body 2.1 Bremsstrahlung We will follow an approximate derivation. For a more complete treatment see [2] and [1]. We will consider an electron proton plasma. Definitions:

More information

Astrophysical Radiation Processes

Astrophysical Radiation Processes PHY3145 Topics in Theoretical Physics Astrophysical Radiation Processes 5:Synchrotron and Bremsstrahlung spectra Dr. J. Hatchell, Physics 406, J.Hatchell@exeter.ac.uk Course structure 1. Radiation basics.

More information

1 Monday, October 31: Relativistic Charged Particles

1 Monday, October 31: Relativistic Charged Particles 1 Monday, October 31: Relativistic Charged Particles As I was saying, before the midterm exam intervened, in an inertial frame of reference K there exists an electric field E and a magnetic field B at

More information

Recap Lecture + Thomson Scattering. Thermal radiation Blackbody radiation Bremsstrahlung radiation

Recap Lecture + Thomson Scattering. Thermal radiation Blackbody radiation Bremsstrahlung radiation Recap Lecture + Thomson Scattering Thermal radiation Blackbody radiation Bremsstrahlung radiation LECTURE 1: Constancy of Brightness in Free Space We use now energy conservation: de=i ν 1 da1 d Ω1 dt d

More information

X-ray Radiation, Absorption, and Scattering

X-ray Radiation, Absorption, and Scattering X-ray Radiation, Absorption, and Scattering What we can learn from data depend on our understanding of various X-ray emission, scattering, and absorption processes. We will discuss some basic processes:

More information

CHAPTER 27. Continuum Emission Mechanisms

CHAPTER 27. Continuum Emission Mechanisms CHAPTER 27 Continuum Emission Mechanisms Continuum radiation is any radiation that forms a continuous spectrum and is not restricted to a narrow frequency range. In what follows we briefly describe five

More information

The Stellar Opacity. F ν = D U = 1 3 vl n = 1 3. and that, when integrated over all energies,

The Stellar Opacity. F ν = D U = 1 3 vl n = 1 3. and that, when integrated over all energies, The Stellar Opacity The mean absorption coefficient, κ, is not a constant; it is dependent on frequency, and is therefore frequently written as κ ν. Inside a star, several different sources of opacity

More information

2. Basic Assumptions for Stellar Atmospheres

2. Basic Assumptions for Stellar Atmospheres 2. Basic Assumptions for Stellar Atmospheres 1. geometry, stationarity 2. conservation of momentum, mass 3. conservation of energy 4. Local Thermodynamic Equilibrium 1 1. Geometry Stars as gaseous spheres!

More information

Thermal Equilibrium in Nebulae 1. For an ionized nebula under steady conditions, heating and cooling processes that in

Thermal Equilibrium in Nebulae 1. For an ionized nebula under steady conditions, heating and cooling processes that in Thermal Equilibrium in Nebulae 1 For an ionized nebula under steady conditions, heating and cooling processes that in isolation would change the thermal energy content of the gas are in balance, such that

More information

Radiation processes and mechanisms in astrophysics I. R Subrahmanyan Notes on ATA lectures at UWA, Perth 18 May 2009

Radiation processes and mechanisms in astrophysics I. R Subrahmanyan Notes on ATA lectures at UWA, Perth 18 May 2009 Radiation processes and mechanisms in astrophysics I R Subrahmanyan Notes on ATA lectures at UWA, Perth 18 May 009 Light of the night sky We learn of the universe around us from EM radiation, neutrinos,

More information

Ay Fall 2004 Lecture 6 (given by Tony Travouillon)

Ay Fall 2004 Lecture 6 (given by Tony Travouillon) Ay 122 - Fall 2004 Lecture 6 (given by Tony Travouillon) Stellar atmospheres, classification of stellar spectra (Many slides c/o Phil Armitage) Formation of spectral lines: 1.excitation Two key questions:

More information

2. Basic assumptions for stellar atmospheres

2. Basic assumptions for stellar atmospheres . Basic assumptions for stellar atmospheres 1. geometry, stationarity. conservation of momentum, mass 3. conservation of energy 4. Local Thermodynamic Equilibrium 1 1. Geometry Stars as gaseous spheres

More information

2. Basic assumptions for stellar atmospheres

2. Basic assumptions for stellar atmospheres . Basic assumptions for stellar atmospheres 1. geometry, stationarity. conservation of momentum, mass 3. conservation of energy 4. Local Thermodynamic Equilibrium 1 1. Geometry Stars as gaseous spheres

More information

Radiation Processes. Black Body Radiation. Heino Falcke Radboud Universiteit Nijmegen. Contents:

Radiation Processes. Black Body Radiation. Heino Falcke Radboud Universiteit Nijmegen. Contents: Radiation Processes Black Body Radiation Heino Falcke Radboud Universiteit Nijmegen Contents: Planck Spectrum Kirchoff & Stefan-Boltzmann Rayleigh-Jeans & Wien Einstein Coefficients Literature: Based heavily

More information

Topics ASTR 3730: Fall 2003

Topics ASTR 3730: Fall 2003 Topics Qualitative questions: might cover any of the main topics (since 2nd midterm: star formation, extrasolar planets, supernovae / neutron stars, black holes). Quantitative questions: worthwhile to

More information

2. Basic assumptions for stellar atmospheres

2. Basic assumptions for stellar atmospheres . Basic assumptions for stellar atmospheres 1. geometry, stationarity. conservation of momentum, mass 3. conservation of energy 4. Local Thermodynamic Equilibrium 1 1. Geometry Stars as gaseous spheres

More information

Sources of radiation

Sources of radiation Sources of radiation Most important type of radiation is blackbody radiation. This is radiation that is in thermal equilibrium with matter at some temperature T. Lab source of blackbody radiation: hot

More information

Special relativity and light RL 4.1, 4.9, 5.4, (6.7)

Special relativity and light RL 4.1, 4.9, 5.4, (6.7) Special relativity and light RL 4.1, 4.9, 5.4, (6.7) First: Bremsstrahlung recap Braking radiation, free-free emission Important in hot plasma (e.g. coronae) Most relevant: thermal Bremsstrahlung What

More information

Radiative Processes in Flares I: Bremsstrahlung

Radiative Processes in Flares I: Bremsstrahlung Hale COLLAGE 2017 Lecture 20 Radiative Processes in Flares I: Bremsstrahlung Bin Chen (New Jersey Institute of Technology) The standard flare model e - magnetic reconnection 1) Magnetic reconnection and

More information

Opacity and Optical Depth

Opacity and Optical Depth Opacity and Optical Depth Absorption dominated intensity change can be written as di λ = κ λ ρ I λ ds with κ λ the absorption coefficient, or opacity The initial intensity I λ 0 of a light beam will be

More information

Preliminary Examination: Astronomy

Preliminary Examination: Astronomy Preliminary Examination: Astronomy Department of Physics and Astronomy University of New Mexico Spring 2017 Instructions: Answer 8 of the 10 questions (10 points each) Total time for the test is three

More information

Some HI is in reasonably well defined clouds. Motions inside the cloud, and motion of the cloud will broaden and shift the observed lines!

Some HI is in reasonably well defined clouds. Motions inside the cloud, and motion of the cloud will broaden and shift the observed lines! Some HI is in reasonably well defined clouds. Motions inside the cloud, and motion of the cloud will broaden and shift the observed lines Idealized 21cm spectra Example observed 21cm spectra HI densities

More information

Interstellar Medium Physics

Interstellar Medium Physics Physics of gas in galaxies. Two main parts: atomic processes & hydrodynamic processes. Atomic processes deal mainly with radiation Hydrodynamics is large scale dynamics of gas. Start small Radiative transfer

More information

80 2 Observational Cosmology L and the mean energy

80 2 Observational Cosmology L and the mean energy 80 2 Observational Cosmology fluctuations, short-wavelength modes have amplitudes that are suppressed because these modes oscillated as acoustic waves during the radiation epoch whereas the amplitude of

More information

The Larmor Formula (Chapters 18-19)

The Larmor Formula (Chapters 18-19) 2017-02-28 Dispersive Media, Lecture 12 - Thomas Johnson 1 The Larmor Formula (Chapters 18-19) T. Johnson Outline Brief repetition of emission formula The emission from a single free particle - the Larmor

More information

Compton Scattering I. 1 Introduction

Compton Scattering I. 1 Introduction 1 Introduction Compton Scattering I Compton scattering is the process whereby photons gain or lose energy from collisions with electrons. It is an important source of radiation at high energies, particularly

More information

Bethe-Block. Stopping power of positive muons in copper vs βγ = p/mc. The slight dependence on M at highest energies through T max

Bethe-Block. Stopping power of positive muons in copper vs βγ = p/mc. The slight dependence on M at highest energies through T max Bethe-Block Stopping power of positive muons in copper vs βγ = p/mc. The slight dependence on M at highest energies through T max can be used for PID but typically de/dx depend only on β (given a particle

More information

a few more introductory subjects : equilib. vs non-equil. ISM sources and sinks : matter replenishment, and exhaustion Galactic Energetics

a few more introductory subjects : equilib. vs non-equil. ISM sources and sinks : matter replenishment, and exhaustion Galactic Energetics Today : a few more introductory subjects : equilib. vs non-equil. ISM sources and sinks : matter replenishment, and exhaustion Galactic Energetics photo-ionization of HII assoc. w/ OB stars ionization

More information

GEORGE B. RYBICKI, ALAN P. LIGHTMAN. Copyright W Y-VCH Verlag GmbH L Co. KCaA

GEORGE B. RYBICKI, ALAN P. LIGHTMAN. Copyright W Y-VCH Verlag GmbH L Co. KCaA RADIATIVE PROCESSE S IN ASTROPHYSICS GEORGE B. RYBICKI, ALAN P. LIGHTMAN Copyright 0 2004 W Y-VCH Verlag GmbH L Co. KCaA 5 BREMSSTRAHLUNG Radiation due to the acceleration of a charge in the Coulomb field

More information

23 Astrophysics 23.5 Ionization of the Interstellar Gas near a Star

23 Astrophysics 23.5 Ionization of the Interstellar Gas near a Star 23 Astrophysics 23.5 Ionization of the Interstellar Gas near a Star (8 units) No knowledge of Astrophysics is assumed or required: all relevant equations are defined and explained in the project itself.

More information

Radiative Processes in Astrophysics

Radiative Processes in Astrophysics Radiative Processes in Astrophysics 11. Synchrotron Radiation & Compton Scattering Eline Tolstoy http://www.astro.rug.nl/~etolstoy/astroa07/ Synchrotron Self-Absorption synchrotron emission is accompanied

More information

Lecture 3: Emission and absorption

Lecture 3: Emission and absorption Lecture 3: Emission and absorption Senior Astrophysics 2017-03-10 Senior Astrophysics Lecture 3: Emission and absorption 2017-03-10 1 / 35 Outline 1 Optical depth 2 Sources of radiation 3 Blackbody radiation

More information

Electromagnetic Spectra. AST443, Lecture 13 Stanimir Metchev

Electromagnetic Spectra. AST443, Lecture 13 Stanimir Metchev Electromagnetic Spectra AST443, Lecture 13 Stanimir Metchev Administrative Homework 2: problem 5.4 extension: until Mon, Nov 2 Reading: Bradt, chapter 11 Howell, chapter 6 Tenagra data: see bottom of Assignments

More information

Atomic Physics 3 ASTR 2110 Sarazin

Atomic Physics 3 ASTR 2110 Sarazin Atomic Physics 3 ASTR 2110 Sarazin Homework #5 Due Wednesday, October 4 due to fall break Test #1 Monday, October 9, 11-11:50 am Ruffner G006 (classroom) You may not consult the text, your notes, or any

More information

Interstellar Astrophysics Summary notes: Part 2

Interstellar Astrophysics Summary notes: Part 2 Interstellar Astrophysics Summary notes: Part 2 Dr. Paul M. Woods The main reference source for this section of the course is Chapter 5 in the Dyson and Williams (The Physics of the Interstellar Medium)

More information

Spectral Line Intensities - Boltzmann, Saha Eqs.

Spectral Line Intensities - Boltzmann, Saha Eqs. Spectral Line Intensities - Boltzmann, Saha Eqs. Absorption in a line depends on: - number of absorbers along the line-of-sight, and -their cross section(s). Absorp. n a σl, where n a is the number of

More information

If light travels past a system faster than the time scale for which the system evolves then t I ν = 0 and we have then

If light travels past a system faster than the time scale for which the system evolves then t I ν = 0 and we have then 6 LECTURE 2 Equation of Radiative Transfer Condition that I ν is constant along rays means that di ν /dt = 0 = t I ν + ck I ν, (29) where ck = di ν /ds is the ray-path derivative. This is equation is the

More information

Free-Fall Timescale of Sun

Free-Fall Timescale of Sun Free-Fall Timescale of Sun Free-fall timescale: The time it would take a star (or cloud) to collapse to a point if there was no outward pressure to counteract gravity. We can calculate the free-fall timescale

More information

Outline. Today we will learn what is thermal radiation

Outline. Today we will learn what is thermal radiation Thermal Radiation & Outline Today we will learn what is thermal radiation Laws Laws of of themodynamics themodynamics Radiative Radiative Diffusion Diffusion Equation Equation Thermal Thermal Equilibrium

More information

The structure and evolution of stars. Introduction and recap

The structure and evolution of stars. Introduction and recap The structure and evolution of stars Lecture 3: The equations of stellar structure 1 Introduction and recap For our stars which are isolated, static, and spherically symmetric there are four basic equations

More information

X-ray Radiation, Absorption, and Scattering

X-ray Radiation, Absorption, and Scattering X-ray Radiation, Absorption, and Scattering What we can learn from data depend on our understanding of various X-ray emission, scattering, and absorption processes. We will discuss some basic processes:

More information

Neutrinos, nonzero rest mass particles, and production of high energy photons Particle interactions

Neutrinos, nonzero rest mass particles, and production of high energy photons Particle interactions Neutrinos, nonzero rest mass particles, and production of high energy photons Particle interactions Previously we considered interactions from the standpoint of photons: a photon travels along, what happens

More information

Lec 3. Radiative Processes and HII Regions

Lec 3. Radiative Processes and HII Regions Lec 3. Radiative Processes and HII Regions 1. Photoionization 2. Recombination 3. Photoionization-Recombination Equilibrium 4. Heating & Cooling of HII Regions 5. Strömgren Theory (for Hydrogen) 6. The

More information

de = j ν dvdωdtdν. (1)

de = j ν dvdωdtdν. (1) Transfer Equation and Blackbodies Initial questions: There are sources in the centers of some galaxies that are extraordinarily bright in microwaves. What s going on? The brightest galaxies in the universe

More information

Photoionized Gas Ionization Equilibrium

Photoionized Gas Ionization Equilibrium Photoionized Gas Ionization Equilibrium Ionization Recombination H nebulae - case A and B Strömgren spheres H + He nebulae Heavy elements, dielectronic recombination Ionization structure 1 Ionization Equilibrium

More information

PHYSICS OF HOT DENSE PLASMAS

PHYSICS OF HOT DENSE PLASMAS Chapter 6 PHYSICS OF HOT DENSE PLASMAS 10 26 10 24 Solar Center Electron density (e/cm 3 ) 10 22 10 20 10 18 10 16 10 14 10 12 High pressure arcs Chromosphere Discharge plasmas Solar interior Nd (nω) laserproduced

More information

1 Monday, November 7: Synchrotron Radiation for Beginners

1 Monday, November 7: Synchrotron Radiation for Beginners 1 Monday, November 7: Synchrotron Radiation for Beginners An accelerated electron emits electromagnetic radiation. The most effective way to accelerate an electron is to use electromagnetic forces. Since

More information

3 Some Radiation Basics

3 Some Radiation Basics 12 Physics 426 Notes Spring 29 3 Some Radiation Basics In this chapter I ll store some basic tools we need for working with radiation astrophysically. This material comes directly from Rybicki & Lightman

More information

Ay123 Set 1 solutions

Ay123 Set 1 solutions Ay13 Set 1 solutions Mia de los Reyes October 18 1. The scale of the Sun a Using the angular radius of the Sun and the radiant flux received at the top of the Earth s atmosphere, calculate the effective

More information

Ay101 Set 1 solutions

Ay101 Set 1 solutions Ay11 Set 1 solutions Ge Chen Jan. 1 19 1. The scale of the Sun a 3 points Venus has an orbital period of 5 days. Using Kepler s laws, what is its semi-major axis in units of AU Start with Kepler s third

More information

3145 Topics in Theoretical Physics - radiation processes - Dr J Hatchell. Multiwavelength Milky Way

3145 Topics in Theoretical Physics - radiation processes - Dr J Hatchell. Multiwavelength Milky Way Multiwavelength Milky Way PHY3145 Topics in Theoretical Physics Astrophysical Radiation Processes Dr. J. Hatchell, Physics 406, J.Hatchell@exeter.ac.uk Textbooks Main texts Rybicki & Lightman Radiative

More information

Lecture 4: Absorption and emission lines

Lecture 4: Absorption and emission lines Lecture 4: Absorption and emission lines Senior Astrophysics 2018-03-13 Senior Astrophysics () Lecture 4: Absorption and emission lines 2018-03-13 1 / 35 Outline 1 Absorption and emission line spectra

More information

(c) (a) 3kT/2. Cascade

(c) (a) 3kT/2. Cascade 1 AY30-HIITemp IV. Temperature of HII Regions A. Motivations B. History In star-forming galaxies, most of the heating + cooling occurs within HII regions Heating occurs via the UV photons from O and B

More information

1. Why photons? 2. Photons in a vacuum

1. Why photons? 2. Photons in a vacuum Photons and Other Messengers 1. Why photons? Ask class: most of our information about the universe comes from photons. What are the reasons for this? Let s compare them with other possible messengers,

More information

Stellar atmospheres: an overview

Stellar atmospheres: an overview Stellar atmospheres: an overview Core M = 2x10 33 g R = 7x10 10 cm 50 M o 20 R o L = 4x10 33 erg/s 10 6 L o 10 4 (PN) 10 6 (HII) 10 12 (QSO) L o Photosphere Envelope Chromosphere/Corona R = 200 km ~ 3x10

More information

CHAPTER 22. Astrophysical Gases

CHAPTER 22. Astrophysical Gases CHAPTER 22 Astrophysical Gases Most of the baryonic matter in the Universe is in a gaseous state, made up of 75% Hydrogen (H), 25% Helium (He) and only small amounts of other elements (called metals ).

More information

Example: model a star using a two layer model: Radiation starts from the inner layer as blackbody radiation at temperature T in. T out.

Example: model a star using a two layer model: Radiation starts from the inner layer as blackbody radiation at temperature T in. T out. Next, consider an optically thick source: Already shown that in the interior, radiation will be described by the Planck function. Radiation escaping from the source will be modified because the temperature

More information

Dipole Approxima7on Thomson ScaEering

Dipole Approxima7on Thomson ScaEering Feb. 28, 2011 Larmor Formula: radia7on from non- rela7vis7c par7cles Dipole Approxima7on Thomson ScaEering The E, B field at point r and 7me t depends on the retarded posi7on r(ret) and retarded 7me t(ret)

More information

6. Cosmology. (same at all points) probably true on a sufficiently large scale. The present. ~ c. ~ h Mpc (6.1)

6. Cosmology. (same at all points) probably true on a sufficiently large scale. The present. ~ c. ~ h Mpc (6.1) 6. 6. Cosmology 6. Cosmological Principle Assume Universe is isotropic (same in all directions) and homogeneous (same at all points) probably true on a sufficiently large scale. The present Universe has

More information

Stars AS4023: Stellar Atmospheres (13) Stellar Structure & Interiors (11)

Stars AS4023: Stellar Atmospheres (13) Stellar Structure & Interiors (11) Stars AS4023: Stellar Atmospheres (13) Stellar Structure & Interiors (11) Kenneth Wood, Room 316 kw25@st-andrews.ac.uk http://www-star.st-and.ac.uk/~kw25 What is a Stellar Atmosphere? Transition from dense

More information

Spectroscopy Lecture 2

Spectroscopy Lecture 2 Spectroscopy Lecture 2 I. Atomic excitation and ionization II. Radiation Terms III. Absorption and emission coefficients IV. Einstein coefficients V. Black Body radiation I. Atomic excitation and ionization

More information

1 Radiative transfer etc

1 Radiative transfer etc Radiative transfer etc Last time we derived the transfer equation dτ ν = S ν I v where I ν is the intensity, S ν = j ν /α ν is the source function and τ ν = R α ν dl is the optical depth. The formal solution

More information

Thomson scattering: It is the scattering of electromagnetic radiation by a free non-relativistic charged particle.

Thomson scattering: It is the scattering of electromagnetic radiation by a free non-relativistic charged particle. Thomson scattering: It is the scattering of electromagnetic radiation by a free non-relativistic charged particle. The electric and magnetic components of the incident wave accelerate the particle. As

More information

ν is the frequency, h = ergs sec is Planck s constant h S = = x ergs sec 2 π the photon wavelength λ = c/ν

ν is the frequency, h = ergs sec is Planck s constant h S = = x ergs sec 2 π the photon wavelength λ = c/ν 3-1 3. Radiation Nearly all our information about events beyond the Solar system is brought to us by electromagnetic radiation radio, submillimeter, infrared, visual, ultraviolet, X-rays, γ-rays. The particles

More information

Astrophysics Assignment; Kramers Opacity Law

Astrophysics Assignment; Kramers Opacity Law Astrophysics Assignment; Kramers Opacity Law Alenka Bajec August 26, 2005 CONTENTS Contents Transport of Energy 2. Radiative Transport of Energy................................. 2.. Basic Estimates......................................

More information

Theory of optically thin emission line spectroscopy

Theory of optically thin emission line spectroscopy Theory of optically thin emission line spectroscopy 1 Important definitions In general the spectrum of a source consists of a continuum and several line components. Processes which give raise to the continuous

More information

PHYS 231 Lecture Notes Week 3

PHYS 231 Lecture Notes Week 3 PHYS 231 Lecture Notes Week 3 Reading from Maoz (2 nd edition): Chapter 2, Sec. 3.1, 3.2 A lot of the material presented in class this week is well covered in Maoz, and we simply reference the book, with

More information

Atomic Physics ASTR 2110 Sarazin

Atomic Physics ASTR 2110 Sarazin Atomic Physics ASTR 2110 Sarazin Homework #5 Due Wednesday, October 4 due to fall break Test #1 Monday, October 9, 11-11:50 am Ruffner G006 (classroom) You may not consult the text, your notes, or any

More information

Synchrotron Radiation II

Synchrotron Radiation II Synchrotron Radiation II Cyclotron v

More information

2. NOTES ON RADIATIVE TRANSFER The specific intensity I ν

2. NOTES ON RADIATIVE TRANSFER The specific intensity I ν 1 2. NOTES ON RADIATIVE TRANSFER 2.1. The specific intensity I ν Let f(x, p) be the photon distribution function in phase space, summed over the two polarization states. Then fdxdp is the number of photons

More information

Atomic Transitions II & Molecular Structure

Atomic Transitions II & Molecular Structure Atomic Transitions II & Molecular Structure Atomic Transitions II Transition Probability Dipole Approximation Line Broadening Transition Probability: The Hamiltonian To calculate explicitly the transition

More information

Accretion Disks. 1. Accretion Efficiency. 2. Eddington Luminosity. 3. Bondi-Hoyle Accretion. 4. Temperature profile and spectrum of accretion disk

Accretion Disks. 1. Accretion Efficiency. 2. Eddington Luminosity. 3. Bondi-Hoyle Accretion. 4. Temperature profile and spectrum of accretion disk Accretion Disks Accretion Disks 1. Accretion Efficiency 2. Eddington Luminosity 3. Bondi-Hoyle Accretion 4. Temperature profile and spectrum of accretion disk 5. Spectra of AGN 5.1 Continuum 5.2 Line Emission

More information

Astro 201 Radiative Processes Problem Set 6. Due in class.

Astro 201 Radiative Processes Problem Set 6. Due in class. Astro 201 Radiative Processes Problem Set 6 Due in class. Readings: Hand-outs from Osterbrock; Rybicki & Lightman 9.5; however much you like of Mihalas 108 114, 119 127, 128 137 (even skimming Mihalas

More information

Synchrotron Radiation: II. Spectrum

Synchrotron Radiation: II. Spectrum Synchrotron Radiation: II. Spectrum Massimo Ricotti ricotti@astro.umd.edu University of Maryland Synchrotron Radiation: II. Spectrum p.1/18 ds=v dt_em dt=ds cos(theta)/c=v/c cos(theta)dt_em Synchrotron

More information

Quantum Electronics/Laser Physics Chapter 4 Line Shapes and Line Widths

Quantum Electronics/Laser Physics Chapter 4 Line Shapes and Line Widths Quantum Electronics/Laser Physics Chapter 4 Line Shapes and Line Widths 4.1 The Natural Line Shape 4.2 Collisional Broadening 4.3 Doppler Broadening 4.4 Einstein Treatment of Stimulated Processes Width

More information

ASTR240: Radio Astronomy

ASTR240: Radio Astronomy AST24: adio Astronomy HW#1 Due Feb 6, 213 Problem 1 (6 points) (Adapted from Kraus Ch 8) A radio source has flux densities of S 1 12.1 Jy and S 2 8.3 Jy at frequencies of ν 1 6 MHz and ν 2 1415 MHz, respectively.

More information

Compton Scattering II

Compton Scattering II Compton Scattering II 1 Introduction In the previous chapter we considered the total power produced by a single electron from inverse Compton scattering. This is useful but limited information. Here we

More information

Chapter 3 Energy Balance and Temperature. Astro 9601

Chapter 3 Energy Balance and Temperature. Astro 9601 Chapter 3 Energy Balance and Temperature Astro 9601 1 Topics to be covered Energy Balance and Temperature (3.1) - All Conduction (3..1), Radiation (3.. and 3...1) Convection (3..3), Hydrostatic Equilibrium

More information

Fundamental Stellar Parameters

Fundamental Stellar Parameters Fundamental Stellar Parameters Radiative Transfer Specific Intensity, Radiative Flux and Stellar Luminosity Observed Flux, Emission and Absorption of Radiation Radiative Transfer Equation, Solution and

More information

Stellar Structure. Observationally, we can determine: Can we explain all these observations?

Stellar Structure. Observationally, we can determine: Can we explain all these observations? Stellar Structure Observationally, we can determine: Flux Mass Distance Luminosity Temperature Radius Spectral Type Composition Can we explain all these observations? Stellar Structure Plan: Use our general

More information

Introduction. Stellar Objects: Introduction 1. Why should we care about star astrophysics?

Introduction. Stellar Objects: Introduction 1. Why should we care about star astrophysics? Stellar Objects: Introduction 1 Introduction Why should we care about star astrophysics? stars are a major constituent of the visible universe understanding how stars work is probably the earliest major

More information

High Energy Astrophysics

High Energy Astrophysics High Energy Astrophysics Accretion Giampaolo Pisano Jodrell Bank Centre for Astrophysics - University of Manchester giampaolo.pisano@manchester.ac.uk April 01 Accretion - Accretion efficiency - Eddington

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department. Quiz 2

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department. Quiz 2 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Physics 8.282 April 16, 2003 Quiz 2 Name SOLUTIONS (please print) Last First 1. Work any 7 of the 10 problems - indicate clearly which 7 you want

More information

Chapter 3 Energy Balance and Temperature. Topics to be covered

Chapter 3 Energy Balance and Temperature. Topics to be covered Chapter 3 Energy Balance and Temperature Astro 9601 1 Topics to be covered Energy Balance and Temperature (3.1) - All Conduction (3..1), Radiation (3.. and31) 3...1) Convection (3..3), Hydrostatic Equilibrium

More information

Components of Galaxies Gas The Importance of Gas

Components of Galaxies Gas The Importance of Gas Components of Galaxies Gas The Importance of Gas Fuel for star formation (H 2 ) Tracer of galaxy kinematics/mass (HI) Tracer of dynamical history of interaction between galaxies (HI) The Two-Level Atom

More information

Compton Scattering. hω 1 = hω 0 / [ 1 + ( hω 0 /mc 2 )(1 cos θ) ]. (1) In terms of wavelength it s even easier: λ 1 λ 0 = λ c (1 cos θ) (2)

Compton Scattering. hω 1 = hω 0 / [ 1 + ( hω 0 /mc 2 )(1 cos θ) ]. (1) In terms of wavelength it s even easier: λ 1 λ 0 = λ c (1 cos θ) (2) Compton Scattering Last time we talked about scattering in the limit where the photon energy is much smaller than the mass-energy of an electron. However, when X-rays and gamma-rays are considered, this

More information

Solutions Mock Examination

Solutions Mock Examination Solutions Mock Examination Elena Rossi December 18, 2013 1. The peak frequency will be given by 4 3 γ2 ν 0. 2. The Einstein coeffients present the rates for the different processes populating and depopulating

More information

Problem Set 2 Solutions

Problem Set 2 Solutions Problem Set 2 Solutions Problem 1: A A hot blackbody will emit more photons per unit time per unit surface area than a cold blackbody. It does not, however, necessarily need to have a higher luminosity,

More information

5. SYNCHROTRON RADIATION 1

5. SYNCHROTRON RADIATION 1 5. SYNCHROTRON RADIATION 1 5.1 Charge motions in a static magnetic field Charged particles moving inside a static magnetic field continuously accelerate due to the Lorentz force and continuously emit radiation.

More information

Fundamental Stellar Parameters. Radiative Transfer. Stellar Atmospheres

Fundamental Stellar Parameters. Radiative Transfer. Stellar Atmospheres Fundamental Stellar Parameters Radiative Transfer Stellar Atmospheres Equations of Stellar Structure Basic Principles Equations of Hydrostatic Equilibrium and Mass Conservation Central Pressure, Virial

More information

Star Formation and Protostars

Star Formation and Protostars Stellar Objects: Star Formation and Protostars 1 Star Formation and Protostars 1 Preliminaries Objects on the way to become stars, but extract energy primarily from gravitational contraction are called

More information

Chapter 2 Radiation of an Accelerated Charge

Chapter 2 Radiation of an Accelerated Charge Chapter 2 Radiation of an Accelerated Charge Whatever the energy source and whatever the object, (but with the notable exception of neutrino emission that we will not consider further, and that of gravitational

More information

Cooling, dynamics and fragmentation of massive gas clouds: clues to the masses and radii of galaxies and clusters

Cooling, dynamics and fragmentation of massive gas clouds: clues to the masses and radii of galaxies and clusters of massive gas and radii of M. Rees, J. Ostriker 1977 March 5, 2009 Talk contents: The global picture The relevant theory Implications of the theory Conclusions The global picture Galaxies and have characteristic

More information

Surface Wall Load due to Bremsstrahlung & Line Radiation

Surface Wall Load due to Bremsstrahlung & Line Radiation Surface Wall Load due to Bremsstrahlung & Line Radiation Tetsuya Uchimoto APEX Study Meeting University of California Los Angeles November 2-4, 1998 Background & Objectives The operation of the liquid

More information

11 Quantum theory: introduction and principles

11 Quantum theory: introduction and principles Part 2: Structure Quantum theory: introduction and principles Solutions to exercises E.b E.2b E.3b E.4b E.5b E.6b Discussion questions A successful theory of black-body radiation must be able to explain

More information

Lecture 20 High-Energy Astronomy. HEA intro X-ray astrophysics a very brief run through. Swift & GRBs 6.4 kev Fe line and the Kerr metric

Lecture 20 High-Energy Astronomy. HEA intro X-ray astrophysics a very brief run through. Swift & GRBs 6.4 kev Fe line and the Kerr metric Lecture 20 High-Energy Astronomy HEA intro X-ray astrophysics a very brief run through. Swift & GRBs 6.4 kev Fe line and the Kerr metric Tut 5 remarks Generally much better. However: Beam area. T inst

More information